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Abstract
This paper presents a very fast numerical approach to simulate microstructures resulting from melt
pool solidification including growth competition of columnar dendritic grains, and equiaxed grains
nucleated from the melt. To reduce computation time, the key contribution is the development
of an upscaling strategy, which instead of considering each dendrite individually consists in
defining an average solidification front based on physically-informed dendritic growth velocity.
The proposed approach also relies on dendritic preferred growth direction, and favorably oriented
grain criterion to determine which grain survives the competition. To significantly reduce the total
number of degrees of freedom Voronoi tessellations are used instead of regular grids for numerical
implementation. Indeed, 3D regular grids typically leads to N3 degrees of freedom while Voronoi
tessellations lead to only 3N , which dramatically reduces computation cost. This work is therefore
a high-throughput approach enabling large data set generation to explore statistical features of
microstructures with respect to melt pool properties. Results have been compared to experimental
data, and to phase field and cellular automaton simulations in 2D only. Simulated microstructures
are similar as those obtained with cellular automaton. Comparisons in 3D are left for future
work. In addition, a convergence analysis is provided for 3D simulations, with thermal conditions
corresponding to metal additive manufacturing to demonstrate how the present work can be used
in practice.
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1. Introduction

Several major fabrication processes rely on melt pool solidification. Simulation tools have
been extensively developed to predict the final grain structure and crystal orientations given cool-
ing conditions [1]. Indeed, microstructures formed during solidification are of particular interest as
material properties (e.g., the hardening law) significantly depend on crystallographic and morpho-
logical textures. In most processes involving melt pool solidification such as welding or additive
manufacturing processes, dendritic columnar and dendritic equiaxed grains are generated [2].
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On the one hand, columnar grains are formed through epitaxial growth directly from the grains
surrounding the liquid metal and inherit their crystal orientation. The resulting crystallographic
texture is therefore mostly influenced by competitive dendritic growth mechanisms, which combine
the local thermal gradient direction and the preferred growth direction (e.g., one of the six ⟨001⟩
directions in face cubic centered (FCC) or body centered cubic (BCC) alloys). On the other hand,
equiaxed grains can nucleate from randomly distributed impurities in the liquid phase and undergo
equiaxed dendritic growth. Therefore, one of the major concept to characterize the typology of
microstructures formed during solidification is the columnar to equiaxed transition (CET) to de-
termine in which regions of the microstructure the grains are equiaxed or columnar. CET mostly
depends on the temperature gradient denoted by G (K.m−1) and the solidification front velocity
denoted by V (m.s−1). Morphological ratios G/V (K.s) or G2/V (K2.s.m−1) [3] have been es-
tablished to determine whether the solidification mode is columnar dendritic or equiaxed dendritic
(or even planar and cellular but such regimes are usually not reached for rapid solidification).
Moreover, the cooling rate at the solidification front is strongly correlated with the average size of
equiaxed grains [2].

Such a general description though does enable to predict detailed microstructures resulting
from rapid solidification. Therefore, several classical approaches have been developed to simulate
dendritic growth. At the scale of dendrites, level-set functions have been used to capture the sharp
liquid-solid interface and are updated by solving the Stefan equation [4]. Phase field (PF) models
enable to track the solid-liquid interface introducing a continuous variable, which corresponds to
continuous transition between phases. One advantage of PF approaches is to avoid specifying
boundary conditions at moving interfaces [1, 5], as the phase field variable is governed by volume
equations such as heat and solute transport equations [6]. Level-set and PF methods are well-
established as references for quantitative modeling of dendritic growth [4, 7] and their simulations
have greatly deepened our knowledge on the directional solidification [8].

One of the main drawback of such simulations is their computation cost associated to the
very fine scale at which the liquid to solid phase transition is considered (i.e., dendritic arms
growth). Alternative approaches have therefore been developed at slightly larger scales to reduce
computation time. Instead of considering dendrites individually by detailing the liquid-solid
interface, dendritic needle network (DNN) approaches have been developed to reduce the size of
the problem by considering dendritic primary, secondary and higher order branches as a network of
sharp needles interacting through the solutal diffusion field [9, 10]. The tip velocity of each needle is
determined by combining solvability and solutal flux balance conditions involving contour integral
methods. This physically-based multiscale model has been used to simulate dendritic growth
during solidification, and was in good agreement with PF simulations while being significantly
faster. In addition, the columnar grain growth and CET have also been determined in 2D [11] and
in 3D [12].

Furthermore, one of the most popular numerical method to simulate the formation of mi-
crostructure during solidification is cellular automaton (CA), consisting in a regular grid of cells to
which an index corresponding to the state of the cell is assigned (i.e., crystal orientation or liquid)
[13]. A set of physically-informed rules enables to modify the cells state and thus to simulate the
system evolution. In addition, thermal finite element analysis (FEA) is usually coupled to CA into
a multi-scale model called cellular automaton finite element (CAFE) to compute both temperature
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kinetics (i.e., cooling rates and temperature gradients) and the forming grain structure [13]. The
advantage of coupling CA and FEA lies in the fact that FEA enables to solve heat conduction,
fluid convection and solute diffusion [1], and can be used as inputs in the CA simulation. To spare
computation time, the mesh used in the FEA is usually coarser than the grid used in the CA as
the scale of dendritic growth is finer than typical length scales of temperature diffusion. Thermal
quantities are then interpolated onto the cells of the CA grid. The undercooling (i.e., the difference
between the liquidus temperature and the actual temperature) is therefore determined for the cells
belonging to the liquid-solid interface and their neighbors, which in turn enables to determine the
growth rate of dendrites along their preferential growth direction. In addition, nucleation is also
considered in the liquid if undercooling exceeds a critical threshold. The corresponding liquid
cells are thus switched to solid cells with random crystal orientation [13, 14]. For instance, CAFE
models have also been used within the context of additive manufacturing [15, 16].

Of course, comprehensive numerical approaches to simulate solidification (e.g., level-set, PF,
DNN and CAFE) depend on conditions such as the detailed grain structure from which epitax-
ial dendritic growth takes place, which depends on (i) surrounding grains with unknown crystal
orientations, and (ii) the random crystal orientations of dendritic equiaxed grains nucleated from
impurities randomly distributed in the melt. In practice, this detailed information is unknown, and
can only be modeled using random variables [17]. Therefore despite the accuracy of physically-
based models, the exact grain structure resulting from the fabrication process cannot be obtained.
Numerical simulations should be seen as draws of random variables representing the formation
of microstructures during the solidification process. The main difficulty with comprehensive
numerical methods is their computational cost which makes difficult to statistically explore the
solidification problem by computing a large number of draws (i.e., different possible microstruc-
tures) in the entire solidified structure although some works already performed such a statistical
treatment using fast CA approaches [15, 18].

To overcome this difficulty, this contribution aims at developing a very fast numerical approach
including growth competition of columnar dendritic grains, and equiaxed grains nucleated from the
melt. The proposed upscaling strategy to reduce computation time is similar to the one developed
for grain growth during annealing in [19–21]. It relies on the development of an algorithm based
on 1) solidification maps to determine the region where CET occurs [3], 2) the dendritic preferred
growth direction, 3) the application of the Walton and Chalmers criterion [22] relying on the
concept of favorably oriented grain (FOG) to determine which grain survives the competition
[8, 23–25], and 4) a solidification front propagation rule along the thermal gradient direction. To
significantly reduce the total number of degrees of freedom (DoF), Voronoi tessellations are used
to implement the formation of the microstructure instead of fine regular grids as in CA. For each
temperature field history, the proposed model enables to carry out a large number of simulations in
order to characterize probability density functions of various distributions such as grain size, grain
shape, crystal orientation, crystal disorientation between neighbouring grains etc. It should be
noted that PF simulations of grain boundaries (GB) during competitive growth are not necessarily
in good agreement with a strict application of the FOG criterion [8, 23], however it is still used in
recent models aiming at reducing computational cost [26] for larger scale domains. Thus, Pineau
et al. [7] proposed alternative competitive growth criteria in 2D focusing on GBs directions so that
the competition is implicit (i.e., grains stop growing when their GBs are converging), whereas the
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FOG criterion explicitly defines which grains survive the competition. These alternative criteria
are derived as phenomenological laws fitted on PF simulations. Since Voronoi tessellations do not
enable to control GBs, these phenomenological criteria cannot be implemented easily by following
the present strategy.

Of course, the present fast numerical approach does not aim at capturing the behavior of each
individual dendrite with high accuracy. In addition, the precise plane orientations of GBs for pairs
of converging and diverging grains is usually used as an important benchmark for solidification
models, but the present strategy does not aim at capturing this aspect either. Indeed, we rather
focus on large aggregates for which the precise plane orientations of GBs of individual grains
are not of particular interest. We attempt to capture the grain structure with correct size, average
shape and crystal orientations so that the statistical properties of the grain structure at larger scale
are determined within short computation time. The proposed method is therefore aimed to be
sufficiently fast to carry out parametric studies, optimizations or construct large databases to feed
machine learning algorithms.

The paper is organized as follows. The model is detailed in section 2, and consists in deter-
mining the columnar and equiaxed regions, the grain size of equiaxed grains, and the competitive
growth based on Voronoi tessellation techniques. In section 3, the model is compared to classical
experimental data, and to CA and PF simulations in 2D only in order to test the ability to accurately
capture the microstructures arising during melt pool solidification. Comparison in 3D are left for
future work. In addition a convergence analysis is provided in 3D. Conclusive remarks are given
in section 4.

2. Methods

Temperature T (K), solutes concentrations cj (vol%) (where j is the index of the alloying
elements) and solid/liquid (S/L) interface curvature κ (m−1) affect the bulk and surface energies,
which leads to define driving forces associated to thermal and solute content as well as the
interface curvature. These driving forces are usually reduced into the concept of undercooling ∆T ,
which characterizes the difference between the liquidus temperature Tliq(cj, κ) at which the phase
transition would occur at equilibrium, and the actual temperature T so that:

∆T (x, t) = Tliq(cj(x), κ(x)) − T (x, t) (1)

Where t is the time, and x is a position. Thermal, solutal and curvature undercooling are therefore
usually defined to account for the different contributions of the driving forces. A power law
is usually fitted to express the local solidification front normal velocity V as a function of the
undercooling:

V (x, t) = α ∆T (x, t)β (2)

Where α and β are material parameters. The solubility of alloying elements is not identical in
liquid and solid phases. As a result, as shown in figure 1 near the S/L interface the solute content
deviates from the nominal composition denoted by cj obtained from the chemical composition
of the studied material. The distribution of solute content at the S/L interface along with local

4



curvatures are responsible for heterogeneous distribution of undercooling. Then, according to (2)
the evolution of the solidification front is heterogeneous, and results in complex dendritic patterns.

Since very short computation time is aimed, an averaging process is proposed to summarize
the effects of different physical mechanisms arising at fine scale into easily manageable evolution
laws. First, there is a strong coupling between solidification and heat conduction because of the
latent heat of fusion. Nevertheless, even though liquid to solid phase transition arises at the S/L
interface (i.e., along the dendrite boundary) one can smooth the effect of the latent heat of fusion by
assuming that it only depends on the phase fraction rate, which represents in average the evolution
of dendrites. Therefore, the first assumption is to compute the temperature field with latent heat
of fusion before determining the solidification front regardless of the detailed dendritic structure
instead of a fully coupled problem.

In addition, it should be noted that at the large scale where dendrites are not distinguished,
the state of matter can be either liquid, solid or mushy (i.e., in a liquid+solid mixture where
dendrites are surrounded by the liquid phase), while only liquid and solid phases exist at the
fine scale of individual dendrites (see. figure 1a). To avoid long computation time, the larger
scale is considered, and therefore an average solidification front (ASF) is considered instead of
the detailed S/L interface. At each time t, the ASF is defined as an isotherm whose temperature
denoted by TASF(t) is to be determined such as the normal velocity of the ASF matches in average
the definition of the dendritic velocity (2). It should be noted that the undercooling arising in
(2) involves computing Tliq, which explicitly depends on local solute content cj and curvature κ.
(i) Diffusion mechanisms are assumed to be confined near the S/L interface, and mass conservation
enables to consider that the average solute content over the mushy zone is close to the nominal
solute content cj , see. figure 1b. Therefore the undercooling in (2) is computed using cj instead
of the detailed solute content cj . (ii) In addition, the curvature of the S/L interface is a succession
of positive, zero and negative curvatures following the dendritic arms, and roughly averages to the
curvature of the TASF-isotherm, which is negligible in comparison to local curvatures involved at
the dendrite tips. Therefore the undercooling in (2) is computed using κ = 0.

Furthermore, the normal velocity of the ASF is obtained from the known temperature field
history T (x, t) as follows:

∀x ∈ Γt(TASF(t)), VASF(x, t) = Ṫ (x, t)
G(x, t) (3)

Where the temperature gradient reads G(x, t) = ∥∇T (x, t)∥, and where Γt(T0) is the T0-isotherm
surface defined as follows:

Γt : T0 ∈ R+ 7→ {x, T (x, t) = T0} ⊂ R3 (4)

Hence by considering that the normal velocity of the ASF should fit in average the definition of the
dendritic velocity (2), the ASF temperature reads:

TASF(t) = Tliq −
(

V ASF(t)
α

) 1
β

(5)
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Where Tliq is computed for known nominal solute contents cj and zero curvature κ = 0, and where
V ASF(t) is the average normal velocity of the ASF, which reads:

V ASF(t) = 1
|Γt(TASF(t))|

∫
Γt(TASF(t))

VASF(x, t) dS (6)

where |Γt(TASF(t))| is the isotherm surface (in 3D) or length (in 2D). Knowing the temperature
field history T (x, t), the ASF temperature TASF(t) is therefore determined by solving (5), which
leads to identify Γt(TASF(t)) as a function of time. To do so a simple and fixed-point iterative
procedure consists in setting an initial trial temperature TASF(t) and repeating the 3 following steps
until convergence:(i) compute the corresponding velocity VASF(x, t) using (3), (ii) compute the
corresponding average V ASF(t) using (6), and (iii) compute a new evaluation of TASF(t) using (5).
In addition, TASF is bounded between Tsol and Tliq to be consistent with the very definition of the
ASF.

Solid

Liquid

Mushy zone

S

L

LiquidSolid

S L

Concentration of alloying elements

{

isotherm

Average solidfication front

isotherm

Figure 1: a) schematic view of the detailed solidification front and the average solidification front defined as the
TASF-isotherm, and b) schematic view of diffusion of alloying elements near dendrite tips.

In addition to the definition of the ASF, simple tools are also used to upscale solidification
mechanisms: 1) solidification maps, 2) a geometrical relationship between dendritic and solidifi-
cation front velocity, 3) a geometrical criterion of grain selection in the competitive growth, and
4) a construction rule of Voronoi tessellations.

1) Solidification maps. To avoid fine scale computations, solidification maps are used to simply
summarize the relevant physical phenomena governing CET. Solidification maps have been
established for various alloys on the basis of experimental observations to characterize CET as
a function of thermal gradient and solidification front velocity [3, 27] (see. figure 2). Thus,
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solidification maps are used in this contribution to determine columnar and equiaxed regions
by extracting from the temperature field history the temperature gradient G(x) and the ASF
velocity VASF(x) as defined in (3) (with x ∈ Γt(TASF)). In the region where equiaxed grains take
place, seeds are randomly distributed with random crystal orientations. The average distance
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Figure 2: Solidification map for Inconel 718 extracted from [3].

between seeds is determined using the grain size of equiaxed grains, which depends on cooling
rates denoted by Ṫ (x) (K.s−1) (with x ∈ Γt(TASF)). In the literature, several approaches have
been used to assess grain size in melt pool solidification [28]. In this paper a simpler empirical
approach [29, 30] is chosen to directly relate the grain size d (µm) and the cooling rate at the
solidification front in the form of a power law:

d = d0 ×
(

χ

G × VASF

)γ

(7)

Where d0 (µm) is a reference grain diameter arbitrarily set to 1 µm, χ (K.s−1) is an adjustable
reference cooling rate, and γ is an adjustable dimensionless coefficient.

2) Geometrical relationship between dendritic and average solidification front velocity. Solidifica-
tion maps only provide for qualitative morphological information, and should be complemented
to capture dendritic competitive growth. To avoid fine scale computation of surface and bulk
energies to simulate the dendritic growth in details, physical phenomena are summarized into
the following simple geometrical growth criterion. Each grain is composed of a family of
dendrites sharing the same crystal orientation, and preferential growth direction denoted by
ddent (e.g., ⟨001⟩ for FCC and BCC). Each dendrite family is growing at a speed denoted by
Vdent. In melt pool solidification though, it is commonly observed and admitted that grain
growth direction denoted by dgrain aligns with the thermal gradient direction denoted by n (i.e.,
dgrain = n ∝ ∇T ) instead of ddent [2, 31]. (By definition of isotherms, n identifies as the
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outer normal vector of the TASF-isotherm.) More generally though, as suggested in [32] and
depending on cooling conditions, one can consider that :

dgrain = λ n + (1 − λ) ddent (8)

Where 0 < λ < 1. For the sake of simplicity λ = 1 in section 3. Therefore, considering that
the evolution of the dendrites is constrained by the ASF velocity, one obtains:

∀x ∈ Γt(TASF), VASF(x) = Vdent(x) cos(φ(x)) (9)

Where φ is defined as in figure 3 and reads:

∀x ∈ Γt(TASF), φ(x) = arccos (ddent(x).dgrain(x)) (10)

Figure 3: Schematic view of dendritic growth rate.

3) Geometrical criterion of grain selection in the competitive growth. The pioneer work of Walton
and Chalmers [33] suggests that the grains for which the preferred growth direction and the local
thermal gradient direction are best aligned evolve at smaller undercooling (i.e., the dissipated
power is smaller for favorably oriented grains), and are more likely to survive. On this basis,
the most favorably oriented grain (FOG) criteria is used and enables to determine which grain
overgrows the other when directions of families of dendrites intersect.
More precisely, each family of dendrites (i.e., all dendrites sharing a common crystal orientation
and forming a grain) are modeled as a single straight line propagating along the preferred growth
direction ddent. The competitive growth involves considering intersections between pairs of
dendrites families with angles φ1 and φ2 as defined in (10), and selecting the dendrite which
overgrows the other as the one having the smallest angle (i.e., FOG criterion). However, if
the intersection between nonparallel straight lines is unequivocally defined in 2D, in general
nonparallel straight lines do not intersect in 3D. The intersection is then replaced by the notion
of conflict, which is defined as in figure 4 by δ ≤ δ0 where δ is the smallest distance between
the two straight lines and δ0 > 0 an adjustable threshold. Consider two straight lines denoted
by Du and Dv defined by the unit vectors u, v (such as ∥u∥ = ∥v∥ = 1):

Du = {u t + xu ∈ R3, t ∈ R}
Dv = {v t + xv ∈ R3, t ∈ R} (11)
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The minimum distance δ and the corresponding positions on Du and Dv are defined as follows.
Consider the straight line Dw perpendicular to both Du and Dv defined by:

Dw =
{
w t + xw ∈ R3, t ∈ R

}
(12)

Where w = u ∧ v and xw is to be determined. The straight line Dw should intersect both Du

and Dv so that there exists (tu, tv, tw) ∈ R3 such as:

xw = u tu + xu

w tw + xw = v tv + xv
(13)

Hence:  tw

tu

tv

 =

 wx ux −vx

wy uy −vy

wz uz −vz


−1

(xv − xu) (14)

Therefore the positions u tu + xu and v tv + xv respectively on Du and Dv corresponding to
the minimum distance δ are identified. In addition δ reads:

δ = ∥u tu + xu − v tv − xv∥ (15)

One can show that all pairs of nonparallel dendrites families simultaneously reach their geomet-
rical intersection in 2D or the minimum distance between them in 3D. Therefore, all conflicts are
identified between all pairs of dendrites families by simple analytical geometrical calculations
instead of time consuming incremental procedure. The FOG criterion is then applied both in
2D and 3D to determine which dendrite family continues to propagate while the other one is
stopped.

Figure 4: FOG criterion in 3D.

4) Construction rule of Voronoi tessellations. In the following, to efficiently implement 1), 2) and
3), Voronoi tessellations are used. The main advantage of using Voronoi tessellations is the
small number of DoFs (i.e., seeds coordinates). Indeed, Voronoi tessellations are defined by N
seeds denoted by xj ∈ R3 (where 1 ≤ j ≤ N ). Each cell denoted by Cj (where 1 ≤ j ≤ N ) is
defined as follows:

Cj =
{
x ∈ R3, ∀k ∈ {1, · · · , N} , ∥x − xj∥2 ≤ ∥x − xk∥2

}
(16)
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Thus, the total number of DoFs is 3 N , while for CA techniques if Nvox denotes the number of
voxels along one direction, the typical number of DoFs is N3

vox, where usually N < Nvox. The
proposed approach therefore holds considerable potential in reducing computation time.
Voronoi tessellations are constructed according to the following procedure. (i) Grains surround-
ing the melt are considered with their crystal orientation by introducing the corresponding seeds.
In addition, in the region where equiaxed dendritic growth takes place randomly distributed
seeds are created so that the average distance between seeds corresponds to the computed grain
size (7), and random crystal orientations are affected to those seeds. (ii) Competitive epitaxial
growth is considered from the grains in contact with the melt. To do so, a time discretization is
introduced with a time step denoted by ∆t. At each time step the ASF (i.e., the TASF-isotherm)
is updated according to the temperature field history. Starting from an existing seed, a new one
is added along the thermal gradient direction dgrain(x) (with x ∈ Γt(TASF)) according to (9).
New seeds are added according to this procedure until the corresponding dendrite direction is
stopped in a conflict with an other dendrite direction. Then each set of cells sharing the same
crystal orientation is gathered into a single grain.
It should be noted that each grain is usually defined as a unique cell, while in this contribution
grains are defined as sets of cells sharing the same crystal orientation. This enables to define
complex grain structures with curved grains. Boundaries between cells of a single grain carry
zero energy as there is no crystal disorientation. Therefore the previously developed fast model
of grain growth due to annealing condition relying on Voronoi-Laguerre tessellations [20] can
be directly applied as a post-processing of the present work.
The proposed procedure is illustrated in 2D in figure 5 for a simple cooling condition. As
shown in figure 6, it should be noted that it remains the same for melt pools translating at a
given speed.

Figure 5: General principle for competitive columnar dendritic growth.

It should be emphasized that such an upscaling method can only capture the general behavior of
melt pool solidification, and details associated to solutal and curvature undercooling are not taken
into account, which does not able to consider anomalous dendritic growth for instance. The paper
objectives though are limited to describe the average grain structure so that the morphological and
crystallographic textures are correctly predicted within very short computation time.
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Figure 6: Principle for competitive columnar dendritic growth for melt pool translating at a given speed.

3. Results and discussion

The proposed approach has been implemented in PYTHON [34], which leads to a file containing
the final Voronoi tessellation. Images are then produced with the free Voronoi-Laguerre tessellation
software NEPER [35].

3.1. Comparison with experiments
In this section, the ability of the proposed strategy to capture the growth length of a grain before

it is stopped in the competition with its neighbours is validated by comparison with well known
experimental data [36]. A succinonitrile—1.3 wt% acetone transparent organic alloy behaving as
metals is used, and a 2D columnar dendritic structure is obtained by trapping the melt between two
glass sheets sufficiently closed to each other so that only one dendrite layer can grow. Thermal
gradient is maintained vertical during grain solidification. Three grains are considered and crystal
orientations are extracted from [36] hence the disorientation angles between thermal gradient and
preferred growth directions, namely φ1 = 1°, φ2 = 29.3° and φ3 = 5.5° (from the left to the right)
are obtained and set in the numerical simulation. The comparison between the experiment and the
numerical result is presented in figure 7. The growth length of the central grain is perfectly estimated
by the proposed numerical strategy (see the red line in figure 7), even though plane orientations of
GBs are not well captured so that the central grain is not triangular as in the experiment but rather
in a channel shape. As already mentioned Voronoi tessellations do not enable to control GBs.
Indeed, in this example seeds are arranged along 3 vertical lines (i.e., thermal gradient direction)
corresponding to the 3 different grains, which induces the channel shape1.

This comparison validates the main feature of the proposed numerical strategy, namely the
ability to correctly capture when grain growth is stopped in the competition with neighboring
grains. Nevertheless, the lack of control of GBs could appear as a significant drawback of the
method as a large part of the literature focuses on GBs orientation. But as already mentioned, the
present work is not aimed at studying in details a few grains but rather focus on large aggregates
in which the lack of control of GBs is mitigated by geometric constraints between all grains so
that the complete microstructure is satisfyingly captured. This is demonstrated in the following by
comparing to the present work to PF and CA computations for 2D polycrystals.

1It should be noted that GBs are defined in Voronoi tessellations as the straight lines crossing perpendicularly the
midpoint of the straight lines defined by adjacent pairs of seeds.
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Figure 7: a) Experimental result [36]. The picture is extracted from [13] and modified with semi-transparent colors.
b) Numerical results considering the same grains orientations. Both images have the same scale in order to compare
the grain size.

3.2. Comparison with phase field and cellular automaton
In this section a comparison between PF, CA and the present model is provided in 2D. Simulation

conditions and the corresponding PF and CA computations are extracted from [37]. A total of
15 simulations are analyzed, divided into 3 conditions named: “reference”, “wide and shallow”
and “deep and narrow” each of which contains 5 random draws of initial grain distribution. For
each condition, the initial grain distribution is partially remelted according to the temperature field
history given in analytical form in [37]. As detailed in section 2, the present work involves the
computation of the ASF temperature denoted by TASF(t), which relies on the growth velocity (2)
defined as a single power law. However, the growth velocity defined in [37] is written in the form
of a sum a two power laws:

V (x, t) = α1 ∆T (x, t)β1 + α2 ∆T (x, t)β2 (17)

Where α1 = 6.45 × 10−8, β1 = 3.83, α2 = 5.71 × 10−6 and β2 = 1.98. Therefore the best fitting
power law (2) is identified and α = 1.16×10−8 and β = 3.08. At each time step TASF is computed
according to section 2, and presented in figure 8. It is clear that TASF very rapidly reaches the
solidus temperature Tsol for all tested conditions (considering that complete solidification is reached
in 0.00255 s). The TASF-isotherms are presented at different times in figure 9.

Voronoi tessellations are obtained as outputs of the present model. The PF and CA simulations,
on the other hand, respectively involve 10 nm and 30 nm grids. However, all results are rasterized
upon a 30 nm grid to facilitate comparisons. For each of the 3 tested conditions (i.e., “reference”,
“wide and shallow”, and “deep and narrow”) results are respectively presented in figures 10, 11,
and 12 for the 1st of the 5 random draws of initial grain distributions. Very satisfying qualitative
agreement is observed between the present work and CA, while more discrepancies can be observed
with PF.

A more quantitative comparison is also provided by computing the Pearson correlation coeffi-
cient (PCC) between CA and the present work. To avoid overestimating the quality of the present
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Figure 8: Evolution of TASF as a function of time for “reference”, “wide and shallow” and “deep and narrow”
conditions.

Figure 9: TASF-isotherms at different times for a) the “reference” condition, b) the “wide and shallow” condition and
c) the “deep and narrow” condition.

work, PCCs were computed only in the remelted areas, i.e. excluding shaded areas in figures 10, 12
and 11 which are identical for all models. Results for the 15 tested simulations are listed in table 1.
The present work correlates well with CA (i.e., PCCs around 0.7 in average). This demonstrates
the ability of the present approach to capture the final grain structure after rapid solidification with
similar results as finely discretized CA.
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Figure 10: Results for one initial state of the “reference” condition obtained with a) CA, b) present work, and c) PF.

Figure 11: Results for one initial state of the “wide and shallow” condition obtained with a) CA, b) present work, and
c) PF.

Figure 12: Results for one initial state of the “deep and narrow” condition obtained with a) CA, b) present work, and
c) PF.

Table 1: PCC between all pairs of models for “reference” condition.

1 2 3 4 5
Reference 0.804 0.800 0.780 0.710 0.679

Wide and shallow 0.735 0.719 0.759 0.793 0.694
Deep and narrow 0.728 0.691 0.662 0.696 0.620

In addition, computer vision techniques implemented in the PYTHON library scikit-image [38]
are used to complement this analysis. For each grain an equivalent ellipse is defined by matching
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the normalized second central moment of the grain. On this basis, statistical distributions of
morphological and crystallographic textures are analyzed and compared between PF, CA and the
present work. In figure 13 the statistical distribution of grain orientation (i.e., angle between the
major axis and the horizontal direction) is presented. A good agreement is observed between
the different models. In addition, one can notice that as expected grains are over-represented for
inclinations close to the thermal gradient direction (i.e., around 90◦ for the “wide and shallow”,
0◦/180◦ for the “deep and narrow”, while being more distributed around 90◦ for the “reference”
condition). This is due to the favorable epitaxial growth along the thermal gradient direction.
In figure 14, the statistical distribution of crystal orientations is presented. Once again a good
agreement is observed between the different models. One can notice that crystal orientations close
to the thermal gradient direction orientation are over-represented, which is due to competitive
growth as only the grains whose crystal orientation is best aligned with the thermal gradient
direction survive.

Figure 13: Distribution of grain orientation (i.e., the angle between the major axis and the horizontal direction) for:
a) "reference" b) "wide and shallow" and c) "deep and narrow"

Figure 14: Distribution of of crystal orientations for: a) "reference" b) "wide and shallow" and c) "deep and narrow"

The computation cost reported in [37] is over 40 hours with highly parallelized implementation
for PF computations. CA computations have been performed on a simple personal computer and
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the computation cost is around 4 h for the finest grid size tested in [37]. In comparison, only
a few seconds are necessary for the present work with a conventional laptop. This shows the
computational cost reduction potential of the present work, which can be further improved by
using a compiled programming language as C++ instead of PYTHON.

3.3. Convergence analysis
Since a time discretization is introduced, a convergence analysis is provided in 3D. The simu-

lation domain is defined by (x, y, z) ∈ (0, L) × (0, W ) × (0, H) where length, width and height
are denoted by L = 1 mm, W = 0.3 mm, and H = 0.377 mm respectively, and where Cartesian
coordinates are denoted by x, y, z. We consider a melt pool for which TASF-isotherm is moving
on a substrate along the x direction at the constant speed Vmelt = 10 mm.s−1. The melt pool shape
(i.e., the TASF-isotherm) is set to a quarter of an ellipsoid, which reads:

M =
{

(x, y, z) ∈ R3,
x2

a2 + y2

b2 + z2

c2 = 1, x ≤ 0, z ≤ 0
}

(18)

Where a, b and c are the half-lengths of the axis defining the ellipsoid. The exact same substrate is
used for all simulations as it plays the role of initial/boundary conditions for the growth competition
between columnar dendritic grains. It is composed of randomly distributed equiaxed grains whose
mean size is set to d0 = 0.01 mm with random crystal orientations. The conflict detection threshold
introduced in section 2 is set to δ0 = 0.01 mm. Parameters are summarized in table 2.

Table 2: Parameters for the convergence analysis.

Domain length L (mm) 1
Domain width W (mm) 0.3
Domain height H (mm) 0.377
Half-length axis a (mm) 2
Half-length axis b (mm) 0.2
Half-length axis c (mm) 0.387
Conflict detection threshold δ0 (mm) 0.01
Equiaxed grain size d0 (mm) 0.01
Melt pool velocity Vmelt (mm.s−1) 10

A qualitative analysis of longitudinal sections and cross sections for different time discretization
denoted by ∆t is proposed. As shown in figure 15, two longitudinal sections are set at 50% and
55% of the width (i.e., respectively y = 0.15 mm and y = 0.135 mm) and one cross section is set
at 50% (i.e., x = 0.5 mm). Since a steady state is considered (i.e., the melt pool moves at constant
speed) the ASF velocity VASF is constrained by the melt pool velocity such as:

VASF(x, t) = Vmelt(x, t) cos(θ(x, t)) (19)

Where θ is the angle between the grain growth direction dgrain and the direction of movement of
the melt pool dmelt which is the horizontal direction in this case, which reads:

θ(x, t) = arccos(dmelt(x, t).dgrain(x, t)) (20)
16



Therefore, according to the proposed strategy detailed in section 2, the distance between two
successive seeds denoted by δseed = VASF ∆t reads:

δseed(x, t) = Vmelt(x, t) cos(θ(x, t)) ∆t (21)

Figure 15: Selected cross sections from the 3D microstructure. Grain colors correspond to crystal orientations
according to the vertical direction z.

Microstructures are presented for 8 different time steps ∆ti (with 1 ≤ i ≤ 8) arranged in
decreasing order, for the longitudinal sections in figures 16 and 17 and for the cross section in
figure 18. Qualitatively, numerical simulations clearly seem to converge when the time step ∆t
decreases. This qualitative remark is completed by a quantitative convergence analysis. To do so,
the following relative distance is used:

ξ = ∥I(∆ti) − I(∆t8)∥
∥I(∆t8)∥

(22)

Where each image is a set of pixels gathered into vectors denoted by I(∆ti) (with 1 ≤ i ≤ 8).
The relative error ξ is presented in log scale for longitudinal and cross sections in figure 19. The
convergence rate is in ∆t. Of course, this convergence analysis does not prove that the proposed
strategy converges toward a solution that is representative of experimental results, but this aspect
has already been broached in 2D in section 3.2, and should be extended in 3D in future works.

Qualitative comments of these numerical results should also be added. The obtained mi-
crostructures are similar to what is commonly observed in metal additive manufacturing, which
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Figure 16: Longitudinal section at 50% of the width for a) ∆t1 = 0.02 s, b) ∆t2 = 0.01 s, c) ∆t3 = 0.008 s, d)
∆t4 = 0.006 s, e) ∆t5 = 0.004 s, f) ∆t6 = 0.002 s, g) ∆t7 = 0.001 s, and h) ∆t8 = 0.0005 s.

relies on moving melt pools as in the studied example. Indeed as reported in [39], for the longitu-
dinal section at 50% (i.e., mid plane), the competitive growth mechanisms lead to microstructures
characterized by elongated grains aligned with the vertical direction, and by the <100> crystal
direction also aligned with the vertical direction. In addition, similar pattern as reported in [39]
are obtained for the cross section. It is interesting to notice that the longitudinal section at 55%
is significantly different from the longitudinal section at 50%, as the 3D microstructure rapidly
evolves along the width direction. This highlights the benefits of the proposed fast numerical ap-
proach, which enables to rapidly estimate 3D microstructures, while experimental results obtained
by electron backscatter diffraction techniques are often limited to single longitudinal and/or cross
sections.

4. Conclusion

This paper presents an original and very fast numerical strategy to compute entire microstruc-
tures during melt pool solidification including the growth competition between columnar dendritic
grains. The key contribution is twofold, 1) an upscaling approach is derived to obtain an average
solidification front instead of detailing each dendrite individually, and 2) Voronoi tessellations are
used instead of regular grids for numerical implementation so that the number of degrees of freedom
is dramatically reduced in comparison to classical phase field or cellular automaton approaches
(especially for three-dimensional microstructures). Numerical results have been compared to a
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Figure 17: Longitudinal section at 55% of the width for a) ∆t1 = 0.02 s, b) ∆t2 = 0.01 s, c) ∆t3 = 0.008 s, d)
∆t4 = 0.006 s, e) ∆t5 = 0.004 s, f) ∆t6 = 0.002 s, g) ∆t7 = 0.001 s, and h) ∆t8 = 0.0005 s.

Figure 18: Cross section at 50% of the length for a) ∆t1 = 0.02 s, b) ∆t2 = 0.01 s, c) ∆t3 = 0.008 s, d) ∆t4 = 0.006 s,
e) ∆t5 = 0.004 s, f) ∆t6 = 0.002 s, g) ∆t7 = 0.001 s, and h) ∆t8 = 0.0005 s.

classical experiment and excellent agreement is observed for the growth length during the competi-
tion with neighboring grains. Grain boundaries orientation though have been found to be incorrect,
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Figure 19: Convergence analysis for longitudinal sections and cross section.

which is due to the fact Voronoi tessellation do not enable to control grain boundaries. However,
this effect is mitigated for large aggregates. Indeed, a detailed comparison with two-dimensional
phase field and cellular automaton simulations give evidences that entire microstructures are sat-
isfyingly captured. In addition, the proposed approach gives similar results as cellular automaton,
while reducing computation time from more than 40 hours for PF and 4 hours for CA to a few
seconds for the present work. Three-dimensional comparisons are left for future work to further
validate the model. Computations in 3D involving a moving melt pool also showed interesting
potential in predicting microstructures in metal additive manufacturing for instance.

This work holds considerable potential in computation cost reduction for 2D and 3D simula-
tions of microstructures, which enables to carry out large numbers of simulations with different
random draws of equiaxed grain nucleation from which epitaxial growth takes place. Statistical
exploration of probability density function of morphological and crystallographic textures is there-
fore accessible. In addition, large data bases of numerical computations can be collected so that
machine learning algorithms can be trained for real time control of solidification processes.
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