

First measurements of chlorine 36 (³⁶Cl) wet deposition fluxes in the vicinity of Orano La Hague nuclear reprocessing plant in France

Deo-Gratias Sourabie, Didier Hebert, Lucilla Benedetti, Valery Guillou, Elsa Vitorge, Philippe Laguionie, Denis Maro

▶ To cite this version:

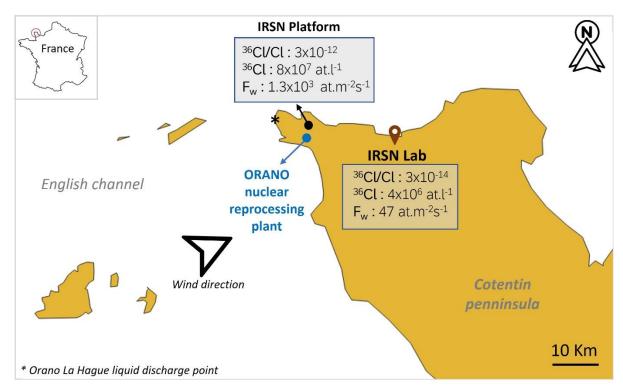
Deo-Gratias Sourabie, Didier Hebert, Lucilla Benedetti, Valery Guillou, Elsa Vitorge, et al.. First measurements of chlorine $36\ (^{36}\text{Cl})$ wet deposition fluxes in the vicinity of Orano La Hague nuclear reprocessing plant in France. Journal of Environmental Radioactivity, 2024, 278, pp.107470. 10.1016/j.jenvrad.2024.107470. hal-04608156

HAL Id: hal-04608156

https://hal.science/hal-04608156

Submitted on 12 Jun 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.


L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

of Orano La Hague nuclear reprocessing plant in France. Deo-Gratias Sourabie^(1,2), Didier Hebert^{1*}, Lucilla Benedetti², Valery Guillou², Elsa Vitorge³, Philippe Laguionie¹, Denis Maro¹ ¹Institute for Radioprotection and Nuclear Safety (IRSN), PSE-ENV/STAAR/LERTA, Cherbourg-Octeville, 50130, France deo-gratias.sourabie-capgemini@irsn.fr, didier.hebert@irsn.fr, philippe.laguionie@irsn.fr, denis.maro@irsn.fr ²Univ. Aix-Marseille, CNRS, IRD, INRAE, Coll. France, UM 34 CEREGE, Aix-en-Provence, 13545, France benedetti@cerege.fr, guillou@cerege.fr ³EDF – DPNT – DIPDE - DEE – Environment department, Villeurbanne, 69100, France elsa.vitorge@edf.fr * Corresponding author: E-mail address: didier.hebert@irsn.fr Institute for Radiation protection and Nuclear Safety (IRSN) Experimental Laboratory for Research and Expertise on Radionuclide Transfers in the Atmosphere Rue Max Pol Fouchet BP10-50130 Cherbourg-Octeville Tel: +33 (0)2 33 01 41 00 **Acknowledgements:** This work was supported by the French institute for radiation protection and nuclear safety (IRSN) and Electricite de France (EDF) under the umbrella of a research and development cooperation agreement on the safety of civil nuclear installations and their impact on health and the environment (IRSN LS21602 internal referencing). We would like to thank the LERTA team and Capgemini Engineering for their support in this work.

First measurements of chlorine 36 (³⁶Cl) wet deposition fluxes in the vicinity

Graphical abstract:

Summary:

Chlorine 36 (³⁶Cl) is a radionuclide of natural and anthropogenic origin, mainly used as a tracer in geochemical studies. Owing to analytical constraints and its low environmental levels, knowledge of ³⁶Cl behavior in the environment is still very limited. In this study, we use environmental measurements to report for the first time the wet deposition fluxes of ³⁶Cl downwind an anthropogenic source, the Orano nuclear reprocessing plant, which chronically emits ³⁶Cl into the environment. Measurements of ³⁶Cl in rainwater samples at our study site were 1 to 2 orders of magnitude above the environmental background. The isotope ratios ³⁶Cl/Cl of the samples and the ³⁶Cl content in the rainwater averaged 2.3x10⁻¹² at.at⁻¹ and 1.7x10⁸ at.l⁻¹ respectively. A decrease in these levels was observed 20 km away from the study site, outside the plant's gas plume, indicating that the marking of ³⁶Cl on the study site is related to the plant discharges. Over the sampling period, wet deposition fluxes at the study site averaged 3.4x10³ at.m⁻²s⁻¹, with significant values measured when precipitations scavenge the plant's gas plume down onto our study site. Analysis of these fluxes also revealed the presence of a significant rainout phenomenon in the study area. These results provide new data on the wet deposition flux of ³⁶Cl and will thus enable better assessment of impact studies in a context of decommissioning or accidents involving nuclear power plants.

Key words:

Chlorine 36; Wet deposits; Nuclear fuel recycling; Dismantling nuclear power plants; Accelerator Mass Spectrometry (AMS); Transfer in the environment.

1. Introduction

With natural and anthropogenic origin, chlorine 36 (36 Cl) is a radioactive isotope (or radionuclide) of chlorine (Cl) with a lifetime of around 3.01 ± 0.02 x10 5 years (Phillips, 2000). It is a pure beta emitter (β^{-}), with low energy (E_{max} = 708.6 keV) and low radiotoxicity (Bastviken et al., 2013). 36 Cl is a cosmogenic radionuclide, meaning that it is naturally produced during nuclear interactions between primary and secondary cosmic ray particles with target element constituents of the terrestrial environment (Bastviken et al., 2013; Huggle et al., 1996; Stone et al., 1996; White and Broadley, 2001). 36 Cl was massively introduced into the environment by neutron activation of 35 Cl present in the sea as a result of nuclear testing in the Pacific. The high density of the energy released by these tests triggered major upward airflows, which carried some of the 36 Cl produced into the atmosphere. This massive introduction of 36 Cl is readily observable in the 36 Cl measurements of ice cores, and the amount of 36 Cl generated as a result of these tests is estimated at 1,000 years of natural production (Green et al., 2004; Heikkilä et al., 2009). However, it has recently been shown that the Cl fluxes induced by these tests have returned to natural levels in Europe (Johnston and McDermott, 2008).

Anthropogenic ³⁶Cl is currently produced in nuclear reactor cores by the activation of stable Cl present as impurities in the fuel and in the plant's construction materials. ³⁶Cl is therefore released into the atmosphere in the form of gaseous effluents during fuel reprocessing operations. ³⁶Cl is also likely to be released into the atmosphere during the decommissioning of nuclear facilities (Le Dizès and Gonze, 2019; Llopart-Babot et al., 2022; Petrov and Pokhitonov, 2020; Sheppard et al., 1996). In abnormal or incidental situations (filters are assumed to be ineffective), ³⁶Cl can also be released into the atmosphere in particulate form. Even when emitted in gaseous form, like other radionuclides, ³⁶Cl can form ultrafine particles by nucleation or condense on atmospheric aerosols present in the environment (Budyka, 2000). Finally, ³⁶Cl can be emitted into the atmosphere following a nuclear accident [Chernobyl example (Lazarev, 2003; Scheffel et al., 1999) and Fukushima (Ohta et al., 2023; Sasa et al., 2022)] or, on a smaller scale, as a result of a biomass combustion contaminated by nuclear industry emissions (White and Broadley, 2001).

Whether produced naturally or anthropogenically, ³⁶Cl is rapidly eliminated from the atmosphere within a few weeks by precipitation or dry deposition (Phillips et al., 1988; Scheffel et al., 1999; Sourable et al., 2023). Studies on ³⁶Cl have been made possible mainly by advances in accelerator mass spectrometry, enabling environmental concentrations to be measured and the use of ³⁶Cl for groundwater tracing (Braucher et al., 2018; Finkel et al., 2013; Merchel et al., 2011). Many studies have been carried out on wet deposits of ³⁶Cl providing ³⁶Cl wet deposition flux measurements around the globe (Johnston and McDermott, 2008; Pupier et al., 2016; Santos et al., 2004; Scheffel et al., 1999; Tosaki et al., 2012). However, these studies mainly focused on naturally produced ³⁶Cl and didn't discriminate wet depositions from dry ones. In fact, compared to wet deposition, dry deposition of ³⁶Cl is generally considered as non-significant but a recent study showed that dry deposition can contribute significantly to total ³⁶Cl deposition (Sourabie et al., 2023). In addition, since chlorine is a micronutrient necessary for life, wet deposition can therefore be considered as the deposition of ³⁶Cl in a bio assimilable form by living organisms.

The aim of this study is therefore to determine the only-wet deposition fluxes of ³⁶Cl in fields close to the Orano La Hague plant, a chronic emitter of small quantities of ³⁶Cl into environment (GRNC, 1999). In fact, since Milton et al. (1994), no studies have been carried out on wet deposition of ³⁶Cl in the vicinity of a chronic anthropogenic source. The isotopic ratio ³⁶Cl/Cl in the atmosphere (gaseous and particulate fraction) 2 km away from the plant is 1 to 2 orders of magnitude higher than the natural background, suggesting that wet deposition fluxes of ³⁶Cl in this area are greater than those generally reported in the literature (Sourabie et al., 2023). Following the study of ³⁶Cl dry deposition

flux on this site, the determination of ³⁶Cl wet deposition flux will therefore help to improve the assessment of impact studies in a context of nuclear power plant decommissioning or accidents.

2. Materials and methods

2.1. Study site and sampling

Rainwater was sampled at the IRSN La Hague technical platform (IRSN Platform; 49°41'42.1"N, 1°52'24.2"W) located 2 km north of Orano La Hague plant (49°40'41.5"N, 1°52'30.7"W) in France and 2 km south of English Channel (**Figure 1**). ³⁶Cl is emitted concomitantly with krypton 85 (⁸⁵Kr), which serves as a tracer for the plant's atmospheric plume (Connan et al., 2014). As such, ⁸⁵Kr is measured continuously at the study site using a Berthold LB111 counter. Annual rainfall at the study site has averaged 643 mm over the past 10 years, with heavier precipitation in autumn. Rainwater was collected by an Eigenbrodt UNS130/E open-air rain collector equipped with an Eigenbrodt RS85 sensor, which only opens the water collector when precipitation was detected. This device ensures that all ³⁶Cl measured in rainwater mainly comes from wet deposits. A Watchdog 2000 series weather station was used to record rainfall at a frequency of 30 minutes throughout the sampling period. Samples were taken over an average period of two weeks, from July 16, 2021 to July 26, 2022; with a break in sampling from December 09, 2021 to February 22, 2022 due to a shutdown of the sampler.

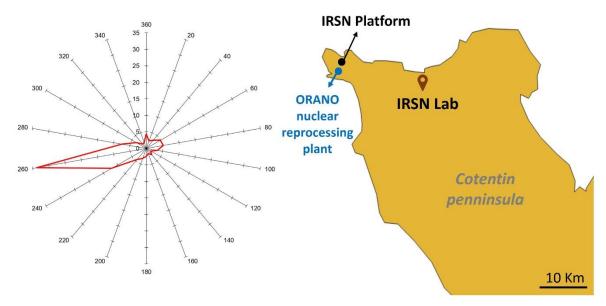


Fig. 1. Wind direction frequencies from May 17 to June 1, 2022 measured at the IRSN Platform.

2.2. Sample processing and chlorine 36 measurement

Following sampling, the filtered samples underwent a series of chemical preparations to make them compatible with ³⁶Cl measurement by accelerator mass spectrometry and eliminate isobaric interferents such as sulfur 36 (Nakata and Hasegawa, 2011). Dissolved chlorine in rainwater is first precipitated to silver chloride by adding 1 mL of silver nitrate AgNO₃ 10% (analytical grade Emsure ACS, Merck) and 20 mL of nitric acid HNO₃ 70% (CMOS J.T.Baker, VWR). The precipitate is recovered by filtration through a polyethersulfone filter (Millipore Express Plus, 0.45µm, 47 mm, Merk) and transferred to a tube. 10 mL of ammonia NH₄OH 20% (Emplura, Merck) is used to dissolve the precipitate retained on the filter and 2 mL of saturated barium nitrate Ba(NO₃)₂ (analytical grade ACS, Alfa Aesar) is added to the sample tube. The addition of barium causes sulfur to precipitate out as barium sulfate (BaSO₃). The sample is filtered after 24 hours, then the operation is repeated twice with 1 mL of barium nitrate. After the third filtration of barium sulfate, 8 mL of nitric acid are added to the tube to re-precipitate dissolved chlorides. The samples are then cooled, shaken and centrifuged. The acid is removed, and the precipitate washed 3 times with ultrapure water (Merck Milli-Q, 18.2 MΩcm at 23°C) before being oven-dried at 40°C for 72h. After drying, the silver chloride precipitates were sent for measurement of ³⁶Cl and Cl. This measurement is performed by accelerator mass spectrometry (AMS) on the national instrument ASTER (Accelerator for earth sciences, environment and risks) (Finkel et al., 2013). The ratios ³⁶Cl/³⁵Cl and ³⁵Cl/³⁷Cl were obtained by normalization against the internal standard SM-CL-12 with an assigned ³⁶Cl/³⁵Cl value of (1.428 ± 0.021) x10⁻¹² (Merchel et al., 2011) and assuming a natural ³⁵Cl/³⁷Cl ratio of 3.127. The ³⁶Cl and Cl concentration of each sample is then calculated from the ratios ³⁶Cl/³⁵Cl, ³⁵Cl/³⁷Cl and the mass of doping solution (Na³⁵Cl; ³⁵Cl = 99.66%, Chemlab) added to the sample. These calculations are presented in detail in Bouchez et al. (2015).

153154

155

156

157

158

159

160

132133

134

135136

137

138

139

140141

142

143144

145

146

147

148

149

150

151

152

3. Results and discussion

3.1. Quality control

To ensure the absence of contamination during sample preparation, reagent blanks were made. The ratio 36 Cl/ 35 Cl of our blanks (n = 3) averaged 1.6x10 $^{-15}$ which is close to the ratio 36 Cl/ 35 Cl of blanks measured by AMS at ASTER (1.3x10 $^{-15}$; Braucher et al., 2018). This allows us to ensure the absence of 36 Cl contamination during the processing of our samples.

161

162

163164

165166

3.2. Isotope ratios ³⁶CI/CI and ³⁶CI content in rainwater

Table 1 shows the results of ³⁶Cl and Cl measurements on all our samples. The uncertainty corresponds to the instrumental uncertainty, comprising the measurement uncertainty, the uncertainty of the standard, the uncertainty of the mean of the calibration measurements and the systematic error of the machine. No sampling was carried out from August 24, 2021 to September 7, 2021 and from April 20, 2022 to May 3, 2022 due to low rainfall.

168

167

169

170

171

176

Table 1: ³⁶Cl measurements in rainwater samples from the study site; uncertainties is indicated by "±" in the table.

Campaign no.	Start date	End date _	Rainfall	Cl ⁻	³⁶ CI/CI	³⁶ Cl
			mm	$mg.\Gamma^1$	x10 ⁻¹²	$x10^7 at. \Gamma^1$
C1	16/07/2021	28/07/2021	56,1	3,0	2,4 ± 0,1	12,3 ± 1,7
C2	28/07/2021	09/08/2021	12,9	7,9	$2,4 \pm 0,1$	32,3 ± 4,5
C 3	09/08/2021	24/08/2021	7,5	4,6	1,1 ± 0,04	8,9 ± 1,3
C4	07/09/2021	21/09/2021	19,5	1,2	$3,2 \pm 0,1$	6.8 ± 0.7
C 5	21/09/2021	06/10/2021	74,6	11,0	0.7 ± 0.03	14,5 ± 2,9
C6	06/10/2021	19/10/2021	6,8	5,9	$3,9 \pm 0,1$	39,2 ± 5,3
C7	19/10/2021	05/11/2021	80,2	13,2	0.3 ± 0.01	8,6 ± 0,9
C8	05/11/2021	23/11/2021	16,3	17,0	$0,2 \pm 0,01$	6,2 ± 2,5
C 9	23/11/2021	09/12/2021	86,2	13,1	0,5 ± 0,02	11,3 ± 1,2
C10	22/02/2022	08/03/2022	37,5	8,0	0,8 ± 0,04	11,6 ± 1,2
C11	08/03/2022	18/03/2022	13,9	3,1	5,4 ± 0,2	29,3 ± 3,2
C12	18/03/2022	05/04/2022	13,5	11,1	1,9 ± 0,1	36,8 ± 14,8
C13	05/04/2022	20/04/2022	24,3	7,6	0.7 ± 0.04	10,1 ± 1,1
C14	03/05/2022	17/05/2022	8,9	3,2	2,7 ± 0,1	15,3 ± 1,6
C15	17/05/2022	01/06/2022	21,5	1,3	3.8 ± 0.1	8,3 ± 0,9
C16	01/06/2022	15/06/2022	40,2	3,3	$4,3 \pm 0,2$	24,4 ± 2,7
C17	15/06/2022	29/06/2022	17,8	6,4	$2,4 \pm 0,1$	26,9 ± 2,9
C18	29/06/2022	13/07/2022	3,0	3,7	2,1 ± 0,1	13,4 ± 1,4
C19	13/07/2022	26/07/2022	6,7	1,8	5,3 ± 0,2	16,6 ± 2,3

177178

179

180

181

182

183

184

185

186 187

188

189

190

191

192

193 194 Isotopic ratios ³⁶Cl/Cl in rainwater samples ranged from 2.1x10⁻¹³ to 5.4x10⁻¹² with an average of $2.3x10^{-12}$ (median = $2.4x10^{-12}$). The 36 Cl/Cl isotopic ratio in rainwater is strongly influenced by the atmospheric CI content of the aera. Since ³⁶CI is mainly produced by cosmic rays, in inland areas the stable CI content is so low that the ³⁶CI/CI ratio can reach 10⁻¹³ whereas it is 10⁻¹⁴ at the seaside (Johnston and McDermott, 2008). Despite the proximity of the sea 2 km from the study site, the ³⁶CI/CI isotope ratios measured in our samples are 1 to 2 orders of magnitude higher than those of the natural environmental background (10⁻¹³ - 10⁻¹⁴), which is generally measured on sites far from anthropogenic sources of ³⁶Cl (**Table 2**). However, the ³⁶Cl/Cl ratio in our rainwater samples is of the same order of magnitude as those measured by Milton et al., (1994) neaby an anthropogenic source showing then the influence of Orano's plant discharges on the ratios measured. In fact, Milton et al., (1994) measured the highest ³⁶Cl/Cl ratios reported in the literature at various distances from the Chalk River Nuclear Laboratory (CRL), with levels ranging from 1.6 to 30.8x10⁻¹². It is also quite interresting to notice that the ³⁶Cl/Cl ratio in our rainwater samples is of the same order of magnitude as the ratio of 1.4x10⁻¹² measured by Sasa et al., (2022) in a monthly rainwater sample from Tsukuba during the month of the Fukushima nuclear power plant accident. Despite the distance of around 180 km from the accident site, this ratio was two orders of magnitude higher than those measured in monthly rainwater samples before and after this event (Sasa et al., 2022).

Table 2: ³⁶Cl measurements in rainwater reported in the literature.

Date	Site	³⁶ CI/CI (x10 ⁻¹⁵)	at.l ⁻¹ (x10 ⁶)	Source
1979	La Jolla, United States	58	2.5	(Finkel et al., 1980)
1988	Several sites in Israel	1.8 - 50	0.34 - 125	(Herut et al., 1992)
1991-1992	St. Mary's County, United States	3.8 - 568	1.2 (average)	(Hainsworth et al., 1994)
1999-1993	Several sites around Chalk River Nuclear Laboratories, Canada*	$(1.6 - 30.8) \times 10^3$	9.5 – 2.6 x10 ⁵	(Cornett et al., 1997; Milton et al., 1994)
1999-2000	Seville, Spain	4 - 300	0.12 – 22.7	(Santos et al., 2004)
2004-2007	Tsukuba, Japan	13 - 116	0.28 – 1.76	(Tosaki et al., 2012)
2010-2011	Several sites in Europe	21 - 746	1.63 – 9.92	(Johnston and McDermott, 2008)
2010-2011	Tsukuba, Japan	18 - 1420	0.1 - 18.3	(Sasa et al., 2022)
2012-2013	Montiers, France	177	3.2	(Grapeloup et al., 2023)
2012-2014	Montiers, France	40 - 900	0.8 – 8.9	(Pupier et al., 2016)
2021-2022	La Hague, France*	217 - 5486	62 - 390	This study

^{*}Sites with a nearby anthropogenic source of ³⁶Cl (< 3 km)

In the present study, 36 Cl levels in collected rainwater ranged from $6.2 \pm 2.5 \times 10^7$ to $3.9 \pm 0.5 \times 10^8$ at.l⁻¹ with an average of $1.7 \pm 0.2.10^8$ at.l⁻¹ (median = $1.3 \pm 0.1 \times 10^8$ at.l⁻¹). The levels of 36 Cl in our rainwater samples remain mostly 1 to 2 orders of magnitude above the natural background, which is of the order of 10^6 at.l⁻¹. This natural background value is the one generally measured in rainwater by various authors at sites around the world (**Table 2**). However, a content of 125.10^6 at.l⁻¹ similar to the average content of our samples was measured by Herut et al (1992). Finding no correlation with site location, rainfall amount, topography or distance from the sea, Herut et al. (1992) attributed the higher 36 Cl content to the presence of storms, which considerably increased the drawdown of atmospheric 36 Cl during sampling. Several authors also report variability in 36 Cl content in rainwater, depending on latitude and season (Hainsworth et al., 1994; Tosaki et al., 2012). Natural production of 36 Cl is indeed latitudinally dependent, with higher production near the geomagnetic poles (Masarik and Beer, 1999; Poluianov et al., 2016). Similarly, when the tropopause rises in spring, stratospheric 36 Cl is introduced into the troposphere. At the same time, more cosmic rays enter the troposphere, and the fraction of cosmogenic 36 Cl produced in the troposphere increases (Hainsworth et al., 1994). However, this variability cannot be observed on our results because anthropogenic sources of

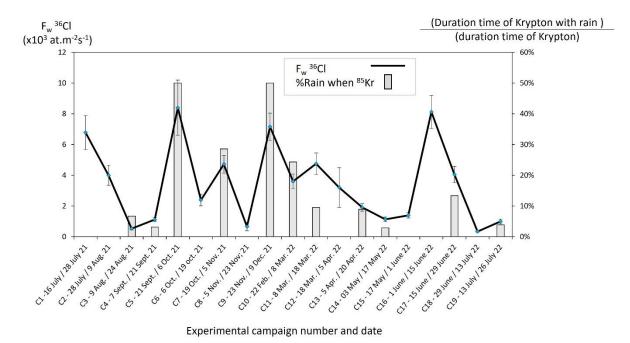
overcome natural production of ³⁶Cl influenced by latitude and season. The variability observed between the different campaigns in our study is therefore rather influenced by rainfall and Orano's releases of ³⁶Cl into the atmosphere in the vicinity of the study site.

The ³⁶Cl levels measured in our samples remain lower than those of Ohta et al. (2023), who estimated ³⁶Cl levels in rainwater at 4.7x10¹⁰ at.l⁻¹ in the 6 weeks following the Fukushima accident. The ³⁶Cl levels measured in our samples also remain lower than those measured 250 m from the CRL, which reached 2.6x10¹¹ at.l⁻¹ (Milton et al., 1994). It should be noted however that these levels measured in rainwater by Milton et al. (1994) were linked to CRL discharges of ³⁶Cl. In fact, measurements taken away from the CRL were strongly related to the distance from the point of discharge. Levels in rainwater were around 2.6x10⁹ at.l⁻¹ at 3 km, 5.6x10⁷ at.l⁻¹ at 10 km and 9.5x10⁶ at.l⁻¹ at 140 km. Nevertheless, this reduction in concentrations was not linear and depended strongly on speed and wind direction. Drawing a parallel with our study and the distance between our study site and the Orano plant (2 km), rainwater sampling was carried out at the IRSN Laboratory (IRSN Lab; 49°38'04.8"N, 1°38'45.6"W) located 20 km away from the IRSN Platform, synchronized with the sampling period running from May 17 to June 1 2022, using an automatic rain collector. As shown in **Figure 1**, wind direction during this period was predominantly south-westerly.

The position of the IRSN Lab, around 20 km from the IRSN Platform and outside the gas plume over the period under consideration, enabled us to estimate changes in ³⁶Cl levels outside the influence of Orano plant's gaseous emissions. **Table 3** compares the results obtained from this rainwater sample with those obtained from the IRSN Platform. Rainfall at IRSN Lab was 15 mm over the period in consideration, which is of the same order of magnitude as that measured at IRSN platform (21 mm). But, the ³⁶Cl content in the rainwater sampled at the IRSN laboratory is an order of magnitude lower than that taken at the IRSN Platform indicating that the marking of ³⁶Cl on IRSN platform is related to the release of ³⁶Cl by the nearby plant. However, since observation period showing the data in Table 3 is limited, there are still some uncertainties about the representativity of this experiment. It is nevertheless interesting to note that both, the ³⁶Cl/Cl ratio and the ³⁶Cl concentration in the IRSN laboratory rainwater sample are like those in sites away from anthropogenic sources of ³⁶Cl.

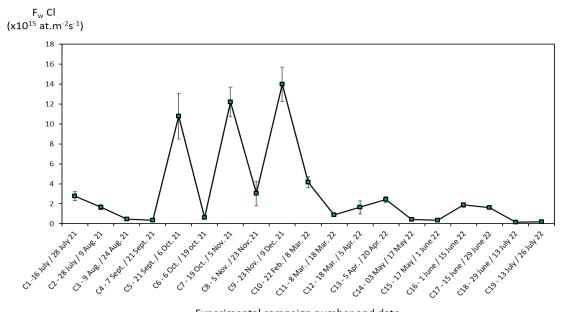
Table 3: Comparison of ³⁶Cl levels in rainwater collected at the study site (IRSN Platform) and at the IRSN Laboratory (IRSN Lab).

Sample	³⁶ CI/CI	³⁶ Cl (at.l ⁻¹)	
Rainwater IRSN Lab	2,9.10 ⁻¹⁴	4,2 ± 0,6.10 ⁶	
Rainwater IRSN Platform	3,8.10 ⁻¹²	$8,3 \pm 0,9.10^7$	


3.3. Chlorine 36 wet deposition flux

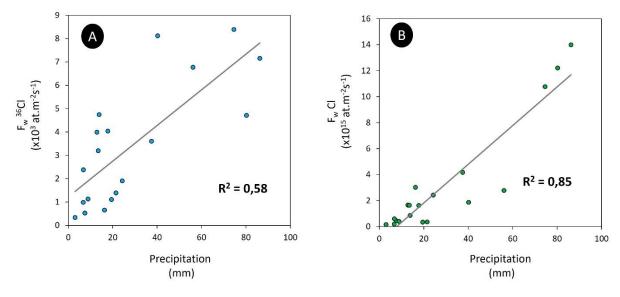
It is difficult to monitor changes in 36 Cl wet deposition relying only on concentrations measured in rainwater. Wet deposition should therefore be expressed in terms of wet deposition flux, in order to standardize all campaigns on this basis and make a more objective comparison. Wet deposition fluxes (F_w , at.m⁻²s⁻¹) of 36 Cl were determined from equation (**Eq.1**) commonly used by various authors in the literature (Hainsworth et al., 1994):

$$F_{W} = \frac{{3^{6}Cl} \times P}{d}$$
 (Eq.1)


With [36 Cl] the sample's 36 Cl content (at.l $^{-1}$), P the campaign rainfall (l.m $^{-2}$) and d the campaign duration (s).

As shown in **Figure 2**, wet deposition fluxes of 36 Cl at our study site range from $3.3 \pm 0.4 \times 10^2$ and $8.3 \pm 1.7.10^3$ at.m⁻²s⁻¹ with an average of $3.4 \pm 0.5.10^3$ at.m⁻²s⁻¹ (median = $3.2 \pm 1.3 \times 10^3$ at.m⁻²s⁻¹). As described above, 85 Kr serves as a tracer for the atmospheric plume at the Orano plant and is therefore measured continuously at the study site. This continuous measurement makes it possible to determine the periods when the plume is present over the study site. In order to assess the importance of the plume scavenging on 36 Cl deposition fluxes, the percentage of the plume subject to leaching has been calculated for all campaigns.

Fig. 2. Wet deposition fluxes of ³⁶Cl and percentages of rain events over the duration of the plume's presence, determined using krypton 85 measurements at the study site.


The CI wet deposition flux ranges from $1.6 \pm 0.1 \times 10^{14}$ and $1.4 \pm 0.1 \times 10^{16}$ at.m⁻²s⁻¹ with an average of $3.1 \pm 0.5 \times 10^{15}$ at.m⁻²s⁻¹ (median = $1.6 \pm 0.2 \times 10^{15}$ at.m⁻²s⁻¹) (**Figure 3**).

267 Experimental campaign number and date

Fig. 3. Cl wet deposition flow on the study site.

The linear regression lines between these wet deposition fluxes (³⁶Cl and Cl) as a function of rainfall are shown in **Figure 4**.

Fig. 4. Correlation coefficient and linear regression line for (A) wet deposition flux of ³⁶Cl as a function of precipitation; (B) wet deposition flux of Cl as a function of precipitation.

Based on the linear regression lines for wet deposition fluxes as a function of precipitation, it can be seen that the deposition flux of 36 Cl appears to be less dependent on rainfall than that for Cl.

This no doubt explains why CI wet deposition fluxes are particularly high for campaigns with the highest rainfall (examples of campaigns n° 5, 7 and 9). On the other hand, the wet deposition flux of 36 CI on the IRSN Platform is linked to the 36 CI content in the air at the time of precipitations. This is

confirmed by the fact that the presence of ⁸⁵Kr (attesting the presence of ³⁶Cl emitted by Orano on the study site) during a rainy episode increases the quantity of ³⁶Cl deposited. This can be observed in the wet deposition fluxes of ³⁶Cl measured in campaigns n°5, 7 and 9. The particularly high wet deposition fluxes of ³⁶Cl in campaigns n°1, 2 and 16 cannot, however, be explained by the presence of the plume ³⁶Cl. The deposition fluxes measured in these 3 campaigns cannot therefore be explained by the washout alone. Apart from the washout, the wet deposition fluxes measured over these campaigns can only be explained by the presence of a ³⁶Cl drawdown in the cloud or rainout in addition to the washout. We already know that following liquid discharges of ³⁶Cl into the sea near the IRSN Platform, atmospheric ³⁶Cl of marine origin was measured on the IRSN Platform in the absence of the gaseous plume from Orano plant (Sourabie et al., 2023). However, these liquid discharges of ³⁶Cl have different frequencies from atmospheric discharges and the quantities are not measured. Based on marine dispersion models, we also know that radionuclide dispersion following liquid discharges from Orano La Hague can extend over kilometers (Fiévet et al., 2020). Even if it is a weak possibility, as it happens for CI, ³⁶CI can also be incorporated into the cloud many kilometers upstream of the study site, and then washed down by precipitation. The presence of wet deposition by rainout in addition to wet deposition by washout would thus explain the significant deposition fluxes found in campaigns n°1, 2 and 16. It could also explain the differences observed in ³⁶Cl content on IRSN Platform and at IRSN Lab. However, unlike Cl, the incorporation of ³⁶Cl into the cloud depends on the quantities of ³⁶Cl discharged into the sea by Orano plant which are subjected to strong variations in space and time.

Apart from a few studies focusing exclusively on the wet deposits of ³⁶Cl, notably that of Hainsworth et al. (1994), the majority of studies on wet deposition of ³⁶Cl use rainwater samplers subjected to dry deposition during non-rainy periods. Nevertheless, the wet deposition fluxes of ³⁶Cl determined at our study site are generally an order of magnitude higher than those measured by Santos et al. (2004) in Seville (from 5 to 1250 at.m⁻²s⁻¹); by Keywood et al. (1998) in Australia (15 at.m⁻²s⁻¹ on average); by Tosaki et al. (2012) in Tsukuba (between 8 and 173 at.m⁻²s⁻¹); by Pupier et al. (2016) and Grapeloup et al. (2023) at Montier-sur-Saulx (from 45 to 396 at.m⁻²s⁻¹); by Hainsworth et al. (1994) in Maryland (38 at.m⁻²s⁻¹ on average); by Knies et al. (1994) in West Lafayette (between 10 and 180 at.m⁻²s⁻¹); by Johnston and McDermott (2008) at sites across Europe (between 11 and 153 at.m⁻²s⁻¹); and by Scheffel et al. (1999) on sites spread across the globe (between 25 and 755 at.m⁻²s⁻¹).

The wet deposition fluxes of ³⁶Cl measured at our site are however equivalent to the dry deposition fluxes of ³⁶Cl on grass previously measured at the same site over the same period of time by Sourabie et al (2023). Indeed, the average wet deposition flux of ³⁶Cl measured in this study (3.1x10³ at.m⁻²s⁻¹) is similar to the average dry deposition flux of ³⁶Cl on grass (2.3x10³ at.m⁻²s⁻¹). Although largely above natural background levels, these environmental levels of ³⁶Cl do not present any radiological risk to the environment or humans. Concerning Cl wet deposition fluxes, due to the proximity of the sea, they are higher than those determined by Pupier et al. (2016) 390 km from the sea (0.07 to 1.32x10¹⁵ at.m⁻²s⁻¹) and by Tosaki et al. (2012) 50 km from the sea (0.27 to 2.00x10¹⁵ at.m⁻²s⁻¹).

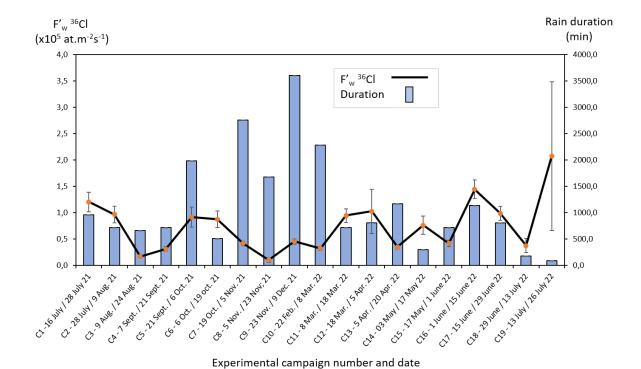
Although rarely used, wet deposition can also be described through deposition flux expressed over the duration of precipitation. Wet deposition fluxes of 36 Cl over the duration of precipitation refer to the amount of 36 Cl washed down at the time of precipitations, rather than over the total duration of the campaign. Wet deposition fluxes of 36 Cl expressed over the duration of precipitations (F'_w ; at.m⁻²s⁻¹) were determined from equation (**Eq.2**):

$$F'_{w} = \frac{\begin{bmatrix} {}^{36}Cl \end{bmatrix} \times P}{dt}$$
 (Eq.2)

With [36 Cl] the sample's 36 Cl content (at.l $^{-1}$), P the campaign rainfall (l.m $^{-2}$) and d' the total rainfall duration (s).

As shown in **Figure 5**, 36 Cl wet deposition fluxes reported to precipitations duration range from 1.0 \pm 0.4x10⁴ and 2.0 \pm 1.4x10⁵ at.m⁻²s⁻¹ with an average of 7.4 \pm 1.9x10⁴ at.m⁻²s⁻¹ (median = 7.5 \pm 1.7x10⁴ at.m⁻²s⁻¹). As a reminder, rainfall at the study site is acquired at a frequency of 30 minutes. The duration of rainfall is therefore calculated by multiplying the number of chronicles in which rainfall was measured by the duration of the chronicle (30 minutes).

332


331

325326

327

328

329 330

333334

Fig. 5. Rainfall duration and wet deposition flux of ³⁶Cl over rainfall duration.

335

336

337

338339

340

341

342343

344

345

346

347

348

349 350

351

Overall, the wet deposition fluxes of ³⁶Cl expressed over the duration of precipitation (d') is 1 to 2 orders of magnitude greater than that reported to the entire duration of campaign (d) and dry deposition fluxes of ³⁶Cl on grass previously measured at the same site over the same period of time by Sourabie et al (2023). This reflects the amount of chlorine 36 that is captured and delivered to the ground by raindrops. However, it can be noticed that this flux varies between the different campaigns. For example, the 36 Cl F'_{w} of campaign n°2 is an order of magnitude higher than that of campaign n°8 despite their similar rainfall. The absence of plume washout during these two campaigns shows that wet deposition by rainout is neither systematic nor constant over time. The differences observed between these campaigns without plume washout may be related to differences in the cloud generation process, but this is unlikely to explain the large flux difference between campaigns n°2 and n°8. Due to the large uncertainties on rainout, it is quite difficult to distinguish between rainout and washout in ³⁶Cl wet deposition for campaigns with presence of ⁸⁵Kr during rain events. However, based on our measurements, we think that in the presence of the plume, ³⁶Cl wet deposition by washout is greater than that by rainout. However, the relatively punctual presence of the plume at our site (on average 10% of the time) and the high rainfall in the region make rainout a significant contributor to ³⁶Cl wet deposition on our site.

4. Conclusions

Through 19 experimental campaigns, ³⁶Cl was measured in rainwater for the first time downwind of the Orano La Hague plant, a chronic emitter of small quantities of ³⁶Cl into the environment. The levels of ³⁶Cl measured in rainwater, of the order of 10⁸ at.l⁻¹, were 1 to 2 orders of magnitude above the natural background, demonstrating the influence of the plant's discharges on our site. The study of wet deposition fluxes of ³⁶Cl showed the importance of ³⁶Cl deposition when the plant plume is washed out by precipitation, but also highlighted the presence of wet deposition by rainout of ³⁶Cl. However, these results remain specific to our study site and are linked to the proximity of chronic discharge sources (atmospheric and marine). Moreover, these environmental levels of ³⁶Cl do not present any radiological risk. Nevertheless, these results will serve to improve our knowledge on the fate of ³⁶Cl in the environment. They will also enable better assessment of impact studies in a context of decommissioning or nuclear power plant accidents, so that dosimetric impact can be better considered and associated uncertainties reduced. These results could moreover serve as an experimental basis for the development and validation of wet deposition models for ³⁶Cl.

References:

- Bastviken, D., Svensson, T., Sandén, P., Kylin, H., 2013. Chlorine cycling and fates of 36Cl in terrestrial environments. Swedish Nuclear Fuel and Waste Management Co.
- Bouchez, C., Pupier, J., Benedetti, L., Deschamps, P., Guillou, V., Keddadouche, K., Aumaître, G.,
 Arnold, M., Bourlès, D., 2015. Isotope Dilution-AMS technique for 36Cl and Cl determination
 in low chlorine content waters. Chem. Geol. 404, 62–70.
 https://doi.org/10.1016/j.chemgeo.2015.03.022
 - Braucher, R., Keddadouche, K., Aumaître, G., Bourlès, D.L., Arnold, M., Pivot, S., Baroni, M., Scharf, A., Rugel, G., Bard, E., 2018. Chlorine measurements at the 5MV French AMS national facility ASTER: Associated external uncertainties and comparability with the 6MV DREAMS facility. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 420, 40–45. https://doi.org/10.1016/j.nimb.2018.01.025
 - Budyka, A.K., 2000. Phase transformations of iodine and other volatile radionuclides in free atmosphere. J. Aerosol Sci., European Aerosol Conference 2000 31, 480–481. https://doi.org/10.1016/S0021-8502(00)90493-2
 - Connan, O., Solier, L., Hébert, D., Maro, D., Lamotte, M., Voiseux, C., Laguionie, P., Cazimajou, O., Le Cavelier, S., Godinot, C., Morillon, M., Thomas, L., Percot, S., 2014. Near-field krypton-85 measurements in stable meteorological conditions around the AREVA NC La Hague reprocessing plant: estimation of atmospheric transfer coefficients. J. Environ. Radioact. 137, 142–149. https://doi.org/10.1016/j.jenvrad.2014.07.012
 - Cornett, R.J., Andrews, H.R., Chant, L.A., Davies, W.G., Greiner, B.F., Imahori, Y., Koslowsky, V.T., Kotzer, T., Milton, J.C.D., Milton, G.M., 1997. Is 36Cl from weapons' test fallout still cycling in the atmosphere? Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., Accelerator Mass Spectrometry 123, 378–381. https://doi.org/10.1016/S0168-583X(96)00733-1
 - Fiévet, B., Bailly du Bois, P., Voiseux, C., Godinot, C., Cazimajou, O., Solier, L., De Vismes Ott, A., Cossonnet, C., Habibi, A., Fleury, S., 2020. A comprehensive assessment of two-decade radioactivity monitoring around the Channel Islands. J. Environ. Radioact. 223–224, 106381. https://doi.org/10.1016/j.jenvrad.2020.106381
- Finkel, R., Arnold, M., Aumaître, G., Benedetti, L., Bourlès, D., Keddadouche, K., Merchel, S., 2013.

 Improved 36Cl performance at the ASTER HVE 5MV accelerator mass spectrometer national

```
facility. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., Proceedings of the Twelfth International Conference on Accelerator Mass Spectrometry, Wellington, New Zealand, 20-25 March 2011 294, 121–125. https://doi.org/10.1016/j.nimb.2012.05.019
```

- Finkel, R.C., Nishiizumi, K., Elmore, D., Ferraro, R.D., Gove, H.E., 1980. 36Cl in polar ice, rainwater and seawater. Geophys. Res. Lett. 7, 983–986. https://doi.org/10.1029/GL007i011p00983
- Grapeloup, C., Cornu, S., Giraud, X., Pupier, J., Team, A., Guillou, V., Ciffroy, P., Cabana, B.L., Couegnas, C., Hatté, C., Benedetti, L., 2023. 36Cl, a new tool to assess soil carbon dynamics. Sci. Rep. 13, 15085. https://doi.org/10.1038/s41598-023-41555-x
- Green, J.R., Cecil, L.D., Synal, H.-A., Santos, J., Kreutz, K.J., Wake, C.P., 2004. A high resolution record of chlorine-36 nuclear-weapons-tests fallout from Central Asia. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., Proceedings of the Ninth International Conference on Accelerator Mass Spectrometry 223–224, 854–857. https://doi.org/10.1016/j.nimb.2004.04.157
- GRNC, 1999. GRNC, Groupe Radioécologie Nord Cotentin, Work group no.1 report: inventory of radioactive waste from nuclear installations. [WWW Document]. URL http://www.gep-nucleaire.org/norcot/gepnc/sections/travauxgep/premiere_mission5339/volume_1_publie_en/view (accessed 2.16.23).
- Hainsworth, L.J., Mignerey, A.C., Helz, G.R., Sharma, P., Kubik, P.W., 1994. Modern chlorine-36 deposition in southern Maryland, U.S.A. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 92, 345–349. https://doi.org/10.1016/0168-583X(94)96032-1
- Heikkilä, U., Beer, J., Feichter, J., Alfimov, V., Synal, H.-A., Schotterer, U., Eichler, A., Schwikowski, M., Thompson, L., 2009. ³⁶Cl bomb peak: comparison of modeled and measured data. Atmospheric Chem. Phys. 9, 4145–4156. https://doi.org/10.5194/acp-9-4145-2009
- Herut, B., Starinsky, A., Katz, A., Paul, M., Boaretto, E., Berkovits, D., 1992. 36Cl in chloride-rich rainwater, Israel. Earth Planet. Sci. Lett. 109, 179–183. https://doi.org/10.1016/0012-821X(92)90082-7
- Huggle, D., Blinov, A., Stan-Sion, C., Korschinek, G., Scheffel, C., Massonet, S., Zerle, L., Beer, J., Parrat, Y., Gaeggeler, H., Hajdas, W., Nolte, E., 1996. Production of cosmogenic 36Cl on atmospheric argon. Planet. Space Sci. 44, 147–151. https://doi.org/10.1016/0032-0633(95)00085-2
- Johnston, V., McDermott, F., 2008. The distribution of meteoric Cl-36 in precipitation across Europe
 in spring 2007. Earth Planet. Sci. Lett. 275, 154–164.
 https://doi.org/10.1016/j.epsl.2008.08.021
 - Keywood, M.D., Fifield, L.K., Chivas, A.R., Cresswell, R.G., 1998. Fallout of chlorine 36 to the Earth's surface in the southern hemisphere. J. Geophys. Res. Atmospheres 103, 8281–8286. https://doi.org/10.1029/97JD03125
 - Knies, D.L., Elmore, D., Sharma, P., Vogt, S., Li, R., Lipschutz, M.E., Petty, G., Farrell, J., Monaghan, M.C., Fritz, S., Agee, E., 1994. 7Be, 10Be, and 36Cl in precipitation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 92, 340–344. https://doi.org/10.1016/0168-583X(94)96031-3
 - Lazarev, V., 2003. The cosmogenic and anthropogenic 36Cl in the environment. Technische Universität München.
- Le Dizès, S., Gonze, M.A., 2019. Behavior of 36Cl in agricultural soil-plant systems: A review of transfer processes and modelling approaches. J. Environ. Radioact. 196, 82–90. https://doi.org/10.1016/j.jenvrad.2018.10.011
- Llopart-Babot, I., Vasile, M., Dobney, A., Boden, S., Bruggeman, M., Leermakers, M., Qiao, J.,
 Warwick, P., 2022. On the determination of 36Cl and 129I in solid materials from nuclear
 decommissioning activities. J. Radioanal. Nucl. Chem. https://doi.org/10.1007/s10967-022 08327-9
- Masarik, J., Beer, J., 1999. Simulation of particle fluxes and cosmogenic nuclide production in the
 Earth's atmosphere. J. Geophys. Res. Atmospheres 104, 12099–12111.
 https://doi.org/10.1029/1998JD200091

- Merchel, S., Bremser, W., Alfimov, V., Arnold, M., Aumaître, G., Benedetti, L., Bourlès, D.L., Caffee,
 M., Fifield, L.K., Finkel, R.C., Freeman, S.P.H.T., Martschini, M., Matsushi, Y., Rood, D.H., Sasa,
 K., Steier, P., Takahashi, T., Tamari, M., Tims, S.G., Tosaki, Y., Wilcken, K.M., Xu, S., 2011.
 Ultra-trace analysis of 36Cl by accelerator mass spectrometry: an interlaboratory study. Anal.
 Bioanal. Chem. 400, 3125–3132. https://doi.org/10.1007/s00216-011-4979-2
- Milton, G.M., Andrews, H.R., Causey, S.E., Chant, L.A., Cornett, R.J., Davies, W.G., Greiner, B.F.,
 Koslowsky, V.T., Imahori, Y., Kramer, S.J., McKay, J.W., Milton, J.C.D., 1994. Chlorine-36
 dispersion in the Chalk River area. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact.
 Mater. At. 92, 376–379. https://doi.org/10.1016/0168-583X(94)96037-2
 - Nakata, K., Hasegawa, T., 2011. Improvement of pre-treatment method for 36Cl/Cl measurement of Cl in natural groundwater by AMS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 269, 300–307. https://doi.org/10.1016/j.nimb.2010.11.022
 - Ohta, T., Fifield, L.K., Palcsu, L., Tims, S.G., Pavetich, S., Mahara, Y., 2023. Record of 3H and 36Cl from the Fukushima nuclear accident recovered from soil water in the unsaturated zone at Koriyama. Sci. Rep. 13, 19672. https://doi.org/10.1038/s41598-023-46853-y
 - Petrov, B.F., Pokhitonov, Yu.A., 2020. Content of Long-Lived Radionuclides of Carbon-14 and Chlorine-36 in Reactor Graphite and in the Biosphere (Is there a Problem with Carbon-14 and Chlorine-36 when It Comes to the Processing of Reactor Graphite?). Radiochemistry 62, 138–140. https://doi.org/10.1134/S106636222001018X
 - Phillips, F.M., 2000. Chlorine-36, in: Cook, P.G., Herczeg, A.L. (Eds.), Environmental Tracers in Subsurface Hydrology. Springer US, Boston, MA, pp. 299–348. https://doi.org/10.1007/978-1-4615-4557-6_10
 - Phillips, F.M., Mattick, J.L., Duval, T.A., Elmore, D., Kubik, P.W., 1988. Chlorine 36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapor movement in desert soils. Water Resour. Res. 24, 1877–1891. https://doi.org/10.1029/WR024i011p01877
 - Poluianov, S.V., Kovaltsov, G.A., Mishev, A.L., Usoskin, I.G., 2016. Production of cosmogenic isotopes 7Be, 10Be, 14C, 22Na, and 36Cl in the atmosphere: Altitudinal profiles of yield functions. J. Geophys. Res. Atmospheres 121, 8125–8136. https://doi.org/10.1002/2016JD025034
 - Pupier, J., Benedetti, L., Bouchez, C., Bourlès, D., Leclerc, E., Thiry, Y., Guillou, V., 2016. Monthly record of the Cl and 36Cl fallout rates in a deciduous forest ecosystem in NE France in 2012 and 2013. Quat. Geochronol. 35, 26–35. https://doi.org/10.1016/j.quageo.2016.04.002
 - Santos, F.J., López-Gutiérrez, J.M., García-León, M., Schnabel, C., Synal, H.-A., Suter, M., 2004.

 Analysis of 36Cl in atmospheric samples from Seville (Spain) by AMS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., Proceedings of the Ninth International Conference on Accelerator Mass Spectrometry 223–224, 501–506.

 https://doi.org/10.1016/j.nimb.2004.04.094
 - Sasa, K., Ochiai, Y., Tosaki, Y., Matsunaka, T., Takahashi, T., Matsumura, M., Sueki, K., 2022. Chlorine-36 deposition at Tsukuba, Japan, after the Fukushima Daiichi Nuclear Power Plant accident. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 532, 73–77. https://doi.org/10.1016/j.nimb.2022.10.003
 - Scheffel, C., Blinov, A., Massonet, S., Sachsenhauser, H., Stan-Sion, C., Beer, J., Synal, H.A., Kubik, P.W., Kaba, M., Nolte, E., 1999. 36Cl in modern atmospheric precipitation. Geophys. Res. Lett. 26, 1401–1404. https://doi.org/10.1029/1999GL900249
 - Sheppard, S.C., Johnson, L.H., Goodwin, B.W., Tait, J.C., Wuschke, D.M., Davison, C.C., 1996. Chlorine-36 in nuclear waste disposal—1. Assessment results for used fuel with comparison to 129I and 14C. Waste Manag. 16, 607–614. https://doi.org/10.1016/S0956-053X(97)00001-9
- Sourabie, D.-G., Hebert, D., Benedetti, L., Vitorge, E., Lourino-Cabana, B., Guillou, V., Maro, D., 2023.
 First quantitative constraints on chlorine 36 dry deposition velocities on grassland:
 Comparing measurements and modelling results. J. Environ. Radioact. 268–269, 107264.

500 https://doi.org/10.1016/j.jenvrad.2023.107264

501	Stone, J.O., Allan, G.L., Fifield, L.K., Cresswell, R.G., 1996. Cosmogenic chlorine-36 from calcium
502	spallation. Geochim. Cosmochim. Acta 60, 679–692. https://doi.org/10.1016/0016-
503	7037(95)00429-7
504	Tosaki, Y., Tase, N., Sasa, K., Takahashi, T., Nagashima, Y., 2012. Measurement of the 36Cl deposition
505	flux in central Japan: natural background levels and seasonal variability. J. Environ. Radioact.
506	106, 73–80. https://doi.org/10.1016/j.jenvrad.2011.11.010
507	White, P.J., Broadley, M.R., 2001. Chloride in Soils and its Uptake and Movement within the Plant: A
508	Review. Ann. Bot. 88, 967–988. https://doi.org/10.1006/anbo.2001.1540
509	
F40	
510	