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Abstract—This paper presents an exploration framework for
multinode multicore High-Performance Computing (HPC) sys-
tems. The proposed method allows to explore rapidly various
network topologies to find the optimized solutions in terms of
latency for a given application. The proposed method facilitates
the in-depth Design Space Exploration (DSE) to identify Pareto-
optimal solutions in HPC systems. Experiments demonstrate that
our method accelerates HW-SW co-design search by a factor of
3.7 compared to a semi-exhaustive method.

I. INTRODUCTION

The Square Kilometre Array (SKA), an advanced exascale
radio telescope, marks a new era in astronomy. This ground-
breaking project imposes significant computational challenges
on its core, the Science Data Processor (SDP) pipeline. Re-
sponsible for handling data from telescopes at an impressive
rate of several terabytes per second, the SDP operates within
constraints of limited storage and a strict energy budget of 1
Megawatt for 250 Petaflops [1]. To address the SKA compu-
tational challenges, the SDP supercomputer would integrate
a multinode HPC system. However, allocating resources for
complex algorithms in such systems and finding an ideal
architecture combination for such algorithms are both known
as an NP-complete problem [2]. Given that these algorithms
are developed using datasets smaller than those processed
by the final system, it is imperative to assess the ”at scale”
computational requirements of these algorithms to determine
their feasibility. The presented work facilitates the rapid sim-
ulation of the ”at scale” computational needs of the studied
algorithms.

This paper explores the dataflow parallel programming
paradigm, which inherently expresses parallelism and stream-
lines the deployment of applications on a selected architecture
[3]. Dataflow graph consists of nodes, or actors, representing
computations, and directed arcs representing First In First Out
(FIFO) buffers. In this paper, we propose a method to automat-
ically identify a suitable multinode and multicore architecture
for a given application. The method simulates various network
topologies and crucial metrics like final latency, energy con-
sumption, memory management, and associated system costs
for each configuration. Driven by pursuing Pareto-optimal
architectures, the simulator accommodates customizable input
parameter ranges, known as moldable parameters, including
the number of nodes, number of cores, and network topology.

This work was supported by DARK-ERA (ANR-20-CE46-0001-01).

Employing smart strategies to narrow down the scope of mold-
able parameters, the method calculates maximum parallelism
and memory requirements to streamline the application and
eliminate irrelevant configurations, optimizing simulation effi-
ciency. The proposed exploration method has been integrated
into a new HW-SW co-design framework called Simulator
of the Science Data Processor (SimSDP). Although initially
developed for the SKA use case, the proposed approach can
be used for the design/implementation of any signal processing
system dedicated to big data applications.

The rest of this paper is organized as follows: Section II
presents HPC systems, resource allocation process, and related
works. Section III describes the proposed method. Section
IV outlines the experimental evaluation of the process for
narrowing the hardware DSE scope regarding duration and
effectiveness. Finally, Section V concludes this paper.

II. CONTEXT & RELATED WORK

A. HPC Systems

HPC systems are advanced computing devices designed
for the processing of complex tasks. These systems use
parallel processing, allowing multiple tasks to run simultane-
ously for high performance. This paper specifically discusses
Distributed Computing System (DCS) that incorporates HPC
capabilities. These systems are characterized by multiple in-
terconnected nodes, where each node may consist of multicore
processors or specialized accelerators.

The way nodes are connected in the network is crucial for
the overall performance of DCS [4]. Network topologies define
the structure of connections and communication pathways
between nodes. In the context of the exploration for an optimal
architecture for a given application, the topology becomes a
key parameter to be considered. To narrow the hardware DSE
scope and cover common usage scenarios, we focus on the five
most prominent families of network topologies, denoted T and
illustrated in Figure 1. To clarify the later iterative process each
topology is numbered such as Cluster with Crossbar T = 1,
Cluster with Shared Backbone T = 2, Torus cluster T = 3,
Fat tree cluster [5] T = 4, and dragonfly cluster [6] T = 5.

To encapsulate the exploration for an adequate architecture
tailored to a given application, we define:

α(N,C, T ) =⇒ ρ(Lfinal,M,E, Ĉ) (1)
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Fig. 1. The five most prominent families of network topologies

Where α represents the architecture parameterized by the
number of nodes N , the number of cores per node C , and
the network topology T . ρ denotes the Pareto optimal function,
evaluating the final latency Lfinal, memory footprint M , energy
consumption E, and system cost Ĉ .

B. Resource Allocation for Static Dataflow Model of Compu-
tation (MoC)

Dataflow-based resource allocation, and more broadly soft-
ware synthesis, translates the dataflow graph into executable
code, specifically designed for complex computing platforms.
This synthesis involves crucial tasks: Scheduling and Mapping
(assigning actor execution to Processing Elements (PEs)),
Memory Allocation (allocating memory resources near PEs
for storing data), and Communication Routing (ensuring data
availability and synchronization of computations across the
system).

In DCS, efficient resource allocation encompasses a twofold
process [7]. First, the actors of the dataflow graph are strategi-
cally distributed across multicore nodes, and for each, a soft-
ware synthesis is performed. Subsequently, another software
synthesis is performed to connect nodes to each other.

C. Related work

a) Rapid Prototyping and Simulation Tools: Dataflow-
based models and associated prototyping tools have proven
their efficiency to accelerate the development of signal-
processing application and their deployment on complex archi-
tectures. Simulink [8] is commonly used for dynamic system
modeling and simulation. However, Simulink lacks specializa-
tion for dedicated architectures whether for multi-node HPC or
embedded systems. Python libraries offer the capability to par-
allelize code across multiple nodes; however, a drawback lies
in Python’s tendency to create full copies and duplicates of all
data, leading to inefficiencies in the code. Dask [9] leverages
this Python characteristic to parallelize on distributed systems
and harnesses dataflow to enhance performance. Neverthe-
less, scalability issues arise when dealing with large datasets
or computationally complex graphs. Parallel and Real-time
Embedded Executives Scheduling Method (PREESM) [10]
is an open-source rapid prototyping tool, offering robust
analysis for heterogeneous multi and many-core single-node
targets. SimGrid [11] is an open-source framework specifically
designed to model and simulate distributed algorithms on
distributed IT architecture. Its purpose is to enable researchers

to study distributed algorithms without the need for physical
deployment, making it a valuable tool for prototyping and
evaluation in diverse distributed environments. While these
tools yield relevant results for the resource allocation process
and/or simulation, their applicability is limited by the given
target architecture.

b) Codesign strategies in HPC: Several solutions ex-
ist for determining suitable target architectures for a given
application through codesign strategies. One notable tool is
ATHENA-SST [12], an extension of the ATHENA analytic
tool. This approach allocates resources and refines the archi-
tecture exploration based on initial estimations. Subsequently,
it leverages the SST tool for detailed simulations. ATHENA-
SST primarily specializes in deploying artificial intelligence
algorithms on analog and neuromorphic architectures, empha-
sizing optimization of a specific metric: energy.

c) Pareto Optimal Exploration: Beyond Single-Metric
Optimization: The pursuit of Pareto optimal solutions be-
comes crucial in the context of deploying algorithms on
diverse hardware configurations. As highlighted by [13], soft-
ware parallelism is crucial in optimizing power management
for multi-core systems. However, increasing parallelism also
raises memory demands. In addition, the relation between
final latency and parallelism tends to asymptotically reach the
parallel slowdown conforming to Ahmdal’s law. In practice,
the trend admits several local minimums due to mapping
opportunities and task-to-core matching.

D. Previous work
Previous work on SimSDP [7], proposes an efficient, fast,

and accurate method to distribute workloads on heterogeneous
multinode and multicore architecture leveraging PREESM
and SimGrid. The process, illustrated in Figure 2, involves
three primary steps: Node-Level Partitioning/Readjustment,
Thread-Level Partitioning, and Simulation. The initial step
partitions the dataflow graph into subgraphs linked to specific
nodes, to achieve a balanced workload distribution. The second
step optimizes thread allocation and scheduling within each
node. The simulation step covers both intra-node and inter-
node executions. The method iteratively readjusts subgraph
construction to enhance accuracy by comparing estimated and
simulated workload distributions. However, achieving an ideal
workload distribution is not the only criterion for achieving
high performance. It also depends on accurately sizing the
simulated architecture.

To delve into all these aspects we propose here a new
method to quickly identify the architecture providing the best
final latency for a given application by adjusting the hard-
ware DSE scope and considering the multiple potential local
minimums. The proposed method simulates crucial metrics
such as final latency, energy consumption, memory usage, and
associated costs deploying an application on all architectures
of our DSE scope.

III. THE PROPOSED METHOD

The proposed approach is composed of two main steps.
The process starts with an initialization step (III-A) to provide



exploration boundaries for final latency and memory that will
be used in the later section (III-B) to guide the user and prevent
useless architecture configurations. For each architecture, the
method allocates resources thanks to our previous work (II-D)
and conducts simulations for four key metrics across five main
network topologies (III-C). Figure 2 presents an overview of
the method.
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Fig. 2. Visualization of the SimSDP Procedure

A. Scope Initialisation

The initial step aims to evaluate the boundaries of the
hardware DSE scope. This step encompasses three first sim-
ulations. The first one simulates a single node and single
core architecture estimating the minimal memory footprint
which later fixes the minimal number of nodes to support the
application execution.

The second one simulates the dataflow graph where as many
pipeline stages as possible are introduced in the application
model giving the maximum theoretical achievable speedup
Smax. Our method integrates the work of [14] to automat-
ically insert pipelines into a dataflow graph. The maximum
achievable speedup is defined as follows:

Smax =
work length
span length

(2)

The work length is defined as the sum of all actor times
and the span is the length of the longest sequential path in
the dataflow graph. In our case, the span corresponds to a
theoretical deployment of the algorithm on an architecture with
an infinite number of homogeneous cores without taking into
account communication time.

The third one simulates the estimated maximal parallelism
such as multiplying the number of nodes by the core count
equals the maximum achievable speedup N × C = Smax.
This step gives an idea of the potential best final latency
Lfinal(Smax) to verify with the following iterative process.

B. Scope Readjustment

The process proceeds to delineate the hardware DSE scope
by establishing parameters for the number of nodes, and
number of cores, iterating over this defined range. The Scope

Readjustment process involves two key phases: the introduc-
tion of moldable architecture parameters and the subsequent
control of these parameters.

1) Architecture Moldable Parameters: Architecture mold-
able parameters involve assigning a range of values to a
parameter, allowing for the automation of allocating resources
and simulating across all delineated architecture configurations
feeding the Equation 1. This is achieved through fixing val-
ues for the number of nodes (Nmin, Nmax), number of cores
(Cmin, Cmax) , and network topology (Tmin, Tmax), each with a
defined step size (∆N,∆C,∆T ). The hardware DSE scope,
denoted as H , is mathematically expressed as:

H = { (N,C, T ) |
Nmin ≤ N ≤ Nmax,
Cmin ≤ C ≤ Cmax,
Tmin ≤ T ≤ Tmax}

(3)

2) Control Parameter: Moldable parameters are readjusted
throughout the process to match the specific needs of the
given application and to reduce the exploration time. Given
that resource allocation is the most time-consuming step
and needs recalculations whenever the number of nodes and
cores changes, we focus on adjusting the scope of these two
parameters: node number and core count ranges. The network
topology range is set by the user without much influence
on the search time. Therefore, the parameters to readjust are
Nmin, Nmax, Cmin and Cmax. Nmin is readjusted considering the
application’s memory requirements given by the initial step.
The minimal node needed to support the entire application is
defined as follows:

Nmin = ⌈
MRequirement

NCapacity
⌉ (4)

Where MRequirementis the memory requirement and NCapacity is
the node storage capacity.

For each simulated configuration, we determine the max-
imum level of parallelism achieved when the final latency
stops decreasing for at least δα consecutive architecture con-
figurations, despite increasing parallelism, and remains less
than or equal to the potential best final latency Lfinal(Smax).
This ensures that we identify the global minimum of the final
latency trend.

Pmax = max {N × C |
∃i ≥ δα : Lfinal(α, i) ≤ Lfinal(Smax)}

(5)

Where Pmax is the maximal parallelism, N the node number
and C the cores count, Lfinal(α) is the final latency obtained
on the architecture α, the ith simulated configuration.

C. Simulation

For each configuration defined as α(N,C, T ), a model of
architecture is automatically generated. The main goal is to an-
alyze how these parameters affect different architectures. The
architecture modeling considers these parameters as variables
while keeping other parameters at default values that reflect
real-world architectures.



1) Architecture Modeling: The architecture modeling in-
cludes two phases: multinode modeling and network topology
modeling. In the multinode modeling phase, the structure is
influenced by the number of nodes (N ), and the number of
cores (C). This structure impacts resource allocation and is
modeled upstream in each iteration. In the network topology
modeling phase, the structure is influenced by the number of
nodes (N ) within the five main topology families. Our focus
is solely on comparing these five primary network topologies.
Therefore, we propose generic models with basic routing for
each, with the only variable being the number of nodes.

• Crossbarcluster and Backbonecluster: These configurations
are excluded if the number of nodes exceeds the number
of ports on the router R.

• Toruscluster: Characterized by the parameters ”x, y, z ”
where x, y and z are the dimensions of the torus such
as N = x× y × z. Such torus exists if N is divisible by
x · y · z.

• Ftreecluster: Defined by the parameters
”L,Dlink,Ulink,Plink” where L is the number of levels,
Dlink = {Npr, ..., com} a vector containing the number
of downlink for each level, where Npr is the number
of nodes or leaf per router and com = N

Npr
is the level

of communication. Ulink = {1, ..., com} is a vector
containing the number of uplink for each level, and
Plink = {1, ..., 1} is a vector containing the number
of parallel link for each level disabled in our case.
The value of L is incremented according to the router
capacity and the number of nodes. Such fat trees exists
if the number of nodes is a power of two.

• Dragonflycluster: Defined by
”G,Glink;C,Clink;R,Rlink;Npr” Where G is the
number of group, Glink the number of link between
group, C is the number of chassis per group, Clink the
number of link between chassis, R the number of router
per chassis, Rlink the number of link between routers,
Npr is the number of node per router. We compute
N = G × C × R × Npr. Such a dragonfly exists if the
number of nodes is even.

2) Key metrics: The final latency Lfinal is defined as the
elapsed time between the initiation of the first task and the
completion of the last task achieved when the application
reaches its maximum throughput. It represents the total time
taken for the entire dataflow graph to be processed, considering
the concurrent execution of tasks on multiple cores.

The memory requirements M are determined by the cumu-
lative size of individual FIFO buffers of the dataflow graph.

The energy consumption E is the sum of node-level energy
and link-level energy. The node-level energy is calculated by
combining dynamic power multiplied by node execution time
and static power multiplied by node voltage. The product
of transmission power, link distance, and link bandwidth
determines the link-level energy.

The system cost is calculated by summing the individual
elements associated with nodes, cores, routers, and links

computed when modeling architectures and topologies.

IV. EXPERIMENTS

A. Experimental Setup

The proposed method is applied to three applications, in-
cluding an Radio Frequency Interference (RFI) filter from the
SKA project, along with two other image processing applica-
tions: Sobel and Squeezenet. This diverse set of applications
underscores the broad applicability of the proposed method.
The resource allocation processes are performed on a desktop
computer with an 8-thread Intel i7-8665U processor and 31,2
GB of RAM. Some simulations are subsequently deployed on
the multinode cluster Parasilo of the grid5000.The proposed
method has been implemented into the PREESM rapid proto-
typing framework in open-source projects.

Sobel RFI Squeezenet

Final latency 0,52 % 1,06 % 0,98 %

Memory 3,15 % 6,52 % 0,02 %

TABLE I
IN VIVO VS. IN SILICO ERROR ANALYSIS: DEPLOYING SOBEL, RFI FILTER,

AND SQUEEZENET ON 5 ARCHITECTURES

In Figure 3, the simulation results for deploying the Sobel
dataflow algorithm are presented, considering final latency,
memory, energy, and cost. The simulations are conducted
across various architectures defined by input moldable pa-
rameters. The moldable parameters are define as follow:
{Nmin; ∆N ;Nmax} = {1; 1; 12} , {Cmin; ∆C;Cmax} = {1; 1; 6}
, {Tmin; ∆T ;Tmax} = {1; 1; 5} . Subfigure (a) illustrates the
results without narrowing the hardware DSE scope, while
subfigure (b) includes narrowing the hardware DSE scope.
Pareto-optimal architectures are marked with red crosses.
Subfigure (c) compares the Sobel application’s simulation
results for the best node number configuration across the five
main topologies concerning the four metrics. The metrics are
normalized and inverted to obtain the optimum at 1 in the radar
chart. Additionally Table I provides a summary of the average
Mean Squared Error (MSE) between the ratio of values
obtained on a single core versus the values obtained on the
tested architecture. These values are simulated and measured
across the five best Pareto optimal architectures retrieved by
the method within the scope for the Sobel, RFI filter and
Squeezenet application. This indicates the gap between simu-
lation and measurement, and therefore the robustness of our
tool. Due to hardware limitations on the Grid5000 cluster, we
couldn’t precisely measure energy consumption and machine
cost for this study. As a result, our focus is primarily on
comparing final latency and memory usage, chosen for their
critical importance in our research, along with the availability
of measurable data.

B. Tune Architecture Simulation Analysis

Figure 3 shows that the method found the best architecture
for deploying the Sobel application in less than 15 minutes,
which for manual methods can take weeks. Additionally, the
results in Figure 3 illustrate that scope tuning narrows down
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Fig. 3. Simulation deploying the Sobel dataflow algorithm across architectures (a) without narrowing the hardware DSE scope. (72 simulations, 52 min. 58
sec.). (b) narrowing the hardware DSE scope. (22 simulations, 14 min. 26 sec.), and (c) the best node configuration across the 5 main network topologies

the simulation to Pareto-optimal architectures for the Sobel
dataflow algorithm deployment, leading to a decreased number
of simulation points in Subfigure (b) compared to Subfigure
(a). The method divides simulation time by a factor of 3.7,
dividing the number of simulations by 3.2 while preserving
59.09% of Pareto-front-safe simulations. The resource alloca-
tion process already accelerated thanks to previous work on
SimSDP now allow to focus on relevant architectures only.
For this Sobel application, optimal final latency results are
obtained on an architecture composed of 6 nodes, and 6 cores.
Subfigure (c) highlights the impact of network topologies
on this 6-node architecture. We obtain the best final latency
deploying Sobel on a Torus cluster while Pareto optimal is
obtained on a fat-tree cluster more balanced and efficient on
several metrics. In the subsequent section, we exploit these
findings for comparison with ground truth.

C. In Vivo and Silico comparison

Table I shows that the average MSE between simulated
and measured final latency speedup for the three simulated
applications on the top five Pareto-optimal architectures is less
than 2%. These errors are minimal, reflecting the reliability of
the method. The top five Pareto-optimals revolve around a
parallelism of : Sobel 36, RFI, and Squeezenet 72, respecting
the limit of scope.

V. CONCLUSION & FUTURE WORK

This paper introduces a new dataflow-based co-design
method for HPC systems. This method extends the multinode
simulator, SimSDP, to rapidly identify architectures optimiz-
ing final latency for a given application and evaluate crucial
metrics such as final latency, energy consumption, memory
usage, and associated cost. The method employs architecture
moldable parameters and scope-tuning strategies to narrow
down the search for the best combination of the number of
nodes, core count, operating frequency, and network topology.
The result shows that the method accelerates the search by a
factor of 3.7 compared to a semi-exhaustive approach. Future
work includes integrating optimization algorithms such as
convex problem-solving targeting Pareto optimal solutions and
investigating heterogeneous hardware DSE.
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