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Abstract – The digital revolution that characterizes
the beginning of the 4.0 Era has already prompted out
a variety of smart living technologies, which rely on
the pervasive connectivity granted by the Internet of
Things. These technologies are having a relevant im-
pact on health systems, working and domestic envi-
ronments, sports and rehabilitation, by enabling new
promising practices for human body kinematic studies.
This paper provides a specific discussion on how kine-
matic studies in clinical diagnosis, rehabilitation and
sport, take benefit from the use of the recent smart liv-
ing technologies. More specifically, in exploring the lat-
est trends in the application of gait analysis using wear-
able sensors and Machine Learning techniques.

I. INTRODUCTION

As well known, smart sensors are about designing sys-

tems people can and will use, regardless of the contexts

they are living or working in. Their innovation is perva-

sive and impacts a variety of fields, such as Home, Work-

place, Governance, Manufacturing, Commerce, Health, In-

frastructure, Agriculture, Mobility, Energy and many oth-

ers.

Internet of things (IoT) technologies are the recognized

tools to operate on these playgrounds and transform the

traditional solutions into innovative schemes, capable of

enabling the smart services that are expected to watermark

the 4.0 Era.

A number of novel sensors with built-in IoT solutions

for (wireless) data transfer to the cloud are receiving more

and more attention. Among the others, the compact iner-

tial measurement units (IMU), which embed tri-axial ac-

celerometers, gyroscopes, and magnetic field sensors, are

widely integrated into smartphones, smartwatches, or sold

as nice wearable accessories, that are aimed at monitor-

ing biological and bio-mechanical parameters, and are per-

haps the most promising; the compact inertial measure-

ment units (IMU), are in general widely used to measure

kinematic parameters[1, 2].

The gait analysis deals with the scientific evaluation of

the human locomotion, which requires the measurement

of the kinetic and kinematic parameters characterizing the

stride as the basic constituent of the walk. The traditional

practice used video camera systems [3] to perform quali-

tative monitoring approaches. But, the analysis of video

recordings obtained from multi-camera systems required

laboratories, expensive equipment and extended times for

system calibration and subject preparation. Nonetheless,

the tests carried out in the laboratory did not perfectly re-

flect the natural movements because of the patient’s behav-

ior in a laboratory, could be different from that in everyday

life [4].

At present, the gait analysis is taking benefits from the

use of wearable sensors, which are quite inexpensive, suit-

able for tests outside the laboratory environment, and ca-

pable of recording physiological conditions and movement

activities in unspoiled conditions.

Hereinafter, the attention is mainly paid to the gait anal-

ysis, which is receiving more and more credit as a viable

tool for ergonomics, training program evaluation for ath-

letes, and clinical assessment in orthopedics, neurology,

and several other fields focused on musculoskeletal disor-

ders [5, 6] . For example, gait analysis provides useful

indicators for the early diagnosis of Parkinson’s disease.

Specifically, the affected patients exhibit poor movement

of the facial, upper and lower limb muscles, and flexed-

forward trunk, that implies difficulty with stop and turn

movements. Consequently, the space and time parameters

of the gait cycle, such as gait velocity, cadence, stride time,

and length are different with respect to those measured for

healthy subjects [7].

Gait analyses are useful for objectively evaluating the

functionality after arthroplasty and identifying joint over-

loads with possible gait deficits. For example, the presence

of persistent walking abnormalities after knee arthroplasty

surgery is sometimes detected in clinically asymptomatic

patients, and significant alterations of kinematic parame-

ters, such as reduction in walking speed, increase in the

stance phase duration, decrease in a joint excursion, can

be detected even a long time after surgery [8]. The walk-

ing speed is commonly lower than in normal subjects, even

in the presence of good clinical conditions and absence of

pain [9]. To give an example, gait analysis plays a role

in rehabilitation treatment planning, choice/adaptation of

an orthosis, functional surgery proposal, pre- and post-

operative comparison in the rehabilitation of stroke vic-

tims. It is at the bases of rehabilitation programs for pa-

tients with lower limb prostheses, or patients that have suf-
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Fig. 1. Gait phases of a normal gait cycle: stance phase
and swing phase

fered bone lesions or fractures. The outcomes of the anal-

ysis allow suitable refinements of the rehabilitation pro-

gram and reduce any abnormal stresses on the prosthetic

or injured limb. The remote control offers many advan-

tages, such as allowing continuous monitoring of the pa-

tient, which is not available in classic monitoring. During

rehabilitation, the caregiver can remotely guide the patient

in carrying out exercises and eventually modifying the re-

habilitation program. The clinical history of the patient is

easily available, and large savings related to the monitoring

costs of hospital structures are possible [10, 11].

The purpose of the paper is providing a discussion on

the main applications where gait kinematic analysis takes

benefits by means of IMU sensors and machine learning.

To this end, the possibilities of gait analysis, as a means to

perform clinical assessment in orthopedics and neurology,

diagnosis of musculoskeletal disorders, as well as to plan

training programs for athletes, fall prevention and detec-

tion, is first extensively discussed. In particular, more tech-

nical details related to gait analysis and examples of signals

are given in Section II. In Section III , interesting and very

recent applications based on machine learning paradigms

for gait analysis are reviewed. Finally, concluding remarks

and plans for future studies are summarized in Section IV.

II. FUNDAMENTALS OF GAIT ANALYSIS

A. Gait phases and parameters
The gait analysis pays attention to the gait or stride cy-

cle, which consists in a series of basic movements that are

continuously repeated by an individual. A single stride is

performed in the time interval delimited by two successive

initial ground contacts for the same foot, and it is shown

in Figure 1. The time interval of the stride is the reference

for all the other time parameters related to muscle activi-

ties. The stride is divided into stance and swing, and the

time intervals corresponding to them are in turn divided

each one into three sub-intervals. Specifically, the stance

includes the initial double support, single support, and dou-

ble terminal support; these movements are performed in

the related time intervals that are defined in the following.

• Initial double support: the time interval in which both

feet have contact with the ground.

• Single support: the time interval during which the op-

posite foot comes off and swings.

• Double terminal support: the time interval delimited

by the initial contact of the contra-lateral foot, and the

support limb detachment precluding a swing.

The swing includes the initial swing, the intermediate

swing or mid swing, and the terminal swing; these con-

stituent movements are performed in the related time inter-

vals that are defined in the following.

• Initial swing: the time interval that starts with lifting

the foot from the ground, and ends when the swinging

limb is parallel to the supporting foot.

• Intermediate swing: the time interval that begins

when the swinging limb is opposite to the support-

ing limb, and ends when the first shows the tibia in

vertical position during its advancing.

• Terminal swing: the time interval that starts with

the tibia in vertical position, and ends when the foot

makes contact with the ground.

B. Measurements
Measurements are related to space and time parameters

obtained by processing raw data from acceleration and gy-

roscope signals. The most common parameters useful in

human kinematic studies, and in particular in gait analysis,

are given hereinafter.

• evaluated steps: number of steps considered in the

analysis;

• gait cycle time (GTC) (seconds): duration of a com-

plete cycle in seconds;

• cadence (steps/min): number of steps per minute;

• swing duration (% GCT): average value of the dura-

tion of the right and left swing movements as a per-

centage of GTC, further divided into right swing du-

ration, expressed as percentage of the gait cycle the

right foot is off the ground (% GCT), and left swing

duration, expressed as percentage of the gait cycle the

left foot is off the ground (% GCT);

• stance duration (% GCT): average value of the du-

ration of the right and left support phases as a per-

centage of the gait cycle duration, further divided into

right stance duration, expressed as percentage of the

gait cycle the right foot is on the ground (% GCT),

and left stance duration, expressed as percentage of

the gait cycle the left foot is on the ground (% GCT);

• double support duration (% GCT): percentage of the

gait cycle both feet are on the ground;

• single support duration (% GCT): average value of the

single right and left support duration as a percentage

of GCT;
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• stride length: average value of the distances between

each initial contact and the next of the same foot for

left and right side;

• normalized stride length (% height): stride length is

normalized to the height of the individual body;

• stride velocity: average value of the right and left limb

velocity.

• normalized stride velocity (% height): Stride velocity

normalized to the height of the body.

Several additional parameters are also defined by com-

bining the aforementioned ones, like the symmetry index,

which provides the percentage of symmetry between the

acceleration curves of the right and left foot during the gait

cycle. The symmetry index provides information on the

general balance during the walk; it is dimensionless and

its values are up to 100, where the value 100 indicates to-

tal balance between both feet. As an example, two typ-

ical signals acquired with different protocols and sensors

are reported. The first example in Figure 2 shows the ac-

celeration signals of the right and left feet. The signals

are acquired with an IMU sensor positioned between the

vertebrae S1-S2. By observing each graph in Figure 2,

it is possible to distinguish the double support phase and

the single support phase. A descending trend characterizes

the acceleration signal during the double support phase and

an ascending trend during the single support phase, which

starts with the detachment of the contra-lateral foot, and

ends with the ground contact of the contra-lateral foot. The

single support phase is delimited in the upper graphic by

the vertical cursors, represented with dashed lines. The

tilted line that connects the beginning and endpoints of the

single support phase highlights the propulsion, and its in-

clination quantifies the propulsion index. High values for

the propulsion index highlight strong capacities at advanc-

ing. The second example in Figure 3 shows a signal pro-

duced by a gyroscope monitoring the angular velocity of

the shank. The signals are acquired with an IMU sensor

positioned on the shanks of the subject. The higher angu-

lar velocity values correspond to the swing, the lower to

the stance. Estimates of the time parameters can be ob-

tained from the angular velocity signal; the repetitiveness

of the movements allows both estimates of individual oc-

currences and average values.

III. APPLICATION SCENARIOS

The practice of gait analysis is at present one among the

most promising diagnostic tools in a variety of application

scenarios, discussed in the following.

Long-term high-intensity training affects athletes and

can even lead to injuries, which in turn prevent them from

keeping on training and/or taking part to the scheduled
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Fig. 2. Acceleration signals of the right and left foot in
anterior-posterior component acquired by a typical ac-
celerometer positioned by the Venus dimples aside the S1-
S2 vertebrae.
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Fig. 3. Portion of the signal related to the angular velocity
of the shank, angle in the sagittal plane, acquired by means
of a typical wearable gyroscope.

competitions. A prognostic system to predict risks of in-

juries is discussed in [12], where a machine-learning ap-

proach to evaluate the anterior cruciate ligament injury risk

is proposed. The anterior cruciate is one of the four main

ligaments of the knee and its injury represents the main

issue affecting players, especially in contact sports. The

study analyzes the stress of the ligament through experi-

ments performed on 39 basketball players, when perform-

ing monopodalic jumps or single-leg power squat, the lat-

ter executed maintaining the arms with the hands on the

hip and extending the resting leg in front of the body. The

duration of the basic movements required by each exer-

cise are considered as features of interest. Their values are

normalized to the stabilization time, defined as the time be-

tween the contact with the ground and the instant in which

the active leg is stable, which corresponds to the local min-

imum of the angular velocity of the shank after ground

contact. The study considers data collected by IMU sen-

sors, placed on the shank by means of an elastic belt de-

signed to avoid movement artifacts. Data are processed
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using supervised machine learning approaches for injury

prediction, either based on support vector machine, or k-

nearest neighbor, or decision tree concepts. The results of

the study highlight the capability of the linear support vec-

tor machine, as the best performant approach, of accom-

plishing 95% accuracy in the classification. Methods like

gait analysis are also exploited to improve the performance

of athletes or prevent injuries. The skill in sport is in fact

improved also by investing in training tools and systems.

Traditional training methods such as coach supervising or

video recording have some disadvantages, such as time-

consumption and/or limits imposed by the environment.

Differently, wearable sensors for gait analysis offer the

possibility to non intrusively measuring the performance,

and by coding the experience of the trainer, also to auto-

matically providing feedbacks. The study [13] developed a

system for recognizing the Baduanjin movements and eval-

uating their accuracy using wearable devices. The system

can be used to help students in learning from their mistakes

during use by comparing their movements with teachers’

ones. Fifty-four volunteers, among students and teach-

ers, participated in the experiment and several sequence-

based techniques were used, such as dynamic time distor-

tion (DTW) combined with different types of classifiers,

the hidden Markov model (HMM), and recurrent neural

networks (RNN). Three methods, nameley DTW + k-NN,

DTW + SVM, and HMM, had the best accuracy, scoring

over 99 % in evaluating and recognizing Baduanjin move-

ments.

Instead, the studio [14] developed a system for player

evaluation and classification of five prototype tennis

strokes in real-time. An imu sensor mounted on the par-

ticipants’ wrists and connected to an Android smartphone

via Bluetooth wireless technology, was used. The ex-

periment was attended by 36 participants with average

age equal to 25 years. The processing of the IMU data

includes the preprocessing, segmentation, feature extrac-

tion, dimensionality reduction, and classification phases.

The pre-processing phase involves noise reduction and the

compilation of missing data cases. Different types of SVM

classifiers were used, such as MinMaxScaler, MaxAbsS-

caler, StandardScaler, MinMaxScaler, MinMaxScaler. The

study showed that SVM (StandardScaler), SVM (Min-

MaxScaler) and SVM (MaxAbsScaler) classifiers achieve,

respectively, 90 %, 88 % and 89 % accuracy, while the

SVM (RobustScaler) and SVM (Normalizer) provide 85

% and 77 % accuracy, respectively.

Falls are widespread among older people, and responsi-

ble of severe physical and/or psychological consequences,

that can affect the quality of life. Fall detection systems

should be capable of distinguishing falls from routine ac-

tivities, in order to provide immediate medical assistance

in the former case. The study presented in [15] reports a

fall detection system enabled by wearable inertial sensors

placed on the chest, waist, head, right wrist, right ankle,

and right thigh. The system can transmit the data via wire-

less link to a remote PC. The study considers 14 volunteers

that perform 16 daily life activities and 20 fall actions. It

uses the PCA method to reduce the features dimensional-

ity, and set up a fall detection system based on a convolu-

tional neural network with 8 layers, that offer 98.27% clas-

sification accuracy. An alternative fall detection system,

also enabled by the use of inertial sensors, is illustrated

in [16]. The proposed system uses the event-triggered ap-

proach to acquire the pre-impact, impact and post-impact

phases, evidenced by the acceleration signal. The pre-

impact is recognized by an acceleration peak greater than

an experimental threshold, and it is characterized by sub-

sequent peaks precluding to a highest peak, corresponding

to the moment when the subject hits the ground. Further

samples are collected for recording the post-impact phase,

characterized by an absence of peaks. The study reports

about 46 healthy subjects acting 14 falls, and several activ-

ities of daily living, for 23 minutes each one. The extracted

features are 27 and relates to the pre-impact, impact and

post-impact phases. The proposed classifiers, based on k-

NN and SVM approaches, reach accuracy equal to 95.6%

and 97.2%, respectively.

It has been underlined in the previous Sections that gait

analysis has become an interesting research topic due to

the widespread availability of inertial sensors in wearable

devices, and that activity recognition provides reliable in-

formation about the functional abilities and lifestyle of an

individual. The study presented in [17] uses data collected

by means of inertial sensors in smartphones, and an arti-

ficial neural networks to perform human activity recogni-

tion and classification. The optimal architecture is imple-

mented with 100 neurons in the input layer, 60 in hidden

layer 1, 20 in hidden layer 2, and 12 in the output layer for

recognizing 12 classes of activities: standing, sitting, ly-

ing down, walking, walking upstairs, walking downstairs,

stand-to-sit, sit-to-stand, sit-to-lying, lying-to-sit, stand-to-

lying, lying-to-stand. The extracted spatio-temporal fea-

tures are followed by dimension reduction based on PCA.

A total of 7767 and 3162 events are used for training and

testing phases, respectively, where each event is made of

561 features. The proposed ANN can achieve 89% accu-

racy, following by the alternative SVM method that scores

82% in activities classification.

The study [18] classifies six different human-walking

styles using kinematic parameters obtained from sensors

placed on six joints for twenty-five volunteers. From the

IMU signals, space-time parameters were extracted for

training neural networks. The neural network with the

highest accuracy approximately 90 %, is made of three hid-

den layers with 100 neurons, 6 inputs neurons, and 6 output

neurons corresponding to 6 walking activities. Instead, the

study [19] proposes different combinations of deep learn-
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ing architectures based on convolution neural network for

human walking activities recognition reaching 97 % accu-

racy.

Gait and balance analysis represent recognized practices

in many clinical areas to distinguish between healthy pa-

tients from patients affected by diseases such as cerebral

palsy, spinal cord injury, hemiplegia, hip dysplasia, geri-

atric disorder, osteoarthritis, orthopedic and others [20].

Patients with neurodegenerative disorders can under-

gone freezing of gait (FOG), that consists in a loss of

movement, despite their resolute intention to walk; FOG

commonly arises in patients with the Parkinson disease.

The study presented in [21] describes a reliable FOG pre-

diction system, realized with machine learning algorithms

that process data gained by means of inertial sensors. The

proposed system is capable of recognizing the degradation

of the walking preceding FOG in patients with Parkinson.

To this end, it uses the timed-up-and-go (TUG) and ex-

ploits inertial sensors placed on the shins to gather mea-

surement information. The clinical TUG test, aims at mea-

suring how long the subject takes to standing up from

a chair, walking 7 meters, turning 180 degrees, walking

back to the chair and sitting down. The feature extrac-

tion is performed analyzing the angular velocity signals

in the time and frequency domains. Subsequently, wrap-

per techniques are deployed to select the features that can

optimize the machine learning classifiers for detecting pre-

FOG episodes. Classifiers based on SVM and k-NN ap-

proaches show an accuracy of 92.1% and 89.8%, respec-

tively.

Osteoarthritis (OA) is a common musculoskeletal disor-

der affecting the older population, and resulting in chronic

pain and disability. Gait retraining is an effective interven-

tion for patients with osteoarthritis of the medial compart-

ment knee, that aims at reducing knee adduction moment

(KAM). The study presented in [22], shows how estimat-

ing KAM during walking by using machine learning tech-

niques applied to data collected from low-cost IMU sen-

sors placed on the malleoli. Participants, both with knee

OA and healthy, are invited to walk along a 20 meter path.

It is shown that a neural network with 10 fully connected

layers, composed by 256 neurons in layers 1-6, 128 neu-

rons in layers 7-8, and 64 neurons in layers 9-10 allows

accurate KAM evaluations.

Brain stroke is a widespread cause of disability, and

rehabilitation exercises represent essential steps for post

stroke recovery, as discussed in Section 2.1. The physi-

cal exercises performed in the laboratory under the super-

vision of a specialist represent, however, a poor recovery

program, that needs to be complemented with home ex-

ercise programs. Making conclusions about the correct-

ness of rehabilitation exercises in both clinical settings re-

quires reliable methods. The study presented in [23] pro-

poses an approach based on machine learning techniques

for the remote rehabilitation of lower limbs in post stroke

patients. In detail, the study analyzes the data related

to 2 volunteers with stroke, during the rehabilitation ses-

sions performed along 4 days; the data are collected by

means of inertial sensors placed on triceps and ankles. Us-

ing PCA method, 36 features are distinguished and ana-

lyzed by means of machine learning techniques based on

SVM, RF, and ANN, which show typical accuracy equal

to 72.5%, 76.5%, and 79%, respectively, in assessing the

success of the exercise.

IV. CONCLUSIONS AND FUTURE RESEARCH

Smart sensors are playing an essential role in enabling

novel services and applications aimed at improving the

quality of life. Wearable sensors have been revolution-

ary for some systems and practices, for instance, in gait

analysis, where they offer quantitative and repeatable re-

sults for long periods at a low cost. The integration of

multiple wearable sensors with low size and data transfer

capabilities allows the automation of processes that relied

on empirical bases in the past. The most significant ap-

plications concern: (i) clinical practice, where gait anal-

ysis permits the diagnosis of neurodegenerative diseases

and the implementation of rehabilitation programs for in-

jured subjects; (ii) sport, where the smart systems can be

applied to prevent injuries and improve the performance

of athletes; (iii) fall prevention and detection. Special at-

tention has been paid to the gait analysis and the measure-

ment of the human gait parameters, which include walking

speed, stride and step length, swing and stance times. The

key role of the novel technologies, and in particular of the

wearable sensors, that allow measuring the parameters of

interest over long periods of time during daily activities,

has been evidenced. Examples of typical signals acquired

with different acquisition protocols have also been given.

Secondly, an overview on interesting and very recent ap-

plications based on machine learning paradigms and IMU

sensors for gait analysis, have been shown.

Future research is going to pay attention to the following

issues, namely: sensor improvement, power consumption,

data processing, and management. Concerning sensor im-

provement, it is necessary to develop new wearable sensors

that provide new space-time parameters. More specifically,

new sensors need to provide more accurate measurements

such as segment position, orientation, velocity, and joint

angles; it is also interesting recognizing optimal sensor po-

sitions. Power consumption is a crucial issue of the current

wearable systems for gait analysis since it affects the ca-

pacity of the system to measure and monitor over long pe-

riods. Future research should develop new systems charac-

terized by reduced energy consumption, and batteries with

extended battery life duration. Finally, new signal process-

ing algorithms to both improve the reliability of the results

and produce additional insight are also expected.
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