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A B S T R A C T   

Tenascin-C (TNC) is a matricellular and multimodular glycoprotein highly expressed under pathological con-
ditions, especially in cancer and chronic inflammatory diseases. Since a long time TNC is considered as a 
promising target for diagnostic and therapeutic approaches in anti-cancer treatments and was already exten-
sively targeted in clinical trials on cancer patients. This review provides an overview of the current most 
advanced strategies used for TNC detection and anti-TNC theranostic approaches including some advanced 
clinical strategies. We also discuss novel treatment protocols, where targeting immune modulating functions of 
TNC could be center stage.  

Abbreviations: ADA, anti-drug antibodies; ADCC, antibody-dependent cell mediated cytotoxicity; ADC, antibody-drug-conjugate; AgNPs, metallic silver nano-
particles; ApoE, apolipoprotein E; 211At, astatine-211; AML, acute myeloid leukemia; BALB, bagg albino; CAF, carcinoma associated fibroblasts; CAIA, collagen 
antibody induced arthritis; CAR-T, chimeric antigen receptor-T cell; CCR, C-chemokine receptor; CCL21, chemokine ligand 21; CD, cluster differentiation; CDR, 
complementarity-determining regions; ch, chimeric; CPTD, camptothecin prodrug; CR, complete response; Cri, incomplete count recovery; 64Cu, copper-64; CXCL, 
C-X-C motif chemokine ligand DAMP, danger associated molecular pattern; DNA, deoxyribonucleic acid; DOTA, dodecane tetraacetic acid; DOX, doxorubicin; ECM, 
extracellular matrix; EDA, extra domain A; EGFL, epidermal growth factor-like repeats; EGFR, epidermal growth factor receptor; ELISA, enzyme-linked immuno-
sorbent assay; EMT, epithelial mesenchymal transition; 18F, fluorodeoxyglucose; Fab, fragment antigen-binding; FAM, fluorescein; FBG, fibrinogen like globular 
domain; Fc, fragment cristallin; FITC, fluorescein isothiocyanate; FN, fibronectin; FNIII, fibronectin type III repeat; g, gram; 68Ga, gallium-68; GBM, glioblastoma; 
HAMA, human-anti-mouse antibody; HCAb, heavy-chain–only antibody; HER2, human epidermal growth factor receptor 2; HL, Hodgkin’s lymphoma; HLA, human 
leucocyte antigen; HLE-B3, human lens epithelial cells; HNSCC, head and neck squamous cell carcinoma; HSCT, hematopoietic stem cell transplantation; hTNC, 
human TNC; HUVEC, human umbilical vein endothelial cells; IC50, inhibitory concentration 50; ID, injected dose; IF, immunofluorescence; IgG, immunoglobulin G; 
IHC, immunohistochemistry; 131I, iodine-131; IL, interleukin; IU, international unit; Kd, equilibrium dissociation constant; kDa, kilodalton; KPS, Karnofsky per-
formance status; KRAS, Kirsten rat sarcoma viral oncogene; LNA, locked nucleic acid; 177Lu, lutetium-177; mAb, monoclonal antibody; mg, milligram; ml, milliliter; 
ng, nanogram; MAREMO, matrix regulating motif; MBS, MAREMO binding site; MFR, magnetic fluorescent radioisotope; mRNA, messenger RNA; miRNA, microRNA; 
MMTV-NeuNT, mouse mammary tumor virus-NeuNT; MR, magnetic resonance; MTD, maximum tolerated dose; Nb, nanobody; NB, nanobubbles; NHL, non-Hodgkin 
lymphoma; NK, natural killer cell; nM, nanomolar; 4NQO, 4-Nitroquinoline 1-oxide; NRP-1, neuropilin-1; NP, nanoparticle; NSLC, non-small lung carcinomas; NW, 
nanoworm; OS, overall survival; OSCC, oral squamous cell carcinoma; PAGRIT, pretargeted antibody-guided radioimmunotherapy; PC-3, prostate carcinoma cells; 
PDAC, pancreatic ductal adenocarcinoma; PD-1, programmed cell death protein -1; PD-L1, programmed death-ligand 1; PET, positron emission tomography; Poly- 
ICLC, polyinosinic-polycytidylic acid; PR, partial response; PTX, paclitaxel; RA, rheumatoid arthritis; RGD, Arginyl glycyl aspartic acid; Rip1-Tag2, rat insulin gene 
promoter1-Tantigen 2; RNA, ribonucleic acid; scFv, single-chain fragment; SCRC, surgically created resection cavity; SD, stable disease; SELEX, systemic evolution of 
ligands by exponential enrichment; SIP, small immunoprotein; siRNA, short interfering RNA; SLE, systemic lupus erythematosus; SSL, nanoliposome; STAT, signal 
transducer and activator of transcription; TA, tenascin assembly; TGF, tumor growth factor; TIL, tumor infiltrating leukocyte; TLR4, toll-like receptor 4; t-Lyp-1, 
truncated Lyp-1; TME, tumor microenvironment; TNC, tenascin-C; TNCKO, TNC knock-out; TNF∝, tumor necrosis factor ∝; VEGF, vascular endothelial growth factor; 
VHH, variable heavy domain of heavy chain; 90Y, yttrium -90. 
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Introduction 

To date we still lack effective means for an early detection of some 
cancers with an extraordinary short survival and no cure. Also, for less 
malignant cancers, if detected sooner, anti-cancer treatment could start 
earlier thus enhancing the survival chances of the patient. The extra-
cellular matrix (ECM) comprised of several molecules represents a major 
part of the tumor microenvironment (TME). The ECM is providing not 
only mechanical support but also is regulating cell behaviour and, often 
is a major obstacle in cancer therapy generating physical or biochemical 
barriers [1–3]. 

Based on the high abundance, some ECM molecules are good can-
didates for cancer diagnosis and therapy which applies to tenascin-C 
(TNC) that is highly expressed in most solid and hematological can-
cers forming stromal niches ([4–6], Fig. 1A-D). Human TNC (hTNC) is 
composed of an oligomerization TNC assembly (TA) domain, 14 ½ 
EGF-like repeats (EGFL), up to 17 fibronectin type III repeats (FNIII) and 
a C-terminal fibrinogen like globular domain (FBG) (Fig. 2A). Nine 
alternatively spliced FNIII domains (A1–A4, B, AD2, AD1, C, and D) can 
be inserted between the 5th and 6th FNIII domains in the human protein 
[7,8] (Fig. 2A). The insertion of these additional FNIII domains increases 
the size of the TNC protein giving rise to several TNC-long isoforms in 
comparison to a TNC-short isoform expressing only the constant FNIII 
domains 1–8. In contrast to normal tissue where TNC seems mostly 
composed of the constant FNIII domains, in tumors several large iso-
forms, including one or more of the alternatively spliced FNIII domains, 
are expressed (reviewed in [9–12]. 

Whereas TNC is abundantly expressed during embryonic develop-
ment, in adult tissues TNC expression is largely restricted to a few sites 
(reviewed in [29]). Here, TNC might have specific so far poorly under-
stood functions likely providing physical and immunological barriers. 
TNC gets induced upon tissue damage and is promoting repair by acting 
as a danger associated molecular pattern (DAMP) molecule. However, 

when TNC expression is not turned off timely or is induced out of control 
it promotes inflammatory pathologies such as rheumatoid arthritis (RA), 
myocarditis, chronic kidney disease and Systemic Lupus Erythematosus 
(SLE) in addition to cancer [29–34]. TNC can promote cancer by 
numerous mechanisms that have been reviewed elsewhere suggesting 
that TNC triggers survival, proliferation, migration, invasion, angio-
genesis, metastasis and immune suppression promoting the immune 
exclusion phenotype (reviewed in [11,15,29]), (Fig. 1B-D). TNC can also 
form different proteoforms through proteolytic cleavage and 
post-translational modifications (e.g. glycosylation, citrullination), 
however little is known how these modifications impact the TNC func-
tions. The average molar abundance of TNC monomers in the tumor 
proteome is more than two orders of magnitude higher than the level of 
human epidermal growth factor receptor 2 (HER2) which has been 
recognized as a valid target for Herceptin-based therapies [35,36]. Thus, 
high TNC levels and in particular expression of these additional FNIII 
domains have been recognized as excellent target and/or marker for 
tumor diagnosis and zip code for therapy [37] over 30 years ago 
(reviewed in [38]). Indeed, extensive research has delivered over hun-
dreds of TNC-specific tools, some already examined in early-stage clin-
ical trials (reviewed in [39,40]). Here, we will provide a historical and 
critical overview about the most important tools that target TNC as 
biomarker, for in situ tumor imaging and as zip code for the delivery of 
cytotoxic or immune stimulating agents (Fig. 2B). We will also describe 
recent discoveries and, finally will provide an outlook on how we could 
apply our constantly increasing knowledge and tools for a future tailored 
anti-cancer therapy boosting anti-tumor immunity. 

Full length monoclonal antibodies against TNC 

Some polyclonal antibodies raised against full length TNC have the 
advantage to gain insight into the many isoforms of TNC expressed in 
tissues [29]. However, the just available technology of monoclonal 
antibody production largely promoted the discovery of the structure and 

Fig. 1. (A) TNC expression in paraffin embedded HNSCC tissue detected in consecutive sections with the rabbit polyclonal antibody 19,011 and nanobody Nb3 as 
indicated. Scale bar 100 μm. Reproduced with permission [13], (B) Expression of TNC (brown, upper image) in a human breast cancer. TNC is expressed in the 
stroma surrounding tumor cell nests with abundant CD8+ T cells (lower image). Scale bar, 50 μm. Reproduced with permission [14], (C) Expression of TNC (green, 
MTn12) and laminin (white) organized inside the stroma encapsulating the tumor nests in a murine 4NQO induced tongue oral squamous cell carcinoma and 
entrapping dendritic cells (CD11c, red). Scale bar, 50 μm. (D) Expression of TNC (green, MTn12) organized inside the stroma encapsulating the tumor nests in a 
murine MMTV-NeuNT mammary gland tumor entrapping CD8+ T cells (red). (C, D) Reproduced with permission [15]. 
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function relationship of TNC (reviewed by [41]). Meanwhile, a vast 
number of monoclonal antibodies (mAbs) has been generated to deter-
mine TNC expression in tumor tissues by several technologies (e.g. 
ELISA, tissue staining by immunofluorescence (IF) or immunohisto-
chemistry (IHC), immunoblotting) and by in situ tumor imaging. 

Antibodies were raised in mice against purified or recombinant full 
length TNC or specific recombinant TNC domain molecules. Many of 
these mAbs can also be used as carriers to deliver tumoricidal agents 
such as toxins, cytotoxic or immune modulating molecules and radio-
isotopes in a so-called Antibody-Drug-Conjugate (ADC) format 

Fig. 2. Overview of TNC targeting and applications in cancer diagnosis and therapy 
(A) The domain structure of TNC is schematically depicted as TA, TNC assembly domain, EGFL, EGF like domains, FNII domains (constant and extra) and FBG, 
fibrinogen like globular domain. In this non-exhaustive summary of TNC binders the respective binding domain in TNC is marked with a black line. Binders with not 
further identified sequence in TNC are not shown. Different classes of TNC binding molecules are assigned by a color code for immune molecules: polyclonal antibody 
(light grey), monoclonal antibodies (light blue), Fab (dark blue), scFv (dark green), SIP (light green) and nanobodies (purple) and, for small molecules: peptides (red), 
aptamers (brown) and TNC fusion molecules (black). Also, the ATN-RNA reducing TNC expression is indicated. Green and blue background shading is marking TNC 
binders that have been used in clinical applications (case reports, clinical trials). References can be found in Table 1 and in the text. References for antibodies not 
present in Table 1 and 2, MAB1911, 9F8 [16], DB7 [17], EPR4219 (ABCAM), 4F8 (Merck Millipore), TN1 [18], TN4 [18], TN5 [18], TN11 [19], TN14 [20], D11 
[21], EB2 [22], BC3 [23] and BC28.13 [24], F16 mutant* [21], F16-MMAE (monomethyl auristatin E) [25], F16-PNU159682 [26], 125I-ch81C6 [27], 177Lu-ch81C6 
[28]. (B) Detection of high TNC expression in malignant tumors can be exploited as biomarker (ELISA, tissue staining), for non-invasive tumor imaging (PET/CT, 
MRI) and as zip code for therapeutic delivery of death inducing radionuclides, toxic agents or immune stimulatory cytokines into the tumor. (C) Schematic rep-
resentation of different immune molecules targeting TNC and indication of the molecular weight (kDa). 
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(reviewed in [39,40,42,43]). The two Tables and Fig. 2A summarize the 
most promising molecular tools specific for TNC where some prominent 
examples are described below. 

In the early days of TNC research the TNC-specific antibodies BC2, 
BC4 and 81C6 were generated, and then extensively investigated as 
radionuclides for a “pretargeted antibody-guided radioimmunotherapy” 
(PAGRIT) approach. These studies showed promising results in terms of 
good delivery and tumor uptake in patients with a variety of cancers 
detailed in Table 1 [44–49]. 

Another example is 90Y-“BC4”, recognizing the TNC EGFL repeats, 
that was well taken up and enriched in the tumor without any diffusion 
into the adjacent normal brain tissue. Whereas 90Y-BC4 did not show 
any clinical response on its own [48,99], when administered together 
with mitoxantrone (a cytostatic topoisomerase inhibitor blocking tumor 
cell division) to 26 patients with recurrent GBM, an increased median 
survival from 20 to 22 months was observed [60,61]. BC4 was also used 
for a three-step in situ imaging employing the avidin/biotin system that 
due to strong immunogenicity towards avidin and streptavidin led to 
discontinuation [62], (Table 1). 

Another mAb “81C6”, recognizing the TNC FNIII-C and TNC FNIII-D 
domains, was extensively used for radiotherapy in human cancer pa-
tients (recently reviewed in [39,40]). One approach comprised the in-
jection of the 131I-radiolabeled 81C6 (131I-81C6) into the GBM resection 
area, however, the labeled antibody did not reach the required optimal 
effective dose because of toxic effects on the normal brain tissue (such as 
focal radiation necrosis and brain edema, hematological and neurolog-
ical toxicity) and therefore other approaches with different radionu-
clides and humanized chimeric 81C6 antibody conjugates were 
established [72,73,100]. Also, different radioisotopes were tested as the 
radioactive dose emitted by each radioisotope as well as its decay are 
different. 81C6 was originally coupled to iodine-131 (routinely used as 
immunotracer), however, to reduce the patient confinement period, 
low-β energy radionuclides have also been applied [28], (Table 1). In 
particular, the α-particle emitting radionuclide Astatine-211 (211At) was 
used as 211At has an excellent stability [75] and a limited cellular 
retention (due to its relatively short half-life of approximately 7.2 h) 
[101]. 211At-81C6 was injected into the surgically created resection 
cavity (SCRC) of 18 patients with recurrent GBM, causing no neuro-
logical toxicity but an increase of the median OS to 54.1 weeks 
compared to 23 weeks (placebo) and 31 weeks (carmustine) which is 
quite remarkable [75], (Table 1). 

To minimize immunogenicity, the murine Fc-sequences were 
replaced with human IgG2 Fc-sequences [102] giving rise to humanized 
chimeric 81C6 (ch81C6) that was coupled to 131I (131I-ch81C6, Neu-
radiab) and studied in NHL patients in phase I clinical trials. Only one of 
the nine patients achieved a complete response (CR), one a partial 
response (PR) and the others stable disease (SD) lasting from 2 to longer 
than 8 months which is remarkable and supporting TNC as a valid zip 
code for therapy [74]. Altogether, 81C6 has been labeled with 131I, 125I, 
177Lu (lutetium), and 211At where each radionuclide has its own prop-
erties in terms of half-life, enrichment in the tumor and tumoricidal 
effects. Although the clinical trials with different parameters are difficult 
to compare, it appears that 211At-81C6 has the strongest therapeutic 
effect. Unfortunately, none of these 81C6 associated strategies is in the 
clinical practice today (reviewed in [39,40,43]). 

Moreover, two mAbs derived by immunization of BALB/c mice 
“ST2485”, (directed against recombinant TNC FNIIIA-D), and 
“ST2146”, (directed against the TNC EGFL domains), were further 
engineered as radionuclide conjugates (Fig. 2A). In tumor mice, 125I- 
ST2146 showed the most prominent tumor accumulation (approxi-
mately 16 % of the injected dose (ID)/g of tumor) and very low levels in 
non-target tissues (blood, spleen, kidney, liver) [71], (Table 1). 

Encouraged by these promising results, Homogenize: “ST2146” was 
investigated in a phase I clinical trial to deliver 131I in patients suffering 
from several treatment refractory TNC positive tumors (NCT02602067) 
(Fig. 2A, Table 1). However, as the uptake of 131I- ST2146 

(Tenatumomab) into the tumor lesion was negligible, the clinical trial 
was discontinued. Results pointed at high inter-individual variable re-
sponses that may include the production of anti-drug antibodies (ADA) 
[103,104]. An improved version of ST2146 was subsequently generated 
by conjugation with three chelator moieties where ST2146-DOTA 
(ST8198AA1) was the best with over 50% immunoreactivity that was 
subsequently radiolabeled with 111I and applied in pre-treatment im-
aging and dosimetry giving rise to a radiolabeling efficiency of 77.0%, 
however no information about anti-tumor effects is provided [68]. 

These examples showed that full-length conventional antibodies may 
trigger immunogenicity and antibody-dependent cell mediated cyto-
toxicity (ADCC). Moreover, as most of these antibodies are of murine 
origin, they may not be suitable for repeated administration in human 
patients due to possible induction of human-anti-mouse antibodies 
(HAMA). The slow rate of tumor penetration of full-length antibodies 
[105] as well as their expensive manufacturing, are additional draw-
backs that may explain why some of these highly TNC specific mAbs did 
not proceed beyond phase I/II clinical trials. Nevertheless, these studies 
have paved the way for the development of shorter and humanized 
anti-TNC mAbs or smaller mAb fragment molecules (scFv, Fab, SIP) 
using TNC as molecular zip code for tumor delivery of radionuclides or 
cytokines (so called “immunocytokines”) (Fig. 2A-C). 

Small anti-TNC antibody molecules 

In addition to TNC specific full-length mAbs (150–160 kDa), 
composed of two heavy chains and two light chains, smaller TNC spe-
cific Fab molecules (around 50 kDa, representing one light chain and 
half of the heavy chain) and single chain variable molecules, scFv 
(around 25 kDa, representing only the two variable domains from the 
light and heavy chain) have been engineered altogether leading to many 
TNC specific smaller sized antibody molecules (reviewed in [39,43], 
Fig. 2C). As an example, the two small Fab’, Fab and scFv “4F10” 
antibody fragment molecules recognizing the TNC EGFL sequences 
were, upon radiolabeling (111I-Fab’, 111I-Fab and 111I-scFv), applied to 
rats with myocarditis which allowed to image the damaged myocardium 
24 h after injection, suggesting that scFv-4F10 may be useful for in vivo 
imaging of myocardial injuries and cancer [64,65]. 

For detection of constant domains in all TNC isoforms, the scFv 
“TN64” antibody was raised against bacterially expressed human TNC 
FNIII-1–5. This antibody reduced TGFβ2-induced signaling in cultured 
lens HLE-B3 epithelial cells [69] and impaired TNC functions in a mu-
rine collagen antibody-induced RA (CAIA) model, where disease 
symptoms at tissue and cytokine/chemokine levels were reduced by 
TN64 [70]. Whether this mAb may have anti-tumor activity has still to 
be determined (see below). 

To raise an scFv specific for FNIII-C highly expressed in many can-
cers (reviewed in [9,12]), antibody phage display technology was 
applied to retrieve “G11” (with the so far lowest dissociation constant of 
4.2 nM) [91]. The 125I-labeled G11 selectively accumulated in U87MG 
GBM tumor xenografts highly expressing the TNC FNIII-C domain. 
125I-G11SIP also detected atherosclerotic plaques in ApoE knockout 
mice and thus might also be useful for imaging of advanced athero-
sclerotic plaques [92], (Table 1). 

The scFv antibody “L7D”, recognizing TNC FNIII-D, (also highly 
expressed in many malignant tumors (reviewed in [9,12]), was again 
isolated by antibody phage display technology, and further engineered 
giving rise to “R6N” (Kd value of 41 nM to 24 nM). Both antibodies are 
cross-reactive with murine TNC which could be valuable for applica-
tions in preclinical murine tumor models [21,94]. TNC specificity in the 
IgG2a-FITC format was confirmed by IF staining of xenograft tumors 
(Fig. 2A, Table 1). R6N was also found to localize inside the tumors with 
a high tumor-to-blood ratio. Finally, the R6N/IL2 immunocytokine 
fusion was generated that caused tumor regression [94]. However, 
despite these promising results in preclinical models, to our knowledge 
no R6N-conjugates have been investigated in clinical trials yet. 
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Table 1 
Overview about TNC targeting antibodies and associated conjugates 
Antibodies, antibody fragments and associated conjugates are sorted according to recognition of TNC sequences (N to C terminus). Information about the applied assay, 
results, clinical trials and reference is provided.  

Targeting 
molecule 

Compound name Sequence 
in TNC 

Applied assay Disease context Observation Refs. 

Polyclonal antibody  

AB19011 rabbit NN ELISA Exosomes from plasma of COVID-19 
patients 

Correlation of TNC 
enrichment in exosomes 
with COVID19 severity 

[50]  

AB19011 rabbit NN Immunohistochemistry Lungs from MRSA-infected mice High TNC expression in 
airways of infected mice 

[51] 
[52] 

Monoclonal antibody, monoclonal antibody derived antibody fragments and associated conjugates  

143DB7 NN Immunohistochemistry Human aortic valve stenosis High TNC expression in 
stenotic aortic valves 

[53]  

AB213831 EGFL 
(G23- 
P625) 

ELISA COVID19 Correlation of high TNC 
expression in 
bronchoalveolar lavage 
fluid with disease severity 

[54]  

BC24 EGFL Immunohistochemistry 
Immunostaining 

Invasive breast carcinomas 
Renal cell carcinomas 
Hepatocellular carcinomas 
Pancreatic neuroendocrine tumors 

Detection of high TNC 
expression in tumors and 
metastasis 

[20] 
[55]  

BC24 EGFL Collagen gel invasion assay Human colorectal carcinoma HCT- 
8/11 cells 

Inhibition of tumor cell 
invasion 

[56]  

BC4 EGFL Immunostaining Human fibroblasts 
Human tumors (breast, brain, ovary, 
colon rectum, thyroid, prostate) 

Detection of TNC 
expression in benign and 
malignant tissues 

[57] 
[6]  

90Y-BC4 EGFL Radio immunotherapy GBM Deep penetration into brain 
adjacent tissue 
No clinical response 

[58,59]  

90Y-BC4 plus 
mitoxantrome 

EGFL Radio immunotherapy Patients with recurrent GBM Increased median survival 
(22 versus 20 months) 

[60] 
[61]  

Biotinylated BC4 EGFL PAGRIT Anaplastic astrocytoma, GBM Disease stabilization 
Strong immunogenicity 
towards avidin and 
streptavidin 

[62]  

4F10TT EGFL Immunohistochemistry 
Immunoblotting 

Human breast cancer tissue High TNC expression [63]  

111I-4FT10 (Fab) EGFL Biodistribution Acute rat myocarditis Specific binding to the 
damaged myocardium 

[64]  

111I-4FT10 (scFv) EGFL Biodistribution Acute rat myocarditis Specific binding to the 
damaged myocardium 

[65]  

ST2146 EGFL ELISA 
Immunostaining 

20 solid tumors (e.g. breast, liver, 
lung, rectum), over 60 normal 
tissues (e.g. skin, cornea, lachrymal 
glands, esophagus, uterine cervix) 

High TNC levels in cancer 
tissues 
Low/no TNC expression in 
normal tissues Detection of 
recombinant and native 
TNC 

[66]  

131I-ST2146 
Tenatumomab 

EGFL Radio immunotherapy Patients with cancer of the breast, 
HNSCC, skin, respiratory tract, 
urogenital tract, digestive system, 
pancreas, connective and soft tissue, 
lymphoma, NHL 

Heterogenous inter- 
individual responses 
Anti-Drug Antibodies 
No significant antibody 
tumor uptake 

Sigma Tau company, 
2015 
NCT02602067 Phase I 
trial terminated  

131I-ST2146 
Tenatumomab 

EGFL Immunohistochemistry Biopsies from NHL patients Tumor detection [67]  

111I-ST2146 
-DOTAMA 

EGFL ELISA 
Different chelators (NCS- 
DTPA, NCS-DOTA, NHS- 
DOTA) 

Breast cancer, colorectal carcinoma, 
lung cancer, ovary cancer, NHL 
tissue 

Stable complex 
Residual immunoreactivity 
of ST2146 -DOTAMA 

[68]  

TN64 (scFv) FNIII1–5 Cell culture assays Human lens epithelial cells Decreased migration 
Decreased proliferation 
Reduction of cellular 
plasticity 

[69]  

TN64 (scFv) FNIII1–5 Cell culture assays Patient-derived synovial fibroblasts Inhibition of migration [70]  
TN64 (scFv) FNIII1–5 In vivo RA assay CAIA mouse model Reduced TNC expression 

Reduced inflammatory 
cytokine expression 
Reduced cartilage 
destruction 

[70]  

ST2485 FNIIIA-D Immunostaining Breast cancer, colon carcinoma 
tissue 

High TNC expression in the 
tumors 

[71]  

ST2485 FNIIIA-D ELISA Recombinant TNC FNIIIA-D Binding to TNC [71]  
125I-ST2485 FNIIIA-D Biodistribution study HT29 colon carcinoma xenografts Tumor detection 

High tumor to non-tumor 
ratio 

[71] 

(continued on next page) 
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Table 1 (continued ) 

Targeting 
molecule 

Compound name Sequence 
in TNC 

Applied assay Disease context Observation Refs.  

131I-81C6 
Neuradiab 

FNIIIA-D Radio immunotherapy Patients with recurrent brain and 
central nervous system tumors 

Focal necrosis, brain 
edema, hematological and 
neurological toxicity 
Increased median patient 
survival (90.6 weeks versus 
73 weeks) 

[72] 
[73]  

131I-ch81C6 FNIIIA-D Radio immunotherapy NHL One CR, one PR, 7 SD (2 to 
over 8 months) 

[74]  

131I-81C6 plus 
Temozolomide 

FNIIIA-D Radio immunotherapy Glioma grade IV Unknown NCT00615186 Phase 
III trial terminated, 
delay in site initiation 
and funding  

131I-81C6 FNIIIA-D Radio immunotherapy Primary or metastatic anaplastic 
glioma 

Unknown NCT00002752 Phase 
I/II trial completed  

131I-81C6 FNIIIA-D Radio immunotherapy Recurrent cystic anaplastic glioma Unknown NCT00002753 Phase I 
trial completed  

131I-81C6 FNIIIA-D Radio immunotherapy Comparison bolus injection versus 
microinfusion in patients with 
glioma grade III or IV 

Unknown NCT00003478 Phase 
I/II trial completed  

131I-81C6 plus 
Carmustine or 
Irinotecan 

FNIIIA-D Radio immunotherapy Primary malignant brain tumor Unknown NCT00003484 Phase I 
trial completed  

211At-81C6 FNIIIA-D Radio immunotherapy Malignant recurrent brain tumors No-dose limiting toxicity 
Increased median OS, 54.1 
weeks versus 23 weeks 
(placebo) and 31 weeks 
(carmustine) 

[75]  

BC2 FNIIIA1- 
A4 

Immunostaining Human fibroblasts 
Cancer of the breast, brain, ovary, 
colon rectum, thyroid, prostate 

Detection of TNC 
expression in fibroblasts 
and cancer cells 
High TNC levels in the 
tumors 

[57] 
[6]  

131I-BC2 FNIIIA1- 
A4 

Radio immunotherapy Patients with recurrent GBM PR or CR in 30% of patients [76]  

F16 (scFv) FNIII-A1 Immunohistochemistry 
Immunostaining 

Biopsies from bone-marrow of AML 
patients 
Tissue from non-small lung 
carcinoma, mesothelioma 

High TNC expression [77]  

F16SIP FNIII-A1 Immunostaining Lymphoma, renal cell carcinoma, 
lung cancer, HNSCC, GBM, 
melanoma tissues 

High TNC expression [78] 
[79] 
[80] 
[81] 
[82]  

Biotinylated 
F16SIP 

FNIII-A1 Immunohistochemistry U87 MG GBM xenografts 
Human GBM tissue 

High TNC expression [80]  

125I-F16SIP FNIII-A1 Biodistribution U87MG bearing mice Enrichment in the tumor [21]  
131I-F16SIP 
Tenarad 

FNIII-A1 Radio immunotherapy Patients with recurrent refractory 
HL 

Acceptable toxicity 
PR 
Partial SD 

[83] 
[84]NCT01240720 
Phase I/II trial 
completed  

F16-IL2 
Teleukin 

FNIII-A1 ELISA 
SPR 

Serum from breast cancer patients 
with metastasis 

No human anti-fusion 
protein antibodies 
No/low immunogenic 
potential 
Favorable dose-dependent 
pharmacokinetics 

[85]  

125I-F16-IL2 FNIII-A1 Biodistribution study MDA-MB231 xenografts in nude 
Balb-c mice 

Tumor detection, tumor to 
non-tumor ratio 15:1 

[86]  

F16-IL2 plus DOX 
or PXT 

FNIII-A1 Toxicology and therapy MDA-MB231 xenografts in nude 
Balb-c mice 

Tumor growth retardation 
Involvement of NK cells 

[86]  

F16- IL2 plus DOX 
or PXT 

FNIII-A1 Safety study Cynomolgus monkeys No safety issues 
Moderate lymphocyte 
depletion 

[86]  

F16-IL2 plus DOX FNIII-A1 ELISA 
SPR 

Serum from metastatic breast cancer 
patients 

No human anti-fusion 
protein antibodies 
No/low immunogenic 
potential 
Favorable dose-dependent 
pharmacokinetics 

[85] 

(continued on next page) 
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Table 1 (continued ) 

Targeting 
molecule 

Compound name Sequence 
in TNC 

Applied assay Disease context Observation Refs.  

F16-IL2 plus DOX FNIII-A1 Toxicology and therapy Breast cancer patients with 
metastasis 

Tolerance, no 
immunogenicity 

[85] 
NCT01131364 Phase 
Ib/II trial terminated  

F16-IL2 plus low- 
dose cytarabine 

FNIII-A1 Therapy 
PET/CT imaging 

Patients with AML Detection of tumors 
Transient reduction of AML 
lesions 

[77] 
[87] 
NCT0297032 Phase I 
trial active  

124I-F16SIP FNIII-A1 PET imaging HNSCC patients Detection of tumors in all 
patients within 24 h 

[88]  

F16-IL2 plus 
temozolomide 

FNIII-A1 Biodistribution study U87MG tumor bearing mice Specific tumor uptake 
CR, tumor free for over 160 
days 
Tumor size reduction 
Prolonged survival 

[80]  

F16-IL2 plus anti- 
CD33 antibody BI 
836,858 

FNIII-A1 Pharmacokinetics Relapsed post-transplant AML 
patients 

Acceptable safety 
Activation of NK cells in 
bone marrow and 
peripheral blood eliciting 
ADCC 
OR in 20% of patients, CR 
(1/15) 

[89]  

F16-IL2 plus 
Anti-PD1 

FNIII-A1 Safety study Patients with NSCLC Unknown NCT05468294  

124I-F16SIP FNIII-A1 PET imaging HNSCC patients Tumor specific signal in all 
patients within 24 h 

[88]  

4C8MS FNIII-B Proliferation assay 
Migration assay 

TNC knockout GHOM5E cells Reduced migration and 
proliferation in absence of 
TNC 

[63]  

A12 (scFv) FNIII-C Immunohistochemistry GBM tissue High TNC expression [90]  
125I-E10 (scFv) FNIII-C Biodistribution U87MG xenografts No accumulation in the 

tumor 
[91]  

G11 (scFv) FNIII-C Immunohistochemistry Human lung tumors High TNC expression [91]  
125I- G11 (scFv) FNIII-C Biodistribution study U87MG tumor bearing mice Detection of tumors [91]  
125I- G11 (scFv) FNIII-C Ex-vivo radioimaging ApoE knockout atherosclerosis mice Detection of 

atherosclerotic plaques 
[92]  

125I- G11-IL2 (scFv) FNIII-C Biodistribution study U87MG tumor bearing mice Tumor detection [91]  
131I-G11 (SIP) FNIII-C Biodistribution study Orthotopic brain tumor, C6 glioma 

bearing rats 
Tumor detection [91]  

Human IgG1 
antibody-NIR 
fluorophore 
IRDye88CW 

FNIII-D Ex vivo imaging Colon tissue from DSS mice High TNC expression in 
chronically inflamed tissue 

[93]  

Human IgG1 
antibody 

FNIII-D Immunohistochemistry IBD patient colon tissue 
Murine DSS colon tissue 

High TNC expression in 
chronically inflamed 
tissues 

[93]  

P12 (scFv) FNIII-D Immunohistochemistry U87MG, A375 melanomas, F9 
teratocarcinoma tumor xenograft 
tissues 

High TNC expression [21]  

125I-P12 (SIP) FNIII-D Biodistribution study U87MG tumor bearing mice Tumor detection [21]  
L7D (scFv) FNIII-D Immunostaining Murine (SKRC52, U87, A431, A375) 

and human (colon 26, C51, SMA540, 
SMA497) tumor xenografts 

High TNC expression [94]  

R6N-IgG1 
(L7D derivative) 

FNIII-D Immunostaining Tumors in immunocompetent mice 
(Colon 26, C51, SMA-540 and 
SMA497), xenograft tumors 
(SKRC52, U87, A431 and A375) 

High TNC expression [94]  

R6NIgG2a FNIII-D Immunostaining SKRC52 xenograft tumor tissue High TNC expression [94]  
R6NIgG1-FITC FNIII-D Immunostaining Human ovarian, breast, uterine 

tumor tissue 
High TNC expression [94]  

mIL12-R6N FNIII-D Immunotherapy Orthotopic SKRC52 and SMA497 
syngenic tumor bearing mice 

90% tumor regression in 
20% of mice (1/5 CR) 

[94]  

NSCT-121 FBG ELISA 
Capture : 9F8 
Detection: NSCT-121 

Serum from patients with RA, 
psoriatic arthritis, ankylosing 
spondylitis, SLE, polymyalgia 
rheumatic, vasculitis 
Macrophages supernatants 
RA synovial cells supernatants 

Detection of all TNC 
isoforms 

[95]  

C3 (Fab) FBG Immunostaining 
In vivo injection 

RA patient synovial biopsies 
Rat collagen-induced arthritis model 
Cells from RA synovial membranes 
exposed to FBG 

High TNC expression 
Reduced clinical score and 
pow swelling 
Significant reduction of 
TNF release upon antibody 
treatment 

[96] 

(continued on next page) 
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So far, only a few antibodies against divers epitopes have been 
developed as immunocytokines with some being tested in clinical trials, 
including TNC (F16). In the majority of these antibody-cytokine conju-
gates, IL2 was used (reviewed in [42,106]). For targeting TNC, recom-
binant fully humanized single chain scFv antibodies “F16” and “P12”, 
recognizing TNC FNIII-A1 and FNIII-D, respectively, were engineered 
and largely improved TNC binding (two-digit nanomolar range) [21], 
(Table 1). 125I-F16 and 125I-P12 selectively accumulated in the tumors 
with rapid clearance from other organs [21]. Upon fusion to IL2 giving 
rise to the immunocytokine F16-IL2, named Teleukin selective enrich-
ment in the breast MDA-MB231 xenografted tumors was seen [86], 
(Fig. 2A, Table 1). Moreover, a case report of an AML patient treated 
with F16-IL2 revealed a remarkable transient reduction of the AML le-
sions [77]. F16-IL2 may induce an anticancer action by enhancing 
recruitment and infiltration of immune cells, in particular natural killer 
cells (NK) suggesting TNC as excellent tumor delivery address for IL2 
[19,86,107]. This effect was even further potentiated by 
co-administration of chemotherapeutic agents such as doxorubicin and 
paclitaxel, [77] (Fig. 2A, Table 1). This combination treatment induced 
apoptosis, proliferation inhibition, infiltration of NK cells and macro-
phages, and reduced tumor volume in the large majority of the intra-
cranial U87MG GBM xenografts. Also, F16–IL2 potentiated the action of 
temozolomide even further, leading to an amazing complete tumor 
eradication of the subcutaneous GBM in all five treated mice with no 
tumor recurrence over the following 160 days. Finally, the F16-IL2 
uptake was 10-times higher inside the U87MG tumors than in liver 
and kidney [80]. 

These promising results fostered a combined clinical phase I/II study 
in AML patients (frequently relapsing after allogeneic hematopoietic 
stem cell transplantation (HSCT)) with F16-IL2 together with an anti- 
CD33 antibody (BI 836858) to further activate NK cells. The 
Maximum Tolerated Dose (MTD) was not reached and adverse effects 
were all manageable, transient, and of lower range and, a stronger 
cytotoxic NK cell phenotype and potential ADCC were observed. These 
results may explain 20% of an objective response, one patient each with 
CR, incomplete count recovery (CRi), PR and, SD in the remaining 4 
patients [89]. F16-IL2 was also used in with low dose cytarabine in AML 
patients showing transient remission of AML lesions. However, an 

extensive infiltration of immune effector cells in the bone marrow may 
have caused termination of the Phase I clinical trial (NCT02957032) 
[87,108]. 

Also, other combinations of F16-Il2 have been explored in clinical 
trials such as F16-IL2 together with doxorubicin (NCT01131364) or 
paclitaxel (NCT01134250) in solid tumors comprising breast cancer, 
metastatic melanoma and non-small cell lung carcinoma (NSCLC). This 
caused an objective response and long-lasting SD [109]. A phase I study 
(NCT05468294) exploring F16-IL2 in combination with the immune 
checkpoint inhibitor anti-PD-1 antibody nivolumab in advanced NSCLC 
patients, is currently ongoing. 

As the scFv format of F16 shows some solubility and stability issues, 
the “F16” antibody was further engineered into a Small ImmunoProtein 
(SIP) or F16SIP “mini-antibody” (80 kDa) (Fig. 2C), having superior 
pharmacokinetic properties in vivo [110]. The F16SIP allowed to image 
TNC on sections from many different malignant tumors which fostered a 
clinical trial where F16SIP was used in four HNSCC patients as 
124I-labelled molecule proving tumor detection by Positron Emission 
Tomography (PET) imaging [88], (Fig. 2A, Table 1). 

Similarly, 131I-F16SIP, Tenarad was generated and administered 
intravenously to eight patients with recurrent refractory Hodgkin’s 
lymphoma (HL), in whom all conventional treatments had failed. 
Toxicity was acceptable despite the high dose and repeated adminis-
trations. At the first response assessment, (4 – 6 weeks after therapy), 
five of the eight treated patients showed SD with reduced number and/ 
or size of lesions. One patient showed SD which then improved to a PR, 
three showed clinical benefit while maintaining SD and only one patient 
showed disease progression. Thus, Tenarad is considered as a promising 
radio-conjugate that could potentially be used for radioimmunotherapy 
approaches in the future [83,84], (Fig. 2A, Table 1). 

Another promising targeting sequence in TNC is the FBG domain that 
has a unique structural epitope which is essential for binding to and 
activating TLR4 [30]. This domain is recognized by mAb DB7 [17], the 
rabbit polyclonal EPR4219 antibody (Sigma) and the Fab fragment of 
the NSCT-121 antibody to name some examples. Recently, NSCT-121 
was used to establish an ELISA where the mAb 9F8 (MAB1911, MERCK, 
Millipore, recognizing the TNC FNIII1–3 sequence) was used to capture 
all TNC isoforms and NSCT-121 to recognize bound TNC. Since all TNC 

Table 1 (continued ) 

Targeting 
molecule 

Compound name Sequence 
in TNC 

Applied assay Disease context Observation Refs.  

C3 (Fab) plus 
anti-PD-L1 

FBG In vivo injection MMTV-NeuNT tumor mice Reduced lung metastasis in 
comparison to single 
treatments 

[97] 

Nanobodies  
64Cu-NJT6 G23-P625 

(EGFL) 
Immuno-PET/CT imaging MDA-MB231and LM2-TGL 

xenograft bearing mice 
In situ tumor imaging 
In situ lung metastases 
detection 
High signal-to-noise ratio 

[98]  

Nb3, Nb4 FNIII3–5 Immunohistochemistry 
Cell culture assays 

Human OSCC tissue 
GBC liver metastasis tissue 
U87MG xenograft tissue 
KRIB osteosarcoma cells 
Human mesangial cells 
Murine DC2.4 dendritic sells 

High TNC expression 
High TNC expression 
High TNC expression 
Inhibition of cell rounding 
by TNC 
Inhibition of cell rounding 
by TNC 
Inhibition of TIL matrix 
retention by TNC/CCL21 

[13] 

Abbreviations: ADA, anti-drug antibodies; ADCC, antibody dependent cell cytotoxicity; AML, acute myeloid leukemia; ApoE knockout, apolipoprotein E-deficient 
mice; CAIA, collagen antibody-induced arthritis; CHC, chronic hepatitis C; CR, complete response; DOTA, 1,4,7,10-tetraazacyclododecane tetraacetic acid; SS, Dextran 
sulfate sodium; DOX, Doxorubicin; DTPA, diethylenetriamine pentaacetic acid; EGFL; TNC EGF like domains; FBG, TNC fibrinogen related domain; FNIII; TNC 
fibronectin type III domain; GBM, glioblastoma multiforme; HL, Hodgkin lymphoma; HNSCC, head and neck squamous cell carcinoma; IBD, inflammatory bowel 
disease; IRDye, infrared fluorescent dye; MMTV; mouse mammary tumor virus; MRSA, Methicillin-resistant Staphylococcus aureus; NCS, N-Chlorosuccinimide; NHL, 
Non Hodgkin lymphoma; NHS, N-Hydroxysuccinimide; NIR, Near-infrared fluorophore; NN, unknown; OR, objective response; OS; overall survival; PAGRIT, pre- 
targeted antibody-guided radio immunotherapy; PET/CT, positron emission tomography and computed tomography; PXT, Paclitaxel; RA, rheumatoid arthritis; PR; 
partial response; SCRC, surgically created resection cavity; SD, stable disease; SPR; surface plasmon resonance spectroscopy; SLE, systemic lupus erythematosus. 
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isoforms are recognized by this assay higher TNC levels were detected in 
sera from patients with different chronic inflammatory pathologies 
(such as RA, SLE) than with other commercial ELISA assays specific for 
the TNC FNIII-C or FNIII-D domains, thus likely better revealing the 
overall TNC levels in a given tissue [95], (Fig. 2A, Table 1).  

The monoclonal Fab antibody designated “Clone C3” is also recog-
nizing the TNC FBG domain of human and rat TNC (with a Kd of 1.2 nM) 
and was found to detect TNC in synovial biopsies of patients at different 
stages of RA development and, most importantly blocked TLR4 activa-
tion by TNC, leading to reduced expression of IL6, IL17 and TNF-α. 
Moreover, Clone C3 significantly reduced the clinical score and paw 
swelling in rats with CAIA [30,96]. These studies demonstrate that 
blocking inflammatory signals induced by the TNC/TLR4 interaction 
can prevent joint damage and RA disease progression. The same Clone 
C3 antibody has later been shown to reduce lung metastasis in the 
MMTV-NeuNT breast cancer model when applied together with 
anti-PD-L1, extending the potential of this antibody for future 
anti-cancer immunotherapies [97], (Fig. 2A, Table 1). 

Altogether, these results are highly promising confirming that TNC 
can serve as a valid zip code to direct immuno-radiotherapeutic and 
immunity activating agents inside malignant tumors with some but 
tolerable side effects. As TNC was shown to orchestrate the immune 
suppressive properties of the TME [14,97,111–114], it would be inter-
esting to know whether any of these antibodies relieves TNC-associated 
immune suppression which so far has not been addressed. Moreover, 
many more TNC specific mAbs have been generated that cannot be 
described here which also may be suitable for the delivery of toxic 
payloads into TNC-rich tissues (reviewed in [39,40,95], Fig. 2A) or for 
engineering TNC targeting CAR T cells (see below). 

Nanobodies specific for TNC 

Recombinant nanobodies (Nbs), only 12–15 kDa in size, are single- 
domain variable region antibody fragments (VHHs) that are derived 
from camelid heavy-chain–only antibodies (HCAbs) (Fig. 2C). They 
harbor remarkable characteristics such as high stability, solubility and 
specificity and low immunogenicity [115,116]. Nbs may also overcome 
some of the limitations of antibodies such as the difficulty to reach the 
epitope and to recognize the antigen in formalin fixed tumor tissues, 
routinely used in the clinical practice. A potential drawback for a clinical 
application of Nbs particularly in a radionuclide formulation is renal 
toxicity (as Nbs are largely eliminated through the kidney) which can be 
overcome by several means that have been reported elsewhere 
[117–119]. 

Two recent studies have reported the development of TNC-specific 
Nbs. Jailkhani and colleagues (2023) isolated the matrisome from 
liver metastases of two patients with colon cancer and used this material 
to immunize alpacas to generate the phage display nanobody library 
“B”. By panning against the recombinant EGFL (Gly23 – Pro625) domain 
of hTNC three Nbs (NJT3, NJT4, NJT6) were isolated that showed high 
specificity for hTNC with a binding affinity in the picomolar range 
(Fig. 2A, Table 1). These Nbs recognized TNC by western blot and by 
staining of formalin fixed tissue from MDA-MB231 and LM2 (LM2-TGL) 
xenograft tumors and also lung metastasis. Upon coupling, 64Cu-NJT6 
recognized the primary mammary gland injected tumor cells and 
importantly the lung metastasis by immuno-PET/CT scan with good 
clearance from other organs after 24 h [120]. 

Dhaouadi and colleagues (2021) used the long isoform of recombi-
nant hTNC (expressed in HEK293 cells [121]) for the immunization of a 
dromedary that generated anti-TNC-HCAbs [122]. Using a phage 
display library and panning with the same TNC molecule allowed to 
isolate two Nbs, “Nb3” (Kd of 711 nM) and “Nb4” (Kd of 537 nM) that 
bind in TNC FNIII-3–5 [13]. Nb3 and Nb4 recognized human and mu-
rine TNC by western blot, and tissue staining even in formalin fixed 
tissues (Fig. 1A, Table 1). Most importantly, Nb3 and Nb4 were shown to 

impair TNC-induced cell rounding on a fibronectin/TNC substratum 
and, to block dendritic cell adhesion on TNC in conjunction with CCL21, 
thus opening the possibility to overcome TNC functions in immune 
suppression [13], (Fig. 2A, Table 1). 

Altogether, as the small size of the TNC-Nbs allows good penetration 
of tumors also reaching the metastasis the described Nbs could be 
valuable tools for so urgently needed early PET/CT detection of 
metastasis already expressing TNC [123]. Nbs may also be excellent 
tools for generating future ADC and immunocytokines delivering toxic 
drugs and immune enhancing factors into cancer/metastasis tissues. 

Peptides binding TNC 

Peptides are another group of molecules that with a smaller size, low 
immunogenicity and easy manufacturing may have some advantages 
over antibodies. Several TNC specific peptides were selected through 
screening of peptide libraries by phage display technology. Kim and 
colleagues (2012) used a tumor-specific large isoform of TNC for 
panning and selected “Peptide # 1″ (FHKHKSPALSPVGGG) leading to 
the “FHK” peptide (FHKHKSPALSPV) that binds the large TNC isoform 
(FNIIIA1-D) recognizing TNC in tumor xenografts (U118MG and HT29) 
and tumor tissue from cancer patients by staining with a remarkably 
high affinity of 4.58 ± 1.4 µM for TNC (Fig. 2A, Table 2). In vitro, the 
selected peptide also reduced TNC-induced cell rounding and migration 
of U118MG cells and thus may have additional TNC inhibitory oppor-
tunities that have not yet been addressed in vivo [124]. 

Aiming at deep entry into the GBM tissue, Kang and colleagues (2016) 
synthesized a FHK peptide-based nanoparticle (NP) termed “Ft” where 
the FHK peptide (binding TNC) and the truncated form of Lyp-1 
(CGNKRTR) recognizing NRP-1 (neuropilin-1, a transmembrane pro-
tein highly expressed in GBM and in newly formed blood vessels), were 
coupled via a cysteine at the amino-terminal site of tLyp-1. To enhance 
stability, a poly (ethyleneglycol) - poly (lactic acid) NP was constructed, 
functionalized with the Ft peptide (Ft-NP) and paclitaxel, giving rise to 
Ft-NP-PTX that was found to be internalized in 3D spheroid cultures of 
U87MG and HUVEC endothelial cells. Moreover, in situ imaging showed 
a strong accumulation in the tumors of U87MG GBM-bearing mice. Ft- 
NP-PTX induced high apoptosis and cytotoxicity, reduced U87MG cell 
migration in vitro (15.1 ± 4.2%) and, most importantly prolonged sur-
vival of tumor bearing mice, suggesting a potential synergistic toxic ef-
fect when targeting TNC and NRP-1 together [126], (Fig. 2A, Table 2). 
The FHK peptide in formulation with doxorubicin-loaded ultrasonic 
nanobubbles (FHK-NB-DOX) or Navitoclax (ABT-263)-loaded nano-
liposomes (FHK-SSL-Nav) have recently been shown to target carcinoma 
associated fibroblasts and to enhance the anti-tumor effects of the 
7pep (HAIYPRH)-modified liposomal doxorubicin formulation 
(7pep-SSL-DOX) in a human HepG2 xenograft model [134,145]. Despite 
these promising results, so far, efficacy and safety in the human patient 
have not yet been reported. 

In addition, the “PL1” peptide (PPRRGLIKLKTS) was isolated through 
phage biopanning (of the X7 peptide library) on the TNC FNIII-C mole-
cule. Surprisingly, PL1 also recognizes the fibronectin FNIII-EDB molecule 
that is often found to be coexpressed with TNC [146]. This peptide was 
investigated as systemic tumor targeting probe, in particular upon stabi-
lization through conjugation with nanoworms (NWs), super para-
magnetic iron oxide nanoparticles (with a worm-like shape and dextran 
coating), that indeed promoted PL1-NWs homing to tumor xenografts and 
to angiogenic neovessels induced by VEGF (Table 2). Further loading of 
the PL1-NWs with the pro-apoptotic peptide D[KLAKLAK]2 significantly 
inhibited U87MG tumor growth and, importantly enhanced the median 
survival of NCH421k tumor bearing mice [127] (Table 2). 

Lingasamy and colleagues (2020) also developed an octameric TNC 
homing “PL3” peptide (1.46 kDa, AGRGRLVR) that interacts with the 
TNC FNIII-C domain in vitro and in vivo but also recognizes NRP1. To 
improve PL3 stability, iron oxide NWs and AgNPs were fused (Kd of 51 
±19 µM for PL3/FNIII-C) and found to get enriched in the TNC FNIII-C 
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Table 2 
Overview about TNC targeting small molecules 
TNC targeting nanobodies, peptides, aptamers and RNA molecules are sorted according to recognition of TNC sequences (N to C terminus). Information about the 
applied assay, results and reference is provided.  

Targeting 
molecule 

Compound name Sequence in 
TNC 

Applied assay Disease context Observation Refs. 

Peptides        
MAREMO peptides 
MP5: STDSTSAPASNLQPASEYS 
MP13: STETTSAPASGLQPGTDYS 

FNIII3–5 Cell culture assays Murine NT193 breast 
cancer cells 
Human KRIB osteosarcoma 
cells 
Human mesangial cells 
Murine DC2.4 dendritic 
cells 

Inhibition of cell rounding 
by TNC 
Inhibition of TGFβ signaling 
Inhibition of fibronectin 
and collagen I synthesis 
Inhibition of TNC-induced 
CCR7 and CD86 expression 
Inhibition of TIL matrix 
retention by TNC/CCL21 

[125]  

Peptide #1 
FHKHKSPALSPVGGG 

FNIIIA1-D Immunostaining U118MG and HT29 
xenograft tissue 
Human lung tumors 

High TNC expression [124]  

Peptide #1 
FHKHKSPALSPVGGG 

FNIIIA1-D Cell culture assays U118MG cells Reduced cell rounding 
Increased migration 

[124]  

Ft (FHK- tLyp-1 fusion) peptide; FHK: 
FHKHKSPALSPV tLyp-1: CGNKRTR 

FNIIIA1-D 
NRP-1 

Cell culture assays U87MG, HUVEC Reduced migration [126]  

Ft-poly lactic acid NPs FNIIIA1-D 
NRP-1 

Cell culture imaging Glioma spheroids NP uptake 
Spheroid growth inhibition 

[126]  

Ft-Paclitaxel (PTX)-NPs FNIIIA1-D 
NRP-1 

Tumorigenesis assay U87MG bearing tumor 
mice 

NP tumor enrichment 
Prolonged survival 

[126]  

PL1-D(PPRRGLIKLKTS)-NWs FNIII-C 
FN-EDB 

Tumorigenesis assay 
Immunostaining 

GBM, PC3 xenograft 
bearing mice 
Human GBM tissue 

Reduced tumor size 
High TNC expression 

[127]  

PL1-D[KLAKLAK]2- –NW FNIII-C 
FN-EDB 

Tumorigenesis assay Human NCH421k 
orthotopic xenograft 
bearing mice 

Reduced tumor growth 
Prolonged survival 

[127]  

PL3- (AGRGRLVR) coupled to AgNPs FNIII-C 
NRP-1 

Immunostaining PPC1, U87MG cells High TNC expression [128]  

PL3- NWs FNIII-C 
NRP-1 

Immunostaining U87MG, PC3 xenografts High TNC expression [128]  

PL3-D[KLAKLAK]2-NWs FNIII-C 
NRP-1 

In vivo tumorigenesis U87MG bearing tumor 
mice 

Reduced tumor growth 
Prolonged survival 

[128] 

Aptamers  
Biotinylated GBI-10 FNIII3–5 ELISA U251MG cell surface 

protein extract 
Detection of TNC [129]  

GmLs (GBI-10) FNIII3–5 CLSM 
Flow cytometry 

MDA-MB-435s cells Detection of TNC [130]  

GTLs (GBI-10) FNIII3–5 Confocal microscopy, Flow 
cytometry, MRI 

C6 glioma cells 
TNC-knockdown NIH 3T3 
cells 

Binding to cells 
No binding to cells in 
absence of TNC 

[131]  

QD-Apt (GBI-10) FNIII3–5 Laser-scanning confocal 
microscopy 

U251MG glioma cells Detection of TNC [132]  

d/I-isoNA (GBI-10) FNIII3–5 Confocal laser microscopy U251MG glioma cells Detection of TNC [133]  
GBI-10 (DGL-ZA) n FNIII3–5 CLSM Z-scanning 

In vivo imaging 
4T1 spheroids 
4T1 xenograft tumor 
bearing mice 

Tumor detection 
Tumor autophagy induction 

[134]  

GBI-10 Apt/CPP-CPTD NPs FNIII3–5 Cell culture assay 
In vivo treatment 

PDAC Miapaca spheroids 
Orthotopic Miapaca-2 
pancreatic cancer cell 
xenograft model 

Deep spheroid and tumor 
penetration 
Tumor drug delivery 

[135]  

32P-TTA1 
99Tc-TTA1 
LNA-TTA1 

FBG Plasma stability assay 
In vivo tumor imaging 
Biodistribution study 

Human plasma 
U251MG-tumor bearing 
mice 

High plasma stability 
High tumor uptake 
Unspecific uptake in all 
organs except intestine 

[136]  

TTA1-AS1411 - RGD peptide 
«SMART» imaging NP 
Rhodamine B-isothiocyanate 
68Ga, Cobalt ferrite 

FBG 
Nucleolin 
Integrin 
α5β1 

Immunostaining C6, NPA, DU145, HeLa, 
A549 tumor cells 

Imaging of cancer cells with 
high specificity and signal 
sensitivity 

[137]  

18F-FB 
64C-FB 

NN Immunostaining 
In vivo PET imaging 

U87MG, MDA-MB-435 
xenograft tumor bearing 
mice 

Tumor detection 
High TNC expression in 
tumors 

[138] 

Small RNAs  
ATN-RNA (406 to 569 bp) EGFL Therapy Local treatment of 46 GBM 

patients 
Prolonged survival [139]  

ATN-RNA (406 to 569 bp) EGFL Therapy 10 high grade and low- 
grade glioma patients 

Local suppression of tumor 
growth 

[140]  

miRNA 198 (a) TNC mRNA Immunohistochemistry, 
Immunoblot 

Human colorectal 
carcinoma (SW620, 
CCD18-Co) cells 

Correlation of low miRNA 
with high TNC protein 
levels 

[141] 

(continued on next page) 
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positive tumors in contrast to a low uptake in the TNC FNIII-C-negative 
M21 melanoma cells (Table 2). PL3-NWs were also loaded with the pro- 
apoptotic D(KLAKLAK)2 peptide that caused reduced tumor size and less 
angiogenesis in the U87MG bearing mice [128]. Thus, PL3 coupled NPs 
may be useful for imaging and growth inhibition of many malignant 
tumors that frequently express the TNC FNIII-C domain [9–12]. 

TNC binds to fibronectin (FN) and blocks cell spreading on FN [147]. 
By searching for potential common amino acid sequences in two TNC 
binding sites of FN, particularly in the 5th (FN5) and 13th (FN13) FNIII 
domains, the “MAREMO” (MAtrix REgulating MOtif) was identified 
that is composed of two small stretches of 4 (Loop I) and 8 amino acids 
(Loop II) forming a common niche in three-dimensional space [125]. 
The MAREMO sequence mediates interactions of FN5 and FN13 with 
TNC in the so called MAREMO Binding Site (MBS) of TNC FNIII-3–5. 
Importantly, the same domains of TNC are also binding immunity 
regulating molecules such as TGFβ, CCL21 and CXCL12 however far 
away from the MBS [125,148,149]. Through interaction with these 
soluble factors TNC (that is usually anti-adhesive) becomes a sticky 
substratum for several leukocytes (e.g. dendritic cells, macrophages and 
CD8+ T cells) in vitro as well as in vivo retaining the tumor infiltrating 
leukocytes (TIL) in the stroma contributing to the immune exclusion 
phenotype [14,97,114]. The immune suppressive properties of TNC and 
TIL-matrix retention in particular was shown to be abolished in vitro and 
in vivo by inhibiting key pathways triggered by TNC such as CCR7 (re-
ceptor of CCL21) or CXCR4 (receptor of CXCL12) thus restoring 
anti-tumor immunity, reducing tumor growth and causing less metas-
tasis (thereby phenocopying the TNCKO tumors), altogether suggesting 
that inhibition of TNC-associated TIL-matrix retention has therapeutic 
potential [14,114], (Fig. 2A, Table 2). Indeed, this possibility was 
recently further substantiated by Li, Orend and colleagues (manuscript 
submitted) who demonstrated a profound and unprecedented broad 
anti-tumor activity of one of the MAREMO peptides in an autologous 
breast cancer model. 

Altogether, the TNC FNIII-3–5 domain in TNC might be a particular 
active site of TNC not only in cancer but also in wound healing [125,148, 
149]. Interestingly, the scFv TN64 recognizing hTNC FNIII-1–5 reduced 
the RA phenotype in the murine CAIA RA model [70]. Also, the aptamer 
GBI-10 (see below) and the Nbs (Nb3 and Nb4) bind TNC FNIII-3–5 and 
impair TNC functions in vitro [13,135]. Thus, it will be interesting to 
know whether targeting the TNC FNIII-3–5 domains with different tools 
has cancer inhibitory effects as seen for the MAREMO peptide (Li et al., 
submitted). 

Aptamers binding TNC 

Aptamers are short sequences of synthetic DNA or RNA based nu-
cleotides with favorable pharmacokinetic properties such as small size, 
low immunogenicity, ease of synthesis and high binding affinity in the 
pico to micromolar range [150–152]. For generating aptamers binding 
TNC, an iterative cell-SELEX (Systematic Evolution of Ligands by 
Exponential Enrichment) process of selection and amplification was 
performed (using a random single-stranded 1014 - 1015 oligonucleotide 
sequence library). The “GBI-10″ aptamer, binding to TNC FNIII-3–5, 
was selected by using the 70-mer single stranded DNA molecules that 
were applied to cultured human glioblastoma U251MG cells that do 
highly express TNC. To confirm TNC specificity, the U251MG cell pro-
teins were incubated with the biotinylated GBI-10, where TNC was 
found in the streptavidin magnetic beads pull-down [129], (Fig. 2A, 
Table 2). This aptamer has been further modified to enhance stability 
and to deliver toxic agents in preclinical in vivo tumor models as outlined 
below. 

Nuclease sensibility was reduced by integration of D-/L-isonucleo-
sides and 2′-deoxyinosine (2′-dI) phosphoramidites which did not induce 
any toxicity [133], (Fig. 2A, Table 2). The GBI-10 aptamer was also used 
to guide gadolinium-loaded liposomes for future diagnosis and tumor 
therapy and, to guide a NP camptothecin (topoisomerase inhibitor) 
dimeric prodrug (CPTD) conjugate into the tumors of a PDAC xenograft 
model, thereby improving tumor-selective targeting with reduced sys-
temic toxicity [135]. Given its small size, high stability and low anti-
genicity, the GBI-10 aptamer could be an ideal tool for future cancer 
diagnosis and treatment. 

Another promising aptamer is the 39-mer “TTA1” (13.4 kDa) that is 
binding the FBG domain. Specificity for hTNC was confirmed in vitro by 
ELISA on lysate from TNC expressing U251MG tumor cells and by tumor 
uptake of human tumor xenografts [153], (Fig. 2A, Table 2). This 
aptamer was further engineered to enhance stability and targeting with 
a few examples described below. 

Upon labeling, Tc-99mTTA1 revealed a high uptake in U251MG tu-
mors at 18 h at a concentration of 1% ID/g [154] which is in a similar 
range as for 124I -F16SIP (4–5% ID/g) suggesting conditions that could 
be suitable for tumor targeting in the human patient [88]. 

To further increase in vivo stability the so called “Locked Nucleic 
Acids” (LNAs) hexanucleotides were inserted into the non-binding regions 
giving rise to two derivatives TTA1.1 and TTA1.2 that upon injection into 
U251MG tumors bearing nude mice showed a high tumor uptake and long 

Table 2 (continued ) 

Targeting 
molecule 

Compound name Sequence in 
TNC 

Applied assay Disease context Observation Refs.  

miRNA 335 (b) TNC mRNA Immunostaining 
Cell culture assays 

Human breast cancer cells 
(MDA-MB 231, LM2, CN34- 
BoM1) 

Correlation of low miRNA 
with high TNC protein 
levels 

[142]  

miRNA 150 (c) TNC mRNA Immunohistochemistry 
Immunoblot 
Cell culture assay 

HNSCC tissues 
HNCC cells (FaDu, SAS and 
HSC3) 

Correlation of low miRNA 
with high TNC protein 
levels 

[143] 

LncRNA  
ET20 
Ensembl geneID 
ENSMUSG00000073821 

Antisense 
direction in 
TNC 
locus 

Cell culture assays PyMT-1099 breast cancer 
cells 
Mammary gland NMuNG 
cells 

ET20 and TNC protein are 
required for TGFβ-induced 
EMT 

[144] 

Abbreviations: AgNPs, silver nanoparticles; Apt, aptamer; 64C, copper-64; CCL21, chemokine (C- –C) motif ligand 21; CCR7, chemokine receptor 7; CD86, cluster of 
differentiation 86; CLSM, confocal laser scanning microscopy; CPP-CPTD, cell-penetrating peptide-camptothecin drug; DGL-ZA, (Dendrigraft poly-L-lysines)- zole-
dronic acid; d/IsoNA, 2′-deoxyinosine/D-L-isonucleoside; ELISA, enzyme linked immunosorbent assay; EMT, epithelial mesenchymal transition; 18F, Fludeoxyglucose- 
18; FN-EDB, fibronectin domain EDB; FNIII, fibronectin type III repeat; FBG, fibrinogen related domain; 68G, gallium-68; GBM, glioblastoma multiforme; GmLs, 
modified GBI-10 targeted liposome; GTL, GBI-10 targeted gadolinium-loaded liposomes; HNSCC, head and neck squamous cell carcinoma; HUVEC, human umbilical 
vein endothelial cells; LNA, locked nucleic acid; LncRNA, long non-coding RNA; MAREMO, matrix regulating motif; MRI, magnetic resonance imaging; NN, unknown; 
NP, nanoparticle; NRP1, neuropilin-1; NWs, nanoworms; PDAC, pancreatic ductal adenocarcinoma, QD-Apt, quantum dot-labeled aptamer; RGD, arginyl glycyl 
aspartic acid; PyMT, polyoma middle T antigen; 99Tc, technetium-99; TGFβ, tumor growth factor β; TIL, tumor infiltrating leucocytes; (a) miRNA 198, GGUCCA-
GAGGGGAGCUAGG; (b) miRNA 335, UCAAGAGCAAUAACGAAAAAUGU; (c) miRNA 150, UCUCCCAACCCUUGUACCAGUG. 
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retention in the blood. However, the slower clearance of the modified 
aptamers and their predominant urinary excretion led to high unspecific 
uptake in several organs such as kidney and liver, suggesting that these 
LNA modified TTA1 aptamer molecules are not suitable for radionuclide 
associated cancer imaging in its current form [136]. 

However, in combination with AS1411, an aptamer targeting 
nucleolin, TTA1 found an application in a multimodal Magnetic- 
Fluorescent-Radioisotope (MFR) based imaging approach that was 
coined as “SMART” cancer imaging for simultaneous and specific tar-
geting of nucleolin, integrin α5β1 and TNC. The aptamer TTA1 and 
AS1411 were coupled to the RGD peptide (binding to integrin α5β1, that 
is highly expressed on many tumor cells) and, Rhodamine B isothiocy-
anate, 68Ga and a magnetic resonance (MR) imaging compatible cobalt 
ferrite core to facilitate multimodal imaging in all tested cultured cancer 
cell lines [137,150,155], (Table 2). Whether this probe is suitable for 
application in vivo and potentially in the human cancer patient has to be 
evaluated in the future [137,156]. 

Jacobsen and colleagues (2015) developed even another 70 nucle-
otides aptamer “FB” that upon coupling was used for PET imaging as 
18F-FB and 64Cu-FB in subcutaneous MDA-MB435 breast and U87MG 
xenograft tumor models where a rapid blood clearance and a good 
tumor uptake with a low accumulation in most other organs was noticed 
leading to a high tumor-to-background signal ratio [138]. Hence, for in 
situ tumor (and potentially metastasis) imaging by PET, the TNC specific 
aptamers TTA1, GBI-10 and FB might be useful tools (Table 2). 

Targeting TNC expression 

For reducing TNC expression inside the tumor an RNA interference 
strategy was developed. A total of 46 patients with astrocytic brain tu-
mors (grade II, III and IV) showing the worst Karnofsky Performance 
Status (KPS) score and strong neurological deficits were included in the 
study. The ATN-RNA of 160 bp (US Patent no. US 8946.400 B2) that is 
complementary to the EGF-like domain sequence of the TNC mRNA (406 
to 569 bp), caused gene silencing and reduced TNC expression. After a 
subtotal tumor resection, patients were locally treated with this double 
stranded ATN-RNA and then received standard radiotherapy which 
prolonged the survival of the patients by 4.8 (grade II), 13.2 (grade III) 
and 13.9 weeks (grade IV), respectively. A significant improvement of 
the patient’s quality of life (determined by the KPS score) as well as the 
lack of tumor recurrence at the site of ATN-RNA application were also 
observed, which is highly remarkable [140,157]. Although the appli-
cation of ATN-RNA has some benefits, the knock-down of TNC expres-
sion was transient and only active at the site of injection and would need 
iterative applications, which likely explains why this approach has not 
reached the clinical practice in its current form [139]. However, these 
data suggest that down regulating TNC expression in cancers may 
counteract tumor growth opening novel avenues for future TNC 
repression strategies (see below). 

A variety of miRNAs, that act as tumor suppressors, were identified 
to downregulate the TNC transcript such as miRNA-198 in colorectal 
cancer [141], miRNA-335 in breast cancer [142], miRNA-150 in HNSCC 
[143], and miRNA-218 in gliomas [158], (Table 2). However, these 
miRNAs may have also other targets. Future studies have to address 
whether these miRNAs could be useful for an anti-cancer therapy. 

Recently, a long non-coding RNA (ET20) was discovered to be 
located inside the TNC locus however in opposite orientation. Loss of 
function approaches showed that downregulating expression of TNC is 
reducing ET20 expression and on the contrary, reducing ET20 caused 
repression of TNC, indicating an unknown crosstalk that may have 
therapeutic potential. Importantly, for TGFβ to induce EMT in breast 
cancer cells, which promotes tumor progression, both ET20 and the TNC 
protein were required [144], (Table 2). 

Employing TNC protein sequences as carrier for siRNA and cell 
death inducing molecules 

So called “Centyrin” or “Tencon” molecules that are based on the 
consensus sequence of the third FNIII domain of hTNC represent another 
means to exploit TNC [159,160]. The prototype Tencon has a sequence 
identity of 40% to the natural FNIII domain of TNC [161] where the 
Tencon backbone is almost identical to the third FNIII repeat of TNC 
(FNIII-3, 1TEN) which has a MBS that could have a not yet investigated 
biological activity [125]. Centyrins/Tencons were engineered to carry a 
siRNA or cytotoxic payload exemplified by using siRNA against 
beta-catenin (CTNNB1) or Monomethyl auristatin F (MMAF, inhibiting 
cell division through blocking tubulin polymerization). After injection of 
the EGFR-Centyrin-coupled siRNA, the targeted CTNNB1 expression was 
reduced in A431 xenograft tumors even 72 h after intra-venous injection 
(up to 75% knockdown with an IC50 of 5 nM), suggesting that the 
Centyrin might be a useful tool for the delivery of siRNA and divers 
cytotoxic payloads, which potentially could also be applied to TNC 
specific ATN-RNAs [161]. 

TNC could also be exploited to enforce intrinsic cell death by the TNF 
family members FAS (Fas Cell Surface death receptor) and TRAIL 
(Tumor necrosis factor-Related Apoptosis-Inducing Ligand) that are 
under consideration for enforcing tumor cell killing since a long time 
[162,163]. CD95/Fas is a cell surface receptor that induces apoptotic 
cell death upon binding to its ligand CD95L where receptor and ligand 
trimerization is required that can be enforced with a bispecific TNC 
(BC24) antibody in conjunction with an agonistic antibody specific for 
CD95L, in a bispecific antibody formulation [164], (Fig. 2A). Indeed, 
this bispecific antibody induced apoptosis in cultured GBM cells 
(U87MG, LN18) [164]. However, so far no information about safety or 
any anti-tumor activity is available. 

Berg and colleagues (2007) used a different approach to enforce 
tumor cell killing by CD95/CD95L or TRAIL/TRAIL-R by fusing the N- 
terminal trimerization domain of TNC (30 amino acids) to CD95L or 
TRAIL and, observed that these fusion molecules were highly active in 
killing several cultured cells [165], (Fig. 2A). Both approaches are 
powerful means to increase TNF ligand family-induced cell death. The 
recently described TRAIL binding to the TNC FNIII-3–5 domains, 
potentially enforcing TRAIL signaling, might also be relevant for 
enforcing tumor cell death [125], (Li et al., submitted). 

Vaccination against TNC 

Compared to the use of mAbs, vaccination against cancer could 
overcome cost-intensive repetitive injections as the body produces an 
immune response and the tumor specific antibodies by itself. This can be 
achieved by therapeutic vaccination with tumor-derived peptides that 
trigger tumor-specific immune responses with already promising results 
in glioma patients [166–168]. 

Dutoit and colleagues (2012) identified a set of human leukocyte 
antigen (HLA)-A*02 restricted peptides that eluted from the surface of 
GBM tissue in association with the respective HLA molecule. Originally 
eleven, now 20 of these tumor-associated peptides (TUMAP), including 
a TNC peptide (position 3 − 11, AMTQLLAGV), were further examined as 
potential antigens. Indeed, these molecules are overexpressed in the 
majority of GBM, however poorly or not in healthy tissues and, the 
peptides were found to be immunogenic in vitro and are presented at 
peptide level on the GBM tissues, indicating that these molecules are 
potential targets for T cell-mediated immunity [169]. Based on these 
promising results, the authors formulated vaccine “IMA950” [169] that 
was investigated in a clinical trial (Cancer Research UK IMA950–101, 
NCT01222221) using granulocyte macrophage colony-stimulating fac-
tor (GM-CSF) as adjuvant either before or after concomitant radio-
chemotherapy which revealed that this protocol is safe and 
immunogenic [170]. 

These promising results further fostered a recently published clinical 
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study by Migliorini and colleagues (2019) where the authors investi-
gated different protocols of co-administration now in conjunction with 
the poly-ICLC adjuvant. Indeed, a high number of the enrolled 19 GBM 
patients developed CD8+ T cell responses against one (63%) or multiple 
peptides (31%) including TNC. The median OS of the GBM patients in 
the IMA950/poly-ICLC trial was 19 months. In comparison, OS survival 
was only 15.3 months when the IMA950 vaccination was combined with 
recombinant GM-CSF which could be explained by a better adjuvant 
function of poly-ICLC [171]. 

Subsequently, the vaccination protocol was combined after a treat-
ment with an anti-angiogenic anti-VEGFA antibody (Bevacizumab) 
which did not provide an overall nor median survival benefit for the 
GBM patients [172]. Possibly activation of the complement system by 
Bevacizumab may have negatively impacted the vaccination. Alto-
gether, the results are considered as promising since the vaccination 
triggered CD8+ T cells to recognize all antigens of the IMA950 formu-
lation and in context with the better adjuvant poly-ICLC also activated T 
helper cells. Based on these encouraging results two additional clinical 
trials using IMA950 together with Varilumab (against CDX-1127, 
anti-CD27) in grade II glioma (NCT02924038) and IMA950 together 
with Pembrolizumab (anti-PD1 antibody) in relapsing GBM patients 
(NCT03665545) have been launched without information about study 
outcome yet. 

Vaccination against tumor specific neoepitopes can also be achieved 
by injection of mRNA molecules encoding suitable tumor peptides in a 
personalized mRNA vaccination approach that so far has not been 
published for TNC yet [173–175]. Some amino acid sequences of TNC 
could indeed be recognized as antigens as suggested in human GBM (e.g. 
from the EGFL domain, [176]) and in RA patients (e.g. citrullinated FBG, 
reviewed in [177]). This idea is intriguing and is even further inspired by 
the observation that in human cancer tissues the TNC sequence is 
experiencing several mutations leading to amino acid exchanges 
potentially generating neoantigen epitopes, whereas this is negligible in 
TNC expressed by PBMCs [15]. Thus, more information about naturally 
occuring TNC sequences with an antigenic potential could open the 
opportunity for novel tailored anti-cancer immunization strategies. 

Some considerations about TNC as diagnostic and theranostic 
tool 

That ECM, as a prominent part of the “hardware” of malignant tu-
mors, does not only form “pretty fibrils” [178] but also plays an active 
role in tumor progression, is slowly receiving recognition. Given that the 
highly expressed TNC (together with other ECM molecules) is gener-
ating tumor specific immune suppressive niches (compromising tumor 
immunity and anti-cancer therapy), the tumor specific ECM should be 
considered as a cancer hallmark, even further expanding the tumor 
targeting opportunities [1,2,179]. 

Pioneering work from several laboratories has provided a high 
number of domain-specific anti-TNC antibodies that with their smaller 
formulation as scFv, Fab`, Fab or SIP have the potential to improve anti- 
cancer therapy in the future by delivering toxic molecules or radionu-
clides or to activate the immune system. Numerous clinical trials using 
TNC as zip code have already been performed (reviewed in [39,40,43]) 
but faced obstacles impossible to anticipate when using preclinical 
xenograft tumor models often lacking a proper immune system. More-
over, as these experimental tumors develop over a short period of time 
and most often ectopically underneath the skin, they are largely devoid 
of a relevant TME seen in human tumors where the ECM-dense TME 
often is a confounding factor in therapies. One lesson we learned from 
the many preclinical studies that do not translate into the same re-
sponses in the cancer patient is that more attention should be paid to the 
choice of immune competent preclinical tumor model. Finally, in the 
clinical trials often cancer patients for which no cure exists have been 

included, where even some responses, as seen, have to be considered as 
remarkable. 

Since more often it is not the primary tumor but the metastasis that 
kills the cancer patients, it is important to develop metastasis targeting 
strategies. Groundbreaking work from the Richard Hynes/Alexandra 
Naba laboratories has generated a protein inventory of all ECM and 
associated molecules (the so called matrisome) of several tumors 
revealing that the primary tumor and the investigated human lung and 
liver metastases have many matrisome molecules in common. TNC is 
one of them [120,180]. Interestingly, the tumor cells already prime TNC 
deposition in the future metastasis site rendering TNC as a valid zip code 
for metastasis imaging [123,181]. In situ metastasis imaging with radi-
olabeled nanobody 64Cu-NJT6 indeed detected metastasis site-specific 
TNC expression which could offer the opportunity for future metas-
tasis detection by non-invasive imaging. 

Finally, TNC is acting in conjunction with many other ECM mole-
cules by forming common and dense networks promoting inflammation 
and representing an obstacle in cancer therapy [1,5,179,182]. Inter-
estingly, loss of function approaches suggest that TNC acts as an 
orchestrator of these so far poorly understood networks. This was shown 
by investigating tumors lacking TNC (TNCKO) in Rip1Tag2 endocrine 
insulinoma [183], 4NQO-induced tongue OSCC [114] and NeuNT breast 
cancer models [14] where many matrisomal molecules and in particular 
many collagens and matrix degrading enzymes were largely down-
regulated in comparison to the TNC expressing control tumors. Impor-
tantly, this coincided with a less immune suppressive TME, altogether 
suggesting that eliminating TNC can change the entire stromal network 
towards therapy promoting conditions. If we understood how TNC 
impacted the formation of the fibrotic immune suppressive TME, we 
could develop more and better tumor tailored targeting strategies. 

Outlook: towards future TNC targeting in cancer 

Since its discovery over 40 years ago, extensive research has pro-
vided evidence that TNC is a major tumor promoter and an excellent zip 
code for the delivery of various agents. How could we make better use of 
this information? A molecular inventory of the tumor would inform 
which TNC isoforms are expressed by which cells and along tumor 
progression. The many excellent TNC specific monoclonal antibodies 
(and their smaller variants), nanobodies, peptides and aptamers, could 
be used for tumor imaging and for delivery of toxic and immune stim-
ulating therapeutics. Also, reducing TNC expression by ATN-RNA mol-
ecules delivered by mAbs (particularly in their Fab or SIP formats), 
Centyrin/Tencon, Nbs, peptides or aptamers, or through vaccination 
may cause matrix remodeling towards a less immune suppressive TME 
as seen in the murine TNC KO models. 

Malignant tumors are highly adaptive systems that react towards 
anti-cancer treatments with compensatory strategies, but we often seem 
to treat them as static entities. We must better understand how each 
treatment is changing the TME and in particular the expression and 
particular biochemical properties of highly abundant ECM molecules 
such as TNC to use this information for developing a tailored targeting 
strategy for the next line of therapy. We already know that cytotoxic 
drugs as well as ionizing irradiation can induce expression of collagens, 
TNC and other pro-fibrotic ECM molecules, generating an even more 
immune suppressive TME [184–186]. Moreover, we need more infor-
mation about the matrisome and the immune cell infiltrate upon any 
given anti-cancer treatment to be faster in developing a new strategy 
than the tumor, preferably by using non-invasive TNC imaging tech-
nologies or TNC ELISA-based assays on liquid biopsies (such as blood 
and urine) where it is important to gain information about all TNC 
isoforms including those with extra domains suitable for specific tar-
geting [95]. As many cancer targeting drugs have to be used over long 
periods of time, they pose the risk to induce cardiac and kidney toxicity 
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(reviewed in [187,188]). Here, TNC expression that gets induced in 
chronically damaged tissues, could serve as a disease indicator 
molecule. 

Information about other targetable factors (e.g. integrin α5β1, NRP1) 
would allow to develop SMART-like combination approaches or 
appropriate TNC-targeted immunocytokines, to boost anti-tumor im-
munity where immune checkpoint inhibitors could be suitable. In sup-
port, targeting TNC/TLR4 signaling in combination with anti-PD-L1 was 
more efficient in reducing lung metastasis than anti-PD-L1 alone [97]. 

Ideally, one would like to “normalize” the tissue by e.g. abolishing 
matrix stiffness. However, many cytotoxic drugs are even further 
inducing expression of collagens and TNC thus enforcing tumor stiffness 
[189,190]. Here, the MAREMO peptides may be useful as they were 
shown to inhibit TGFβ signaling and expression of fibronectin, collagen 
and other pro-fibrotic molecules ([125], Li et al., submitted). To improve 
immune checkpoint therapy, one would also like to abolish TIL-matrix 
retention and the immune exclusion phenotype, where the MAREMO 
peptides and the nanobodies Nb3 and Nb4 showed such activities in vitro 
[13,125]. 

Empowering anti-tumor defense by Chimeric Antigen Receptor 
(CAR) T cell therapy represents another highly promising anti-cancer 
targeting strategy with over 500 clinical trials performed already 
[191]. CAR T cells specific for the extra domain A (EDA) splice variant of 
fibronectin that is highly abundant (along with TNC) in the stoma of 
many cancers were generated, recognizing FN-EDA in an 
antigen-dependent manner and inducing anti-tumor activity in several 
murine tumor models with a long-lasting immunity [192]. Furthermore, 
these CAR T cells induced an anti-angiogenic effect and significantly 
reduced gene signatures associated with plasticity, collagen synthesis, 
ECM organization as well as the IL-6/STAT5 and KRAS pathways [192], 
altogether proving that targeting the tumor specific ECM by CAR T cells 
is a powerful novel approach that could also be applied to TNC, given 
the many excellent TNC binders (Tables 1 and 2). 

In summary, despite promising case reports with remarkable re-
sponses in end-stage cancer patients and numerous tenacious experi-
mental approaches, none of the many TNC targeting strategies have yet 
reached any application in the clinical practice. However, new strategies 
are still tested in clinical trials potentially providing novel avenues for 
future therapies. Importantly, understanding how TNC is generating an 
immune suppressive TME may open novel opportunities to abolish these 
TNC functions. We have never been in a better position to combine our 
versatile arsenal of TNC targeting and imaging tools to tackle anti-tumor 
immunity which may allow to largely improve anti-cancer therapy in 
the not so far future. 
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cancer cells produce tenascin C as a metastatic niche component to colonize the 
lungs, Nat. Med. 17 (2011) 867–874, https://doi.org/10.1038/nm.2379. 
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