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We examine the near-field radiative heat transfer between finite-thickness planar fused silica slabs covered
with graphene gratings, through the utilization of the Fourier modal method augmented with local basis
functions (FMM-LBF), with a focus on the lateral shift effect (LSE). To do so, we propose and validate a
minor modification of the FMM-LBF theory to account for the lateral shift. This approach goes far beyond
the effective medium approximation, which cannot account for the lateral shift. We show that the heat flux can
exhibit significant oscillations with the lateral shift, and at short separation, it can experience up to a 60–70%
reduction compared with the aligned case. Such an LSE is found to be sensitive to the geometric factor d/D
(separation distance to grating period ratio). When d/D > 1 (realized through large separation or small grating
period), the two graphene gratings see each other as an effective whole rather than in detail, and thus, the LSE on
heat transfer becomes less important. Therefore, we can clearly distinguish two asymptotic regimes for radiative
heat transfer: the LSE regime, where a significant LSE is observed, and the non-LSE regime, where this effect is
negligible. Furthermore, regardless of the lateral shift, the radiative heat flux shows a nonmonotonic dependence
on the graphene chemical potential. That is, we can get an optimal radiative heat flux (peaking at ∼0.3 eV
chemical potential) by modulating the chemical potential in situ. This paper has the potential to unveil avenues
for harnessing the LSE on radiative heat transfer in graphene-based nanodevices.

DOI: 10.1103/PhysRevB.109.195431

I. INTRODUCTION

Recently, interest has been growing in near-field radia-
tive heat transfer (NFRHT), motivated by both fundamental
explorations and practical applications. When the separation
distance is comparable with or smaller than the thermal wave-
length λT = h̄c/kBT , the radiative heat flux can exceed the
Planckian black-body limit by several orders of magnitude
[1,2], due to the near-field effects (e.g., photon tunneling)
[3–6]. NFRHT has been extensively investigated theoretically
for many different geometric configurations [7–19], some of
which have been confirmed by pioneering experimental works
[20–29]. Particularly, when grating structures are involved,
they can lead to important enhancement of NFRHT due to the
excitation of high-order diffraction channels [30–32]. Addi-
tionally, owing to the special optical properties of graphene,
planar graphene-sheet-involved structures exhibit many be-
haviors in the radiative heat transfer modulation [33–42]. It
would be interesting to know whether the combined richness
of the grating geometry and the special dielectric features
of graphene could lead to some other behaviors in NFRHT
manipulation that cannot be achieved with conventional
materials.

Radiative energy transfer between graphene grating-based
structures [43–45] has recently been investigated, where pat-
terning the graphene sheets has been found to open more
energy transfer channels. All of these works consider two
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perfectly aligned and identically patterned graphene struc-
tures. The effect of twisted grating has also been investigated
[46–48]. Still, the effect of a lateral shift between the
two parallel gratings remains unexplored. Introducing a lat-
eral shift will allow a modulation of NFRHT, keeping the
separation distance constant. It is worth stressing that the
effective medium theory (EMT), which is often used to study
NFRHT between substrate-supported graphene strips [49],
treats the graphene grating as an effective whole and thus
cannot account for the lateral shift effect (LSE). The study
of a shifted configuration needs a more accurate numerical
method to treat the electromagnetic wave scattering by the
gratings.

In this paper, we investigate the effect of a lateral shift on
NFRHT. We will consider planar fused silica slabs coated with
graphene gratings (see Fig. 1). Concerning the numerical in-
vestigations, we will use a more accurate method: the Fourier
modal method equipped with local basis functions (FMM-
LBF), which is particularly efficient for one-dimensional strip
gratings [50–53]. Such a method does not use any approxi-
mations other than the classical ones (harmonic plane-wave
expansion, linear homogeneous and isotropic materials, etc.)
in the solution of Maxwell’s equations. The restriction, if
there is one, is the truncation necessary for the numer-
ical implementation. There is no such restriction on the
wavelength-to-period ratio like the one we have with the EMT.
To consider this lateral shift, one can either include it by
directly applying the translation to the scattering operator (of
nontranslated objects) or by including it in the construction of
the scattering operators themselves. In our computations, we
checked the equivalence of these two approaches.
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FIG. 1. Structure diagram of the supported graphene gratings
considering relative lateral shift Xs

This paper is organized as follows: In Sec. II, the physical
model of the planar fused silica slabs covered with graphene
gratings with a relative lateral shift and the theoretical mod-
els of the scattering approach for radiative heat transfer are
presented. In Sec. III, the effects of influencing factors (e.g.,
grating period, chemical potential, and filling fraction) on the
lateral shift mediated NFRHT are analyzed, and asymptotic
regimes of the LSE are also proposed.

II. THEORETICAL MODELS

The physical system is shown in Fig. 1. We investi-
gate NFRHT between bodies 1 and 2. The relative lateral
displacement between the two graphene strips along the x
axis is Xs. When Xs = 0, the two graphene gratings are
perfectly aligned, and NFRHT, in this case, has recently
been investigated (please refer to our recent work for more
details [45]).

In the following, we will denote by D the graphene grat-
ing period, by a the width of a single graphene strip, by
h the common thickness of the planar slabs, and by d the
separation distance between the two gratings. Bodies 1 and
2 are considered at fixed temperatures T1 and T2, respec-
tively, while the environment is at the same temperature as
body 1. The electromagnetic properties of graphene are con-
sidered through its conductivity σg, which depends on the
temperature T and chemical potential μ. It is the sum of in-
traband and interband contributions (σg = σintra + σinter ) given

by [37,54–56]

σintra = i

ω + i/τ

2e2kBT

π h̄2 ln

[
2 cosh

(
μ

2kBT

)]
, (1)

and

σinter = e2

4h̄

[
G

(
h̄ω

2

)

+ i
4h̄ω

π

∫ +∞

0

G(ξ ) − G(h̄ω/2)

(h̄ω)2 − 4ξ 2
dξ

]
, (2)

where e is the electron charge, τ the relaxation time (we
use τ = 10−13 s), and G(ξ ) = sinh(ξ/kBT )/[cosh(μ/kBT ) +
cosh(ξ/kBT )].

The net power flux ϕ received by body 1 (energy per unit
surface and time) can be defined as [57,58]

ϕ =
∑

p

∫
d2k

(2π )2

∫ +∞

0
[	(ω, T2) − 	(ω, T1)]

× dω

2π
〈p, k|O|p, k〉, (3)

where p is the polarization index, p = 1, 2 correspond to
transverse electric (TE) and transverse magnetic (TM) polar-
ization modes, respectively, 	(ω, T ) = h̄ω/[exp(h̄ω/kBT ) −
1] is the mean energy of the Planck oscillator, h̄ is the reduced
Planck constant, ω is the angular frequency, kB is the Boltz-
mann constant, and k = (kx, ky), kx and ky being the wave
vectors in the standard (x, y, z) Cartesian coordinates system.
The transmission operator O in the (TE, TM) basis is given
by [58]

O = U (2,1)
{

f−1[R(2)−] − T (2)−P (pw)
−1 T (2)−†

}
× U (2,1)†

{
f1[R(1)+] − T (1)−†P (pw)

1 T (1)−}
, (4)

where U (2,1) = [1 − R(2)−R(1)+]−1, R(1)+ and R(2)− [T (1)−
and T (2)−] are the reflection operators (transmission op-
erators) of gratings 1 and 2 in the (TE, TM) basis, †
stands for the conjugation operation, and the ± superscripts
in the reflection and transmission coefficients correspond
to the propagation direction with respect to the z axis.
Here, 〈p, k|P (pw/ew)

ζ |p′, k′〉 = kζ
z 〈p, k|∏(pw/ew)|p′, k′〉, kz =√

k2
0 − k2, k0 = ω/c,

∏(pw) [
∏(ew)] is the projector on the

propagative (evanescent) sector, and the auxiliary function
fζ (R) is given by [57,58]

fζ (R) =
{
P (pw)

−1 − RP (pw)
−1 R† + RP (ew)

−1 − P (ew)
−1 R†, ζ = −1,

P (pw)
1 − R†P (pw)

1 R + R†P (ew)
1 − P (ew)

1 R, ζ = 1.
(5)

According to Ref. [31], the periodicity along the x axis makes it natural to replace the mode variable kx with kxn = kx + n 2π
D ,

and kz becomes kzn =
√

k2
0 − k2

xn − k2
y , where n ∈ Z, kx is in the first Brillouin zone (− π

D , π
D ), and ky ∈ R.

The reflection and transmission operators R(1)+, R(2)−, T (1)−, and T (2)−, needed for our calculations, are obtained from
the operators R and T corresponding to the reference structure shown in Fig. 2 and whose derivation is detailed in the
Appendix.
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Body 1 has no lateral shift, i.e., Xs = 0. Then R(1)+ and T (1)− at the interface z = 0 and with no lateral shift Xs = 0 (see
Fig. 1) can be obtained directly from the known R− and T + by using the following relations [31,45]:

〈p, k, n|R(1)+(ω)|p′, k′, n′〉 =
{〈p, k, n|R−(ω)|p, k′, n′〉, p = p′,

−〈p, k, n|R−(ω)|p′, k′, n′〉, p 	= p′,
(6)

and

〈p, k, n|T (1)−(ω)|p′, k′, n′〉 =
{〈p, k, n|T +(ω)|p, k′, n′〉, p = p′

−〈p, k, n|T +(ω)|p′, k′, n′〉, p 	= p′.
(7)

As for body 2, there is not only a lateral shift Xs but an interface translation to z = d (see Fig. 1). To consider these two kinds
of translation and obtain R(2)− and T (2)−, one can consider two methods. The first one consists of directly applying appropriate
translation operators to the scattering operators. This approach has been discussed, in detail, in a previous work [58] from which
we take the results giving R(2)− and T (2)− in terms of R− and T −:

〈p, k, n|R(2)−(ω)|p′, k′, n′〉 = exp[i(k′
xn′ − kxn)Xs] exp[i(kzn + k′

zn′ )d]〈p, k, n|R−(ω)|p′, k′, n′〉,
〈p, k, n|T (2)−(ω)|p′, k′, n′〉 = exp[i(k′

xn′ − kxn)Xs] exp[i(kzn − k′
zn′ )d]〈p, k, n|T −(ω)|p′, k′, n′〉. (8)

In the first method, when using Eq. (8), R− and T − are
calculated by fixing Xs = 0 since the effect of the lateral shift
is already included by the factor phase exp[i(k′

xn′ − kxn)Xs].
The second method, consists of incorporating the effect

of the lateral shift directly into the computation of the scat-
tering operators R− and T − with FMM-LBF (as given in
the Appendix) and then only applying the normal translation
operators exp[i(kzn + k′

zn′ )d] and exp[i(kzn − k′
zn′ )d] (as previ-

ously) in the z direction.
It is important to stress that these two approaches are com-

pletely equivalent. A numerical verification of this is shown
in Fig. 3, where we compute the radiative heat flux spectrum
for the structure shown in Fig. 1, using the two methods (the
different parameters are given in the caption). As can be seen
in the figure, there is very good agreement between the two
approaches, and a closer look at the data reveals that the re-
sults are identical to our working precision [see the inset of the
figure for the ∼0 relative ratio of heat flux (ϕω,1 − ϕω,2)/ϕω,2

between the two methods]. Therefore, either of these methods
can be used in the investigations to come.

III. RESULTS AND DISCUSSION

In this section, we use the theoretical model outlined above
to investigate NFRHT between the slabs of Fig. 1. Parametric

FIG. 2. Reference structure used in the computation of the dif-
ferent reflection and transmission operators.

investigations of influencing factors on NFRHT will be per-
formed, and particular focus will be given to the asymptotic
regimes for the LSE. In the following, bodies 1 and 2 are
maintained at T1 = 290 K and T2 = 310 K, respectively. We
notice that the convergence of truncation order N used in
FMM-LBF is independent of the homogeneous media sur-
rounding graphene and the conductivity itself. More precisely,
this N convergence depends on the ratio between the wave-
length and the period of the grating. In our computations,
given the interval of wavelengths considered, we found that
N = 30 is enough to ensure the convergent results for the
radiative heat flux (the relative error <1%). The substrate
thickness h is fixed at 20 nm.

FIG. 3. The radiative heat flux spectrum of the configuration
shown in Fig. 1 using SiO2 slabs (whose optical data are taken from
Ref. [59]), μ = 0.3 eV, a lateral shift Xs = 0.5 µm and a grating pe-
riod D = 2 µm at separation distance d = 100 nm, with T1 = 290 K
and T2 = 310 K, obtained by the two different approaches: (1) the
modified FMM-LBF and (2) the translated scattering operators.
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FIG. 4. Dependence of heat flux ϕ and normalized heat flux ϕ/ϕ(Xs = 0 nm) on the relative lateral shift Xs: (a) the absolute heat flux ϕ

and (b) ratio of the heat flux ϕ to the heat flux at Xs = 0 nm. Three different periods are considered, D = 100, 500, and 1000 nm.

A. Parametric investigation of influencing factors on
lateral-shift-induced NFRHT: Grating period, chemical

potential, and filling fraction

We consider three different influencing factors that may
affect the effect of the relative lateral shift between the two
gratings on its heat transfer: the grating period D, the chem-
ical potential μ of graphene, and the filling fraction f . We
start the parametric investigation with the grating period D.
In Fig. 4(a), we show the dependence of heat flux ϕ on the
relative lateral shift Xs. Three different periods are considered,
D = 100, 500, and 1000 nm, respectively. The other parame-
ters are f = 0.5, d = 100 nm, and μ = 0.5 eV.

When shifting one of the gratings, we can observe a pe-
riodic oscillation of the radiative heat flux with the same
spatial period as the grating itself. As shown in Fig. 4(a), for
a fixed lateral shift Xs, the radiative heat flux decreases by
∼30% when the period D increases from 100 to 1000 nm.
Additionally, the oscillation amplitude of the radiative heat
flux induced by the lateral shift increases significantly with
increasing period D. To show the change of the oscillation
amplitude corresponding to different grating periods, we nor-
malize the radiative heat flux ϕ(Xs) by ϕ(Xs = 0 nm) (i.e., the
one without a lateral shift). The result is shown in Fig. 4(b).
Lateral shift affects the heat transfer significantly. For the case
where D = 1000 nm, the lateral shift can even result in 40%
reduction of the heat flux, while for the case where D = 100
nm, the lateral shift can reduce it by only a few percent,
which is negligible compared with that for the case of a large
spatial period (D = 1000 and 500 nm). For a fixed separation
distance d , the scattering details become more important when
increasing the grating period D (and thus the ratio D/d),
causing the nanostructures to see each other in more detail.
In such a situation, more accuracy is needed to account for the
complexity of the nanostructures and be able to compare with
experiments, while the EMT becomes completely invalid.

In our recent paper [53], when discussing the nonadditivity
of the Casimir force (a kind of geometric effect) between

two aligned graphene-grating-coated finite-size fused silica
slabs (the same configuration as in this paper but with no
lateral shift), we introduced a dimensionless parameter d/D
and proved its relevance to such a geometric effect. The ef-
fect of the relative lateral shift on NFRHT is also geometry
related; therefore, we want to know if the dimensionless pa-
rameter d/D is still pertinent in this case. The three curves in
Fig. 4(b) correspond to a fixed separation distance d = 100
nm, where d/D = 1, 0.2, and 0.1 for the cases D = 100,
500, and 1000 nm, respectively. To verify the relevance of
d/D to the LSE, we performed additional calculations using
the couples (d = 500 nm, D = 500 nm) and (d = 1000 nm,
D = 1000 nm) to maintain d/D = 1 as for the case (d = 100
nm, D = 100 nm) already shown. Two lateral shift distances
Xs = 200 and 400 nm are considered. The results are added in
Fig. 4(b) and shown as the star and square symbols in black
for periods D = 500 and 1000 nm, respectively. We see that
they both move close to the d = 100 nm and D = 100 nm
curve, confirming the relevance of the geometric factor d/D
and hence of the geometric nature of the effect. To further
verify the relevance of d/D to the LSE, the dependence of
the amplitude ratio ϕXs=0.5D/ϕXs=0 on the period D is shown
in Fig. 5, where d/D is fixed at 1. We observe that the ratio
ϕXs=0.5D/ϕXs=0 ∼ 1 for the considered periods (100 nm < D
< 1000 nm). That is, maintaining d/D = 1 will bring a weak
LSE compared with the significant LSE for the configurations
(d/D = 0.2 and 0.1) in Fig. 4(b), which further confirms the
relevance of the geometric factor d/D to the LSE.

We then study the effect of the chemical potential μ of
graphene on NFRHT. We show the dependence of heat flux
ϕ on the relative lateral shift Xs in Fig. 6, considering differ-
ent chemical potential values μ = 0, 0.2, 0.4, 0.6, 0.8, and
1.0 eV, with D = 1000 nm, f = 0.5, and d = 100 nm. The
upper body 2 is laterally shifted in the range of one full
grating spatial period. At different Fermi levels, the LSE on
NFRHT changes slightly. When the chemical potential is not
too small (e.g., μ > 0.2 eV), when laterally shifting body 2,
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FIG. 5. Dependence of the ratio ϕXs=0.5D/ϕXs=0 nm on the period
D. Here: d/D = 1, f = 0.5, μ = 0.5 eV.

the radiative heat flux decreases to reach a valley, then keeps
constant for a range of lateral shifts (forming a plateau), and
finally increases to the same value as that without lateral shift,
while for the chemical potentials μ = 0 and 0.2 eV, radiative
heat flux will decrease to reach the valley and then increase
directly and go back to that of no lateral shift. Figure 6 also
indirectly shows that the radiative heat flux is not monotonic
with the chemical potential (this behavior will be studied in
detail in Fig. 7). A natural question is whether we can obtain
an optimal radiative heat flux by choosing an appropriate
chemical potential μ for graphene gratings.

To answer the above question, we calculated the depen-
dence of the radiative heat flux ϕ on the chemical potential
μ for different lateral shifts Xs = 0, 100, 200, 300, 400, and
500 nm, for D = 1000 nm, f = 0.5, and d = 100 nm. The
results are reported in Fig. 7, where we see that, when increas-

FIG. 6. Dependence of radiative heat flux ϕ on the lateral shift
Xs. The chemical potential μ = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 eV. The
period D = 1000 nm, filling fraction f = 0.5, separation distance
d = 100 nm.

FIG. 7. Dependence of radiative heat flux ϕ on the chemical
potential μ of graphene. The lateral shift Xs = 0, 100, 200, 300,
400, and 500 nm, period D = 1000 nm, filling fraction f = 0.5,
separation distance d = 100 nm.

ing the chemical potential, the radiative heat flux increases at
first to its peak and then decreases gradually for all considered
lateral shift Xs curves. For the considered separation d and
grating period D, the radiative heat flux appears to be optimal
for μ at ∼0.25 eV.

Additionally, we study the effect of the filling fraction f on
NFRHT. We show the dependence of heat flux on the filling
fraction in Fig. 8(a), where five different filling fractions are
considered, f = 0, 0.2, 0.5, 0.8, and 1.0, with d = 1000 nm
and D = 1000 nm. For f = 0 and 1.0, the configurations
reduce to the bare/coated slab cases. As expected, the heat
flux for these two cases is independent on the lateral shift.
At a large separation (e.g., d = 1000 nm), adding a graphene
sheet coating on the fused silica substrate (green right-facing
triangle line) will significantly enhance the radiative heat flux
as compared with the bare fused silica substrate (black left-
facing triangle line), which is consistent with the observations
in Refs. [33,45]. At short separations and without considering
any lateral shift, as reported in our recent work [45], patterning
graphene from a sheet to a grating can significantly enhance
the heat flux. For the graphene grating coating case (e.g.,
f = 0.8), there are more accessible high-k modes, while for
the graphene sheet configuration ( f = 1.0), the accessible
wave vector region is relatively smaller than that of the
graphene grating one. Consequently, the slabs coated with
a graphene grating can facilitate a greater transfer of energy
than the slabs coated with a graphene sheet. However, at large
separations, the patterning method does not always work to
enhance heat flux. As shown in Fig. 8(a), by comparing the
curves for f = 0.2, 0.5, and 0.8 to the curve for f = 1.0,
we can clearly see that, apart from the enhancement seen
for f = 0.8, the patterning method fails to enhance the heat
flux. Moreover, when laterally shifting the upper body 2
in the case f = 0.8, the heat flux will become less than
that of the graphene sheet coating case ( f = 1.0) (for
Xs ∈ [200, 800] nm).
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FIG. 8. Dependence of heat flux ϕ and normalized heat flux
ϕ/ϕ (Xs = 0 nm) on the relative lateral shift Xs: (a) the absolute heat
flux ϕ and (b) ratio of the heat flux ϕ to the heat flux at Xs = 0 nm.
Five different filling fractions are considered, f = 0, 0.2, 0.5, 0.8,
and 1.0, respectively. The separation distance d = 100 nm, grating
period D = 1000 nm, chemical potential μ = 0.5 eV.

In Fig. 8(b), we show the dependence of the ratio
ϕ(Xs)/ϕ(Xs = 0) on the filling fraction f . As expected, it
is constant and equal to 1 for both f = 0 and 1. For the
other filling fractions, this ratio decreases from 1 to a val-
ley value and then increases back to 1. For a lateral shift
∼500 nm, the heat flux can even experience up to 60% re-
duction when f = 0.2. In general, the minimal heat flux is
at the half-period lateral shift (Xs = 0.5D). However, it is
not always the case. For example, as shown in Fig. 4(b),
the minimal heat flux is at Xs = 400 and 600 nm rather
than at Xs = 0.5D. According to Figs. 4, 6, 8, the lateral
shift for the minimum heat flux is relevant to the grat-
ing period D, chemical potential μ, and the filling fraction
f . Considering that both the scale of the lateral shift and
the geometry, considered here, are realistic and experimen-
tally accessible, the lateral-displacement-sensitive radiative
heat transfer might have potential for thermal logic gates
applications.

FIG. 9. Dependence of normalized heat flux ϕXs=0.5D/ϕXs=0 nm on
separation distance d . Five different filling fractions are considered,
f = 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. The grating period D =
100 nm, chemical potential μ = 0.5 eV.

B. Asymptotic regimes for the LSE on NFRHT

In this section, we try to find an asymptotic regime map for
the LSE on NFRHT between substrate-supported graphene
gratings to quickly tell the existence of the LSE or not. Con-
sidering that the relevance of the dimensionless geometric
factor d/D for the LSE has been confirmed in Sec. III A, we
may take advantage of it to propose the asymptotic regime
map. That is, as the filling fraction f approaches 0 or 1, the
LSE disappears. Hereinafter, we will use the ratio of heat flux
with a half-period shift ϕ(Xs = 0.5D) to that without a shift
ϕ(Xs = 0) to evaluate the LSE on heat flux.

We will, first, check whether the filling fraction affects
the asymptotic regime. The dependence of the ratio ϕ(Xs =
0.5D)/ϕ(Xs = 0) on the separation distance d is shown in
Fig. 9, where five different filling fractions are considered: f
= 0.1, 0.3, 0.5, 0.7, and 0.9. The grating period is D = 100
nm, and the chemical potential is μ = 0.5 eV. We can see a
clear dependance of the ratio ϕ(Xs = 0.5D)/ϕ(Xs = 0) on d
with two distinct regime zones: (i) the first one for d � 200
nm, where the ratio varies quickly, and (ii) the second one for
d � 200 nm, where the ratio is almost constant. Moreover,
we remark that, even for small period configurations (i.e.,
100 nm), the lateral shift can still have a wide range modu-
lation of the heat flux, with a maximum reduction of 30% (in
the first zone).

Beyond the separation point d = 200 nm, the LSE be-
comes less important. In addition, such a critical separation
point does not change with the filling fraction f . To un-
derstand why the LSE on heat transfer changes with the
separation d , we show the energy transmission coefficient
Tr(O) in the (kx/k0, ky/k0) plane at the angular frequency
ω = 5 × 1013rad/s (where the contribution of graphene to
the NFRHT spectrum is important) for a slab coated with a
graphene grating in Fig. 10. Here, Tr(O) is the sum over the
two polarizations of the photon tunneling probabilities, which
is usually applied to analyze the mechanisms behind NFRHT
[45,60,61]. The transmission coefficient operator O is defined
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FIG. 10. Energy transmission coefficient for a fused silica substrate coated with a graphene grating: (a) separation d = 20 nm and
lateral shift Xs = 0 nm, (b) separation d = 20 nm and lateral shift Xs = 50 nm, (c) separation d = 200 nm and lateral shift Xs = 0 nm,
and (d) separation d = 200 nm and lateral shift Xs = 50 nm. The grating period D = 100 nm, chemical potential μ = 0.5 eV, filling fraction
f = 0.5.

by Eq. (4). In Fig. 10, four configurations are considered: (a)
d = 20 nm and Xs = 0 nm, (b) d = 20 nm and Xs = 50 nm,
(c) d = 200 nm and Xs = 0 nm, and (d) d = 200 nm and
Xs = 50 nm, together with D = 100 nm, μ = 0.5 eV, and f
= 0.5. The dotted curves represent the dispersion relations
obtained from the poles of the reflection coefficient [49,62].

For the configurations with d = 200 nm, the topology of
the accessible modes does not change with the lateral shift,
as shown in Figs. 10(c) and 10(d). However, for d = 20 nm,
the topology of the accessible modes changes slightly, as
shown in Figs. 10(a) and 10(b). There are more accessible
high-k modes for the case with no lateral shift than that
for the case with a half-period lateral shift, which accounts
for the fact that the radiative heat flux decreases significantly
as the upper body 2 moves from the aligned situation to the
misaligned one. Whether or not the lateral shift exists, the
supported surface plasmon polariton is always the hyperbolic
one. Compared with the transition from the circular one to the
hyperbolic one by patterning the graphene sheet into a grating,
the lateral shift will not induce a critical topology transi-
tion but only slightly affect the accessible range of high-k
modes.

Now we investigate and determine the asymptotic regime
map for the LSE by using the geometric factor d/D. For
that, we take the typical filling fraction f = 0.5 and chem-
ical potential μ = 0.5 eV. In Fig. 11, we show the ratio
ϕXs=0.5D/ϕXs=0 nm in the (d, D) plane, where the black dotted
lines corresponding to the lines representing the geometric
factors d/D = 0.5, 1.0, and 2.0 are added for reference.

For a given grating period D, as the separation d becomes
large enough, the ratio ϕXs=0.5D/ϕXs=0 nm approaches 1, and the
scattering details of the graphene grating no longer change
with the relative lateral shift Xs. That is, the two graphene
gratings see each other as an effective whole rather than
in detail, and thus, the LSE on heat transfer becomes less
important.

Additionally, for a fixed separation d , as the period D
decreases, the ratio ϕXs=0.5D/ϕXs=0 nm also approaches 1 grad-
ually, and the scattering details of the graphene grating no
longer change with the relative lateral shift Xs. When the grat-
ing period D is relatively small compared with the separation
d , the graphene grating behaves like an effective medium, and
the relative lateral shift between the two gratings does not
change the scattering details and thus does not affect the heat
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FIG. 11. Dependence of the ratio ϕXs=0.5D/ϕXs=0 nm on sepa-
ration distance d and grating period D. The filling fraction f
= 0.5, chemical potential μ = 0.5 eV. The dotted lines (geomet-
ric factor d/D = 0.5, 1.0, and 2.0, respectively) are added for
reference.

transfer. We can clearly see that the ratio ϕXs=0.5D/ϕXs=0 nm
generally increases to 1 as the geometric factor d/D increases.
The LSE on heat transfer becomes less and less important
as d/D increases. Two distinct regions can be distinguished,
where we see a significant LSE and a negligible LSE on heat
transfer, respectively (namely, the LSE and non-LSE regions).
In the LSE region, the lateral shift can even result in >50%
reduction of the heat flux. For clarity, we take several lines
(D = 100, 200, 300, 400, and 500 nm) from Fig. 11 and show
them in Fig. 12 to follow the details of the the dependence of
the ratio ϕXs=0.5D/ϕXs=0 nm on the separation d . The inset in

FIG. 12. Dependence of the ratio ϕXs=0.5D/ϕXs=0 nm (main figure)
and the heat flux ϕ (inset) on separation distance d for five different
grating periods, D = 100, 200, 300, 400, and 500 nm. The filling
fraction f = 0.5, chemical potential μ = 0.5 eV.

Fig. 12 is for the dependence of the absolute heat flux on the
separation d .

Although the heat flux ϕ decreases monotonically with the
separation d for both Xs = 0 nm and Xs = 0.5D, the ratio
ϕXs=0.5D/ϕXs=0 nm is usually not monotonic with this separa-
tion d . The dependence of heat flux ϕ on d is not synchronized
for the two configurations with lateral shift Xs = 0 nm and
Xs = 0.5D. For the gratings with the same filling fraction f ,
as the separation d increases to 200 nm or more, they always
have the same heat flux, even though they have different peri-
ods D. That is, for two gratings with a large enough separation,
it is the filling fraction that plays the determining role for the
heat transfer rather than the grating period.

To understand the separation-dependent shift effect on the
heat flux, we show its spectrum for two separations (d = 20
and 50 nm) in Fig. 13. Two relative shifts are considered, Xs =
0 nm and Xs = 0.5D with D = 500 nm, f = 0.5, and μ =
0.5 eV. The spectra for the configurations of bare slabs and
slabs coated with graphene sheets are also added for reference.
The graphene coating (including the graphene grating and
the graphene sheet) increases the whole heat flux spectrum
apart from the peaks. As compared with the graphene grating
coating, the graphene sheet coating can induce a reduction of
the low-frequency (at ∼9 × 1013 rad/s) peak and a redshift
of the high-frequency (at ∼2 × 1014 rad/s) peak. The lateral
shift between the two objects reduces the whole spectrum of
heat flux from the dashed blue line to the red solid line (as
shown in Fig. 13). The difference between the red and blue
line spectra is more pronounced for small d .

To further understand the observations concerning the
separation-dependent LSE on the radiative heat transfer in
Figs. 11 and 12, we show the energy transmission coefficient
Tr(O) [see Eq. (4) for the definition] in the (kx/k0, ky/k0)
plane at the angular frequency ω = 5 × 1013 rad/s for a slab
coated with a graphene grating in Fig. 14. Eight configurations
are considered, where the upper panels [(a)–(d)] are for the
configurations without a lateral shift (i.e., Xs = 0 nm), and
the lower panels [(e)–(h)] are for configurations with a fixed
half-period lateral shift (i.e., Xs = 0.5D = 250 nm). The sep-
arations d = 20, 200, 400, and 600 nm are considered, while
D = 500 nm, μ = 0.5 eV, and f = 0.5. The dotted curves
represent the dispersion relations obtained from the poles of
the reflection coefficient [49,62].

When increasing the separation d , by comparing the panels
[(a)–(d)] with panels [(e)–(h)] correspondingly in Fig. 14,
we show that the difference between the topologies of the
allowed modes caused by the relative lateral shift becomes
less and less important. In addition, we can see in Fig. 14(a)
a shrinking region for the allowed modes as the separation d
increases, regardless of whether there is a lateral shift, which
results in a decreasing heat flux. Particularly, at separation
d = 20 nm, the high-k branch allowed modes blend and hy-
bridize significantly with the relative low-k branch due to the
difference in the near field caused by the lateral shift. The
near-field effect weakens with the mismatch between the two
objects. Hence, less energy can be exchanged between the two
objects due to the lateral shift at short separation. A general
conclusion is that the lateral shift works against the radiative
heat transfer for short separations but becomes less important
for large separations.
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FIG. 13. Spectra of heat flux between two objects with two relative shifts (Xs = 0 nm and 0.5D) and two different separations: (a) separation
d = 20 nm and (b) separation d = 50 nm. The grating period D = 500 nm, filling fraction f = 0.5, chemical potential μ = 0.5 eV. The heat
flux spectra for the configurations of bare slabs and slabs coated with graphene sheets are also added for reference.

IV. CONCLUSIONS

We analyzed theoretically the effect of a lateral shift on
NFRHT between finite-thickness planar fused silica slabs
coated with graphene gratings, through FMM-LBF. Com-
pared with the effective medium approximation, which treats
the grating as an effective whole rather than in detail, this
more accurate approach goes far beyond, especially because
the former cannot account for the lateral shift. To consider the
lateral shift in the FMM-LBF and in addition to the existing

method of including the lateral shift by directly applying the
reference translation to the scattering operators [58], we de-
veloped another method to include the LSE in the scattering
operators themselves.

We show that, due to the lateral shift, the heat flux can
exhibit significant oscillations and even a 60–70% reduction
compared with the aligned case (e.g., f = 0.2, μ = 0.5 eV,
D = 1000 nm, d = 100 nm). Such a LSE is found to be
sensitive to the geometric factor d/D. If d/D < 0.5 (see

FIG. 14. Energy transmission coefficient for a fused silica substrate coated with a graphene grating: (a) separation d = 20 nm and lateral
shift Xs = 0 nm, (b) separation d = 200 nm and lateral shift Xs = 0 nm, (c) separation d = 400 nm and lateral shift Xs = 0 nm, (d) separation
d = 600 nm and lateral shift Xs = 0 nm, (e) separation d = 20 nm and lateral shift Xs = 250 nm, (f) separation d = 200 nm and lateral shift
Xs = 250 nm, (g) separation d = 400 nm and lateral shift Xs = 250 nm, and (h) separation d = 600 nm and lateral shift Xs = 250 nm. The
grating period D = 500 nm, chemical potential μ = 0.5 eV, filling fraction f = 0.5.
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Fig. 11 for the regime map of the LSE), the ratio of the
heat flux with a half-period shift to that without a shift
(ϕXs=0.5D/ϕXs=0 nm) is far from unity. That is, the lateral shift
significantly reduces the heat flux. However, we can generally
say that, when d/D > 1, the ratio ϕXs=0.5D/ϕXs=0 nm ∼ 1 (see
Figs. 5 and 11), where the LSE on heat transfer becomes less
important. We can clearly distinguish two asymptotic regimes
for the radiative heat transfer, i.e., the LSE and non-LSE
regimes, where we see a significant LSE and a negligible LSE
on heat transfer, respectively.

Regardless of the lateral shift, the radiative heat flux shows
a nonmonotonic dependence on the graphene chemical po-
tential, with the heat flux reaching its maximum value at
μ ≈0.25 eV. Considering that all the length scales (e.g., the

lateral shift and the period) are realistic and experimentally
accessible, the lateral-shift-sensitive and chemical-potential-
dependent radiative heat transfer might have potential for the
thermal logic gate. It would also be interesting to study the
effect of the lateral shift of the grating on Casimir interactions
[63,64].
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APPENDIX: MODIFIED FMM-LBF WITH A LATERAL SHIFT

The main text outlined two distinct approaches to compute the scattering matrix of our structure. In the first approach, the
lateral shift is directly incorporated into the scattering matrix elements [as presented in Eq. (8)]. In contrast, the second approach
requires a modification of the FMM-LBF method itself. This Appendix is dedicated to a detailed derivation of the latter approach.

In our recent work [53], we provided comprehensive details of FMM-LBF with no lateral shift (Xs = 0). In this context, we
initially computed the interface scattering matrix SLBF between the input media I and II (as shown in Fig. 2). Then we determined
the slab scattering matrix, denoted Sslab, between media II and III. By performing the star product (�) operation [53] between
SLBF and Sslab, we obtained the overall scattering matrix, denoted S and given by

S = SLBF � Sslab =
(
R−

xyz T −
xyz

T +
xyz R+

xyz

)
, (A1)

where R+
xyz and R−

xyz (T +
xyz and T −

xyz) are the reflection operators (transmission operators) in the (x, y, z) Cartesian basis.
In the presence of a lateral shift Xs, as illustrated in Fig. 2, the definition of the matrix SLBF is modified, while the rest of the

calculation process remains the same. Let us proceed to compute this new matrix.
Due to periodicity along the x direction, new diffraction channels open up, characterized by the wave vector component in

that direction. The z component of the nth diffraction-order wave vector depends on the medium. Here, kI
zn and kII

zn represent
the z wave vector of the nth diffraction order for media I (with εI on the incidence side) and II (with εII on the output side),
respectively, and are given by

kI
zn =

√
k2

0εI − k2
xn − k2

y ,

kII
zn =

√
k2

0εII − k2
xn − k2

y , (A2)

with k0 = ω/c, kxn = kx + n 2π
D , kx is in the first Brillouin zone (− π

D , π
D ), and ky is in R.

The electric and magnetic fields in medium I can be expressed as

EI =
∑

n

[In exp(ikin · r) + Rn exp(ikrn · r)],

HI = 1

k0Z0

∑
n

[kin × In exp(ikin · r) + krn × Rn exp(ikrn · r)], (A3)

Here, In = (Ixn, Iyn, Izn), Rn = (Rxn, Ryn, Rzn), kin = (kxn, ky, kI
zn), krn = (kxn, ky,−kI

zn), and Z0 =
√

μ0

ε0
, with n ∈ Z. Typically,

in the numerical implementation, we retain only 2N + 1 Fourier coefficients, i.e., n ∈ [−N, N], where N is called the truncation
order.

In medium II, the electric and magnetic fields are

EII =
∑

n

[Tn exp(iktn · r) + I′
n exp(iki′n · r)],

HII = 1

k0Z0

∑
n

[ktn × Tn exp(iktn · r) + ki′n × I′
n exp(iki′n · r)], (A4)

where Tn = (Txn, Tyn, Tzn), I′
n = (I ′

xn, I ′
yn, I ′

zn), ktn = (kxn, ky, kII
zn), and ki′n = (kxn, ky,−kII

zn).
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Furthermore, using divE = k · E = 0, we have the following relations

Izn = − 1

kI
zn

(kxnIxn + kyIyn),

Rzn = 1

kI
zn

(kxnRxn + kyRyn),

Tzn = − 1

kII
zn

(kxnTxn + kyTyn), (A5)

I ′
zn = 1

kII
zn

(kxnI ′
xn + kyI ′

yn).

The boundary conditions for the electric field at z = 0 are

EIx(x, y, 0) = EIIx(x, y, 0),

EIy(x, y, 0) = EIIy(x, y, 0). (A6)

By inserting Eqs. (A3) and (A4) into Eq. (A6), for arbitrary n, we have

Ixn + Rxn = I ′
xn + Txn,

Iyn + Ryn = I ′
yn + Tyn, (A7)

which can be expressed in compact form:

I + R = I ′ + T, (A8)

where

I =
(

Ix

Iy

)
, R =

(
Rx

Ry

)
, I ′ =

(
I ′
x

I ′
y

)
, T =

(
Tx

Ty

)
. (A9)

Due to the zero-thickness approximation of the graphene grating, the boundary conditions for the magnetic fields at the
interface between media I and II are

HIIx(x, y, 0) − HIx(x, y, 0) = σ (x)EIIy(x, y, 0), (A10)

where the function σ (x) is periodic and can be expanded into Fourier series as follows:

σ (x) =
{
σg, if Xs < x < Xs + a (graphene),

0, if Xs + a < x < Xs + D (slit),
=

∑
n

σn exp

(
i
2π

D
nx

)
. (A11)

By inserting Eqs. (A3) and (A4) into Eq. (A10), and using the Laurent factorization rule, the following relation is obtained:{(
kyTzn − kII

znTyn
) + (

kyI ′
zn + kII

znI ′
yn

) − (
kyIzn − kI

znIyn
) − (

kyRzn + kI
znRyn

)} = k0Z0

∑
n′

{
σn′−n

(
Tyn′ + I ′

yn′
)}

. (A12)

That can be expressed in a compact matrix form as

(kyTz − γIITy) + (
kyI ′

z + γIII
′
y

) − (kyIz − γIIy) − (kyRz + γIRy) = k0Z0[[σ ]](Ty + I ′
y), (A13)

where γII = diag(kII
zn), γI = diag(kI

zn), and [[σ ]] is the Toeplitz matrix whose (n′, n) element is σn′−n; more precisely,

[[σ ]] =

⎛
⎜⎜⎜⎜⎜⎝

σ0 σ−1 σ−2N

σ1 σ0 σ−1
. . .

. . .
. . .

. . .
. . . σ−1

σ2N σ1 σ0

⎞
⎟⎟⎟⎟⎟⎠, (A14)

where σp= iσg

2π p exp(− i2π pXs

D )[exp(− i2π pa
D ) − 1] = exp(− i2π pXs

D )σ p when p is a nonzero integer, σ0 = σga/D = σ 0, and σ p and
σ 0 correspond to the case Xs = 0 [51,53].

In addition, when considering a lateral translation Xs, the electric field Ex on the graphene grating surface (z = 0) can be
expressed in terms of LBFs [g′

m(x) and s′
m(x)] as follows:

Ex(x, y) = exp(ikyy)

{∑Ng

m=1 pmg′
m(x), if Xs < x < Xs + a,∑Ns−1

m=0 qms′
m(x), if Xs + a < x < Xs + D,

(A15)
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where

gm(x) = sin(mπx/a),

sm(x) = cos[mπ (x − a)/c′]√
(c′/2)2 − (x − xc)2

, (A16)

with c′ = D − a, xc = (a + D)/2, Ng = round[ N×a
D ], Ns = N − Ng, and round(x) gives the nearest integer number, then

g′
m(x) = gm(x − Xs), if Xs < x < Xs + a,

s′
m(x) = sm(x − Xs), if Xs + a < x < Xs + D. (A17)

Projecting the boundary condition for the y component of the magnetic field on the [exp(−ikxnx)] basis, we obtain

(
kII

znTxn − kxnTzn − kII
znI ′

xn − kxnI ′
zn

) − (
kI

znIxn − kxnIzn − kI
znRxn − kxnRzn

) = −σgk0Z0

Ng∑
m=1

〈exp(−ikxnx), pmg′
m(x)〉, (A18)

where the scalar product is given by 〈 f , g〉 = 1
D

∫ Xs+D
Xs

f (x)g(x)dx. Then Eq. (A18) yields(
kII

znTxn − kxnTzn − kII
znI ′

xn − kxnI ′
zn

) − (
kI

znIxn − kxnIzn − kI
znRxn − kxnRzn

)
= − 1

D

∫ Xs+a

Xs

σgk0Z0

Ng∑
m=1

pmgm(x − Xs) exp(−ikxnx)dx. (A19)

Using the change of variable x′ = x − Xs, Eq. (A19) becomes(
kII

znTxn − kxnTzn − kII
znI ′

xn − kxnI ′
zn

) − (
kI

znIxn − kxnIzn − kI
znRxn − kxnRzn

)
= − 1

D

∫ a

0
σgk0Z0

Ng∑
m=1

pmgm(x′) exp(−ikxnx′ − ikxnXs)dx′. (A20)

By taking out the term exp(−ikxnXs) in the integral and exchanging the order of summation and integration, the right-hand side
of Eq. (A20) becomes

− 1

D

∫ a

0
σgk0Z0

Ng∑
m=1

pmgm(x′) exp
(−ikxnx′ − ikxnXs

)
dx′ = −σgk0Z0 exp(−ikxnXs)

Ng∑
m=1

pmGnm, (A21)

where Gnm = −ia
2D exp(−ikxna/2)[exp(imπ/2) sin c(α−

nma/2)− exp(−imπ/2) sin c(α+
nma/2)], and α±

nm = mπ/a ± kxn.

Equation (A19) can now be recast into a more compact form:

γIITx − αTz − γIII
′
x − αI ′

z − γIIx + αIz + γIRx + αRz = −σgk0Z0�Gp, (A22)

where α = diag(kxn),� = diag[exp(−ikxnXs)], G = {Gnm} is a matrix with size [(2N + 1) × Ng], and p is the column vector
formed by the Ng coefficients pm, with p = (p1, p2, p3, . . . , pNg

)T. We can write the above equation as follows:

γIITx − αTz − γIII
′
x − αI ′

z − γ1Ix + αIz + γ1Rx + αRz = −σgk0Z0[�G 0]

(
p
q

)
, (A23)

where [�G 0] is the horizontale concatenation of matrices �G and 0, denoting the zero matrix of size [(2N + 1) × Ns], and q
is the column vector formed by the Ns coefficients qm, with q = (q0, q1, q2, . . . , qNs−1)T.

To obtain (p, q)T, we use the boundary condition on the x component of the electric field, and following the same procedure
as that for the y component of the magnetic field, we obtain(

p
q

)
= [�G �S]−1(Tx + I ′

x

)
, (A24)

where [�G �S] is the horizontale concatenation of matrices �G and �S, Snm = π
2D exp(−ikxnxc)[exp(imπ/2)J0(β−

nmc′/2) +
exp(−imπ/2)J0(β+

nmc′/2)], β±
nm = mπ/c′ ± kxn, and J0(x) is the zero-order Bessel function of the first kind.

Finally, the modified interface scattering matrix SLBF is given by(
R
T

)
= SLBF

(
I
I ′

)
, (A25)

where

SLBF =
(
1 −1
B A + �′

)−1(−1 1
B A − �′

)
, (A26)
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1 being the identity matrix of size [2(2N + 1) × 2(2N + 1)], �′ = diag(σgk0Z0[�G 0][�G �S]−1, [[σ ]]k0Z0), and A and B
are defined as

A =
⎛
⎝γII + α2γ −1

II αkyγ
−1
II

αkyγ
−1
II γII + k2

y γ
−1
II

⎞
⎠, (A27)

B =
⎛
⎝γI + α2γ −1

I αkyγ
−1
I

αkyγ
−1
I γI + k2

y γ
−1
I

⎞
⎠. (A28)

As mentioned in the beginning of this Appendix, the remaining calculations necessary to obtain the scattering matrix of the
global structure [i.e., the slab scattering matrix Sslab and the transformation matrices from the (x, y, z) Cartesian basis to the (TE,
TM) basis] proceed exactly as published in our previous work [53].
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