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Rigorous Floating-Point to Fixed-Point Quantization
of Deep Neural Networks on STM32 Micro-controllers

Dorra Ben Khalifa1 and Matthieu Martel2,3

Abstract— Embedding artificial intelligence onto low-
power devices is a challenging task that has been partially
overcome by recent advances in machine learning and
hardware design. Currently, deep neural networks can be
deployed on embedded targets to perform various tasks
such as speech recognition, object detection or human
activity recognition. However, it is still possible to optimize
deep neural networks on embedded devices. These opti-
mizations mainly concern energy consumption, memory
and real-time constraints, but also easier deployment at
the edge. In addition, there is still a need for a better
understanding of what can be achieved for different use
cases. This work focuses on the quantization and deploy-
ment of deep neural networks on low-power 32-bit micro-
controllers. In this article, the quantization method used is
based on solving an integer optimization problem derived
from the neural network model and concerning the accu-
racy of the computations and results at each point of the
network. We evaluate the performance of our quantization
method on a collection of neural networks measuring the
analysis time and time-to-solution improvement between
the floating- and fixed-point networks, considering a typical
embedded platform employing a STM32 Nucleo-144 micro-
controller.

Index Terms— Embedded systems; artificial intelligence;
constraint generation; quantization; power consumption;
micro-controllers

I. INTRODUCTION

In recent years, Deep Neural Networks (DNN) have
demonstrated their ability to solve challenging prob-
lems in many fields including audio recognition, image
classification, or human activity monitoring [1]. One of
the well-known disadvantages of DNNs is that they are
time, memory and energy intensive, as the number of
operations and parameters increases with the complexity
of the model architecture.

Due to their low power consumption and small size,
embedded systems have also been widely used in auto-
matic controls, wearable devices, home appliances and
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many others. However, mapping the resulting DNNs
onto fast and compact embedded systems remains a
challenging problem that seriously hinders the applica-
tion and development of neural network technology in
embedded platforms [2]. A further difficulty lies in the
fact that these DNNs are usually trained on a desktop
computer with high computing power, before being
ported to the target architecture, which has low comput-
ing power. It is then necessary to perform this arithmetic
conversion without degrading the performance of the
network. Quantization is a technique that significantly
reduces the memory footprint. It involves reducing
the number of bits used to code each model weight,
so that the total memory footprint is reduced by the
same factor. Quantization also makes it possible to use
fixed-point rather than floating-point coding [3]. Several
advantages are possible if operations are carried out
using integer rather than floating-point data types. An
important advantage is that integer operations require far
fewer computations on most processor cores, including
micro-controllers especially in cases where there is no
Floating-Point Unit (FPU) available, so floating-point
instructions have to be emulated in software, resulting
in a significant overhead.

In this article, we present a method to synthesize
fixed-point code from the floating-point description of
a DNN. Our approach consists of generating a system
of constraints describing the propagation of the fixed-
point arithmetic errors throughout a DNN and of finding
an optimal solution. The constraints involve only integer
quantities and can be efficiently solved by a Satisfiability
Modulo Theories (SMT) optimizing solver (we use
Z3 in practice [4].) A special constraint specifies the
error threshold tolerated on the outputs. As a result,
we obtain the minimal fixed-point formats with regard
to our cost function, which guarantee that the error
threshold is respected. Our technique is implemented in
a tool, Popinns. which takes as input a Tensorflow
2.0 model and generates the C code of this model in
fixed-point arithmetic. We evaluate Popinns on several
neural networks composed of different layers and with
thousands of parameters. Since our aim is to integrate
neural networks into low-power devices, in this article



we evaluate our neural networks synthesized on low-
power 32-bit micro-controllers. The results show that
our fixed-point neural networks consume less time and
energy on an ARM micro-controller than their original
floating-point version. The results of the mean relative
errors measured during evaluations of the fixed-point
versus floating-point versions of the model are also
presented.

The rest of this article is organized as follows. Section
II discusses the related work. Section III presents an
overview of our fixed-point synthesis tool for DNNs. In
section IV, we review the results obtained by executing
DNNs on a STM32 micro-controller board. Section V
concludes this work and discusses future perspectives.

II. RELATED WORK

As there is a large body of work on efficient neu-
ral network inference, we focus here on a representa-
tive selection of the techniques closest to our method,
which convert neural networks from floating-point to
fixed-point arithmetic while guaranteeing a certain error
threshold on the resulting DNN. We also omit work on
fixed-point code generation for numerical programs.

The work proposed in [5] consists on tuning the
precision of an already trained neural network, assumed
to behave correctly at some precision, in such a way
that, after tuning, the network behaves almost like the
original one while performing its computations in lower
precision. Based on the formal modeling of the propaga-
tion of rounding errors, a set of linear constraints among
integers is generated which can be solved by linear
programming. However, the prototype implemented is
limited to floating-point arithmetic, and no fixed-point
solution has been proposed to run a DNN.

The work in [6] presents a semi-automated framework
to bound and interpret the impact of rounding errors
due to the precision choice for inference in generic
DNNs. The framework can receive any TensorFlow/K-
eras model in the front-end and computes and then prop-
agates rounding errors through the computations for the
back-end by affine and interval arithmetic. However, this
work is limited to floating-point precision, whereas our
tool goes further by converting floating-point formats
to fixed-point ones and targeting embedded architec-
tures such as STM32 micro-controllers. Ferro et al. [7]
proposed a floating-point auto-tuning tool on different
kinds of neural networks. Their tuning approach is based
on a stochastic arithmetic in order to obtain the lowest
precision for each of its parameters. However, this work
do not propose a conversion from floating-point to fixed-
point neural networks.

Recently, the quantization method presented in the
recent Aster [8] tool assigns mixed fixed-point precision
to the neural networks that solve regression tasks, while
guaranteeing a provided error bound. Aster optimizes
the number of bits needed to implement a network and
generates more efficient fixed-point code for custom
hardware such as FPGAs. However, the tool focuses
only on neural network controllers that are typically
regression models. Another solution to synthesize fixed-
point code based on constraint generation is described
in [9]. The proposed tool generates a system of con-
straints with integer variables that can be solved by an
SMT solver. Consequently, the solution to this system
give the minimal number of bits required for each neuron
and each synaptic weight. Unlike our tool which handle
several type of neural network layers, this approach is
limited to fully connected layers.

The work presented in [10] studied the effect of
limited precision data representation and computation
on neural network training. their results show that sub-
stituting floating-point units with fixed-point arithmetic
circuits comes with significant gains in the energy effi-
ciency and computational throughput, while potentially
risking performance of the neural network. Shiftry [11]
is a compiler from high-level floating-point ML models
to fixed-point C programs with 8-bit and 16-bit integers,
with lower memory requirements. It uses a data-driven
float-to-fixed procedure and a RAM management mech-
anism.

III. NEURAL NETWORK QUANTIZATION METHOD
BASED CONSTRAINT GENERATION

In this section, we give an overview of the technique
implemented in our tool, Popinns, and how it proceeds
to synthesize the fixed-point program corresponding to
a given neural network.
Popinns takes as entry a Tensorflow model1

and translates it into its internal representation. Cur-
rently, the layers accepted are dense, conv2d,
max pooling2d, up sampling2d and flatten.
The ReLU activation function is also handled by our
tool. For example, the code below defines a model made
of a convolutional layer followed by a dense layer with
ReLU (the flatten layer translates the matrix resulting
from the convolution into a vector.) This model takes
as inputs images of size height × width= 16× 16
and classify them in different classes (numclass= 6).
As indicated further in Table I, this model has 404
parameters.

1https://www.tensorflow.org/



height = 16 ; width = 16 ;
num_classes = 6
input_shape = (height, width, 1)
model = keras.Sequential(

[
keras.Input(shape=input_shape),
layers.Conv2D(1, kernel_size=(3, 3)),
layers.Flatten(),
layers.Dense(num_classes,

activation="relu")
]

)

Once the model is trained, the following command
is all that is needed to generate the code in fixed-point
arithmetic.

threshold = 8
popinns(model,1,height,width,imgs,threshold)

In the sequence above imgs is an array containing
several images of size height×width. It corresponds
typically to a subset of the training set and is used
to perform the dynamic range analysis. This dynamic
analysis consists of running the DNN with a set of input
data and taking, for each output, the join of the values
obtained at each run. This gives the most significant bits
of the values arising at each point of the model (this
step is crucial to to generate the system of constraints
described in the next paragraph)

Finally, threshold denotes the accuracy required
for the fixed-point model which is set by the user. In
our example, an accuracy of 2−8 is required, which
means that the errors between the outputs of the original
model and those of the fixed-point code synthesized by
Popinns must be less than 2−8.

Our key approach is based on a formal semantics
describing the propagation of the errors through the
computations performed by the DNN [12]. From these
semantics, we deduce a system of constraints made of
inequalities between linear expressions among integer
variables and constants. They are not linear because they
also contain implications to encode the min and max
operations. The unknowns are the fixed-point formats
of the numbers arising in the computations and a cost
function is used to indicate to the underlying optimizing
solver (we use the Z3 SMT solver [4]) to find the
minimal sizes for the fractional parts of the fixed-point
numbers, while ensuring that the accuracy threshold is
respected. This system of constraints is described in
[12].

Once the constraint system has been solved (in a few
seconds in our experiments), Popinns uses the fixed-
point formats found by the solver to synthesize a fixed-
point C code relying on the Fixmath library2 for the

2https://savannah.nongnu.org/projects/fixmath/

fixed-point operations.
A fixed-point number is represented by a k-bit signed

integer X , combined with a scale factor f ∈ Z . Then
X represents the real value x defined by

x = X · 2−f . (1)

We denote Qi,f the format of a given fixed-point
number represented using a k-bit integer associated to
a scaling factor f , where k = i+ f . In Popinns, the
formats Qi,f of the fixed-point numbers and variables
are determined thanks to the range analysis which yields
the sizes i of the integer part and thanks to the solution
to the system of constraints which gives the sizes f of
the fractional parts.

[...]
// -- convolution
x[1][0][0][0] = fx_addx(fx_addx(fx_addx(

fx_addx(fx_addx(fx_addx(fx_addx(fx_addx(
fx_addx(0,fx_mulx(147580,x
[0][0][0][0],18)),fx_mulx(124002,x
[0][0][0][1],18)),fx_mulx(-147646,x
[0][0][0][2],18)),fx_mulx(98488,x
[0][0][1][0],18)),fx_mulx(-76541,x
[0][0][1][1],18)),fx_mulx(-33375,x
[0][0][1][2],18)),fx_mulx(-10303,x
[0][0][2][0],18)),fx_mulx(-104803,x
[0][0][2][1],18)),fx_mulx(-63949,x
[0][0][2][2],18)) ;

// -- conversion Q13,18 -> Q18,13
x[1][0][0][0] = fx_xtox(x[1][0][0][0],18,13);
[...]
// -- FC Layer
tmp = 0;
for (int j=0;j<49;j++) {
tmp = fx_addx(tmp,fx_mulx(W_3[0*49+j], x

[3][0][j][0],13));};
// fx_k_d_i=13 f_k_i=15 fy_k_d_i=8
x[4][0][0][0] = RELU(fx_xtox(tmp,15,8));

[...]

An excerpt from this code is given hereafter for
our example. The first statements are for the convo-
lution. The values 147580, 124002, . . . correspond to
the coefficients of the convolutional kernel translated
in the adequate fixed-point formats. The last statements
correspond to the fully connected layer and ReLU. The
comment in the for loop indicate that the inputs x,
computing precision and output y of the first neuron of
the layer respectively are Q18,13, Q16,15 and Q23,8 (for
the sake of conciseness, we have discarded these com-
ments for the convolutional layer but they are present in
Popinns’s output).

Evaluating the floating-point and fixed-point version
of our example model, for a particular yet representative
input, yields the following results:

yfloat =
(

−0.100635,−0.069120,−0.037741,
−0.109075,−0.039620, 0.071354

)



and

yfix =
(

−0.101562,−0.070312,−0.031250,
−0.117188,−0.023438, 0.062500

)
In particular, we can observe that the dominant class is
clearly preserved.

IV. EXPERIMENTAL EVALUATION

Since our goal is to execute the DNNs synthesized by
Popinns on embedded architectures, we present in this
section the results obtained in terms of execution time,
energy consumption and average relative error between
the fixed-point version generated by our tool and the
original floating-point version.

A. Experimental Setup

The device evaluation for our benchmarks is done
using a 32-bit Arm® Cortex®-M3 CPU (120 MHz max)
with 1 MByte of flash program memory and 128Kbyte
of RAM based STM32F2072G micro-controller3. We
used Miosix4, an operating system kernel designed to
run on 32bit micro-controllers. As the Cortex®-M3
ARM core lacks the support for hardware floating-point,
to compile all the benchmarks we have used the soft-
ware floating-point provided by the compiler when the
-msoft-float command-line switch is passed. With
the switch enabled, the compiler will not generate any
Floating-point Unit (FPU) instructions, and appropriate
function calls to emulate floating-point computation are
generated by passing floating-point arguments in integer
registers.

The time measurements were taken by querying the
high-resolution timer provided by the Miosix API, im-
plemented by exploiting one of the micro-controller’s
internal timers. Concerning the Popinns setup, we
evaluate 10 neural networks with different error thresh-
olds: 6, 8, 10 and 12 bits, given by the user. This allows
us to determine the threshold that gives the smallest
relative error between the floating-point and fixed-point
versions of the neural network. For experiments mea-
suring execution time and energy consumption, we have
chosen a single error threshold, which is considered the
best requirement for obtaining the lowest relative error.
For experiments measuring execution time and energy
consumption, we have chosen a single error threshold,
which is considered the best requirement and gives the
lowest relative error.

For power consumption measurement, we employed
the X-NUCLEO-LPM01A expansion board which is a
1.8 V to 3.3 V programmable power supply source with

3https://www.st.com
4https://miosix.org/

Fig. 1: Connecting the power shield to the target board
using basic connectors.

NN #P # Cl Size
Input CV MP FL FC RL

1 122 6 196 2 1 1 1 2
2 182 8 100 1 1 2 2 2
3 404 6 256 1 - 1 1 -
4 505 5 100 - - 1 1 -
5 600 4 144 - - 2 2 -
6 620 10 256 1 - 1 1 1
7 798 4 256 1 - 1 1 1
8 1020 10 144 1 - 1 1 2
9 1318 12 100 - - 3 3 -
10 1586 8 256 1 - 1 1 1

TABLE I: Description of the neural networks used
in our experiments. NN is the reference of the net-
work, #P indicates its number of parameters, #Cl the
number of recognized classes, CV, MP, FL, FC and
RL respectively indicate the number of convolutional,
maxpool, flatten, fully connected and ReLU layers of
the networks.

advanced power consumption measurement capability. It
performs consumption averaging (static measurement up
to 200 mA) as well as real-time analysis (dynamic mea-
surement up to 50 mA with 100 kHz bandwidth). Figure
1 depicts how to power the X-NUCLEO-LPM01A via
its micro-USB port and how to use wires to connect it
to the target STM32 Nucleo-144 board.

B. Experimental Results
In our experiments we used 10 different neural net-

works as shown in Table I. These networks are com-
posed of a mix of the layers and they have about 100
parameters (case of the smallest network, NN1) and up
to 1600 parameters (case of the largest network, NN10).
Table II focuses on the mean relative errors computed
by comparing the outputs of the fixed-point codes with
the results of the original floating-point codes. These
errors were computed for several thresholds (6, 8,10
and 12 bits) for 6 of our networks, NN1 to NN6. The



NN Thresh=6 Thresh=8 Thresh=10 Thresh=12

1 0.05 0.018 0.022 0.003
2 0.03 0.011 0.014 0.0086
3 0.08 0.021 0.057 0.021
4 0.038 0.044 0.031 0.020
5 0.05 0.021 0.051 0.035
6 0.068 0.011 0.03 0.0085

TABLE II: Mean relative errors measured on evaluations
of the fixed-point versions of the models compared to
their floating-point versions, for models NN1 to NN6
described in Table I.

remaining networks, NN7 to NN10, could not be run
on the STM32 board due to the small amount of flash
memory available in this micro-dcontroller, which is not
sufficient for the sizes of the remaining neural networks.
For the majority of the benchmarks, our tool is able to
constrain the relative error below 0.1%. These results
confirm that the relative error measurement depends on
the threshold requested by the user and the range of
variables computed after a certain number of program
executions.

Figure 2 depicts the measurement of execution time
and power consumption of the floating-point and fixed-
point synthesized neural networks tested on the STM32
Nucleo-144 board. We recall that energy measurements
are performed using the X-NUCLEO-LPM01A STM32
power shield.

We observe in the top hand side of Figure 2, that
the fixed-point neural networks generated are 2× to 4×
faster than the floating-point networks as for NN1 and
NN2 respectively. In addition, the fixed-point versions
of NN3 to NN6 manage to run on the board in less
than 1 second, unlike their floating-point versions, which
consume a lot of memory on the board and were
therefore unable to run. These results validate the main
objective of this work, which is to successfully run
optimal versions of DNNs on low-resource architec-
tures, especially since in terms of performance, their
behaviors is identical to the original more resource-
intensive version. The bottom hand side of Figure 2
shows that the fixed-point neural networks generated
by our method consume less energy than their original
floating-point versions. For example, for the NN2, the
fixed-point model consumes only 0.05 µJ compared
with its floating-point version, which consumes 0.2µJ .
Our biggest neural network NN6 with 620 parameters
consumes 0.05µJ in its fixed-point version.
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Fig. 2: Measurement of execution time in seconds (top)
and power consumption in µJ (bottom) of the floating-
point and fixed-point synthesized neural networks tested
on the STM32 Nucleo-144 board.

V. CONCLUSION AND FUTURE WORK

In this article, we focused on the quantization and
deployment of deep neural networks on a low-power
STM32 Nucleo-144 micro-controller. Our quantization
technique is based on formal semantics describing the
propagation of round-off errors through the network. As
a result, we can minimize the size of fixed-point formats
and guarantee that an error threshold on the results is
satisfied. We have also shown that the fixed-point codes
generated are less time- and energy-intensive than their
original floating-point models.

In future work, we aim at adding more kinds of
layers to Popinns and optimize the execution time of
the code generated. Moreover, we aim at synthesizing
VHDL code and implement directly the neural networks
on FPGA or ASIC circuits. Another perspective is to



compare Popinns to other tools enabling to translate
floating-point DNNs into fixed-point while providing
formal bounds on the errors introduced by the transla-
tion. Finally, we aim at mixing quantization techniques,
with pruning techniques [13], [14], which remove the
less useful weights of DNNs in order to reduce even
more the resources needed for their execution.
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