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ARTICLE INFO ABSTRACT

Keywords: Cumulative Sum (CuSum) change detection was applied on a Sentinel-1 backscatter time series at

Deforestation a spatial scale of 10 m as part of a conservation program implemented in Acre, Brazil, requiring

Conservation the monitoring of deforestation activities by participants in the program. This study evaluated the

SBraZ}l - results of CuSum and compared them to those obtained from conventional deforestation prod-
entinel-

ucts, demonstrating how this method can improve the implementation of such programs. We
aimed to map deforestation events with a minimum resolution of 0.1 ha to maximise event detec-
tion while minimising false positives, which could lead to unfair penalties for participants. The
remarkable detection precision (ranging from 87.3 % to 96.1 %) and short delay of the CuSum al-
gorithm make it suitable for implementing a conservation program, as illustrated in this study.
Moreover, this method has the potential to accurately assess the extent of future deforestation.
This study contributes to the development of effective deforestation monitoring strategies within
the framework of conservation programmes to facilitate improved farming practices and climate
change mitigation. This code is available at https://github.com/Pfefer/cusum.

SAR

1. Introduction

Deforestation of tropical rainforests is a major issue for biodiversity conservation, the terrestrial carbon cycle, indigenous popula-
tion subsistence, and, more generally, in the broader fight against deforestation to help mitigate climate change (Gibson et al., 2011;
Gatti et al., 2021). In 2012, smallholders owned 24 % of the Brazilian Legal Amazon. Their plots of areas less than 100 ha represented
12 % of the total deforestation (Godar et al., 2014; Maurano and Escada, 2019; Trancoso, 2021). Tyukavina et al. (2018) showed the
major contribution of smallholders to the dynamics of deforestation. Kalamandeen et al. (2018) reported that the average size of for-
est-loss patches in the Amazon between 2001 and 2014 was 10.25 ha. This study also highlighted that the majority (96.4 %) of defor-
ested patches in the Amazon were below the 6.25-ha threshold set by Prodes (Almeida et al., 2021), with a significant proportion of
deforested patches (81.1 %) below 1 ha on surface. Trancoso (2021) reported that the average size of deforestation patches in the
Brazilian Amazon increased from 10.6 to 24.7 ha in the period 2015-2019 and remained 24.1 ha in 2020. In our specific region,
where small-scale farmers represent the majority of landowners, we observed that 87.3 % of deforested areas were smaller than 5 ha
(Table 1).
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Table 1
Distribution of validation polygons area.

Area (Ha) Polygons (Pol) on extended area Polygons (Pol) on plots
<0.2 41 (4.4%) 26 (9.4%)

0.2 < Pol <0.5 93 (10.0%) 34 (12.3%)

0.5 < Pol <1 167 (18.0%) 167 (18.0%)

1 < Pol <5 507 (54.9%) 151 (54.5%)

5 < Pol <10 88 (9.5%) 15 (5.4%)

10 < Pol 41 (4.4%) 6 (2.2%)

Total 923 27

Conservation programs promote sustainable practices that contribute to the preservation of natural resources and ecosystems. For
several years, programs that offer payments for environmental services (PES) to landowners who agree to conserve their forests have
been envisaged as a possible means of combating deforestation resulting from activities such as forestry, cropland expansion, and pas-
ture area expansion on plots owned by smallholders (Montero-de Oliveira et al., 2023). This is particularly the case in Brazil, where
there has been a proliferation of sub-national initiatives financed by the Reducing Emissions from Deforestation and Forest Degrada-
tion (REDD+) mechanism in the Amazon in recent years (Sills et al., 2014) with more than 50 REDD + projects targeting smallholder
farmers (Simonet et al., 2015). We implemented a conservation program in the state of Acre, Brazil, offering PES contracts to 459
smallholders over a one-year period, spanning from June 2021 to December 2021 and continuing until June 2022 to December 2022.
The program proposed different payment contracts for smallholders, all of which financially compensated for the preservation of the
forest surface over their fields. The main objective was to monitor the state of the forests with maximum precision (ratio between true
detected patches of deforestation and the entire set of deforested patches) and minimal delay, to assess the impact of the program on
forest conservation. Precision was crucial because patches falsely detected as deforestation areas could lead to unfair financial penal-
ties. The monitoring process aimed to accurately identify and track deforestation activities to ensure compliance with the program
guidelines.

Some studies have used publicly accessible resources to monitor deforestation and evaluate the effects of conservation programs
(Demarchi et al., 2023). West et al. (2020) employed the MapBiomas dataset (Souza and Azevedo, 2017), while Roopsind et al.
(2019) used the Global Forest Watch (GFW) tree cover loss dataset (Hansen et al., 2013). The use of the Prodes (Almeida et al., 2021)
and GFW datasets revealed a discrepancy in outcomes, as demonstrated by Demarchi et al. (2023). Several optical products, such as
TMF (Tropical Moist Forest, Vancutsem et al., 2021), known for their effectiveness and widespread use, presented issues such as in-
compatible definitions of primary forest compared to the contractual definition or limitations in the frequency of result publications.
For instance, some contracts ended in September 2022, yet TMF and GFW have not published their 2022 data as of April 2023, and
TMF data for 2022 are available with a delay of five months (published in May 2023).

In this context, we tested the potential of a recently developed approach based on the cumulative sum (CuSum) technique
(Manogaran and Lopez, 2018) applied to the time series of Sentinel-1 backscatter images (Ygorra et al., 2021a). A key advantage of
radar-based methods is the regular availability of data, typically every 6-12 d with Sentinel-1, regardless of cloud cover. This method
has been previously employed in the Congo for small-scale deforestation and degradation (Ygorra et al., 2021a; and b). Some studies
like Doblas Prieto et al. (2023) also demonstrated the complementarity between optical and SAR (Synthetic Aperture Radar) methods
for deforestation monitoring in the Amazon. Our primary objective was to monitor deforestation activities among PES program par-
ticipants to assess the effectiveness and impact of the program. In addition, we conducted a test of the CuSum algorithm in a nearby
zone (“extended area”, Fig. 1) covering an area of 150,000 ha to assess the algorithm performance specifically within the timeframe
of October 2020 to October 2021, allowing for a comparison of its results with those obtained from other available products.

2. Methodological approach
2.1. Study sites

The study sites encompassed two areas: plots of the PES program, covering a total area of 26,000 ha (as defined by Demarchi,
2022), and a nearby testing zone “extended area” located in the state of Acre, Brazil (Fig. 1). The climate in these areas is charac-
terised as warm and humid, with an average annual temperature of 25 °C and mean annual rainfall ranging from 2000 to 2500 mm.

2.2. Datasets

2.2.1. Sentinel-1 SAR images

The Sentinel-1 mission is a constellation of two satellites positioned at an altitude of 693 km, with a 180° orbital phasing differ-
ence (Torres et al., 2012). Each satellite has a repeat cycle of 12 days over the study site. Sentinel-1A and B were launched in April
2014 and April 2016, respectively. The instrument onboard the Sentinel-1 satellite was a C-band Synthetic Aperture Radar (SAR). In
this study, Ground Range Detected products were acquired in the Interferometric Wide-swath mode with a resolution of 5 x 20 m re-
sampled to 10 X 10 m, using vertical-vertical (VV) and vertical-horizontal (VH) polarisations. Data from the Sentinel-1A (ascending)
and B (descending) satellites were used in our analysis, covering a total of 60 images captured between October 31, 2020 and October
31, 2021.
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Fig. 1. a) Study site located in Amazonia, in the Brazilian state of Acre. b) and c) Plots from PES are in red and the “extended area” on which we assessed the perfor-
mance of the algorithm is in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

2.2.2. PlanetScope optical images

PlanetScope monthly mosaics provided by the NICFI program (Roy et al., 2021) were used to manually delineate the deforestation
polygons (Fig. 2). These images have a high resolution of 4.77 m and minimal cloud coverage. By comparing the images of October
2020 with those of October 2021, 928 deforested polygons were identified manually and digitised, covering a total area of 2950 ha.

[ validation_database_polygons

Fig. 2. a) Sample of the study site on October 2020 PlanetScope image. b) Same sample on October 2021 PlanetScope image. Blue polygons are the validation database
polygons hand-drawn. Imagery © 2021 Planet Labs Inc. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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This visual interpretation was combined and validated using the expertise of local partners who conducted field surveys directly re-
lated to program implementation.

2.2.3. Tropical Moist Forest mask

To delineate the study area and exclude potential algorithm detections within non-forested areas, we used the TMF deforestation
monitoring results from 1982 to 2020 as a non-forest mask. The initial comparison between the masks in the TMF and GFW groups re-
vealed no significant differences. However, we chose this specific mask because of its definition of degradation, which could enhance
the detection of disturbance events, resulting in a higher identification of non-forest spaces.

2.2.4. Available and existing deforestation products

CuSum was compared to classical and state-of-the-art deforestation products: GFW, TMF, GLAD-S2 (Pickens et al., 2020), Brazil-
ian-specific Prodes, and MapBiomas. RAdar for Detecting Deforestation (RADD, Reiche et al., 2021) was also used as a reference for
comparison because, like CuSum, it employs an approach based on the analysis of the Sentinel-1 time series. Only products in Brazil
that provided free and readily downloadable data were included in this study. The GFW provides an annual map of tree cover loss,
starting in 2000. It is based on the analysis of the Landsat reflectance at 30 X 30 m using a decision-tree algorithm. The product is up-
dated annually to provide information on deforestation and land cover changes. The TMF is another optical product based on a deci-
sion algorithm applied to Landsat data to identify deforested areas. The TMF distinguishes between deforestation, which refers to dis-
turbances visible for over 2.5 years, and degradation, which represents deforestation visible for less than 2.5 years. Prodes is a defor-
estation monitoring system that relies on photo-interpretation. It specifically identifies point deforestation events with an area greater
than 6.25 ha within a predefined period from August 1st to July 31st each year. MapBiomas employs machine-learning algorithms to
automatically identify patterns and changes associated with deforestation, allowing for accurate detection and monitoring of defor-
estation activities. These optical products provide valuable insights into deforestation, but may have limitations in terms of cloud
cover and timeliness of data availability. RADD uses Sentinel-1 data and analyzes backscatter information using a probabilistic algo-
rithm to detect and identify deforestation activities. By leveraging radar backscatter data, RADD can overcome some of the limita-
tions associated with cloud cover and obtain more consistent and frequent observations than optical-based methods. TropiSCO
(Bouvet et al., 2018) and DETER-R (Doblas et al., 2022) also used Sentinel 1 data to identify deforestation; however, the data for
Brazil are not freely available (TropiSCO) or readily downloadable (DETER-R, only providing access to the code).

2.3. Method

The entire package for executing the algorithm is available at https://github. com/pfefer/cusum.

2.3.1. Sentinel-1 data pre-processing

Sentinel-1 data were downloaded from the SNAP API and preprocessed using the PyroSAR (Truckenbrodt et al., 2019) and PyRAT
(Reigber et al., 2019) packages. The preprocessing steps included orbital correction, thermal noise correction, border noise correc-
tion, terrain correction, radiometric calibration to sigma naught, and bilateral speckle filtering using a 3 3 window, as outlined by
Ygorra et al. (2021a, Fig. 3).

2.3.2. CuSum algorithm

The algorithm analyzes the time-series backscatter values for both the VV and VH polarisations at the pixel scale. It detects
changes by computing the cumulative sum of the difference between the backscatter signal and its mean over a given period of N im-
ages (Ygorra et al., 2021a). This cumulative sum analysis helped identify significant changes in backscatter values, indicating poten-
tial deforestation events.

k
Ry=Y Ry
i=1
where k € {1, esey N}, Rlx] = Yij - 0j-
7ij backscatter signal value from pixel j at time i and o; the time average of the signal on the pixel j.
Then we compute the amplitude:

Aj=max Ry —min R, withk € {1,..,N}

We then implemented a bootstrapping step to randomise our initial time series 500 times. This randomisation process involves
shuffling the order of the backscatter values within the time series. We chose 500 after previous tests, as described by Ygorra et al.
(2021a). Moreover, we computed the new amplitude, Ar, for each randomisation. Finally, we compute the ratio CL (Confidence
Level) between the number of randomisation which have an amplitude Ar < Ai the total number of randomisation (500):

_ A, <Aure {1,..,500} ]
- 500

CL (€Y

We introduce a threshold Tc used to accept a change when CL > Tc. The Tc threshold value is an adjustable parameter that users
can customise. These steps are performed for each pixel j.
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Fig. 3. Flowchart illustrating the three main steps of the radar-based deforestation monitoring method: pre-processing, CuSum algorithm change detection, and post-
processing.

2.3.3. Post-processing

In the post-processing steps, several measures were taken to improve the accuracy and reliability of the algorithm outputs. i) Non-
forest mask: the algorithm removed any detections within a non-forest mask, defined using the TMF deforestation results from 1982
to early 2020. ii) Removal of previous detections: The algorithm was run for an earlier time period (October 2020 for the testing zone
and until June 2021 for the plot study), and any detections that were already identified in the previous run were removed. This step
ensured that only new and recent deforestation events were considered. iii) Minimum detection size: to minimise false detections, de-
tections smaller than 0.1 ha (10 pixels) are removed. This threshold was chosen in accordance with our primary goal of accurately as-
sessing the extent of deforestation while avoiding false detections that could unfairly penalise participating stakeholders. This thresh-
old aligns with most other deforestation products, thereby enhancing the robustness of our comparison. iv) Spatial recombination:
Spatial recombination is applied to the algorithm outputs using two different thresholds, referred to as high and low Tc (Ygorra et al.,
2021a). Polygons from the low-Tc output are retained only if they intersect (regardless of the size of the intersection) with a polygon
from the high-Tc output. This step allows for an increase in the detection size while maintaining spatial precision, ensuring that the
resulting polygons are larger but still reliable. In all analyses, we used 1 for High Tc and varied the low Tc. v) For the “extended area”,
the algorithm is applied separately to the outputs from both Sentinel-1A and B, and the spatial union of the two outputs is obtained.

2.3.4. Validation steps

A reference map was created by comparing October 2020 and October 2021 PlanetScope images. The TMF and Hansen datasets
helped to distinguish between primary and secondary forests. Only completely cleared primary forest regions were manually outlined
to establish a reference map. In the context of our PES program, an analysis was conducted using PlanetScope images from the start
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and end of the contract dates to identify primary forest cuts within the participants’ plots. Table 1 shows that most of the events tar-
geted for detection had an area ranging from 1 ha to 5 ha, indicating the size distribution of the detected forest cuts.

2.3.5. Evaluation of algorithm performance

The algorithm performance was evaluated from October 2020 to October 2021. This decision was mainly motivated by the PES
contractual agreements that mainly took place during this period. Despite temporal discrepancies in data sources such as MapBiomas
or Prodes (July to July period), the use of the October to October period should not have a significant impact on the validity of the
comparison in this area, as this period encompasses the main deforestation activities in our region according to i) stakeholder declara-
tion, during which farmers indicated their customary practice of forest cutting exclusively during the dry season, and ii) the deforesta-
tion period (from May to November in 2021, April to November in 2022) highlighted by the results from ScienceForAmazonas (2022)
in our study area. Moreover, this approach excludes deforestation monitoring during the rainy season. By doing so, we effectively re-
duced the length of the time series from 60 to 36 images per year, minimising the computation time and the risk of speckles in the
Sentinel-1 images caused by rainy conditions, resulting in a higher likelihood of false detections (Ygorra et al., 2021a). We adopted
the definition of primary forest outlined by the National Institute for Space Research (INPE) in their Prodes methodology publication
(Almeida et al., 2021). Our focus on the primary forest aligned with the requirements specified in the PES contracts, thus ensuring
consistency between our analysis and the program objectives. Furthermore, our main emphasis was on deforestation, which is de-
fined as the complete removal of visible canopy cover at the pixel scale.

We used the same three statistical indicators as in (Ygorra et al., 2021a) to assess the algorithm performance:

TP + TN

A NS L e e\ B
Ay = T TIN ¥ FP+ FN

The overall Accuracy measures the algorithm ability to correctly classify both “cover change” and “no cover change” pixels. True
Positives are the pixels correctly classified as “cover change” by both the reference map and the algorithm. True Negatives are pixels
correctly classified as “no cover change” by both the reference map and the algorithm. False Positives (FP) represent the pixels that
are incorrectly classified as “cover change” by the algorithm but not by the reference map. False Negatives are the pixels that are in-
correctly classified as “no cover change” by the algorithm but identified as “cover change” by the reference map.

TP

e Precision = —————
TP + FP

Precision measures an algorithm's accuracy in correctly identifying pixels as “cover change” among all the pixels it classified as
such. Precision provides insights on the algorithm ability to avoid false positives and is particularly useful when minimising the num-
ber of incorrect “cover change” classifications is important.

P

eRecall = ————
TP + FN

Recall evaluates an algorithm's ability to correctly identify pixels that are classified as “cover change” by the reference map. The
Recall provides insights into the algorithm ability to capture all instances of “cover change” and is particularly useful when the detec-
tion of positive cases is of high importance.

To minimise false detections and accurately assess deforestation areas, we focused on maximising precision (the ratio of correctly
detected deforestation pixels to all detected deforestation pixels) while maintaining satisfactory recall (the ratio of correctly detected
deforestation pixels to all actual deforestation pixels) at the pixel scale. In addition, we compute a metric on a polygon scale. This met-
ric calculates the ratio between the number of reference map polygons successfully detected by the algorithm and the total number of
reference map polygons, regardless of the size of the detection. This metric allowed us to measure the portion of reference polygons
detected by the algorithm without considering the precision of the detection size.

|{Pol|Pol N Algorithm Detection, #} |

e Detected =
[{Pol}|

The detected metric is calculated as the ratio between the number of polygons (Pol) from the validation database that have a non-
empty intersection with the algorithm detection and the total number of polygons in the validation database. This metric assesses
how well the algorithm identifies polygons representing deforestation events in the study area.

2.3.6. Identification of false positive areas using buffers
To identify FP locations in our algorithm evaluation, we expanded the polygons from the validation dataset with 10 m, 20 m, and
60 m buffer zones and computed the metrics over these different validation databases.

3. Results

3.1. CuSum overall performances

Cusum algorithm is able to detect 86.1 % of the identified deforested polygons and achieved 98.9 % accuracy, 87.3 % precision,
and 53.2 % recall. An overview (Fig. 4) of results shows how false detection is limited or located along the boundaries of true detec-
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Fig. 4. Results from the algorithm over a sample of the extended area on the October 2021 PlanetScope image; in red is the false positive, and in yellow is the true
positive. © 2021 Planet Labs Inc. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

tion (see Discussion). We can obtain a better recall by decreasing the low Tc (Table 2), but at the expense of increasing false detec-
tions.

3.2. Change detection time lags

To determine the time lag in detection using the CuSum algorithm, we selected deforestation events that visually occurred be-
tween two cloud-free Sentinel-2 images captured five days apart, providing a 5 days range during which these events occurred. Using
different sets of recent Sentinel-1 images as input, our tests showed that to identify an event at time T, the algorithm required four to
five subsequent images representing 48-60 d. Furthermore, this result for the detection latency stems from the spatial recombination
of Tc 100 and Tc 95. By exploring different combinations, it is possible to reduce the latency to three images while achieving optimal
performance (Ygorra et al., 2023). This time lag can be explained by the inherent lag of the cusum because the time series of the sum
of the residuals is always zero at the end over pixel j:

N N N
=> Ry =D Rij= 1y = ;= X 1ij = Noj
i=1 i=1 i=1

N
N Z Vij

i=1

=> Ry=Y7; - N ~— =0
i=1

This implies that if the backscatter time series shows a drop towards the end, the residual remains at 0, regardless of whether a
drop occurs. This makes it difficult to observe changes when counting amplitudes below a set threshold. In fact, the smaller the origi-
nal amplitude, the lower is the probability of obtaining a lower amplitude through bootstrap reorganisation. As a result, even a drop
in the backscatter at the end of the series would remain undetected. Additionally, backscatter is influenced by two primary factors,
roughness and dielectric properties, which, in turn, can be influenced by moisture (vegetation water content in dense canopies, soil
moisture over recently deforested areas, and a combination of the two for low-density canopies and lower vegetation). Following a
forest cut, there may be instances in which tree trunks or branches are left behind, and changes in humidity levels can cause an in-
crease in backscatter beyond the initial value observed over a forest pixel. Depending on the case, a double bounce can induce an in-

Table 2
Results for different Tc_low outputs.

Tc_low Accuracy Precision Recall Detected
97 98.83 88.5 45.8 85.1
96 98.86 87.8 49.5 85.5
95 98.94 87.3 53.2 86.1
94 98.87 80.6 55.3 86.2
93 98.86 78.1 57.3 86.9
91 98.79 72.0 61.1 87.0
89 98.66 65.6 65.2 87.5
87 98.47 59.0 69.1 87.7
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crease in backscatter, whereas high moisture and low roughness result in a decrease in backscatter. However, it is only after a certain
delay, once the moisture levels stabilize, that a drop in the backscatter time series may occur.

3.3. Comparison between products

A preliminary experiment in the study area revealed that eliminating the wet season resulted in a 19 % increase in precision
(which is the most significant objective for us) and a decrease by 3.8 % in polygon detection. This suggests that, although removal is
significantly effective for precision, it prevents us from detecting some of the cuts that occurred during this period. Therefore, if we
have results from the TMF for 2021 from January to December, we expect them to accurately represent our time period from October
202 to October 2021, October 2020 to April 2021, and October 2021 to December 2021, and few deforestation events should occur.
Several annual and near-real-time deforestation products were evaluated during the testing period from October 2020 to October
2021 (Fig. 5).

CuSum achieved an accuracy of 0.989, which was comparable to the accuracy scores of GFW (0.990) and TMF (0.989). This indi-
cated a high level of overall prediction accuracy. In terms of precision, CuSum was the top performer, with a score of 0.873, demon-
strating its remarkable ability to accurately identify true-positive results. GLAD-S2 followed closely, with a precision score of 0.842,
whereas RADD achieved a precision of 0.799. The remaining products exhibited lower precision. The GFW obtained the highest recall
score of 0.847, indicating a high sensitivity level in the detection of relevant data. GLAD-S2 achieved a recall score of 0.699, and
CuSum and RADD trailed slightly behind with scores of 0.532 and 0.522, respectively. In terms of the detection rate, GFW outper-
formed with a rate of 0.957. TMF and RADD performed similarly with rates of 0.926 and 0.929, respectively (Table 3).

CuSum achieved a detection rate of 0.861, indicating satisfactory performance. A comparison of the results of the two radar-based
deforestation products (CuSum and RADD) revealed notable similarity (Fig. 6). However, it is important to highlight that RADD
demonstrates a higher overall detection rate than the validation database polygons as well as more false positives.

Fig. 5. Results of change detection from other deforestation products: a) GFW, b) Prodes ¢) GLAD-S2, d) TMF on October 2021 PlanetScope image. Imagery © 2021
Planet Labs Inc.

Table 3
Metrics (%) from different products on extended area between October 2020 and October 2021 computed over the reference dataset (see section 4.2 and Fig. 2).
RADD results have been extracted from their highest-level confidence for detections.

Metrics Hansen MapBiomas TMF RADD Prodes GLAD-S2 CuSum
Accuracy 99.0 97.7 98.9 98.8 97.9 99.1 98.9
Precision 72.1 40.3 77.3 79.9 45.1 84.2 87.3
Recall 84.7 34.0 63.7 52.2 32.9 69.9 53.2
Detected 95.7 49.2 92.6 92.9 20.9 90.6 86.1
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Fig. 6. Results of change detection from RADD in red (a) and CuSum in yellow (b) on October 2021 PlanetScope image. Imagery © 2021 Planet Labs Inc. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

3.4. Results over the 459 plots in the program

The program was conducted as a randomised controlled trial in 459 households, 302 of which were offered a one-year PES con-
tract. We observed that tree cover declined by 0.74 Ha in treated farm holds during the contract duration (June to October 2022),
compared to 1.2 Ha in control farm holds, indicating a 40 % reduction in deforestation (Fig. 7).

4. Discussion

This section discusses the results and the main limitations of the approach with respect to (i) false-positive detections (role of shad-
ows and photointerpretation bias), (ii) false-negative detections (role of the forest/non-forest mask), and (iii) data availability.

4.1. Identification of false positives areas

Computation of the metrics over the buffer dataset showed that 40.7 % of FPs were within 10 m of a validation polygon, 57 %
were within 20 m, and 75 % were within 60 m (Table 4).

This suggests that only a few FPs have been isolated from real deforestation. The CuSum algorithm produced more contour errors
than pure false deforestation (Table 5). This is a limitation of the study due to bias in digitised validation polygons caused by i) misin-
terpreting shadows as forested areas during photo interpretation, ii) misinterpretation before/after due to different image capture an-

Fig. 7. Impact of the PES program on avoided deforestation. Brackets represent 95 percent confidence intervals. The PES program was implemented at the end of 2021
(dashed line).

Table 4
This table displays the occurrence of false positives over four datasets: the validation database, the validation database expanded by 10 m, 20 m and 60 m.

Polygons Polygons +10 m Polygons +20 m Polygons +60 m
Area (Ha) 230.58 136.7 99.04 57.67
Precision 87.3 92.5 94.64 96.12
Tendency (%) —-40.7 —57.04 -74.99
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Table 5
False positives categorised by type. Boundary +60 represents false positives within the polygons from the validation database buffed by 60 m.

Type FP Boundary +60 m Seasonal flooding Secondary forest Isolated FP

proportion (%) 74.99 2.23 3.89 18.89

gles, iii) visual canopies not always indicating trees at the pixel scale, and iv) the influence of speckle filtering on clear-cut area
boundaries using a 3 x 3 windowing approach. Combining Cusum with a radar shadow detection algorithm, such as that proposed
by Bouvet et al. (2018), could help reduce the bias arising from shadow misinterpretation. In addition to this type of false positives,
we noticed false detections near to rivers (2.23 %, Fig. 5). Floods can cause changes in the backscatter levels, leading to false-positive
changes in the floodplain. In the future, this type of false positives could be avoided by incorporating floodplain areas into non-forest
masks. The algorithm is based on spotting changes in the backscatter time series, regardless of the nature of the change. This approach
typically detects the secondary forest clearance. However, differentiating it from primary forest clearings and excluding detections
within the no-forest mask is crucial to ensure the accurate recognition of primary forest removal. However, incomplete coverage of
secondary forest areas in the non-forest mask led to some false positives (3.89 %). Moreover, false positives occurred in primary
forests too (18.95 %). This is likely due to backscatter variations from natural factors or misclassifications during the reference map
production. For instance, rapid opening and closing of the canopy within the core of primary forests can trigger these issues. Such
small-case events can result in subtle canopy cover changes that are not easily visible when comparing images taken one year apart.

4.2. False-negative identification

We addressed the impact of false negatives due to the use of non-forest masks as input, which unintentionally remove deforesta-
tion detections in non-forest areas. Our study demonstrates that the delineation of mask edges can lead to misclassification. By inter-
secting polygon database with the forest mask, false negatives decreased by 36 %, emphasising the need to have an accurate non-
forest mask for more reliable deforestation monitoring. Determining the correct balance between filtering non-deforestation changes
and accurately detecting deforestation is a challenge in algorithm-based monitoring systems. While it is crucial to remove detections
that are not directly related to deforestation, this approach can inadvertently lead to the underdetection of actual deforestation
events. This study emphasises the importance of accurate non-forest mask inputs.

4.3. Lack of Sentinel-1 B

The union of ascending and descending Sentinel-1 data played a significant role in achieving notable results. Table 6 shows an im-
provement in recall and the ratio of detected polygons, increasing by 9 % and 6 %, respectively, with only a 4 % decrease in precision.

However, Sentinel-1B data are no longer accessible, thus imposing limitations. Nevertheless, it is worth mentioning that employ-
ing data from a single direction, such as Sentinel 1 A, yielded favourable outcomes at our study sites.

5. Conclusions

We demonstrated the contribution of the CuSum algorithm within the context of a program for environmental services that re-
quires the capability to detect small-scale deforestation, while maintaining accurate estimations of deforested areas to ensure a thor-
ough program evaluation. This method was also compared with various products, the use of which was challenging for this mission
because of data inaccessibility, delayed publication of results, different class definitions, and the minimum resolution being too high
for our specific case. CuSum demonstrated a global accuracy, detection precision, and recall of 98.9 %, 87.3 %, and 53.2 %, respec-
tively. We updated, developed, and optimised the algorithm to achieve the best performance in monitoring deforestation with mini-
mal false detections, lag, and computational time. By monitoring the deforestation activities of the conservation program participants
and conducting tests in a nearby zone, we provided data to assess the effectiveness and impact of the program. This analysis con-
tributes to a better understanding of the capabilities and limitations of the different methods in practical applications within this spe-
cific context. The use of radar-based methods such as the CuSum algorithm shows promise for providing timely and accurate informa-
tion for deforestation monitoring at the local scale. One notable advantage of the CuSum algorithm is its ability to minimise false posi-
tives, which is a key issue in conservation programs in which smallholders are paid to preserve primary forests. Additionally, it is a
configurable algorithm that allows users to set parameters, such as the minimum mapping unit and Tc combination, giving them the
flexibility to prioritise either the number of detections and their associated areas or the precision of the detections.

Table 6
Results from Ascending direction data in input, Descending direction data and Union of both.

Ascending Descending Union of both
Accuracy 98.7 98.8 98.9
Precision 89.9 91.8 87.3
Recall 42.9 44.3 53.2
Detected 77.5 80.2 86.1
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