
HAL Id: hal-04608337
https://hal.science/hal-04608337

Submitted on 11 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced Iteration Overlap for Low-Latency Turbo
Decoding

Jeremy Nadal, Stefan Weithoffer, Charbel Abdel Nour, Catherine Douillard

To cite this version:
Jeremy Nadal, Stefan Weithoffer, Charbel Abdel Nour, Catherine Douillard. Advanced Iteration
Overlap for Low-Latency Turbo Decoding. ISWCS : 19th International Symposium on Wireless Com-
munication Systems (ISWCS), Jul 2024, Rio de Janeiro (BRAZIL), Brazil. �hal-04608337�

https://hal.science/hal-04608337
https://hal.archives-ouvertes.fr

Advanced Iteration Overlap for Low-Latency Turbo
Decoding

Jeremy Nadal, Stefan Weithoffer, Charbel Abdel Nour, Catherine Douillard
IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France

e-mail: firstname.surname@imt-atlantique.fr

Abstract—Increasing the parallelism of a turbo decoder
significantly constrains the inherently recursive decoding
algorithm and limits its ability to efficiently achieve high
decoding throughputs and to lower latency. This is partly
due to the interleavers that impose precedence constraints
when exchanging extrinsic information between the constituent
decoders. In this paper, we introduce the notion of a generalized
decoding schedule, which enables to configure the order in
which decoder metrics and extrinsic information are exchanged
during the decoding process. This schedule is generally inferred
from the choices related to the hardware architecture and its
parallelism degree. By following the proposed framework, it
is possible to evaluate the achieved latency of any decoding
schedule at a given operating point. We then propose a novel
iteration overlap decoding schedule that can strike an excellent
performance/latency tradeoff: Corresponding simulation results
show that latency can be reduced by half for high rate LTE
decoders for a given error rate target.

Keywords—forward error correction, turbo decoder, shuffled
decoding, low latency.

I. INTRODUCTION

Turbo codes, a well-established class of iterative codes, are
known for their inherent rate flexibility and low-complexity
encoding. Over the span of more than 30 years since their
introduction, they have been incorporated into several wireless
communication standards such as Long Term Evolution (LTE)
and Digital Video Broadcasting - Return Channel via Satellite
(DVB-RCS/RCS2). Despite the preference for Low-Density
Parity-Check (LDPC) codes in the 3rd Generation Partnership
Project 5G New Radio (3GPP 5G NR) standard, turbo codes
continue to play a role in the ongoing evolution of LTE [1],
calling for an efficient increase in their decoding throughput.

With the emergence of Internet of Things (IoT) applications
with low-latency requirements, the decoding latency represents
an important performance metric [2]. The iterative nature of
the turbo decoder penalizes latency. To address this issue,
highly parallel hardware architectures have been proposed.
Some architectures exploit spatial parallelism at the com-
ponent decoder level, such as shuffled decoders which pro-
cess component decoders in parallel with immediate extrinsic
information exchange [3], [4] following their computation.
Other architectures rely on functional parallelism, such as fully
pipelining the decoding iterations, which achieves very high
decoding throughput [5], [6].

The choice of the parallelism type and degree constrains
the decoding schedule, i.e. the order in which metrics are
computed, and the way extrinsic information is exchanged

during the decoding process. These choices impact the con-
vergence speed of the iterative decoder. Indeed, there is a
trade-off between the latency reduction and the penalty in
error correcting performance that has to be compensated for by
additional decoding iterations (i.e. due to slower convergence
of the iterative decoding process). Although this aspect is well-
known in the literature, the convergence speed is generally
studied for specifically designed hardware architecture types,
and there is a lack of general decoding algorithms that can
take into consideration arbitrary decoding schedules.

In this paper, we first propose a general formulation of the
decoding algorithm where metrics and extrinsic information
can be updated concurrently or sequentially in an arbitrary
order. Through this novel formalism, the schedule becomes a
full-fledged decoder parameter that can be optimized to min-
imize latency while meeting a target operating point defined
by the error-rate and signal-to-noise ratio couple. We propose
to restrict the schedule solutions to generalized schedules that
are suitable for hardware implementation. In particular, the
iteration overlap schedule introduced in [7] is extended to the
case where interleaver precedence constraints are alleviated,
allowing any overlapping depth.

The remainder of this paper is structured as follows: Sec-
tion II briefly recalls background on parallel turbo decoders. In
Section III, we introduce a general formulation of the decoding
algorithm for arbitrary scheduling choices. Section IV presents
the generalized XMAP schedule that includes the proposal of
a novel iteration overlap schedule. Then, the corresponding
latency savings are discussed in Section V and Section VI
concludes the paper.

II. BACKGROUND

The generalized process of turbo encoding consists in gen-
erating parity bits by providing K information (systematic)
bits to NCD constituent Recursive Systematic Convolutional
(RSC) encoders with constraint length ν. For simplicity, we
assume in this paper that all constituent encoders use the same
RSC generator polynomial coefficients. The kth input of the
ith constituent encoder is mapped to the Πi(k)

th information
bit through interleaving function Πi

1. Once generated, the
output bits are punctured to match the target code rate K/N ,
with N being the number of encoded bits. Formally, a turbo
code can be defined by the tuple C = (I,Pi,Πi)i∈[0,NCD−1],

1The first interleaver is usually the identity function: Π0(k) = k

Figure 1: (a) Spatial parallelism (PMAP) (b) Functional par-
allelism (XMAP) and (c) Spatial and Functional parallelism
(UXMAP).

where Pi denotes the list of punctured parity bit indices for
the constituent code i and I the list of punctured systematic
bit indices.

A. Decoding algorithm

A generalized turbo decoder comprises up to NCD RSC
Constituent Decoders (CDs), where extrinsic information on
systematic bits Λei , i ∈ [0, NCD − 1], is exchanged in an
iterative loop through the interleavers of C. The complete
execution of one constituent decoder corresponds to a CD
Processing (CDP). During each CDP, the extrinsic information
Λei is updated by recursively computing the forward/backward
state metrics (α, β) from the first/last to the last/first trellis
stages of the CD indexed by i.

Hardware architectures are typically designed for standard-
ized codes such as the one in LTE [1], where the turbo
decoder integrates NCD = 2 CDs. To increase decoding
throughput and reduce latency, K trellis stages are segmented
into smaller sub-blocks and/or windows of size WS . Then,
each window/sub-block is processed using spatial or functional
parallelism at the component decoder level.

B. Spatial parallelism

This type of parallelism is used in the Parallel Maximum A
Posteriori (PMAP) decoder architecture [4], [8]. The decoding
of the windows is performed in parallel on P serial sub-
decoder instances. Figure 1 (a) shows the decoding schedule
of a frame of size K with a PMAP architecture where P = 4
(implying a sub-block size S = K/4) with a window size of
WSa = S/4.

In addition, several CDPs can be executed in parallel, then
exchanging (partial) extrinsic information early, i.e. before
the CDP completes. This refers to shuffled decoding [3]. The
extreme case of a shuffled decoder where P is equal to the
frame size K and WS = 1 can be seen as the fully parallel
MAP decoder proposed in [9].

C. Functional parallelism

This type of parallelism is used in the XMAP architecture
[10], [11]. Several windows of size WS are decoded in parallel
while they are moving through the pipeline as illustrated in
Fig. 1 (b) for the decoding of a frame of size K split into 4
windows of size WS . The pipelining process can be extended
by unrolling the iterative loop at the CD level. This leads to
the Fully Pipelined Iteration Unrolled MAP (UXMAP) [5], [6]
decoder architecture which integrates pipelined instances of
several CDPs and windows (see Fig. 1(c)) such that complete
frames are processed while moving through the pipeline.

It is important to note that functional and spatial parallelism-
based architectures can be combined for achieving higher
decoding throughputs, which leads to a very large design space
of architectural choices. It is, for example, possible to process
P XMAP cores in parallel, while the α/β-recursive operations
are internally pipeplined in each XMAP.

D. Convergence speed and latency

The type of parallelism used in the decoder architecture
determines the order in which the α/β-metrics are computed
and extrinsic information are exchanged. Indeed, since these
metrics are recursively computed in each CDP, the necessity of
routing through interleaving functions impacts the number of
metrics that can profit from an updated extrinsic information.
This affects the convergence speed of the iterative decoder if
the precedence constraints of the interleaver are not respected.
For instance, dividing the frame into several windows or
sub-blocks implies that the α/β-metrics are not immediately
propagated to the edges of neighboring windows. Shuffled
decoders noticeably suffer from this slower convergence since
the precedence constraints of the interleaver are in general not
respected for early exchange of partial extrinsic information:
to benefit from full information exchanges between CDs,
extrinsic information generated by the previous CDP has to
be computed and exchanged before being consumed (i.e. used
for computation) by the next CDP.

It is clear that there is a trade-off between the latency im-
provement achieved by the increased level of parallelism and
the penalty in latency induced by the decreased convergence
speed of the decoder since additional decoding iterations are
required to meet a target error-rate performance. In the next
section, we propose to formalize the turbo decoding algorithm
in a more general way that takes into consideration that α/β-
metrics and extrinsic information can be computed/exchanged
in an arbitrary order.

III. DECODING SCHEDULE

A. Metrics and update of extrinsic information

An alternative way of describing the decoding process is to
view metrics and extrinsic information as messages exchanged
between different nodes, “intra” and “inter” CDPs respec-
tively, in the graph representing the turbo decoder [12]. The
nodes represent the systematic or parity bits and state variables
for each CD. A node representing the code trellis constraints,

T

TSk

𝐿𝑃0 𝑘

𝜶𝟏 𝑘

𝜷𝟏 𝑘

𝜶𝟏 𝑘 + 1

𝜷𝟏 𝑘 + 1

Λ𝑒0 𝑘

Λ(𝑛) = 𝐿𝑠 𝑛 +

𝑖=0

𝑁𝐶𝐷−1

Λ𝑒𝑖 ∏𝑖
−1(𝑛)

𝜶𝟎 𝑘

𝜷𝟎 𝑘

𝜶𝟎 𝑘 + 1

𝜷𝟎 𝑘 + 1

Λ ∏0 𝑘 − Λ𝑒0 𝑘

Λ𝑒1 𝑘Λ ∏1 𝑘 − Λ𝑒1 𝑘

𝐿𝑃1 𝑘

In

Pk

Constituent Decoder 2

Constituent Decoder 0

Constituent
Decoder 𝑖

∏0/∏0
−1 interconnections

Λ𝑒0 ∏0
−1(𝑛)Λ 𝑛 − Λ𝑒0 ∏0

−1(𝑛)

∏1/∏1
−1 interconnections

Λ𝑒1 ∏1
−1(𝑛)Λ 𝑛 − Λ𝑒1 ∏1

−1(𝑛)

Sk+1

Pk

Sk+1Sk

Figure 2: Graph representation of parallel turbo decoding.

identified as “T-node” in Fig. 2, is connected to state nodes (“S-
node”), a parity bit node (“P-node”) and a systematic bit node
(“I-node”). This graph representation is well known in the
literature [12] albeit not being the “standard” way to describe
the decoding algorithm. Nonetheless, in the following, we will
use it for clarity of representation to develop the way decoding
and scheduling are performed.

In Fig. 2, the bottom and upper parts of the graph represent
the trellis stages of CD 0 and 1 respectively. They are traversed
in order to update extrinsic information Λe0(k) and Λe1(k)
for systematic bits {Π0(k),Π1(k)}. The message transmitted
from “T-node” k to “S-node” k + 1 in CD i corresponds to
the forward state metric vector αi(k + 1) that stores the α-
metrics for each of the 2ν states, while the message transmitted
from “T-node” k to “S-node” k is the backward state metric
vector βi(k) of CD i. Metrics and extrinsic information can
be updated using the following set of equations

αi(k + 1)← ff

(
αi(k),Λ

(
Πi(k)

)
− Λei(k), LPi

(k)
)

(1)

βi(k)← fb

(
βi(k + 1),Λ

(
Πi(k)

)
− Λei(k), LPi(k)

)
(2)

Λei(k)← fe

(
αi(k),βi(k + 1), LPi

(k)
)

(3)

where LPi
are Log-Likehood Ratios (LLRs) of the received

parity bits and (ff , fb, fe) are the update functions currently
used in typical decoding algorithms such as the well known
log-MAP, max-Log-MAP (MLM) or local-SOVA algorithms
[13], with or without quantization. In the above equations, the

arrow ”←” symbol explicitly represents the update operation
where the previously calculated values are replaced by the
newly updated ones.

Instead of directly exchanging extrinsic information be-
tween CDs, it can be more convenient to update the soft
output LLR of the systematic bits Λ by subtracting the
relevant extrinsic information before update and adding the
one obtained after update:

Λ(Πi(k))←Λ(Πi(k)) + fe

(
αi(k),βi(k + 1), LPi

(k)
)

− Λei(k), (4)

with Λ having the channel LLRs of systematic bits LS

as initial values. Therefore, the extrinsic exchange process
concurrently updates Λ and Λei through equations (4) and (3).
Then, the decoding process consists in recursively updating the
metrics and extrinsic messages through Eq. (1), (2), (3) and
(4) several times. Note that the choice of the update order is
flexible and, to the best of our knowledge, no efforts have
been previously made to generalize and evaluate the impact
of a chosen update order on the decoding process.

B. Decoding schedule

In most of prior art, the update of the different metrics
follows the code trellis structure. Then, updated extrinsic
information is exchanged with the next CD. For instance,
updating αi(k) at a given processing time t followed by
αi(k + 1) at processing time t + 1 ensures that αi(k + 1)
benefits from the updated extrinsic information acquired by
αi(k). This successive (inherently serial) update at times
(t, t + 1) results in a latency of 2 processing time slots. On
the other hand, updating both (αi(k),αi(k+1)) concurrently
(in parallel) at time t only takes 1 time slot, but the iterative
process convergence rate can be penalized since αi(k + 1)
does not benefit anymore from the update of αi(k). For the
sake of generality, it is then important to differentiate:

1) the code structure, which describes how metrics and ex-
trinsic information are structurally dependent following
the trellis and the interleaving function of systematic bits
between CDs (graph structure in Fig. 2),

2) the order in which metrics and extrinsics are computed
between exchanges, successively or concurrently.

The list of messages being updated at each time slot
t ∈ [0, TL − 1], over a total of TL time slots for the entire
decoding process, is what defines a “decoding schedule”. We
qualify the schedule as “static” if the update list is predefined
for a given code parametrization C, i.e. independent of the
reliability or varying states/values of the metrics during the de-
coding process. Otherwise, we define it as “dynamic”. By this
definition, iterative decoding with early stopping techniques
[14] leads to dynamic schedules. 2

2For clarity, this article focuses only on the static schedule types. However,
the methods discussed in the following as well as the obtained schedules
can still be used in combination with early stopping techniques (for example
on-the-fly CRC calculation [15]) to maintain the associated latency reduction.

A static schedule can be formalized as S =
(S0, ...,St, ...,STL−1), with St = {Sfi(t),Sbi(t),Sei(t)}
with {i = 0, ..., NCD − 1} where Sfi(t),Sbi(t), (Sei(t))
represent the list of trellis stage indices of CD i where
the update function of the α-metrics (Eq. (1)), β-metrics
(Eq. (2)) and extrinsic information (Eq. (4) and Eq. (3))
must be executed concurrently at time slot t. For instance, a
serial backward-forward decoding algorithm is obtained by
configuring S such that

Sfi(t) = {modK(t)}, (5)
Sbi(t) = {modK(K − t− 1)}, (6)
Sei(t) = Sfi(t) ∪ Sbi(t), if modK(t) ≥ K/2, (7)

with ℓ = ⌊t/K⌋, i = modNCD(ℓ) and Sfi(t) = Sbi(t) =
Sei(t) = ∅ if a value of t is not covered by the above set
of equations. For instance, Sfi(t) = Sfi(t) = Sei(t) = ∅ if
modNCD(⌊t/K⌋) ̸= i.

C. Problem formulation

The turbo decoder can now be parameterized by the 2-
tuple related to code structure and the schedule, namely
D = (C,S). For a particular code, to assess and compare
the decoding performance of different parameter choices, two
metrics are of particular interest: The error-rate performance
metric Pe(D, ζ) for a given signal-to-noise ratio value ζ and
the latency of the decoding algorithm TL = Card(S). For
the latter, it is assumed that the list St of metrics to be
updated at time t corresponds to the same list of parallel
updates performed by all hardware processing elements at
clock cycle t. Furthermore, an additional constraint is put
on the decoder schedule, where the maximum number of
concurrent state metric and extrinsic information updates must
be not exceed a given threshold NCU,target which reflects the
available processing resources. Then, the decoding schedule S
can be chosen to minimize decoder latency TL while ensuring
that an error-rate target Pe,target (constraint C1) is respected
within the available processing resources (constraint C2). This
corresponds to the optimization problem

PS : minimize
D=(C,S)

(
Card(S)

)
(8)

s.t. C1 : Pe(D, ζ) ≤ Pe,target, (9)

C2 : max
t

(∑
x∈{fi,bi,ei}∀i

Card
(
Sx(t)

))
≤ NCU,target

(10)

Alternatively, the inverse problem PS that consists in finding
S which minimizes the error-rate metric under a maximum
latency target TL,target can be defined as

PS : minimize
D=(C,S)

(
Pe(D, ζ)

)
(11)

s.t. C2,C3 : Card(S) ≤ TL,target (12)

Note, however, that in this work we are focusing on the
evaluation of solutions related to problem PS .3

IV. ADVANCED ITERATION OVERLAP TECHNIQUES

The task of finding an optimal solution to this non-linear
problem is extremely challenging due to the intractable num-
ber of possible order combinations for the updates. Addition-
ally, Monte Carlo simulations must be conducted to confirm
that Pe(D, ζ) ≤ Pe,target. Consequently, we limit the schedule
choices discussed in the following to a subset of solutions
suited for the XMAP architecture. Note, however, that the
approach extends to other architectures as well.

A. Generic XMAP schedule

This section proposes a generalized XMAP schedule il-
lustrated in Fig. 3 through an example with NCD = 2. The
processing of the first CD (index i = 0) starts at t = 0. All
trellis stages are updated through NW = ⌈K/WS⌉ XMAP
windows for a total duration of TCD time slots, with WS

denoting the window size. The start of CDP ℓ is offset from
CDP ℓ−1 by TP [ℓ] time steps where TP is a vector containing
the differential starting times between successive CDP. The
resulting total latency of the decoding TL is

TL = Tinit +

ℓtotal−2∑
ℓ=0

TP [ℓ] + Tlast︸︷︷︸
=TCD

(13)

where Tinit is a fixed initial latency of the decoder due to
pre-processing such as the initial β-metrics propagation for
termination bit stages4, Tlast is the latency of the last CDP and
ℓtotal is the number of performed CDPs during the decoding.

Within each CDP, the processing of each window w ∈
[0, NW − 1] starts after an intra CDP offset of Sℓ[w] time
slots which reflects the window delays, where Sℓ is a Nw-
length integer valued vector, which we introduced as “window
schedule” in [7]. Since the underlying processing resources
are the same for all CDPs, all window schedules Sℓ can be
obtained through a permutation function pℓ such that Sℓ[k] =
Sℓ+1[pℓ(k)]. Consequently, the maximum window delay is the
same for all CDPs (∀ℓ, max(S0) = max(Sℓ)), and processing
a complete CD always takes TCD = WS+max(S0) time slots.

The kth extrinsic bit is updated at time slot Gei(k) given by

Gei(k, ℓ) = ⌈WH⌉+

⌊∣∣∣ mod(k,WS)−WH

∣∣∣⌋︸ ︷︷ ︸
≜ GUX(k)

+Sℓ[wG(k)],

(14)

with WH = (WS − 1)/2 and wG(k) = ⌊k/WS⌋. Note
that GUX(k) = ⌊| mod(k,WS) − WH |⌋ describes the

3Generally, practical applications have to reach a certain quality of service
for an operating point defined by the couple (Pe,target, ζ). For instance, it is
acknowledged that the Frame-Error-Rate (FER) target must be within 10−3

down to 10−5 when evaluating 4G-LTE or 5G systems [16]. On the other
hand, for non-standard applications, PS may be considered.

4Termination bits used in 4G/LTE standard do not benefit from turbo
exchanges, since their β-metrics never change during the decoding process.

Time slot 𝑡

Tr
ei

lli
s

st
ag

e
𝑘

Tr
ei

lli
s

st
ag

e
𝑘

𝑻𝑷[0]

C
o

n
st

it
u

en
t

d
e

co
d

er
0

C
o

n
st

it
u

e
n

t
d

ec
o

d
er
1

𝑡 = 0

X
M

A
P

 P
ro

ce
ss

in
g

𝑇𝐶𝐷 𝑇𝐶𝐷

X
M

A
P

 P
ro

ce
ss

in
g

𝑻𝑷[1]
o

ve
rl

a
p

o
ve

rl
a

p

X
M

A
P

 P
ro

ce
ss

in
g

X
M

A
P

 P
ro

ce
ss

in
g

X
M

A
P

 P
ro

ce
ss

in
g

𝑻𝑷[2] 𝑻𝑷[3]

o
ve

rl
a

p

𝑻𝐢𝐧𝐢𝐭 𝑻𝐥𝐚𝐬𝐭 = 𝑻𝐂𝐃

Figure 3: Generic XMAP scheduling for NCD = 2.

generation times for the UXMAP case with full Iteration
OverLap (IOL) [7]. Similarly, the generation time slots for
the α and β metric updates can be expressed as Gfi(k, ℓ) =
mod(k,WS) + Sℓ[wG(k)], and Gbi(k, ℓ) = WS − 1 −
mod(k,WS) + Sℓ[wG(k)], respectively [7]. Then, the com-
plete decoding schedule S consists of the list containing the
processing time slots for state metric or extrinsic information
updates, computed for each trellis stage k within each of the ℓ
CDPs. Each element of the list is computed starting from the
generation time Gxi

(k, ℓ) within the current CDP added to the
accumulated latency

∑ℓ−1
l=0 TP [l] stemming from all previous

CDP computations:

k ∈ Sxi

(
Gxi

(k, ℓ) +

ℓ−1∑
l=0

TP [l]

)
,∀x ∈ {f, b, e}. (15)

B. Example of XMAP schedules

This section provides examples on how parameters (TP ,Sℓ)
can reproduce the schedule of XMAP architectures from the
literature [10], [11] extended to NP parallel decoder instances.

1) Classical XMAP schedule: one CD is computed in
TCD = WS + ⌈NW /NP ⌉ − 1 time slots before the next CD
starts being processed. Consequently, TP [ℓ] = TCD,∀ℓ. With-
out overlaps, the choice of any particular window schedule
does not influence the decoder convergence speed, since all
precedence constraints of the interleaver are respected. There-
fore, Sℓ can be simply defined in such a way that windows are
processed in natural order: Sℓ[j] = ⌊j/NP ⌋ ∀j ∈ [0, NW −
1],∀ℓ. The resulting latency simplifies to TL = ℓtotal · TCD.

2) Shuffled processing schedule: Such decoders process all
CDs in parallel and exchange (update) extrinsic information

as soon they are generated. Therefore, we have

TP [ℓ] =

{
0, modNCDℓ > 0 or ℓ = 0,

TCD, otherwise.
(16)

The precedence constraint CP is not verified as CDPs
fully overlap. The resulting latency simplifies to TL =
TCD⌈ℓtotal/NCD⌉. If NP < NW , the choice of the window
schedule Sℓ may have an effect on the decoder convergence
speed, i.e. the value of ℓtotal ensuring the error target is reached,
and thus solving (8).

3) Iteration overlap schedule: The IOL technique [7] al-
lows extrinsic information to be updated while the next CD
is updating state metrics, i.e. consuming extrinsic information
from the previous CD. The number of overlapping time slots
between CDPs (ℓ−1, ℓ) (overlap depth) TOD[ℓ] = TCD−TP [ℓ]
is chosen such that the precedence constraints CP (k) imposed
by the interleavers in C are respected

CP (k) : TP [ℓ] ≥ Sℓ−1

[
wG(k)

]
− Sℓ

[
wC(k)

]
+∆

(ℓ)
UX(k),

(17)

∀k, with wC(k) = wG

(
Πi(Π

−1
i′ (k))

)
, i′ = modNCD(i−1). For

the case where all XMAP windows are processed in parallel
(UXMAP architecture), ∆(ℓ)

UX(k) is the delay between the time
when the extrinsic information of bit index k is generated and
the time when it is consumed between CDPs ℓ− 1 and ℓ. The
choice of the window schedule should maximize TOD while
satisfying CP . The work in [7] proposed window schedule
solutions that achieve a latency reduction of 20 − 25% for
most LTE interleaver configurations.

C. Advanced iteration overlap

Of the decoding schedules discussed in the previous section,
the classical XMAP - and the IOL schedule - fully respect
the precedence constraints CP (k), while the shuffled process-
ing schedule completely ignores them. In the following, we
propose to extend the iteration overlap technique by allowing
further overlap even when some precedence constraints are
violated. We consider that the overlap depth T ⋆

OD is fixed for
each CDP (TOD[ℓ] = T ⋆

OD,∀ℓ). This implies that TP [ℓ] =
TCD − T ⋆

OD = T ⋆
P , ∀ℓ. Furthermore, the overlap depth is

limited to a maximum TOD,max = min(TCD/NCD,WL) which
accounts for the available hardware resources since the un-
derlying hardware model remains the same for the overlapped
and non-overlapped cases. A dedicated optimization of the
window schedule is not within the scope of this paper and will
be subject of further study. The schedule is therefore fixed in
the natural processing order: Sℓ[k] = k, ∀ ℓ.

V. EVALUATION

In this section, we evaluate the latency reduction achieved
by the advanced IOL schedule proposed in Section IV-C for
some 4G/LTE [1] turbo code configurations. All results are
provided for the operating point Pe,target = 10−3 of FER for a
target signal-to-noise ratio target ζ, using a BPSK modulation
and decoder update functions (ff , fb, fe) based on the MLM
algorithm. The latency TL, expressed in number of time slots,

0 20 40 60 80 100

Overlap ratio (%)

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

L
a
te

n
c
y
 L

T
 a

t
1
0

-3
 F

E
R

 t
a
rg

e
t

W
S

=16, N
P

=64

W
S

=32, N
P

=32

W
S

=64, N
P

=16

W
S

=16, N
P

=4

W
S

=32, N
P

=2

W
S

=64, N
P

=1

Figure 4: Latency as a function of the overlap ratio at a target
FER of 10−3 for K = 1024, CR = 4/5, ζ = 3.8 dB.

0 20 40 60 80 100

Overlap ratio (%)

100

150

200

250

300

350

400

450

500

L
a
te

n
c
y
 L

T
 a

t
1
0

-3
 F

E
R

 t
a
rg

e
t

W
S

=16, N
P

=8

W
S

=32, N
P

=4

W
S

=64, N
P

=2

W
S

=16, N
P

=4

W
S

=32, N
P

=2

W
S

=64, N
P

=1

Figure 5: Latency as a function of the overlap ratio at a target
FER of 10−3 for K = 128, CR = 0.323, ζ = 2.8 dB.

is evaluated by finding the required number of CDPs denoted
by ℓtotal where the decoder achieves Pe,target. We show the
results as a function of the overlap ratio ROD, defined as the
ratio between the chosen overlap depth and the maximum
supported overlap depth: ROD = T ⋆

OD/TOD,max.
A first example of the achieved latency is shown in Fig. 4

considering a code length K = 1024 bits, code rate of
CR = 4/5 and ζ = 3.8 dB. Several configurations of window
sizes and number of decoder instances (WS , NP) are evalu-
ated. The results demonstrate that increasing the overlap ratio
yields a significant reduction in decoding latency, whatever the
choice of the window. Compared to a non-overlapped schedule
(ROD = 0%), the achieved latency reduction ranges from 32%
to 49% when fully overlapped (ROD = 100%). The overlap
is particularly efficient for reducing latency in the case of
(WS = 64, NP = 1).

We evaluated the proposed schedule for a LTE turbo code
configuration with K = 128 bits, CR = 0.323 and ζ = 2.8
dB. Fig. 5 shows that the reduced latency ranges between
20%−30% when ROD = 100% which is still a significant
reduction albeit lower than for K = 1024 bits.

VI. CONCLUSION

In this paper, we propose a novel framework for turbo
decoding in which state metrics and extrinsic information
can be updated in any order specified by a newly intro-
duced decoding schedule parameter. This parameter is flexible
enough to reproduce decoding schedules inferred from any
hardware architecture and to minimize latency while meeting
a target operating point defined by the error-rate and signal-
to-noise ratio couple. Based on this, we propose an advanced
iteration overlap XMAP schedule which achieves more than
30% latency reduction compared to typical XMAP schedules
for the same FER target.

ACKNOWLEDGMENT

This work was partially funded by the ANR under the Tur-
boLEAP project (ANR-20-CE25-0007) and under the France
2030 program, grant NF-PERSEUS (ANR-22-PEFT-0004).

REFERENCES

[1] Third Generation Partnership Project, LTE; Evolved Universal Terres-
trial Radio Access (E-UTRA); Multiplexing and channel coding (3GPP
TS 36.212 version 17.1.0 Release 17) , Apr. 2022.

[2] P. Schulz et al., “Latency critical IoT applications in 5G: Perspective on
the design of radio interface and network architecture,” IEEE Commun.
Mag., vol. 55, no. 2, pp. 70–78, 2017.

[3] J. Zhang and M. P. C. Fossorier, “Shuffled iterative decoding,” IEEE
Trans. on Commun., vol. 53, no. 2, pp. 209–213, Feb 2005.

[4] O. Muller, A. Baghdadi, and M. Jezequel, “Exploring parallel processing
levels for convolutional turbo decoding,” in 2nd Int. Conf. on Info. &
Commun. Tech., vol. 2, 2006, pp. 2353–2358.

[5] S. Weithoffer, C. Abdel Nour, N. Wehn, C. Douillard, and C. Berrou,
“25 Years of Turbo Codes: From Mb/s to beyond 100 Gb/s,” in Int.
Symp. on Turbo codes and iter. proc. (ISTC), Dec 2018, pp. 1–6.

[6] S. Weithoffer, O. Griebel, R. Klaimi, C. Abdel Nour, and N. Wehn,
“Advanced Hardware Architectures for Turbo Code Decoding Beyond
100 Gb/s,” in IEEE Wireless Commun. and Networking Conf. (WCNC
2020), Seoul, Korea (South), May 2019.

[7] S. Weithoffer, G. Aousaji, J. Nadal, and C. Abdel Nour, “Iteration
Overlap for Low-Latency Turbo Decoding,” in Int. Symp. on Topics
Coding (ISTC), 2023, pp. 1–5.

[8] Z. Yuping and K. K. Parhi, “High-Throughput Radix-4 logMAP Turbo
Decoder Architecture,” in Proc. Fortieth Asilomar Conf. on Signals,
Systems and Computers (ACSSC), Oct. 2006, pp. 1711–1715.

[9] R. G. Maunder, “A Fully-Parallel Turbo Decoding Algorithm,” IEEE
Trans. on Commun., vol. 63, no. 8, pp. 2762–2775, Aug 2015.

[10] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150Mbit/s 3GPP LTE
Turbo code decoder,” in Design, Autom.and Test in Eu. Conf. (DATE),
March 2010, pp. 1420–1425.

[11] S. Weithoffer, F. Pohl, and N. Wehn, “On the applicability of trellis
compression to Turbo-Code decoder hardware architectures,” in Int.
Symp. on Turbo Codes and iter. proc. (ISTC), Sep. 2016, pp. 61–65.

[12] N. Wiberg, H.-A. Loeliger, and R. Kotter, “Codes and iterative decoding
on general graphs,” in Proc. of 1995 IEEE Int. Symp. on Inf. Theory,
1995, p. 468.

[13] V. H. S. Le, C. Abdel Nour, E. Boutillon, and C. Douillard, “Revisiting
the Max-Log-Map algorithm with SOVA update rules: new simplifica-
tions for high-radix SISO decoders,” IEEE Trans. Commun., vol. 68,
no. 4, pp. 1991–2004, 2020.

[14] F. Zhai and I. Fair, “New error detection techniques and stopping
criteria for turbo decoding,” in 2000 Canadian Conf. on Electrical and
Computer Engineering (CCECE), vol. 1, 2000, pp. 58–62 vol.1.

[15] S. Weithoffer and N. Wehn, “Latency reduction for lte/lte-a turbo-code
decoders by on-the-fly calculation of crc,” in IEEE Int. Symp. Pers.
Indoor Mobile Radio Commun. (PIMRC), 2015, pp. 1409–1414.

[16] N. Cassiau, L. Maret, J.-B. Doré, V. Savin, and D. Kténas, “Assessment
of 5G NR physical layer for future satellite networks,” in IEEE Global
Conf. on Sig. and Inf. Proc. (GlobalSIP), 2018, pp. 1020–1024.

