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Abstract

This paper deals with the asymptotic analysis of the family of the three-
dimensional flows X = Xfgh on the torus T3, solutions to the ODEs system

x′ = f(x, y), y′ = g(x, y), z′ = h(x, y) in [0,∞),
where f, g, h are regular Z3-periodic fonctions solutions to f ∂xh + g ∂yh = 0.
Under the min-max condition satisfied by the first integral h for the flow Xfgh

min
x∈T1

max
y∈T1

h(x, y) 6= max
x∈T1

min
y∈T1

h(x, y),

we prove that one of the coordinates x or y of the flow is bounded in [0,∞).
Restricting ourselves to the subclass of flows X = Xab with

f(x, y) := b′(y), g(x, y) := b′(y), h(x, y) := b(y)−a(x),
it turns out that both coordinates x and y are bounded when ‖a‖∞ = ‖b‖∞,
and that the Herman rotation set of the flow Xab is then reduced to a closed
line segment. When ‖a‖∞ 6= ‖b‖∞, assuming some extra condition on the
roots of the derivatives a′, b′, we prove that the Herman rotation set of Xab is
planar and contains non-degenerate triangles. Finally, we refine this result in
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the case of the Arnold-Beltrami-Childress flow ABC with A = 0, by showing
that the planar Herman rotation set contains a “fusiform” shape.

Keywords: Integrable system, min-max, asymptotics, invariant probability mea-
sure, rotation set, ABC flow

Mathematics Subject Classification: 34E05, 34E10, 37C10, 37C40

1 Introduction

In this paper we study the three-dimensional ODEs flow

X : [0,∞)× T3 → R3

solution to the ODEs system X ′(t, x) := ∂tX(t, x) = F
Ä
X(t,X0)

ä
, t ≥ 0,

X(0, X0) = X0, X0 ∈ R3,
(1.1)

for the three-dimensional vector fields F := Ffgh defined in T3 = R3/Z3 by

Ffgh(x, y, z) :=
Ä
f(x, y), g(x, y), h(x, y)

ä
for (x, y, z) ∈ T3. (1.2)

Here, f, g are Z2-periodic functions in C1(R2) and h is a Z2-periodic function in
C2(R2) satisfying

(f, g) · ∇h = f ∂xh+ g ∂yh = 0 in T2, (1.3)

so that h is a first integral for the flowX associated with Ffgh. A well-known example
of such a flow is given by the so-called Arnold-Beltrami-Childress flow (denoted by
ABC) (1)

ABC flow:


x′ = A sin z + C cos y

y′ = B sinx+ A cos z

z′ = C sin y +B cosx,

(1.4)

when one of the three parameters is equal to zero. Up to a circular permutation of
the coordinates we can assume that A = 0. The case where ABC 6= 0 has been
the object of several works as an example of chaotic dynamical system (see, e.g.,
[8, 18] and the references therein) along with an example of non-integrable flow (see
[19, 20]). When A = 0 the ABC flow is integrable and clearly satisfies equation (1.3)
with

f(x, y) := C cos y, g(x, y) := B sinx, h(x, y) := B cosx+ C sin y.

In [18] the flow ABC with A = 0 has been explicitly computed thanks to Jacobi
elliptic functions restricting the flow to the periodic box [0, 2π)3. However, this

1The ABC flow has been introduced by Arnold [1] for studying the steady-state solution of
Euler equations.
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cannot not allow us to evaluate the asymptotics of the flow X (1.1) in terms of the
limits (or more rigorously the limit points)

asymptotics of the flow: lim
t→∞

X(t,X0)

t
for X0 ∈ R3, (1.5)

(which can take actually non-zero values), and to characterize the possible orbits
X([0,∞)) whose projections x([0,∞)) or/and y([0,∞)) are bounded in R (they do
exist). The derivation of the asymptotics (1.5) allows us to the Herman rotation set
[11] (see Section 1.2) as shown by Misiurewicz-Ziemian [14] for general flows in the
framework of ergodic theory. The ergodic approach has seen a spectacular rise for the
knowledge of two-dimensional flows on the torus since the pioneer work of Franks-
Misiurewicz [9] until the most recent developments (see, e.g., [7, 13]). However,
restricting ourselves to the field of ODEs flows there are very few results concerning
the asymptotics (1.5). Up to our best knowledge, the seminal contribution in the
topic is due to Peirone [15] (see, also [16, 17]) which has proved the remarkable result
that for any two-dimensional regular vector-field F which does not vanish on the
torus, limits (1.5) do hold for any X0 ∈ R3 (without extraction of any subsequence).
This has allowed Peirone to revisit the Franks-Misiurewicz [9] result for the ODEs
flows. Moreover, Peirone’s result does not hold in dimension three [15], nor in
dimension two when the vector field F does vanish [16]. This pioneer work has
been extended in [3, 4, 5], and more recently we have studied in [2] the asymptotics
of a two-dimensional Euler flow. In the present paper, we investigate the class of
flows (1.1) associated with the vector fields Ffgh in terms of the asymptotics (1.5)
together with the Herman rotation set.

In Section 2.1, dealing with the general class of vector fields (1.2) we prove (see
Theorem 2.1) that one of coordinates of the flow X = (x, y, z), either x or y is
bounded in R, if the first integral h satisfies the min-max condition

min
x∈T1

max
y∈T1

h(x, y) 6= max
x∈T1

min
y∈T1

h(x, y). (1.6)

This implies that the Herman rotation set lies either in the plane {x = 0} or in
{y = 0}. This general result seems to be original in the setting of the ODEs flows,
and it is proved thanks to a connectedness argument.

In Section 2.2 we restrict ourselves to the subclass of

ab flows:


x′ = b′(y)

y′ = a′(x)

z′ = b(y)− a(x),

(1.7)

where a, b are two 1-periodic functions in C2(R). In this case, the min-max condition
(1.6) reads as

‖a‖∞ := ‖a‖L∞(T1) 6= ‖b‖L∞(T1) =: ‖b‖∞. (1.8)

Moreover, we prove in addition to (1.8) (see Theorem 2.3) that the coordinates x
and y of the flow ab are both bounded in R, so that the Herman rotation set agrees
with the closed line segment [−2‖a‖∞, 2‖a‖∞] in the line {x = y = 0}.
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In Section 3 we focus on the asymptotics of the ab flow under additional assump-
tions on the functions a, b. Assuming that the derivatives of the functions c = a, b
have a finite number of roots in T1, whose two roots, say γ1 6= γ2, have to satisfy¶

c(γ) : c′(γ) = 0
©
∩
Ä
c(γ1), c(γ2)

ä
= Ø, (1.9)

we prove that the Herman rotation set is a planar compact convex set in R3,
which contains 0R3 and a family of non-degenerate triangles whose vertices are
parametrized by the open set{

(x0, y0) ∈ R2 : −
∣∣∣‖a‖∞ − ‖b‖∞∣∣∣ < a(x0)− b(y0) <

∣∣∣‖a‖∞ − ‖b‖∞∣∣∣} .
In contrast, the subset of the Herman rotation set induced by the regular (with
respect to Lebesgue’s measure) invariant probability measures for the flow (see Sec-
tion 1.2) is reduced to the closed line segmentî

−‖a‖∞−‖b‖∞, ‖a‖∞+‖b‖∞
ó

in the line {x = y = 0}. Therefore, any point of the Herman rotation set without
the line {x = y = 0}, is obtained through a singular (with respect to Lebesgue’s
measure) invariant probability measure for the ab flow.

Finally, in Section 4 we refine the previous results to the ABC flow with A = 0, by
exploiting the particular symmetries of the vector field. When |B| 6= |C|, we prove
(see Proposition 4.1) that the planar Herman rotation set contains a “fusiform”
shape as shown in Figure 1 on page 21.

1.1 Notation

• (e1, . . . , ed) denotes the canonical basis of Rd, and 0Rd is the null vector of Rd.

• “ · ” denotes the scalar product and | · | the euclidean norm in Rd.

• conv(A) denotes the convex hull of the subset A of Rd.

• Td for d ∈ N, denotes the d-dimensional torus Rd/Zd (respectively Rd/(2πZ)d in
Sec. 4), which may be identified to the unit cube [0, 1)d (respectively [0, 2π)d)
in Rd, and 0Td denotes the null vector of Td.

• Ck
c (Rd) for k ∈ N ∪ {∞}, denotes the space of the real-valued functions in

Ck(Rd) with compact support in Rd.

• Ck
] (Td) for k ∈ N ∪ {∞}, denotes the space of the real-valued functions f ∈

Ck(Rd) which are Zd-periodic, i.e.

∀K ∈ Zd, ∀X ∈ Rd, f(X +K) = f(X). (1.10)

• The Jacobian matrix of a C1-mapping Φ : Rd → Rd is denoted by the matrix-
valued function ∇Φ the entries of which are denoted by ∂xjΦi for i, j ∈
{1, . . . , d}.
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• The abbreviation “a.e.” for almost everywhere, will be used throughout the
paper. The simple mention “a.e.” refers to the Lebesgue measure on Rd.

• dX denotes the Lebesgue measure on Rd and Td, and σ(X) dX denotes the
regular Lebesgue measure with density σ.

• Lp] (Td) for p ∈ [1,∞], denotes the space of the Lebesgue measurable functions
f in Lploc(R

d), which are Zd-periodic dX-a.e. in Rd.
‖f‖p :=

Çˆ
Td

|f(X)|p dX
å1/p

<∞ if p <∞,

‖f‖∞ := supessTd |f | <∞ if p =∞.

• M (Td) denotes the the space of the Radon measures on Td, and Mp(Td)
denotes the space of the probability measures on Td.

• D ′(Rd) denotes the space of the distributions on Rd.

• For a Borel measure µ on Td and for f ∈ L1
] (T

d, µ), we denote

µ(f) :=

ˆ
Td

f(X)µ(dX), (1.11)

which is simply denoted by f when µ is Lebesgue’s measure. The same nota-
tion is used for a vector-valued function in L1

] (T
d, µ)d.

• c denotes a positive constant which may vary from line to line.

1.2 A few tools of ergodic theory

Let F ∈ C1
] (Td)d. Consider the ODEs flow X (1.1) associated with the vector field

F . A probability measure µ ∈Mp(Td) on Td is said to be invariant for the flow X
defined by (1.1) if

∀ t ∈ R, ∀ψ ∈ C0
] (Td),

ˆ
Td

ψ
Ä
X(t, y)

ä
dµ(y) =

ˆ
Td

ψ(y) dµ(y). (1.12)

Then, we may define the set of invariant probability measures

IF :=
¶
µ ∈Mp(T

d) : µ invariant for the flow X
©
. (1.13)

Also define for any vector field F ∈ C1
] (Td)d, the following non empty subsets of Rd:

• According to [14, (1.1)] the set of all the limit points of the sequences
Ä
X(n, ξn)/n

ä
n∈N

in Rd for any sequence (ξn)n∈N in Td, is defined by

ρF :=
⋂
n∈N

Ñ ⋃
ξ∈Td

®
X(k, ξ)

k
: k ≥ n

´é
. (1.14)

By [14, Lem. 2.2, Thm. 2.3] it is a compact and connected set of Rd.
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Remark 1.1. From the semi-group property of the flow (1.1) combined with
the following uniform bound

∀ t ≥ 0, ∀ ξ ∈ Td
 X(t, ξ) = X

Ä
[t], X(t− [t], ξ)

ä
∣∣∣X(t− [t], ξ)− ξ

∣∣∣ ≤ ‖F‖∞, (1.15)

we deduce that the set ρF (1.14) agrees with the set all the limit points of the
sequences

Ä
X(tn, ξn)/tn

ä
n∈N

in Rd for any positive sequence (tn)n∈N tending to

∞ and for any sequence (ξn)n∈N in Td.

• The so-called Herman [11] rotation set is defined by

CF :=
¶
µ(F ) : µ ∈ IF

©
. (1.16)

It is clearly a compact and convex set of Rd.

An implicit consequence of [14, Thm. 2.4, Rem. 2.5, Cor. 2.6] shows that in any
dimension

CF = conv (ρF ). (1.17)

The connection (1.17) between the asymptotics of the flow (1.1) and the Herman
rotation set for the flow is even stronger in dimension two, since by virtue of [14,
Thm. 3.4 (b)] we get that

d = 2 ⇒ CF = ρF . (1.18)

We have the following characterization of an invariant probability measure,
known as Liouville’s theorem (see, e.g., [6, Thm 1, Sec. 2.2]) which can also be
regarded as a divergence-curl result with measures (see [3, Rem. 2.2] for further
details).

Proposition 1.2 (Liouville’s theorem). Let F ∈ C1
] (Td)d and let µ ∈M (Td). Then,

the two following assertions are equivalent:

i) µ is invariant for the flow X, i.e. (1.12) holds true.

ii) µF is divergence free in Rd, i.e.

div (µF ) = 0 in D ′(Rd), (1.19)

or equivalently, µF is divergence free in the torus Td, i.e.

∀ψ ∈ C1
] (Td),

ˆ
Td

F (Y ) · ∇ψ(Y )µ(dY ) = 0. (1.20)
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2 Three-dimensional flows satisfying a min-max

condition

2.1 The class of fgh flows

Let f , g be two functions in C1
] (T2), and let h be a function in C2

] (T2) the gradient
of which is solution to the equation

f ∂xh+ g ∂yh = 0 in T2. (2.1)

We consider the three-dimensional flow Xfgh = (x, y, z) associated with the vector
field Ffgh(X) by

X ′fgh(t,X0) = Ffgh
Ä
Xfgh(t,X0)

ä
:=


f
Ä
x(t,X0), y(t,X0)

ä
g
Ä
x(t,X0), y(t,X0)

ä
h
Ä
x(t,X0), y(t,X0)

ä
,

Xfgh(0, X0) = X0 = (x0, y0, z0) ∈ R3.

(2.2)

Then, we have the following min-max result.

Theorem 2.1. Let f, g ∈ C1
] (T2) and let h ∈ C2

] (T2) be a function satisfying (2.1).
Then, the following implications hold for any X0 ∈ R3,

min
x∈T1

max
y∈T1

h(x, y) < max
x∈T1

min
y∈T1

h(x, y) ⇒ ∀ t ≥ 0, |x(t,X0)− x0| < 1,

min
x∈T1

max
y∈T1

h(x, y) > max
x∈T1

min
y∈T1

h(x, y) ⇒ ∀ t ≥ 0, |y(t,X0)− y0| < 1.
(2.3)

Remark 2.2. In the two implications (2.3) the use of min and max, rather than inf
and sup, is actually justified. Indeed, due to h ∈ C1

] (T2) the functions defined by

hM(x) := max
y∈T1

h(x, y) and hm(x) := min
y∈T1

h(x, y) for x ∈ T1,

are Lispschitz with constant ‖∂xh‖L∞(T2), thus continuous in R. Therefore, the
functions hM and hm do attain their bounds on T1 so that

min
x∈T1

max
y∈T1

h(x, y) = min
x∈T1

hM(x) and max
x∈T1

min
y∈T1

h(x, y) = max
x∈T1

hm(x).

Also note that since the extrema are taken independently with respect of the coor-
dinates x, y, we have

min
x∈T1

max
y∈T1

h(x, y) = inf
x∈T1

sup
y∈T1

h(x, y) = sup
y∈T1

inf
x∈T1

h(x, y) = max
y∈T1

min
x∈T1

h(x, y)

max
x∈T1

min
y∈T1

h(x, y) = sup
x∈T1

inf
y∈T1

h(x, y) = inf
y∈T1

sup
x∈T1

h(x, y) = min
y∈T1

max
x∈T1

h(x, y).
(2.4)
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Proof of Theorem 2.1. Let X0 ∈ R3. In the sequel we simply denote the flow X
(2.2) by

Xfgh(t) =
Ä
x(t), y(t), z(t)

ä
︸ ︷︷ ︸

instead of︷ ︸︸ ︷
Xfgh(t,X0) =

Ä
x(t,X0), y(t,X0), z(t,X0)

ä
.

(2.5)

The function h ∈ C2
] (T2) is a Hamiltonian for the flow X (2.8), since by the chain

rule and by (2.1) we have

∂t
Ä
h(Xfgh(t))

ä
= x′(t) ∂xh(x(t), y(t)) + y′(t) ∂yh(x(t), y(t))

= f(x(t), y(t)) ∂xh(x(t), y(t)) + g(x(t), y(t)) ∂yh(x(t), y(t)) = 0, ∀ t ≥ 0.

Hence, it follows that

∀ t ≥ 0, h(x(t), y(t)) = h(x0, y0). (2.6)

Now, assume that min
x∈T1

max
y∈T1

h(x, y) < max
x∈T1

min
y∈T1

h(x, y). Then, we have

h(x0, y0) > min
x∈T1

max
y∈T1

h(x, y) or h(x0, y0) < max
x∈T1

min
y∈T1

h(x, y). (2.7)

First, we assume that the first inequality of (2.7) holds. There exists xm ∈ T1 such
that

min
x∈T1

max
y∈T1

h(x, y) = hM(xm) with hM(x) := max
y∈T1

h(x, y).

This combined with equality (2.6) and the first inequality of (2.7) yields

∀ t ≥ 0, hM(x(t)) ≥ h(x(t), y(t)) = h(x0, y0) > min
x∈T1

max
y∈T1

h(x, y) = hM(xm),

Hence, due to the 1-periodicity of hM , we deduce that

x([0,∞)) ⊂
⋃
n∈Z

(n+ xm, n+ 1 + xm).

Therefore, since by the intermediate value theorem x([0,∞)) is an interval of R,
there exists an integer n ∈ Z such that

x([0,∞)) ⊂ (n+ xm, n+ 1 + xm),

which implies that

∀ t ≥ 0, |x(t)− x0| = |x(t)− x(0)| < 1.

The proof is quite similar if the second inequality of (2.7) holds by using this
time the existence of xM ∈ T1 such that

max
x∈T1

min
y∈T1

h(x, y) = hm(xM) with hm(x) := min
y∈T1

h(x, y),
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which leads us to the existence of n ∈ Z such that

x([0,∞)) ⊂ (n+ xM , n+ 1 + xM).

Therefore, we have just proved the first implication of (2.3).
Finally, in view of (2.4) the inequality of the second implication of (2.3) also

reads as
min
y∈T1

max
x∈T1

h(x, y) < max
y∈T1

min
x∈T1

h(x, y),

so that it can be deduced from the previous proof by a permutation of x and y.
The proof of Theorem 2.1 is thus complete.

2.2 The subclass of ab flows

Let a, b be two functions in C2
] (T1). We consider the flow Xab = (x, y, z) of type

(1.1) associated with the vector field Fab(X) by

X ′ab(t,X0) = Fab
Ä
X(t,X0)

ä
:=


b′
Ä
y(t,X0)

ä
a′
Ä
x(t,X0)

ä
b
Ä
y(t,X0)

ä
− a
Ä
x(t,X0)

ä
,

Xab(0, X0) = X0 = (x0, y0, z0) ∈ R3.

(2.8)

Note that the projection of the flow X on the pair (x, y) turns out to be a two-
dimensional Hamiltonian flow whose Hamiltonian is the fonction (x, y) 7→ b(y)−a(x).

We have the following result satisfied by the flow Xab.

Theorem 2.3. Let a and b be two functions in C2
] (T1) satisfying the range condition

a
Ä
[0, 1)

ä
=
î
−‖a‖∞, ‖a‖∞

ó
and b

Ä
[0, 1)

ä
=
î
−‖b‖∞, ‖b‖∞

ó
. (2.9)

Then, we have the following alternative:

i) The following implications hold for any fixed X0 ∈ R3, ‖a‖∞ > ‖b‖∞ ⇒ ∀ t ≥ 0, |x(t,X0)− x0| < 1,

‖a‖∞ < ‖b‖∞ ⇒ ∀ t ≥ 0, |y(t,X0)− y0| < 1.
(2.10)

ii) If ‖a‖∞ = ‖b‖∞, we have

∀ t ≥ 0, |x(t,X0)− x0| ≤ 1 and |y(t,X0)− y0| ≤ 1. (2.11)

Moreover, the Herman rotation set (1.16) is given by

CFab
=
î
−2 ‖a‖∞, 2 ‖a‖∞

ó
e3. (2.12)
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Proof of Theorem 2.3.

Proof of i). Define the functions f , g, h in T2 by

f(x, y) := b′(y), g(x, y) := a′(x), h(x, y) := b(y)− a(x), (2.13)

so that equality (2.1) is satisfied. Moreover, by the range condition (2.9) we get that
min
x∈T1

max
y∈T1

h(x, y) = min
x∈T1

max
y∈T1

Ä
b(y)− a(x)

ä
= ‖b‖∞ − ‖a‖∞,

max
x∈T1

min
y∈T1

h(x, y) = max
x∈T1

min
y∈T1

Ä
b(y)− a(x)

ä
= ‖a‖∞ − ‖b‖∞.

Therefore, the implications (2.3) of Theorem 2.1 imply the desired implications
(2.10).

Proof of ii). Assume that ‖a‖∞ = ‖b‖∞ > 0, and define the function aε := (1 + ε) a
for ε > 0.

First of all, let Xε be the flow defined by (2.8) with the functions aε and b, which
is associated with the vector-field

F ε
ab(X) := Fab(X) + ε

Ä
0, a′(x),− a(x)

ä
for X = (x, y, z) ∈ T3.

Since Fab ∈ C1
] (T3) is a κ-Lipschitz function on R3 for some κ > 0, we have for any

fixed X0 ∈ R3, for any fixed T > 0 and for any t ∈ [0, T ],

0 ≤
∣∣∣Xε(t,X0)−X(t,X0)

∣∣∣ =

ˆ t

0

∣∣∣F ε
ab

Ä
Xε(s,X0)

ä
− Fab

Ä
X(s,X0)

ä∣∣∣ ds
≤ κ

ˆ t

0

∣∣∣Xε(s,X0)
ä
−X(s,X0)

ä∣∣∣ ds+ ε t (‖a′‖∞ + ‖a‖∞)︸ ︷︷ ︸
=: c

≤ κ

ˆ t

0

∣∣∣Xε(s,X0)
ä
−X(s,X0)

ä∣∣∣ ds+ c T ε.

Hence, by Gronwall’s inequality (see, e.g., [12, Sec. 17.3]) we deduce that

∀ t ∈ [0, T ],
∣∣∣Xε(t,X0)−X(t,X0)

∣∣∣ ≤ c T ε eκ t. (2.14)

On the other hand, since

‖aε‖∞ = (1 + ε) ‖a‖∞ = (1 + ε) ‖b‖∞ > ‖b‖∞ > 0,

by the first implication of (2.10) we get that

∀ t ≥ 0, |xε(t,X0)− x0| < 1.

Therefore, passing to the limit ε→ 0 together with the uniform estimate (2.14) for
an arbitrary T > 0, we obtain the enlarged inequality

∀ t ≥ 0, |x(t,X0)− x0| ≤ 1,

10



i.e. the first inequality of (2.11). Finally, proceeding similarly with the functions a
and the perturbed function bε := (1 + ε) b, and using the second estimate of (2.10),
we obtain the two desired inequalities (2.11).

Now, it remains to characterize the Herman rotation set CFab
when ‖a‖∞ = ‖b‖∞.

On the one hand, as an immediate consequence of (2.11) we have

∀X0 ∈ R3, lim
t→∞

x(t,X0)

t
= lim

t→∞

y(t,X0)

t
= 0,

which by the set equality (1.17) (see (1.14) and Remark 1.1) implies that

CFab
⊂ R e3. (2.15)

On the other hand, since the function h defined by (2.13) is a first integral of the
flow Xab, we get that for any X0 ∈ R3,

∀ t ≥ 0, z(t,X0) =
Ä
b(y0)− a(x0)

ä
t+ z0, lim

t→∞

z(t,X0)

t
= h(X0), (2.16)

which again by (1.17) implies that

CFab
· e3 =

¶
h(X0)), X0 ∈ R3

©
.

This combined with (2.15) thus gives

CFab
=
¶
h(X0), X0 ∈ R3

©
e3 =

¶
b(y0)− a(x0), (x0, y0) ∈ T2

©
e3.

Finally, using the range condition (2.9) combined with ‖a‖∞ = ‖b‖∞, we obtain the
equality ¶

b(y0)− a(x0), (x0, y0) ∈ T2
©

=
î
−2 ‖a‖∞, 2 ‖a‖∞

ó
,

which leads us to the expression (2.12) of the Herman rotation set.
The proof of Theorem 2.3 is now complete.

3 Asymptotics of the ab flows

In this section we assume that the derivatives a′, b′ of the flow X (2.8) have a finite
number of roots in the torus T1¶

α ∈ [0, 1) : a′(α) = 0
©

=
¶
0 ≤ α0 < α1 < · · · < αp−1 < 1

©
, p ≥ 2,¶

β ∈ [0, 1) : b′(β) = 0
©

=
¶
0 ≤ β0 < β1 < · · · < βq−1 < 1

©
, q ≥ 2,

(3.1)

When the 1-periodic functions a, b satisfy some extrema conditions, we can deter-
mine the regular (with respect to Lebesgue’s measure) invariant probability measures
and the Herman rotation set CFab

(1.16) in a rather precise way. This is the aim of
the following result.
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Theorem 3.1. In addition to condition (2.9) assume that either
‖a‖∞ > ‖b‖∞,

∃ i0, j0 ∈ {0, . . . ,m−1}, a(αi0) < a(αj0),

∀ k ∈ {0, . . . ,m−1}, a(αk) /∈
Ä
a(αi0), a(αj0)

ä
,

(3.2)

or 
‖a‖∞ < ‖b‖∞,

∃ k0, l0 ∈ {0, . . . , n−1}, b(βk0) < b(βl0),

∀ j ∈ {0, . . . , n−1}, b(βj) /∈
Ä
b(βk0), b(βl0)

ä
.

(3.3)

Then, the following results hold.

i) The closed subset Dab of the rotation set CFab
(1.16) induced by the regular (with

respect to Lebesgue’s measure) invariant probability measures for the flow Xab, is
given by

Dab :=
¶
σFab : σ ∈ L1

] (T3) and σ(Y ) dY ∈ IFab

©
=
î
−‖a‖∞−‖b‖∞, ‖a‖∞+‖b‖∞

ó
e3.

(3.4)

ii) For any pair (x0, y0) ∈ T2, we have the two following implications:

(3.2) and a(αi0) + ‖b‖∞ < a(x0)− b(y0) < a(αj0)− ‖b‖∞︸ ︷︷ ︸
⇓︷ ︸︸ ︷

∃ γ0 6= 0,
Ä
0, γ0, b(y0)−a(x0)

ä
∈ CFab

,

(3.5)

and
(3.3) and b(βk0) + ‖a‖∞ < b(y0)− a(x0) < b(βl0)− ‖a‖∞︸ ︷︷ ︸

⇓︷ ︸︸ ︷
∃ δ0 6= 0,

Ä
δ0, 0, b(y0)−a(x0)

ä
∈ CFab

.

(3.6)

Moreover, if there exists a pair (x0, y0) ∈ T2 satisfying
(3.2) and a(αi0) + ‖b‖∞ < a(x0)− b(y0) < a(αj0)− ‖b‖∞

or

(3.3) and b(βk0) + ‖a‖∞ < b(y0)− a(x0) < b(βl0)− ‖a‖∞,
(3.7)

then the Herman rotation set CFab
is a planar compact convex set in R3, which

contains 0R3 and a non-degenerate triangle.
iii) Any invariant probability measure µ for the flow Xab satisfying (recall (1.11))

µ(Fab) · e1 6= 0 or µ(Fab) · e2 6= 0, (3.8)

is singular with respect to Lebesgue’s measure.
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Remark 3.2. In view of Theorem 2.3 and Theorem 3.1 the geometrical nature of
the Herman rotation set CFab

is very different depending on whether ‖a‖∞ 6= ‖b‖∞
or ‖a‖∞ = ‖b‖∞. If ‖a‖∞ 6= ‖b‖∞, CFab

is a non-degenerate planar set of R3. On
the contrary, if ‖a‖∞ = ‖b‖∞, CFab

is a close line segment. This also shows the gap
between dimension two and dimension three for the Herman rotation set. Indeed,
Franks and Misiurewicz [9] have proved that the rotation set for any dimensional
continuous flow is always a closed line segment, while according to [4, Thm. 4.1]
any convex polyedra of R3 can be a Herman rotation set CF for some suitable vector
field F .

Proof of Theorem 3.1. In the sequel we again use notation (2.5).

Proof of i). Let σ be a non-negative function in L1
] (T

3) such that σ(Y ) dY is an
invariant probability measure for the flow Xab. Applying the div-curl equality (1.20)
with the invariant probability measure µ(dY ) := σ(Y ) dY and the vector field Fab
of (2.8), using condition (3.1), and noting that the vector field Fab is independent
of coordinate z, we get that

ˆ
T2

‹Fab(x, y) · ∇ϕ(x, y)σz(x, y) dxdy = 0, ∀ϕ ∈ C1
] (T2),‹Fab(x, y) :=

Ä
b′(y), a′(x)

ä
, σz(x, y) :=

ˆ
T2

σ(x, y, z) dz for (x, y) ∈ T2.

(3.9)

By condition (3.1) the previous equality reads as

∀ϕ ∈ C1
] (T2),

p−2∑
i=0

q−2∑
j=0

ˆ
(αi,αi+1)×(βj ,βj+1)

‹Fab(x, y) · ∇ϕ(x, y)σz(x, y) dxdy = 0. (3.10)

Now, fix a pair (i, j) in {0, . . . , p−2}×{0, . . . , q−2}, and define the C1-mapping Φij

by

Φij(x, y) :=
1

2

Ä
a(x)− b(y), a(x) + b(y)

ä
for (x, y) ∈ Rij := (αi, αi+1)× (βj, βj+1),

(3.11)

the Jacobian of which satisfies

JΦij
(x, y) =

1

4

∣∣∣∣∣ a′(x) −b′(y)
a′(x) b′(y)

∣∣∣∣∣ =
1

2
a′(x) b′(y) 6= 0, ∀ (x, y) ∈ Rij.

Moreover, since the function a is injective in (αi, αi+1) (due to a′ 6= 0 in the interval)
and the function b is injective in (βj, βj+1) (due to b′ 6= 0 in the interval), the mapping
Φij is clearly injective in the open rectangle Rij. Hence, by virtue of the (global)
inverse function theorem, Φij is a C1-diffeomorphism from the open rectangle Rij

on its open range Φij(Rij).
Then, for ϕ ∈ C1

] (T2) making the change of variables in (3.10):

(u, v) := Φij(x, y) and ψij(u, v) := ϕ(x, y) for (x, y) ∈ Rij,
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we get that

0 =
p−2∑
i=0

q−2∑
j=0

ˆ
Rij

Ä
b′(y) ∂xϕ(x, y) + a′(x) ∂yϕ(x, y)

ä
σz(x, y) dxdy

=
p−2∑
i=0

q−2∑
j=0

ˆ
Φij(Rij)

a′(x) b′(y) ∂vψij(u, v)σz(x, y) |JΦij
(x, y)|−1 dudv

=
p−2∑
i=0

q−2∑
j=0

ˆ
Φij(Rij)

2 ∂vψij(u, v)σz
Ä
Φ−1
ij (u, v)

ä
dudv.

(3.12)

Therefore, by the arbitrariness of the function ψij chosen in C∞c
Ä
Φij(Rij)

ä
for any

(i, j), we deduce from equality (3.12) that

∂v
Ä
σz
Ä
Φ−1
ij (u, v)

ää
= 0 in D ′

Ä
Φij(Rij)

ä
,

which implies the existence of a non-negative function θij satisfying
σz
Ä
Φ−1
ij (u, v)

ä
= θij(u) in Φij(Rij)

θij
JΦij
◦ Φ−1

ij

∈ L1
Ä
Φij(Rij)

ä
,

∀ (i, j) ∈ {0, . . . , p−2}×{0, . . . , q−2}. (3.13)

Moreover, consider two pairs (i, j) and (k, l) such that Φij(Rij) and Φkl(Rkl) have
a common boundary Γijkl of positive H 1-Hausdorff measure. Then, taking the test
function ϕ ∈ C1

] (T2) with compact support in Φij(Rij) ∪ Φkl(Rkl) and integrating
by parts the last integrals of (3.12), we get that

0 =

ˆ
∂Φij(Rij)

ψij(u, v)σz
Ä
Φ−1
ij (u, v)

ä
νij H 1(du, dv)

+

ˆ
∂Φkl(Rkl)

ψij(u, v)σz
Ä
Φ−1
kl (u, v)

ä
νkl H

1(du, dv)

=

ˆ
Γijkl

ϕ
Ä
Φ−1
ij (u, v)

ä Ä
θij(u)− θkl(u)

ä
νij H 1(du, dv),

where νij = − νkl denotes the v-coordinate of the outside normal of Γijkl. Due to
the arbitrariness of ϕ we get thatÄ

θij(u)− θkl(u)
ä
νij = 0 on Γijkl.

This combined with (3.13) implies that the mean-value function σz reads as

σz(x, y) = θ(a(x)− b(y)) for (x, y) ∈ T2, (3.14)

where θ is a non-negative Lebesgue measurable function in R satisfying
ˆ

T2

θ(a(x)− b(y)) dxdy = 1. (3.15)
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Conversely, recalling equality (3.9) we can check that any non-negative function σ
satisfying (3.14), (3.15) clearly defines the Lebesgue density of an invariant proba-
bility measure for the flow Xab.

As a consequence of the representation (3.14), (3.15), we have

σFab =

ˆ
T2

σz(x, y)Fab(x, y) dxdy

=

Çˆ
T2

b′(y) θ(a(x)− b(y)) dxdy

å
e1

+

Çˆ
T2

a′(x) θ(a(x)− b(y)) dxdy

å
e2

−
Çˆ

T2

(a(x)− b(y)) θ(a(x)− b(y)) dxdy

å
e3.

(3.16)

Moreover, using Fubini’s theorem, Chasles’ rule and making the change of variable
z = b(y) in each interval (βj, βj+1) by denoting β−1 := 0, βq := 1, we get that

ˆ
T2

b′(y) θ(a(x)− b(y)) dxdy =

ˆ 1

0

dx

Ñ
q−1∑
j=−1

ˆ βj+1

βj

b′(y) θ(a(x)− b(y)) dy

é
=

ˆ 1

0

dx

Ñ
q−1∑
j=−1

ˆ b(βj+1)

b(βj)

θ(a(x)− z) dz

é
=

ˆ 1

0

dx

(ˆ b(βq)

b(β−1)

θ(a(x)− z) dz

)
= 0,

since by the 1-periodicity of b we have b(β−1) = b(0) = b(1) = b(βq). Similarly, we
obtain that ˆ

T2

a′(x) θ(a(x)− b(y)) dxdy = 0.

Hence, the mean-value (3.16) is reduced to

σFab = −
Çˆ

T2

(a(x)− b(y)) θ(a(x)− b(y)) dxdy

å
e3, (3.17)

for any non-negative Lebesgue measurable function θ in R satisfying equality (3.15).
Finally, let us prove equality (3.4). On the one hand, from the equalities (3.15)

and (3.17) we easily deduce that

Dab =
¶
σFab : σ ∈ L1

] (T3) and σ(Y ) dY ∈ IFab

©
⊂
î
−‖a‖∞−‖b‖∞, ‖a‖∞+‖b‖∞

ó
e3.

(3.18)

On the other hand, by the range condition (2.9) there exists a pair (γ, δ) in [0, 1)2

such that
a(γ) = ±‖a‖∞ and b(δ) = ∓‖b‖∞, (3.19)
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which thus satisfies a′(γ) = b′(δ) = 0. Note that by (3.1) we have

(γ, δ) ∈
¶
α0, α1, . . . , αp−1

©
×
¶
β0, β1, . . . , βq−1

©
,

and for any (x, y) ∈ [0, 1)2,

a(x)− b(y) = ±‖a‖∞ ± ‖b‖∞
⇒ a(x) = ±‖a‖∞ and b(y) = ∓‖b‖∞
⇒ (x, y) ∈

¶
α0, α1, . . . , αp−1

©
×
¶
β0, β1, . . . , βq−1

©
.

(3.20)

For such a pair (γ, δ) and for any ε > 0, the non-negative function θε defined by

θε :=
1(c−ε,c+ε)ˆ

T2

1(c−ε,c+ε)(a(x)− b(y)) dxdy
, where c := a(γ)− b(δ), (3.21)

satisfies equality (3.15). Then, any invariant probability measure σε(Y ) dY for the
flow Xab, with σε ∈ L1

] (T
3), satisfies the equalities (3.14), (3.17) with the function θε,

which (recalling (3.18)) yields

σεFab = −
Çˆ

T2

(a(x)− b(y)) θε
Ä
a(x)− b(y)

ä
dxdy

å
e3 ∈ Dab. (3.22)

Moreover, by (3.19) and the implications (3.20), the set {(x, y) : a(x)− b(y) = c} is
a finite subset of [0, 1)2 containing the pair (γ, δ), which thus reads as¶

(x, y) ∈ [0, 1)2 : a(x)− b(y) = c
©

=
¶
(xk, yk) ∈ [0, 1)2 : a(xk)− b(yk) = c, k = 1, . . . , N

©
.

(3.23)

The following result whose proof is given below, shows the concentration effect of
the sequence θε

Ä
a(x)− b(y)

ä
on the points (xk, yk) as ε→ 0.

Lemma 3.3. There exist a positive sequence (εn)n∈N which converges to 0 and N
non-negative numbers ω1, . . . , ωN whose sum is equal to 1, such that the following
convergence holds in the weak ∗ sense of measures

θεn
Ä
a(x)− b(y)

ä
⇀
n→∞

N∑
k=1

ωk δ(xk,yk) weakly ∗ in M (T2), (3.24)

where δξ denotes the Dirac mass at the point ξ ∈ R2.

Hence, by the continuity of the functions a, b combined with the compactness of Dab,
we deduce from (3.22), (3.23), (3.24) and (3.19) that

lim
n→∞

σεnFab = −
N∑
k=1

ωk

ˆ
T2

(a(x)− b(y)) δ(xk,yk)(dx, dy) = − c e3

= (− a(γ) + b(δ)) e3 = (∓‖a‖∞ ∓ ‖b‖∞) e3 ∈ Dab.

16



Therefore, since the set Dab is clearly convex, the inclusion (3.18) and the previous
limit imply the desired equality (3.4), which ends the proof of part i).

Proof of ii). Let us prove implication (3.5). The proof of (3.6) is quite similar by
permuting the roles of x and y.

First of all, note that the hypothesis of (3.5) implies that there exists ε > 0
satisfying

ε+ a(αi0) + ‖b‖∞ ≤ a(x0)− b(y0) ≤ a(αj0)− ε− ‖b‖∞. (3.25)

By the equality (2.6) together with (3.25) we get that for any t ≥ 0, a(x(t)) ≥ ε+ a(αi0) + ‖b‖∞ + b(y(t)) ≥ ε+ a(αi0)

a(x(t)) ≤ a(αj0)− ε− ‖b‖∞ + b(y(t)) ≤ a(αj0)− ε,

namely
∀ t ≥ 0, ε+ a(αi0) ≤ a(x(t)) ≤ a(αj0)− ε. (3.26)

This combined with (3.1) and (3.2) implies that a′(x) : t 7→ a′(x(t)) does not vanish
in [0,∞). Then, by the continuity of a′(x) we get that

∀ t ≥ 0, a′(x(t)) > 0 or ∀ t ≥ 0, a′(x(t)) < 0. (3.27)

First, assume that the first inequality of (3.27) holds true. Hence, we deduce the
existence of a constant γ > 0 such that

∀ t ≥ 0, y′(t) = a′(x(t)) ≥ γ. (3.28)

Otherwise, there exists a sequence (sn)n∈N in [0,∞) such that

lim
n→∞

a′(x(sn)) = 0.

However, due to ‖a‖∞ > ‖b‖∞ the first implication of (2.10) shows that the sequence
(x(sn))n∈N is bounded in R. Hence, by (3.26) there exists a subsequence, still denoted
by (sn)n∈N, such that lim

n→∞
x(sn) = u with

a′(u) = 0 and a(αi0) < ε+ a(αi0) ≤ a(u) ≤ a(αj0)− ε < a(αj0),

which contradicts (3.2). Hence, inequality (3.28) holds and implies that

lim inf
t→∞

y(t)

t
≥ γ > 0.

This combined with the first implication of (2.10) and the formula (2.16) satisfied
by z(t), shows the existence of a number γ0 > 0 and of a positive sequence (tn)n∈N

tending to ∞ such that

lim
n→∞

x(tn)

tn
= 0, lim

n→∞

y(tn)

tn
= γ0, lim

n→∞

z(tn)

tn
= b(y0)− a(x0). (3.29)
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Finally, using the set equality (1.17) (see (1.14) and Remark 1.1) we obtain thatÄ
0, γ0, b(y0)−a(x0)

ä
∈ CFab

.

Similarly, when the second inequality of (3.27) holds, there exists a number γ0 < 0
satisfying (3.29) so that Ä

0, γ0, b(y0)−a(x0)
ä
∈ CFab

.

which ends the proof of implication (3.5).
On the other hand, taking into account the range condition (2.9) consider a pair

(x1, y1) in T2 satisfying the extrema conditions

a(x1) ∈
¶
−‖a‖∞, ‖a‖∞

©
and b(y1) ∈

¶
−‖b‖∞, ‖b‖∞}

which imply that a′(x1) = b′(y1) = 0. Then, by the uniqueness of the solution to
the ODE (2.8) we get the following four solutions

∀ t ≥ 0, a′(x(t)) = b′(y(t)) = 0 and z(t) =
Ä
±‖a‖∞±‖b‖∞

ä
t+ z0.

Therefore, again using equality (1.17) we obtain thatÄ
0, 0,±‖a‖∞±‖b‖∞

ä
∈ CFab

. (3.30)

This combined with the conclusion of (3.5) implies the existence of a number γ0 6= 0
and of some pair (x0, y0) ∈ T2 satisfying under condition (3.2), the inclusion

Tab ⊂ CFab
, (3.31)

where Tab is the non-degenerate triangle with verticesÄ
0, 0,−‖a‖∞−‖b‖∞

ä
,
Ä
0, 0, ‖a‖∞+‖b‖∞

ä
,
Ä
0, γ0, b(y0)−a(x0)

ä
,

containing 0R2 in the plane {x = 0}. This concludes the proof of part ii).

Proof of iii). Assume that µ is a regular invariant probability measure for the flow
Xab with density σ ∈ L1

] (T
3). Then, the vector µ(Fab) in CFab

agrees with the mean-

value σFab which belongs to the line R e3 by (3.4). Therefore, condition (3.8) cannot
hold, which establishes the part iii) by contraposition.

This concludes the proof of Theorem 3.1.

Proof of Lemma 3.3. First, let us prove by contradiction that (recall (3.21), (3.23))

∀ δ > 0, ∃ ε ∈ (0, δ), ∀ (x, y) ∈ T2,

|a(x)− b(y)− c| < ε

⇓
∃ k = 1, . . . , N, ‖(x, y)−(xk, yk)‖T2 < δ,

(3.32)

where ‖ξ‖T2 := min
(k1,k2)∈Z2

Ä
|ξ1 − k1|+ |ξ2 − k2|

ä
for ξ = (ξ1, ξ2) ∈ R2.
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If (3.32) does not hold, there exist δ > 0 and a sequence
Ä
(un, vn)

ä
n∈N

in T2 such
that

∀n ∈ N, |a(un)− b(vn)− c| < 1

n
and ∀ k = 1, . . . , N, ‖(un, vn)−(xk, yk)‖T2 ≥ δ.

Up to extract a subsequence, the sequence (un, vn) converges to some (u, v) in T2

which satisfies

a(u)− b(v) = c and ∀ k = 1, . . . , N, ‖(u, v)−(xk, yk)‖T2 ≥ δ,

and leads us to a contradiction with (3.23).
Now, take in (3.32) δ := 1/n for n ∈ N, and choose a suitable εn ∈ (0, 1/n).

Hence, it follows from the definitions (3.21), (3.23) that for any n ∈ N and for any
pair (x, y) ∈ [0, 1)2,

θεn
Ä
a(x)− b(y)

ä
6= 0 ⇒ (x, y) ∈

N⋃
k=1

Ä
xk − 1

n
, xk + 1

n

ä
×
Ä
yk − 1

n
, yk + 1

n

ä
︸ ︷︷ ︸

=: Rk
n

,

where the rectangles Rk
n are mutually disjoint for any large enough n.

Let ϕ ∈ C0
] (T2). Then, using the uniform continuity of ϕ in T2 combined with the

boundedness (3.15) of θεn
Ä
a(x)− b(y)

ä
in L1

] (T
2), we have

ˆ
T2

θεn
Ä
a(x)− b(y)

ä
ϕ(x, y) dxdy =

ˆ
[0,1)2

θεn
Ä
a(x)− b(y)

ä
ϕ(x, y) dxdy

=
N∑
k=1

ˆ
Rk

n

θεn
Ä
a(x)− b(y)

ä
ϕ(x, y) dxdy

=
N∑
k=1

(ˆ
Rk

n

θεn
Ä
a(x)− b(y)

ä
dxdy

)
ϕ(xk, yk) + o(1).

Therefore, up to extract a subsequence of n, we deduce that

lim
n→∞

ˆ
T2

θεn
Ä
a(x)− b(y)

ä
ϕ(x, y) dxdy =

N∑
k=1

ωk ϕ(xk, yk)

where ωk := lim
n→∞

ˆ
Rk

n

θεn
Ä
a(x)− b(y)

ä
∈ [0, 1] for k = 1, . . . , N.

By (3.15) we also have

N∑
k=1

ωk = lim
n→∞

N∑
k=1

ˆ
Rk

n

θεn
Ä
a(x)− b(y)

ä
dxdy = lim

n→∞

ˆ
T2

θεn
Ä
a(x)− b(y)

ä
dxdy = 1.

This establishes the weak ∗-convergence (3.24), and concludes the proof.
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4 The ABC flow with A = 0

The ABC flow XBC = (x, y, z) with parameters A = 0 and B,C ∈ R is solution to
the ODEs system

X ′BC(t,X0) = FBC
Ä
XBC(t,X0)

ä
:=


C cos

Ä
y(t,X0)

ä
B sin

Ä
x(t,X0)

ä
B cos

Ä
x(t,X0)

ä
+ C sin

Ä
y(t,X0)

ä
,

XBC(0, X0) = X0 = (x0, y0, z0) ∈ R3.

(4.1)

In [18, Sec. 2] the parametric expressions of x(t,X0) and y(t,X0) are explicitly given
in terms of some Jacobi elliptic functions modulo 2π in the two-dimensional torus
T2 := R2 \ (2πZ)2, but not in the whole space R2. However, when |B| 6= |C| some
orbits of the flow XBC are not bounded in R2. More generally, we will characterize
the Herman rotation set CFBC

which is strongly connected to the asymptotics of the
flow XBC by the set equality (1.17).

On the one hand, apply the the results of Section 3 depending on the cases
|B| 6= |C| and |B| = |C|. In the sequel we still use the simplified notation (2.5).
The ABC flow XBC (4.1) agrees with the flow Xab (2.8) taking

a(x) := −B cos(x), b(y) := C sin(y), for x, y ∈ T1 := R/(2πZ), (4.2)

which satisfy the range condition

a([0, 2π)) =
î
−|B|, |B|

ó
and b([0, 2π)) =

î
−|C|, |C|

ó
. (4.3)

Here, equality (2.6) reads as

B cos(x) + C sin(y) = B cos(x0) + C sin(y0) in [0,∞). (4.4)

The roots condition (3.1) also holds since
¶
α ∈ [0, 2π) : a′(α) = 0

©
=
¶
0 = α0 < α1 = π

©
p = 2,¶

β ∈ [0, 2π) : b′(β) = 0
©

=
¶
π/2 = β0 < β1 = 3π/2

©
q = 2.

(4.5)

Moreover, conditions (3.2) and (3.3) are satisfied since the derivatives a′, b′ have
only two roots in the interval [0, 2π).

Therefore, equality (3.4) reads as¶
σFBC : σ ∈ L1

] (T3) and σ(Y ) dY ∈ IFBC

©
=
î
−|B|−|C|, |B|+|C|

ó
e3.

(4.6)

Next, taking into account the 2π-periodicity the boundedness properties (2.10) are
written as  |B| > |C| ⇒ ∀ t ≥ 0, |x(t)− x0| < 2π,

|B| < |C| ⇒ ∀ t ≥ 0, |y(t)− y0| < 2π.
(4.7)
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Figure 1: The convex subset DBC of CFBC
for B > C > 0

In addition, the inclusion (3.30) yieldsÄ
0, 0,±|B|±|C|

ä
∈ CFBC

. (4.8)

On the other hand, a more careful analysis leads us to the following result.

Proposition 4.1.

i) If |B| 6= |C|, the Herman rotation set for the flow XBC satisfies the inclusion

DBC := conv
Å
D
Ä
0R2 , ||B|−|C||

ä
∪
î
−|B|−|C|, |B|+|C|

ó
e3

ã
⊂ CFBC

,
(4.9)

where DBC is the fusiform shape (see Figure 1) defined as the convex hull of the
closed line segment

î
−|B|−|C|, |B|+|C|

ó
along the line R e3, together with the open

disk D
Ä
0R2 , ||B|−|C||

ä
centered on 0R2 and of radius ||B|−|C|| which lies either in

the plane {x = 0} (if |B| > |C|) or in the plane {y = 0} (if |B| < |C|).
In terms of the flow asymptotics, for any point µ(FBC) (1.11) in the set DBC,

there exist a point U0 ∈ T3 and a sequence (sn)n∈N tending to ∞ such that

Π
Ä
µ(FBC)

ä
= lim

n→∞

Π
Ä
XBC(sn, U0)

ä
sn

, (4.10)
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where Π is the orthogonal projection of R3 on the plane {z = 0}.
Moreover, for any point µ(FBC) in CFBC

\(R e3), the invariant probability measure
µ for the flow XBC is necessarily singular with respect to Lebesgue’s measure.

ii) If |B| = |C|, the Herman rotation set for the flow XBC is given by

CFBC
=
î
−2|B|, 2|B|

ó
e3. (4.11)

Proof of Proposition 4.1.

Proof of ii). First, let us prove that for any (x0, y0) ∈ T2, the implications (3.5) and
(3.6) yield 

|C| − |B| < c0 := B cos(x0) + C sin(y0) < |B| − |C|

⇓

∃ γ0 6= 0,

∣∣∣∣∣ (0,±γ0, c0) ∈ CFBC

(0, γ0,−c0) ∈ CFBC

,




|B| − |C| < B cos(x0) + C sin(y0) < |C| − |B|

⇓

∃ δ0 6= 0,

∣∣∣∣∣ (±δ0, 0, c0) ∈ CFBC

(−δ0, 0,−c0) ∈ CFBC
.



(4.12)

Compared to the general case of (3.5) and (3.6), we get the additional points of CFBC

as follows:
Assume for example that |B| > |C|. Since the vector field

YBC(t) :=
Ä
− x(t), π − y(t), z(t)

ä
= XBC

Ä
t, (−x0, π − y0, z0)

ä
, (4.13)

is solution to (4.1), and since by (3.29) there exists a sequence (tn)n∈N tending to
∞ such that

(0, γ0, c0) = lim
n→∞

XBC(tn)

tn
,

we deduce from the set equality (1.17) (see (1.14) and Remark 1.1) that

(0,−γ0, c0) = lim
n→∞

YBC(tn)

tn
∈ CFBC

. (4.14)

Moreover, the vector field

ZBC(t) :=
Ä
π − x(t), π + y(t),−z(t)

ä
= XBC

Ä
t, (π − x0, π + y0,−z0)

ä
(4.15)

is also solution to (4.1), which implies that

(0, γ0,−c0) = lim
n→∞

ZBC(tn)

tn
∈ CFBC

.

Similarly, assuming that |B| < |C| and using the two fields (4.13), (4.15), we get
the second implication of (4.12).
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Then, collecting (4.12), (4.8) and using the convexity of the Herman rotation set
CFBC

, we get that for any (x0, y0) ∈ T2 with |c0| < ||B|−|C||, there exist γ0, δ0 6= 0
such that:

• if |B| > |C|, CFBC
contains the convex pentagon with vertices

(0, 0,−|B|−|C|), (0, 0, |B|+ |C|), (0, γ0, c0), (0,−γ0, c0), (0, γ0,−c0) (4.16)

in the plane {x = 0},
• if |B| < |C|, CFBC

contains the convex pentagon with vertices

(0, 0,−|B|−|C|), (0, 0, |B|+ |C|), (δ0, 0, c0), (−δ0, 0, c0), (−δ0, 0,−c0), (4.17)

in the plane {y = 0}.
Next, let us prove the two constants γ0, δ0 satisfy the following estimate from

below
|c0| =

∣∣∣B cos(x0) + C sin(y0)
∣∣∣ < ||B| − |C||

⇓

|γ0|, |δ0| ≥
»

(|B| − |C|)2 − c2
0.

(4.18)

Assume for example that |B| > |C|. Consider (x0, y0) ∈ T2 satisfying |c0| < |B|−|C|.
Then, by equality (4.4) we have in [0,∞)Ä

B sin(x) + C cos(y)
ä2

+ c2
0

=
Ä
B sin(x) + C cos(y)

ä2
+
Ä
B cos(x) + C cos(y)

ä2
= B2 + C2 + 2BC sin(x+ y) ≥ (|B|−|C|)2,

which implies that

|x′ + y′| =
∣∣∣B sin(x) + C cos(y)

∣∣∣ ≥ »(|B|−|C|)2 − c2
0 > 0 in [0,∞).

Then, by a continuity argument it follows that

x′ + y′ ≥
»

(|B|−|C|)2 − c2
0 in [0,∞)

or x′ + y′ ≤ −
»

(|B|−|C|)2 − c2
0 in [0,∞).

Hence, due to the boundedness of x (recall that |B| > |C|) and to the definition
(3.29) of γ0 we deduce that γ0 satisfies (4.18).

Therefore, collecting (4.16), (4.18) and using the convexity of CFBC
we get that

{0}×

 ⋃
|c0|<|B|−|C|

[
−
»

(|B|−|C|)2 − c2
0 ,
»

(|B|−|C|)2 − c2
0

]
×{c0}

 ⊂ CFBC
. (4.19)

Now, observe that the set of the left-hand side of (4.19) agrees with the open disk
D(0R2 , |B|−|C|) in the plane {x = 0}. The two inclusions (4.8) and (4.19) thus give
the desired inclusion (4.9).
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On the other hand, the projection Π(XBC) = (x, y) of the flow XBC (4.1) agrees
with the two-dimensional flow solution to the ODEs system

x′(t) = C cos
Ä
y(t)
ä

y′(t) = B sin
Ä
x(t)

ä  = Π(FBC
Ä
x(t), y(t)

ä
, t ≥ 0,

(x(0), y(0)) = (x0, y0) ∈ R2.

(4.20)

Assume for example that |B| > |C|. Let µ ∈ IFBC
be an invariant probability

measure for the flow XBC such that the mass µ(FBC) belongs to the subset DBC of
CBC defined by (4.9). We have

Π
Ä
µ(FBC)

ä
= (0, b0) with |b0| ≤ |B| − |C|. (4.21)

Then, using (3.29), (4.14) and applying the inequality (4.18) with c0 = 0, there exist
γ0 ∈ R with |γ0| ≥ |B|−|C|, a point U0 = (u0, v0, w0) ∈ T3 and a sequence (tn)n∈N

tending to ∞ such that
(0, γ0, 0) = lim

n→∞

XBC(tn, U0)

tn

(0,− γ0, 0) = lim
n→∞

XBC

Ä
tn, (−u0, π − v0, w0)

ä
tn

.

Applying the orthogonal projection Π in the previous equalities and using the set
equality (1.17) for the flow Π(XBC) associated with the vector field Π(FBC) in (4.20),
we get that 

(0, γ0) = lim
n→∞

Π(XBC)
Ä
tn, (u0, v0)

ä
tn

∈ CΠ(FBC)

(0,−γ0) = lim
n→∞

Π(XBC)
Ä
tn, (−u0, π − v0)

ä
tn

∈ CΠ(FBC),

which by the convexity of the Herman rotation set CΠ(FBC) combined with (4.21),
and thus b0 ∈ [− γ0, γ0], yields

Π
Ä
µ(FBC)

ä
= (0, b0) ∈ CΠ(FBC).

Now, by virtue of the two-dimensional equality (1.18) (see (1.14) and Remark 1.1)
there exists a sequence (sn)n∈N tending to ∞ such that

Π
Ä
µ(FBC)

ä
= lim

n→∞

Π(XBC)
Ä
sn, (u0, v0)

ä
sn

,

which is equivalent to the desired projection equality (4.10).

Finally, in view of (4.6), for any invariant probability measure µ for the flow
XBC such that the mass µ(FBC) does not belongs to the line R e3, µ is necessarily
singular with respect to Lebesgue’s measure.
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Proof of ii). Taking into account the 2π-periodicity, by (2.11) the flow XBC satisfies
the boundedness property

∀ t ≥ 0, |x(t)− x0| ≤ 2π and |y(t)− y0| ≤ 2π. (4.22)

Moreover, by equality (2.12) the Herman rotation set for the flow XBC is given by
the closed line segment (4.11).

This concludes the proof of Proposition 4.1.
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