
HAL Id: hal-04607809
https://hal.science/hal-04607809

Submitted on 11 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear-time Differential Inverse Kinematics: an
Augmented Lagrangian Perspective

Bruce Wingo, Ajay Sathya, Stéphane Caron, Seth Hutchinson, Justin
Carpentier

To cite this version:
Bruce Wingo, Ajay Sathya, Stéphane Caron, Seth Hutchinson, Justin Carpentier. Linear-time Differ-
ential Inverse Kinematics: an Augmented Lagrangian Perspective. RSS 2024 - Robotics: Science and
Systems, RSS Foundation, Jul 2024, Delft, Netherlands. �hal-04607809�

https://hal.science/hal-04607809
https://hal.archives-ouvertes.fr

Linear-time Differential Inverse Kinematics:
an Augmented Lagrangian Perspective

Bruce Wingo∗,†, Ajay Suresha Sathya†, Stéphane Caron†, Seth Hutchinson∗ and Justin Carpentier†
†Inria, École normale supérieure, CNRS, PSL Research University, 75005 Paris, France

∗Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
Email: bwingo@gatech.edu ajay.sathya@inria.fr, stephane.caron@inria.fr, seth@gatech.edu, justin.carpentier@inria.fr

Abstract—Differential inverse kinematics is a core robotics
problem whose state-of-the-art solutions are currently based on
quadratic programming. In this paper, we revisit it from the
perspective of augmented Lagrangian methods (AL) and the
related alternating direction method of multipliers (ADMM). By
embracing AL techniques in the spirit of the rigid-body dynamics
algorithms proposed by Featherstone, we introduce a method that
solves equality-constrained differential IK problems with linear-
time complexity. Combined with the ADMM strategy popularized
by OSQP, we handle the same class of problems as QP-based
differential IK, but scaling linearly with problem dimensions
rather than cubically. We implement our approach as C++ open-
source software and evaluate it on a benchmark of robotic-arm
and humanoid-locomotion tasks. We measure computation times
2–3× shorter than the QP-based state of the art.

I. INTRODUCTION

Inverse kinematics, the calculation of a configuration that
achieves prescribed workspace tasks, has been a long-standing
problem in robotics. While analytical solutions can be found
mathematically for systems with a few degrees of freedom, the
approach scales to at most 6–7 degrees of freedom by auto-
mated symbolic calculus [16]. Differential inverse kinematics,
the computation of velocities that bring workspace goals closer
to achievement over time, has emerged as a more general
alternative capable of handling systems as large as humanoid
robots with multiple simultaneous workspace tasks [32, 41].

Initially handled with Moore-Penrose inversion and
nullspace projection, it was later established that differential
inverse kinematics with priorities is an instance of lexico-
graphic optimization [18], where the hierarchy between tasks
can be exploited by specialized solvers such as the open-
source LexLS [17]. Embracing optimization further enabled
the integration of configuration and joint-velocity limits as
inequality constraints.

Conflicts between tasks in lexicographic optimization lead
to singular sub-problems [49], but the strict hierarchy of tasks
can be relaxed into a quadratic program (QP) where tasks are
weighted in a single objective function. This approach relies on
a class of convex optimization problems that has received more
analysis and software development. It is regularized by the
design of its weighted objective and further regularized with
the common practice of Levenberg-Marquardt damping [44]
to handle unfeasible workspace targets. Owing to these re-
finements, QP formulations have become the go-to approach
to differential inverse kinematics, with applications ranging as

far as multitask humanoid locomotion pipelines [29, 10].

Regularization around task conflicts is however not the
only tradeoff made in QP formulations. For one, solving a
differential IK quadratic program is still a resource-constrained
operation, with computation times on the same scale of order
as the frequency of the control loops they run in. The use
of analytical IK by reinforcement learning agents such as [30]
suggests a Pareto front of best-suited solutions, with QP-based
differential IK on the safer-slower side and analytical solutions
on the riskier-faster one.

In this work, we identify a way to push the boundaries of
this Pareto front: we leverage the structure of the kinematic
tree, which is abstracted away in QP matrices, to propose
a new algorithm that solves the same problem as QP-based
differential IK, yet empirically faster and with linear-time
complexity. Additionally, differential IK is used as an
inner solver in various software like inverse kinematics
solvers [42, 6] and sampling-based constrained motion
planners [7], where it might be called nearly a hundred
times if not thousands of times in case of motion planners.
Therefore, our contributions can significantly accelerate these
downstream computationally expensive downstream tasks.

Contributions. We exploit the structure of the kinematic tree
with a formulation inspired by the constrained articulated
body algorithm (constrainedABA) [39], which similarly at-
tained linear-time complexity for constrained dynamics prob-
lems. However, constrainedABA only considered the equality-
constrained forward dynamics problems and therefore does not
support additional terms handled in QP-based differential IK
such as joint-space and task-space inequality constraints. We
thus propose a new derivation to account for these additional
terms. Our primary contributions are:

1) Linear complexity differential IK solver: We derive
a differential IK inner solver with linear complexity in
both joint-space and motion-constraint dimensions.

2) Inequality constraints: We propose an ADMM-based
strategy dealing with inequality constraints, where each
ADMM iteration is made efficient by using the afore-
mentioned inner solver.

3) Software: We have implemented our algorithm in a

mailto:bwingo@gatech.edu
mailto:ajay.sathya@inria.fr
mailto:stephane.caron@inria.fr
mailto:seth@gatech.edu
mailto:justin.carpentier@inria.fr

C++ library, LOIK 1, which we will release and sup-
port as open-source software after peer review of this
manuscript.

We refer to the resulting algorithm as LOIK, standing e.g., for
low-overhead inverse kinematics.

II. BACKGROUND

A. QP-based formulations of inverse kinematics

When casting the differential inverse kinematics (IK) prob-
lem into a quadratic program (QP), motion constraints of the
former become equality constraints of the latter. In the simplest
setting with a single task, the QP can be solved in closed-form
by solving a linear system. However, in general, differential
IK may include conflicting tasks that result in numerical
singularities. The weighted approach addresses these conflicts
by defining slack variables on equality constraints, and relax-
ing the problem into a weighted quadratic penalization over
these slack variables. The resulting problem is then solved
leveraging mature off-the-shelf QP solvers [43, 23, 3]. While
the effectiveness of this methodology has been extensively
demonstrated [1, 29], the complexity of tuning weights be-
tween interacting tasks increases significantly with the number
of tasks. An alternate strategy that does not suffer from this
to strictly prioritize motion constraints [41], which requires
solving a lexicographic QP. Lexicographic QPs can be straight-
forwardly solved by solving a cascade of QPs [28, 38], one
at each priority level, but its complexity does not scale well
with the number of priority levels. The hierarchical quadratic
programming (HQP) solver [18] proposed a hierarchical com-
plete orthogonal decomposition (H-COD) solver to efficiently
solve lower priority motion constraints in the nullspace of
higher-priority ones. This strategy was found to result in a
computational cost comparable to the weighted QP strategy
despite supporting strict prioritization of constraints.

B. Structure-exploiting QP solvers

All the above inverse kinematics approaches are formulated
in the joint space with the generalized velocities being the
QP’s decision variables. This results in a worst-case cubic
computational complexity for these methods in terms of the
problem size (the robot’s degrees of freedom (DoF) and the
dimensionality of motion constraints). However, the structure
of kinematic trees can be exploited to significantly speed up
the QP solvers by leveraging the Riccati recursion that is com-
monly used in optimal control problem (OCP) solvers [36].
Compared to OCPs, the Riccati recursion algorithm requires
straightforward adaptation to deal with the branching in kine-
matic trees, which can be derived using dynamic programming
(DP). This idea was first used to develop linear complexity for-
ward dynamics algorithms by Vereshchagin [46], resulting in
an algorithm practically identical to Featherstone’s articulated
body algorithm [19, 20]. Vereshchagin’s approach was later

1Our code will be made available at https://github.com/Simple-
Robotics/Loik

generalized in the PV solver [34, 47] to compute equality-
constrained robot dynamics problems (see [40] for an expos-
itory derivation). However, the PV solver has a cubic com-
plexity in the dimensionality of constraints. Recent work [39]
on constrained articulated body algorithms (constrainedABA)
has leveraged the augmented Lagrangian method to design
a linear complexity solver in both robot DoFs and motion
constraint dimensionality. Similar ideas are yet to be exploited
for solving inverse kinematics problems. Furthermore, the con-
strainedABA does not support inequality constraints, which
are important for inverse kinematics problems.

C. Solving Constrained QP problems via ADMM

A powerful strategy for solving constrained optimization
problems is the class of augmented Lagrangian methods
(ALM) (also known as the method of multipliers), popularized
in the late 1960s [24] and [35]. The ALM transforms the
original constrained optimization problem into an equivalent
primal-dual problem over a so-called augmented Lagrangian
function, which is constructed by adding an appropriate
penalty term to the ordinary Lagrangian function. ALMs have
recently witnessed a renewed increase in popularity in robotics
and control [23, 3, 25, 26] especially due to their suitability
for warm-starting.

In the past decade, one flavor of the method of multipliers,
in particular, the Alternating Direction Method of Multipliers
(ADMM), has gained significant interest and rapid adoption
within the optimization community. First introduced in the
1970s by [21], ADMM is tailored to convex-constrained
optimization problems with separable decision variables and
objectives. In the context of constrained QPs, this translates
to treating equality and inequality constraints separately (using
slack variables) and solving separate sub-problems pertaining
to only a subset of the constraints. These sub-problems are
often easier to solve than the original ones.

Several state-of-the-art QP solvers exploit the ALM ap-
proach [3], [43], [15]. [43] specifically employs ADMM and
is the closest in terms of formulation to our proposed solver.
However, one major distinction between the current state-
of-the-art and our proposed solution is that our solver can
efficiently exploit the specific sparsity patterns arising in IK
problems.

III. LOW-COMPLEXITY DIFFERENTIAL INVERSE
KINEMATICS: DERIVATION

A. Constrained inverse kinematics ADMM formulation

In the most general sense, first order con-
strained differential inverse kinematics can be
formulated as a constrained QP problem:

min
x̄:=[v,ν], z̄

1

2
x̄⊤P̄x̄+ q̄x̄

s.t. Āx̄ = z̄ (1a)
z̄ ∈ K (1b)

where the primal decision variable x̄ := [v,ν] consists of
the collection of spatial velocities of every link in the robot,

https://github.com/Simple-Robotics/Loik
https://github.com/Simple-Robotics/Loik

v := [v0, · · · ,vnb
], with each vi ∈ M6 [20]. ν represent

the generalized velocities of the robot. z̄ are slack variables,
through which both equality and inequality constraints, on
x̄, can be enforced. K denote the appropriate composite
convex constraint set. To illustrate, equality constraints
Āx̄ = b̄ can be enforced by a degenerate constraint set:
Keq := {z̄ | z̄ ∈ [b̄, b̄]}. Box constraints can be similarly
achieved by defining a box constraint set with a lower
and upper bound. Other common constraint types such as
second-order cone constraints can be defined naturally within
problem (1) formulation. The advantage of defining the
inverse kinematics problem in the mixed spatial and joint
coordinates is that: constraints naturally expressed in either
coordinate can be trivially combined without the need for
expensive Jacobian calculations. But more importantly, this
mixed-coordinate formulation allows one to fully exploit
the sparsity pattern induced by the robot’s kinematic tree.
By doing so, we are able to produce a constrained inverse
kinematics algorithm that scales linearly with the number of
links in the robot and with the number of constraints specified
in the problem.

To make the subsequent derivation of the proposed algo-
rithm more intuitive, we restrict our presentation to only a
subset of problems in the form of problem (1). Specifically,
the class of IK problems with task space equality constraints
(defined through links’ spatial velocities) and joint velocity
box constraints. This subclass of problems encapsulates the
vast majority of IK problems one may encounter in practice.
Extending the provided derivation to problems of form (1)
that are not captured by the following exposition should be
straightforward.

Consider the following IK problem: minimizing a
quadratic tracking objective in link spatial velocities,
subject to forward kinematics constraints, task space
equality constraints and joint velocity box constraints:

min
v,ν

nb∑
i=1

1

2
∥vi − vref

i ∥2Href
i

s.t. vi = vπ(i) + Siνi , ∀i ∈ Nb (2a)
v0 = 0 (2b)

Aivi = bi , ∀i ∈ Nb (2c)
ν − z = 0 , z ∈ Kbox (2d)

Ain
i vi − zini = 0, zini ∈ Ki

box, ∀i ∈ Nb (2e)
where tracking weights Href

i and references vref
i in the

objective define the soft constraints of the IK problem, while
Ai and bi defines the hard task equality constraints on ith
link’s spatial velocity. We denote by π(i) the parent of a
body in the kinematic tree, with Nb := {1, · · · , nb} the set
of all links in the kinematic tree, except the 0-th link, which
represents the universe/world reference frame. vi represents
each link’s spatial velocity. Please note that for floating-base
robots, the floating-base link is assumed to be connected to
the 0-th link with a ‘free’-joint that permits motions in all
6 dimensions. π(i) represents the index of link i’s parent
link. Sis are the motion subspace matrices whose columns

span the motion subspace of link i. Sis always have full
column rank [2]. The vector ν denotes generalized velocities
for the entire robot. Slack variables z are introduced for
the box constraint set Kbox := {z | zlb ≤ z ≤ zub}. We
shall refer to Eqn. (2a) and (2b) as kinematics constraints,
and Eqn. (2c) as motion constraints. Ain

i together with
Ki

box := {zini | zilb ≤ zini ≤ ziub} defines hard task inequality
constraints on vi.

Due to the algebraic similarities between Eqn. (2e) and
Eqn. (2c), the role of Ain

i and zini would be identical to
that of Ai and bi respectively in the recursive algorithm
derived subsequently. The projection operations on zini and
the treatment of the task inequality constraints’ Lagrange
multipliers is also analogous to the projection operations on
zi and treatment of Lagrange multipliers associated with
the joint inequality constraints in Eqn. (2d). Therefore, to
avoid repetition and to enhance notational clarity, the task
inequality constraints depicted in Eqn. (2e) will be omitted
in the subsequent derivation.

It is not difficult to verify that problem (2) takes on the
standard QP of the form (1) by unrolling the recursive defini-
tion of kinematics constraints (2b). The recursive relationship,
between body i’s spatial velocity and its parent body’s spatial
velocity vπ(i) and its parent joint’s generalized velocity νi,
implies that vi is fully determined by the joint velocities
νis preceding i and the root link spatial velocity v0. The
proposed algorithm exploits this recursive relationship and
enforces satisfaction of kinematics constraints (2a) and (2b)
through back substitutions, resulting in an efficient and linear
complexity algorithm. Based on this observation, we define
an augmented Lagrangian function, LA consisting of only
the remaining constraints (motion constraints) that need to be
solved for in the problem (2):

LA
IK :=

nb∑
i=1

{
1

2
∥vi − vref

i ∥2Href
i
+ IKi

(zi)

+ y⊤
i (Aivi − bi) +w⊤

i (νi − zi)

+
µtask

2
∥Aivi − bi∥22 +

µbox

2
∥νi − zi∥22

}
(3a)

=

nb∑
i=1

{
1

2
v⊤
i Hivi + p⊤

i vi +
1

2
ν⊤
i Riνi + r⊤i νi + · · ·

}
(3b)

where IKi
is the indicator function for the constraint set Ki

(with value 0 inside and +∞ outside the set). Terms not
involving vi and νi are omitted in (3b). Collecting terms in
vi and νi defines the quadratic and affine terms as:

Hi := µtaskA
⊤
i Ai +Href

i (4a)

pi := A⊤
i yi −Href⊤

i vref
i − µtaskA

⊤
i bi (4b)

Ri := µboxI (4c)
ri := wi − µboxzi (4d)

Under appropriate constraint qualification assumptions [33],
the solution to the original problem (2) can be obtained
by solving the equivalent primal-dual augmented Lagrangian
saddle point problem:

(v∗,ν∗, z∗,y∗,w∗) = arg max
y,w

min
v,ν,z

LA
IK(v,ν, z,y,w)

s.t. vi = vπ(i) + Siνi , ∀i ∈ Nb

v0 = 0 (5a)

ADMM is particularly suited to solve problems like (5), where
primal decision variables v,ν, z appear as separable terms in
the augmented Lagrangian [9]. The ADMM iterates for solving
problem (5) are given as:

(vk+1,νk+1) = arg min
v,ν

LA
IK(v,ν, z

k,yk,wk) (6a)

s.t. vi = vπ(i) + Siνi , ∀i ∈ Nb

v0 = 0 (6b)

zk+1 = arg min
z

LA
IK(v

k+1,νk+1, z,yk,wk) (6c)

yk+1 = yk + µk
task(Avk+1 − b) (6d)

wk+1 = wk + µk
box(ν

k+1 − zk+1) (6e)

Dual updates (6d) and (6e) are cheap to compute. The primal
z update (6c) step boils down to performing a projection of the
primal variables onto the constraint set. To make this explicit:

zk+1 = arg min
z

LA(vk+1,νk+1, z,yk,wk)

= arg min
z

{
IKbox(z) +wk⊤

(νk+1 − z) +
µk

box

2
∥νk+1 − z∥22 + · · ·

}

= arg min
z∈Kbox

{
µk

box

2
∥ν +

1

µk
box

w − z∥22 −
µk

box

2
∥ 1

µk
box

w∥22

}

= ΠKbox

(
ν +

1

µk
box

w

)
(7)

where the third equality in (7) comes from completing the
square. ΠKbox denotes the constraint projection operator. For
the case of box projection, ΠKbox(x) := min(max(x,xlb),xub).

B. Inverse kinematics as an LQR problem

The main computational bottleneck within the ADMM loop
(6) is the primal v and ν update step (6a)-(6b), which involves
solving an equality-constrained QP problem, which we state
explicitly:

min
v,ν

nb∑
i=1

{
1

2
v⊤
i Hivi + p⊤

i vi +
1

2
ν⊤
i Riνi + r⊤i νi

}
(8a)

s.t. vi = vπ(i) + Siνi , ∀i ∈ Nb (8b)
v0 = 0 (8c)

State-of-the-art QP solvers [43, 3, 23] can already exploit the
sparsity structure of the problem quite effectively, and this is
usually achieved through an efficient general-purpose sparse
linear algebra back-end (such as QDLDL [43], and that of
ProxQP [3]). However, leveraging problem-specific sparsity,
such as those present in robot’s kinematics constraints, offers
greater efficiency gains.

Readers familiar with the optimal control literature will
recognize problem (8) takes on the form of a Linear-Quadratic-
Regulator (LQR) problem. Notice, however, that the LQR
“dynamics” equations (8b) are index-shifted in the “control”
νi. The causal relationship defined by the index-shifted “dy-
namics” equation implies that in the state-feedback control
sense, the feedback “control” νi should be defined using the
current “state” vπ(i), in the form of

νi = ki +Kivπ(i) (9)

instead of in the form of νi = ki +Kivi as in the case if the
“dynamics” is non-index-shifted. This state-feedback “control”
hypothesis (9) will be verified in Sec. III-C as part of the
recursion derivation.

Drawing inspiration from the similarity between problem
(8) and the standard discrete-time LQR problem, we derive a
Riccati-like recursion algorithm in the next subsection for the
equality-constrained QP inner sub-problem, within the ADMM
loop, by exploiting the kinematic tree-induced sparsity. How-
ever, we inform the readers that the next subsection is the
densest part of the paper, which may be skipped by readers
safely during a quick reading or if they are not interested in
the derivation.

C. Recursion Derivation

For better numerical stability, proximal terms on the primal
decision variables, ρv

2 ∥vi − vprev
i ∥22 and ρν

2 ∥νi − νprev
i ∥22,

should be added to the objective function of (8). The added
proximal regularization term guarantees that (8) will always
have a unique solution, even in the presence of redundant
motion constraints (causing His to lose rank when Href

i s are
zero) and at kinematic singularities. With the added proximal
regularization terms, the quadratic and affine terms in (4) are
updated to:

H̃i := Hi + ρvI , p̃i := pi − ρvv
prev
i (10a)

R̃i := Ri + ρνI , r̃i := ri − ρνν
prev
i (10b)

The proximal augmented Lagrangian of problem (8) is given
by:

LIK′ :=

nb∑
i=1

{
1

2
v⊤
i H̃ivi + p̃⊤

i vi +
1

2
ν⊤
i R̃iνi + r̃⊤i νi

+ f⊤i (vπ(i) + Siνi − vi)

}
+ f0v0 (11)

solving (8) as a primal-dual saddle point problem requires one
to solve the following KKT system:

∂v0
LIK′ = f0 +

∑
j∈γ(0)

fj = 0 (12a)

∂f0LIK′ = v0 = 0 (12b)

∂viLIK′ = H̃ivi + p̃i − fi +
∑

j∈γ(i)

fj = 0 (12c)

∂νi
LIK′ = R̃iνi + r̃i + S⊤

i fi = 0 (12d)
∂fiLIK′ = vπ(i) + Siνi − vi = 0 (12e)

where γ(i) is the set of descendants of a link i in the kinematic
tree. Observe that at the leaf nodes of the kinematic tree,
i.e., when l ∈ L, (with L denoting the leaf node set of a
given kinematic tree) γ(l) = ∅ (because leaf node links have
no children links), the dual feasibility equation (12c) reduces
to: fl = H̃lvl + p̃l, ∀l ∈ L. From this observation, we
hypothesize that the recursion equation for the dual variable
fi is:

fi := Ĥivi + p̂i, ∀i ∈ Nb (13)

with terminal recursion defined at the leaf nodes of the
kinematic tree by Ĥl := H̃l, p̂l := p̃l, ∀l ∈ L.

Substituting both the recursion hypothesis (13) and the pri-
mal feasibility equation (12e) into the dual feasibility equation
(12d) for fi and vi:

R̃iνi + r̃i + S⊤
i Ĥivi + S⊤

i p̂i = 0

R̃iνi + r̃i + S⊤
i Ĥi(vπ(i) + Siνi) + S⊤

i p̂i = 0

νi = −D−1
i S⊤

i Ĥi vπ(i) −D−1
i (r̃i + S⊤

i p̂i) (14)

where Di := R̃i + S⊤
i ĤiSi. Eqn. (14) indicates that νi is in

the form of the state-feedback “control” hypothesis proposed
in (9), when viewing problem (8) from the LQR perspective.

Substituting the relationship between νi and vπ(i), i.e., (14),
back into the primal feasibility equation (12e):

vi = vπ(i) + Si(−D−1
i S⊤

i Ĥi vπ(i) −D−1
i (r̃i + S⊤

i p̂i))

=(I− SiD
−1
i S⊤

i Ĥi) vπ(i) − SiD
−1
i (r̃i + S⊤

i p̂i) (15)

Using this relationship between vi and vπ(i), the recursion
hypothesis (13) becomes:

fi = Ĥi(I− SiD
−1
i S⊤

i Ĥi) vπ(i)

− ĤiSiD
−1
i (r̃i + S⊤

i p̂i) + p̂i

= Pi Ĥi vπ(i) + Pip̂i − ĤiSiD
−1
i r̃i (16)

where the projection matrix Pi := I− ĤiSiD
−1
i S⊤

i strongly
resembles the projection matrix in the articulated-body-
algorithm (ABA) [20], except for IK problems, H̃is do not
represent a meaningful physical quantity, as opposed to the
articulated link inertia in the case of ABA.

To obtain the final recursion equations, (16) is substituted
back into the dual feasibility equation (12c) in place of fjs,
and along with the identity j ∈ γ(i)⇒ π(j) = i:

fi = H̃ivi + p̃i

+
∑

j∈γ(i)

{
Pj Ĥj vπ(j) + Pjp̂j − ĤjSjD

−1
j r̃j

}

=
(
H̃i +

∑
j∈γ(i)

{
Pj Ĥj

})
vi

+ p̃i +
∑

j∈γ(i)

{
Pjp̂j − ĤjSjD

−1
j r̃j

}
(17)

thus, the recursion hypothesis for the dual variables fi is
proven to be correct by induction, with recursion matrices

given by:

Ĥi := H̃i +
∑

j∈γ(i)

{
Pj Ĥj

}
(18a)

p̂i := p̃i +
∑

j∈γ(i)

{
Pjp̂j − ĤjSjD

−1
j r̃j

}
(18b)

To summarize the recursion strategy for computing v and
ν: Starting at the leaf nodes of the kinematic tree, we initialize
Ĥl to H̃l and p̂l to p̃l, for all l in the leaf nodes set L. Then
perform a backward pass from leaf nodes down to the root.
At each link j, we compute the quantities Pj Ĥj and Pjp̂j −
ĤjSjD

−1
j r̃j , and add them to the parent joint π(j)’s Ĥπ(j)

and, p̂π(j) respectively. If the link indices are appropriately
ordered, i.e. ∀j ∈ Nb, π(j) < j, then one single backward
pass from leaf nodes to the root will update all Ĥis and p̂is.
Using them, we can compute the primal variable updates by
performing a forward pass on the kinematic tree starting from
the root node i = 0:

v0 := 0 (19a)
for all i ∈ Nb :

νi := −D−1
i S⊤

i Ĥi vπ(i) −D−1
i (r̃i + S⊤

i p̂i) (19b)
vi := vπ(i) + Siνi (19c)

The recursion equations derived in (18) strongly resemble
that of the ABA [20]. As it has been shown in [40], ABA can
be recovered from applying the dynamic programming (DP)
principle to the articulated body problem. For a given LQR
problem, the recursion equations obtained from applying the
DP principle will agree with those obtained from manipulating
the KKT matrix associated with the primal-dual saddle point
problem. However, one important distinction between these
recursion quantities is that, for ABA, quantities equivalent
to Ĥis and p̂is have physical meanings pertaining to the
link inertia and bias terms, while in the case of constrained
IK primal sub-problem (8), they capture the effects of both
hard motion constraints and soft tracking constraints on an
individual body link.

IV. LOW-COMPLEXITY DIFFERENTIAL INVERSE
KINEMATICS: ALGORITHM

In this section, we will gather the derivations from Section
III into a concise algorithmic representation. Additionally, we
will provide further details on essential algorithmic compo-
nents including residual computation, convergence criteria,
penalty parameters updates, and feasibility detection. Despite
being algorithmic details, these elements are fundamental to
ensuring rapid and stable convergence of the algorithm.

We first present the final constrained IK algorithm in Al-
gorithm 1, where the equality-constrained QP IK sub-problem
is solved on line 5 using the proposed three-pass recursion
Algorithm 2, where the set of topologically ordered link
indices is denoted as L while Lrev denotes the set with the
reversed order.

Algorithm 1 Constrained IK algorithm LOIK

Require: robot model, q, vinit
i s, ν init, Href

i s, vref
i s, Ais, bis,

νlb, νub, ρv, ρν , µ, αµ, σabs, σrel, max iter
1: v = vinit; ν = ν init; z = 0; y = 0; w = 0
2: µtask = αµ µ; µbox = µ
3: for idx in range(max iter) do
4: vprev

i ← vi and νprev
i ← νi

5: v,ν ← Equality Constrained IK Recursion
6: Constraint Projection
7: z← ΠKbox(ν + 1

µk
box
w)

8: Dual Update
9: y← y + µtask(Av − b)

10: w← w + µbox(ν − z)
11: Compute ADMM Residuals
12: Check Convergence
13: Check Infeasibility
14: if Primal Infeasible then
15: Infeasibility Tail-Solve
16: Update µ

A. Primal Dual Residual

In the ideal case when the IK problem (2) is both primal
and dual feasible, i.e., strong duality holds, and the solution to
the Lagrangian saddle point problem via first order optimality
conditions will coincide with the solution to the original
problem [8]. Therefore, for feasible problems, it makes sense
to define convergence criteria through the primal and dual
residuals of the saddle point conditions for the Lagrangian
of the original constrained inverse kinematics problem, (2).
This Lagrangian is given by:

LIK :=

nb∑
i=1

{
1

2
∥vi − vref

i ∥2Href
i
+ f⊤i (vπ(i) + Siνi − vi)

+ y⊤
i (Aivi − bi) +w⊤

i (νi − zi) + IKi
(zi)

}
(20)

The saddle point conditions for Lagrangian (20) are pre-
sented in Appendix A-A. To check for the convergence of
Algorithm 1, one needs to ensure that dual feasibility con-
ditions (31a–31b) and primal feasibility conditions (31e–31g)
are satisfied. We define the primal residual as:

εprimal := max
(
∥Av − b∥∞︸ ︷︷ ︸

εprimal,y

, ∥ν − z∥∞︸ ︷︷ ︸
εprimal,w

)
(21)

note that primal feasibility condition (31e) does not contribute
to the primal residual definition because they are automatically
satisfied when applying the proposed recursion to the equality-
constrained sub-problem. Likewise, we define the dual residual

Algorithm 2 Equality-constrained IK recursion

Require: robot model, q, vis, y, w, vprev, νprev, Href
i s, vref

i s,
Ais, bis, ρv, ρν , µtask, µbox

1: Forward Pass 1
2: for i in L do
3: Ĥi ← µtaskA

⊤
i Ai +Href

i + ρvI
4: p̂i ← A⊤

i yi − (Href
i)⊤vref

i − µtaskA
⊤
i bi − ρvv

prev
i

5: R̃i ← (µbox + ρν)I
6: r̃i ← wi − µboxzi − ρνν

prev
i

7: Backward Pass
8: for i in Lrev do
9: Di = R̃i + S⊤

i ĤiSi; Pi = I− ĤiSiD
−1
i S⊤

i

10: Ĥπ(i) ← Ĥπ(i) + Pi Ĥi

11: p̂π(i) ← p̂π(i) + Pip̂i − ĤiSiD
−1
i r̃i

12: Forward Pass 2
13: for i in L do
14: νi ← −D−1

i

(
S⊤
i Ĥi vπ(i) + r̃i + S⊤

i p̂i

)
15: vi ← vπ(i) + Siνi

as:

εdual,v := ∥Hrefv −Href⊤vref +A⊤y + δf∥∞
εdual,ν := ∥S⊤f +w∥∞
εdual := max(εdual,v , εdual,ν) (22)

It is worth noting that in the dual residual computation,
the Lagrange multipliers fis for kinematics constraints are
needed. However, since in the formulation of the augmented
Lagrangian (3) for the original constrained IK problem, kine-
matics constraints are omitted, we do not have direct access to
these multipliers during the outer ADMM iterations. Instead,
we propose to use the multipliers from the equality-constrained
sub-problem, for the kinematics constraints, in place of the
outer ADMM multiplier for the same constraint. Indeed, after
the second forward pass, fis can be computed using (13) at
minimal computational cost.

Both primal and dual residual go to zero (if the problem is
feasible) when Algorithm 1 converges. In practice, however,
εprimal and εdual are checked against tolerances computed using
heuristics such as those proposed by [9] and [43]. Convergence
checking in our solver is presented below:

Algorithm 3 Convergence criteria

Require: vis, ν, z, y, w, f , Href
i s, vref

i s, Ais, bis, σabs, σrel
1: σprimal, σdual = Tolerance Heuristics(σabs, σrel)
2: εprimal,y = ∥Av − b∥∞ ; εprimal,w = ∥ν − z∥∞
3: εdual,v = ∥Hrefv −Href⊤vref +A⊤y +∆f∥∞
4: εdual,ν = ∥S⊤f +w∥∞
5: εprimal = max(εprimal,y, εprimal,w)
6: εdual = max(εdual,v, εdual,ν)
7: if εprimal < σprimal and εdual < σdual then
8: Converged = True

B. Feasibility Detection

For constrained IK applications, it is often possible that
the primal problem (2) is infeasible (e.g., box constraints
are too tight to allow the motion constraints to be strictly
satisfied). For general convex QP problems, even when the
primal problem is feasible, the solution could be unbounded
below, causing the dual problem to be infeasible. When such
cases are encountered, it is paramount to not only detect
infeasibilities in the problem, but also produce solutions with
good theoretical guarantees.

To this end, we leverage the theorem of strong alternatives
[8]. Following the derivation provided by [5] for infeasibility
certificates of general convex QP problems, we specialize them
for differential IK problems of the form (2), and summarize
the primal infeasibility detection in the following algorithm:

Algorithm 4 Primal infeasibility detection

Require: f , f prev, y, yprev, w, wprev, νlb, νub, Ais, bis, σpinf
1: δf = f − f prev, δy = y − yprev, δw = w −wprev

2: εpinf = σpinf ·max(∥δf∥∞, ∥δy∥∞, ∥δw∥∞)
3: p1 := ∥ − δfi +

∑
j∈γ(i) δfj +A⊤

i δyi∥∞ ≤ εpinf, ∀i ∈ L

4: p2 := ∥S⊤δf + δw∥∞ ≤ εpinf
5: p3 := b⊤δy ≤ εpinf
6: p4 := ν⊤

ub(w)+ + ν⊤
lb (w)− ≤ εpinf

7: if (p1 and p2 and p3 and p4) then
8: Primal Infeasible = True

For general convex QP problems, dual problem infeasibility
must also be checked in addition to primal infeasibility.
However, due to the specific problem structure of differential
IK of the form (2), where no pure linear terms in the primal
decision variables v and/or ν appear in the cost, the problem
will never become dual infeasible. However, for the sake
of completeness, we provide the dual infeasibility checking
routine in Appendix A-B, Algorithm 7.

Theoretical guarantees have been provided for solving pri-
mal infeasible convex QP problems using Augmented La-
grangian type methods. Particularly, desirable solutions can
still be obtained when the primal residual converges (to some
value that is the distance of the infeasible problem to the
closest feasible problem in the least-squares sense) [4, 14].
Inspired by these theoretical results, we devised a simple tail-
solve scheme that, when primal infeasibility is detected, runs
tail-solve iterations until primal residual is converged.

Algorithm 5 Infeasibility tail-solve

Require: εprimal, ε
prev
primal, tail solve max iter, σprim tol

1: for idx in range(tail solve max iter) do
2: if ∥εprimal − εprev

primal∥ ≥ σprim tol then
3: Run Algorithm 1 line 4 to 11
4: εprev

primal := εprimal

C. ADMM Parameter Scheduling

The strategy for updating the ADMM penalty parameter
µ from iteration to iteration has a significant impact on the
convergence behavior of any ADMM algorithm. It is well-
known that fixed-value µs throughout the ADMM iterations
often result in slow convergence and other poor solver behav-
ior [9]. Furthermore, [43] suggested using separate µ values
for equality and inequality constraints. The µ-update at each
ADMM iteration takes on the form of line 2 in Algorithm 1.
The reasoning behind such update scheme is that the optimal
penalty for any active constraints should be µ = ∞, and for
any inactive constraints µ = 0. At convergence, all equality
constraints must all be active, therefore we wish to assign
large values of µ to equality constraints and help drive primal
residual to zero. In addition to separate penalty parameters
for equality and inequality constraints, we would also like to
keep primal and dual residual decreasing in a uniform manner,
that is, if the primal residual is decreasing too fast, we would
like the solver to place more emphasis on reducing the dual
residual, and vice versa. This can be achieved by increasing or
decreasing µ based on the ratio of primal and dual residual.
Large values of µ will put more emphasis on the equality
constraints in the problem and help reducing primal residual,
while small values of µ will put more emphasis on reducing
the dual residual. These heuristics for updating µ are presented
below:

Algorithm 6 ADMM parameter update

Require: µ, αµ, σµ, εprimal, εdual
1: if εprimal ≥ σµ · εdual then
2: µ← µ ∗ σµ

3: else if εdual ≥ σµ · εprimal then
4: µ← µ ∗ 1

σµ

5: µtask = αµ · µ ; µbox = µ

D. Complexity Analysis

We analyze the algorithmic complexity of the proposed
constrained IK Algorithm 1. Starting with the three-pass recur-
sion Algorithm 2 for the equality-constrained sub-problem. For
each pass over the kinematic tree, quantities at each link must
be computed. It is straightforward to see that every quantity
computed during the Backward Pass and Forward Pass 2
has a fixed computational cost. Therefore, Backward Pass and
Forward Pass 2 will each require O(nb) number of operations
to complete, where nb is the number of links in the system. For
the Forward Pass 1, every calculation except those on line 3
and 4 have a fixed computational cost for each link. The cost of
computing quantities on line 3 and 4 varies depending on the
dimension of the motion constraint on a specific link. However,
on links where no motion constraints are defined, the cost of
computing them are fixed. Therefore, Forward Pass 1 requires
at most O(nc) + O(nb) number of operations to complete,
where nc is the number of links with motion constraints

defined. All together, the three-pass recursion algorithm takes
up to O(nb + nc) number of operations to complete.

The three-pass recursion only gets called once every
ADMM iteration, and the solver will converge/terminate in at
most max iter number of iterations. Furthermore, all the re-
maining computations within a single ADMM iteration require
a fixed number of operations. Therefore, we can conclude that
the proposed constrained IK Algorithm 1, has a complexity of
O(nb+nc), that is to say that it scales linearly with respect to
the number of links in the system and the number of motion
constraints defined in the IK problem. The derived complexity
claim is further verified on benchmark problems of varying
scale in Sec. V.

V. EXPERIMENTAL VALIDATION AND BENCHMARKS

We evaluate the performance of differential IK solvers in
a benchmark of inverse kinematics scenarios, which we plan
to release as open source software after peer-review of this
work 2. We build upon the robot_descriptions.py
project [12] that indexes robot descriptions publicly available
under open source licenses and provides a Python library to
load them directly into robotics software. The index includes
a variety of robot structures, including arms, mobile-base,
quadruped and humanoid structures, with a present total of 78
descriptions. While the aim of the public benchmark will be
to encompass all available descriptions and enable new users
to add their own scenarios, as an initial stage in this work we
focus on two structures: arms (11 descriptions) and humanoids
(12 descriptions) for a total of 23 scenarios. Scenarios are
defined as task target trajectories that evolve independently
from the robot configuration. We design them to reproduce
realistic applications for each kind of robot. Table I lists these
robot descriptions and their degrees of freedom (DOF).

A. Robotic arm scenarios

Scenarios for arms consist of a single task on the end-
effector pose traveling back and forth between two reference
configurations, as in e.g., traveling phases in pick-and-place
scenarios. The target interpolates on a straight-line path in
R3 × SO(3) rather than on SE(3) [31, Section 9.2.1], with
positions in the inertial frame going back and forth between
two values p0 and p1, scaled by a geometric factor to adapt
to the dimensions of each arm:

p∗
i (t) = scale ×

[
p0 + sin(t)2(p1 − p0)

]
(23)

Orientations R∗
i (t) interpolate similarly between two bound-

ary values R0 and R1. The tuple (R∗
i (t),p

∗
i (t)) thus defines

a target T∗
i (t) ∈ SE(3) for the end-effector task i. We place

robotic arms at the origin of the initial frame for the scaling
factor to make sense. Across all scenarios, this factor ranges
from 8% for the smallest arm (Poppy Ergo Jr) to 220% for
the largest one (M-710iC).

2Benchmark videos will be made available at https://simple-
robotics.github.io/publications/low-order-ik/

Table I: Robot descriptions included in benchmark scenarios.

Robot Type DOF (△)
e.DO Arm 6
M-710iC Arm 6
Gen2 Arm 6
Gen3 Arm 6
Poppy Ergo Jr Arm 6
UR3 Arm 6
UR5 Arm 6
UR10 Arm 6
Z1 Arm 6
iiwa Arm 7
Panda Arm 8
SigmaBan Humanoid 26
Draco3 Humanoid 31
Atlas v3 (DRC) Humanoid 36
Atlas v4 Humanoid 36
iCub Humanoid 38
TALOS Humanoid 38
JVRC-1 Humanoid 40
Romeo Humanoid 43
JAXON Humanoid 44
Robonaut 2 Humanoid 62
ergoCub Humanoid 63
Valkyrie Humanoid 65

B. Humanoid scenarios

Scenarios for humanoids reproduce linear inverted pen-
dulum tracking [27] where a center-of-mass trajectory is
followed by inverse kinematics alongside foot trajectories.
We reproduce the feedforward part of an optimization-based
formulation of that approach [10, Fig. 2], with a center-
of-mass trajectory produced by open-loop model predictive
control [48]. Each benchmark scenario then consists of three
tasks:

• position p∗
com(t) for the upper-body target where the

robot should place its center of mass (as in [27], we use
a fixed location in the torso frame calculated from the
center of mass position in standing configuration), and

• poses T∗
lf (t) and T∗

rf (t) for the left and right feet,
alternating between contact and swing phases.

Humanoids walk forward in all scenarios, with a stationary
center-of-mass height computed from the robot’s initial con-
figuration. Step length and swing foot height are adjusted for
each description, ranging from (20 cm, 5 cm) for the smallest
humanoid (SigmaBan) to (50 cm, 15 cm) for the largest one
(Atlas v3).

C. Inverse kinematics formulation

We implement LOIK in C++ using the Pinocchio library [13]
for rigid-body dynamics and Eigen [22] for linear algebra. Our
benchmark unrolls target trajectories for each scenario, with a
time step δt = 5 ms and a trajectory duration of 10 seconds,
large enough to yield two thousand IK problems per scenario.
We use the Pink library [11] to formulate first-order differential
inverse kinematics [32, 41] with tasks. A task consists of two
components: a target, as detailed in the latter two sections
for the scenarios in this benchmark, and dynamics. For a task
over frame i with target T∗

i and whose transform in the current
configuration q ∈ C is Ti(q), the task dynamics computes a

https://simple-robotics.github.io/publications/low-order-ik/
https://simple-robotics.github.io/publications/low-order-ik/

velocity expressed locally in F as:

v∗
i (q) =

kp
δt

log(T−1
i (q)T∗

i) (24)

with kp ∈ (0, 1) the gain parameter indicating how much we
trust the local linearization of the nonlinear kinematics.

LOIK works in maximal coordinates, and we can therefore
forward this task velocity directly as a motion constraint (2c)
Aivi = bi with:

ALOIK
i = I6 bLOIK

i = v∗
i (q) (25)

QP-based approaches work in minimal coordinates, mean-
ing their motion constraints are expressed as Aiν = bi. They
solve the same underlying problem by computing the Jacobian
matrix Ji(q) of the frame at the current configuration, and
setting:

AQP
i = Ji(q) bQP

i = v∗
i (q) (26)

In multitask scenarios, the quadratic programming formulation
casts all tasks into a single cost:

minimize
ν

∑
i

∥AQP
i ν − bQP

i ∥
2
HQP

i

(27)

In multitask humanoid scenarios, we apply equal weights
HQP

i = I6, meaning all tasks have equal importance and an
1 rad orientation error is penalized on par with a 1 m position
error. Following the steps (24), (26), (27), QP matrices and
vectors are uniquely defined from task targets and the current
robot configuration (see e.g. the documentation of [11] for
further details).

For another point of reference to the state of the art, we
also consider the quadratic programming formulation from
DRAKE [45] where an additional optimization variable α
allows for an optional downscale of the velocities from (24):

minimize
ν,α

∑
i

∥P(ν −K(q∗ ⊖ q))∥2 − 100α (28)

s.t.∀i,AQP
i ν = αbQP

i (29)
0 ≤ α ≤ 1 (30)

where ⊖ is the configuration-space difference operator (re-
ciprocal to the integrator qt+δt = qt ⊕ (νδt)), q∗ is the
neutral configuration and we set K = 10−6 Hz. The rows of
P form an orthonormal basis for the nullspace of the matrix
AQP stacking all {AQP

i } vertically (computed in DRAKE by
an additional LU decomposition). See [45] for details.

During the rollout phase, our benchmark starts from
a prescribed initial configuration q0 and integrates
qt+δt = qt ⊕ (νδt) where ν is the solution computed
by LOIK or QP. We perform one rollout integrating solutions
from one method (calling both methods on each configuration
qt) and one rollout integrating solutions from the other.

ed
o D

OF=
6

fan
uc

DOF=
6

ge
n2

 DOF=
6

po
pp

y_e
rgo

_jr
DOF=

6

ur1
0 D

OF=
6

ur3
 DOF=

6

ur5
 DOF=

6

z1
DOF=

6

ge
n3

 DOF=
7

iiw
a D

OF=
7

pa
nd

a D
OF=

9

sig
mab

an
 DOF=

26

dra
co3

 DOF=
33

atl
as_

drc
 DOF=

36

atl
as_

v4
 DOF=

36

icu
b D

OF=
38

jax
on

 DOF=
44

jvr
c D

OF=
50

tal
os

DOF=
50

r2
DOF=

62

erg
ocu

b D
OF=

63

va
lky

rie
 DOF=

65

rom
eo

 DOF=
67

0

20

40

60

80

100

120

140

Co
m

pu
ta

tio
n

tim
e

[µ
s]

QP lower bound
OSQP
OSQP (Drake)
ProxQP
LOIK

Figure 7: Computation times for each method, on average over the 10 seconds
of motion of each scenario (x-axis) with confidence intervals of ± one
standard deviation. The additional “QP lower bound” measures the time taken
to compute frame placement and Jacobian matrices, a prerequisite-requisite
to build QP matrices.

D. Comparison to QP-based inverse kinematics

With the parameters we have described, the benchmark
produces 92,000 IK problems. We solve each problem with
LOIK, either OSQP or ProxQP run on the same quadratic
program (27), and OSQP run on the DRAKE quadratic pro-
gram (28)–(30), denoted by “OSQP (Drake)”. We leave QP
solvers with their respective default settings and tolerances.
The resulting computation times are reported in Figure 7.

a) Computation times: we did not include the overhead
in measuring computation times due to Python instructions.
We implemented LOIK as a single C++ function call with low
binding overhead. For QP formulations, computation times
include (1) the time taken to build problem matrices and
(2) the time the solver takes to return a solution. We only
counted in (1) the time taken to compute frame placements
and Jacobian matrices, which are implemented in C++ in the
same framework as LOIK.3 Since computing these quantities
is a prerequisite-requisite to build an IK quadratic program, we
include these timings as well as “QP lower bound” in Figure 7.
For (2), we used timings computed internally by each solver.
Both decisions yield lower bounds on actual timings for the
QP-based approach.

We observe in these results that, while LOIK is 1.5–2×
faster than QP-based approaches on single-task arm scenar-
ios, it scales more favorably when moving on to multi-task
humanoid ones, where its computation times are 2–3× shorter.
LOIK scales essentially like the “QP lower bound” of frame
Jacobian computations (another linear-time algorithm), with

3This means in particular that, for “OSQP (Drake)”, (1) does not include
the time taken to compute the additional LU decomposition.

0 250 500 750 1000 1250 1500 1750 2000

10 2

10 1

Pr
im

al
 re

sid
ua

l [
m

/s
]

Solvers
LOIK
OSQP
ProxQP

0 250 500 750 1000 1250 1500 1750 2000
Time Index

100

101

Nu
m

be
r o

f I
te

ra
tio

ns

Solvers
LOIK
OSQP
PROXQP

Figure 8: Comparison of solution quality from LOIK, OSQP, and ProxQP
for the 67-DOF Romeo humanoid scenario. Top: primal residual at each time
step. Bottom: number of iterations each solver took to converge at each time
step.

roughly a factor of two.
b) Residuals: We take a closer look at the performance

of LOIK, OSQP and ProxQP on the 67-DOF Romeo humanoid
scenario, which is one of the most challenging of the bench-
mark. We look at the primal residual maxi(∥Aiν − bi∥∞)
for tracking tasks over the entire trajectory, as well as the
number of iterations required by each solver to converge.
These comparisons are depicted in Fig. 8. In this scenario,
LOIK converges to a solution in less iterations than ProxQP
and OSQP. The hyperparameters used with LOIK are reported
in Sec. B. For OSQP and ProxQP, the default hyperparameters
were used, with one exception for OSQP where we enforced
checking termination at every iteration rather than the default
every 25 iterations. A major reason for LOIK requiring fewer
iterations was found to be our relative scaling factor of
αµ = 104, which weighs equality constraints higher than
inequality constraints. This appears to be more effective than
OSQP’s approach of not weighting the equality and inequality
constraints differently.

To inspect further how the method performs, Fig. 9 lists the
number of active inequality constraints and the value of the
ADMM penalty parameter at the time of termination for LOIK
over the same Romeo humanoid scenario. In our benchmark,
this scenario is among those with the highest counts of active
inequality constraints, with three or more constraints active
most of the time. We check in particular that the ADMM
penalty parameter µ remains within a reasonable range even
on the infeasible problems at the beginning of the trajectory,
owing to the infeasibility detection and termination strategy
discussed in Sec. IV-B.

0 250 500 750 1000 1250 1500 1750 2000

100

101

Nu
m

be
r o

f A
ct

iv
e

In
eq

ua
lit

y
Co

ns
tra

in
ts

0 250 500 750 1000 1250 1500 1750 2000
Time Index

10 2

10 1

100

101

102

m
u

Figure 9: Additional solver information from LOIK for the 67-DOF Romeo
humanoid scenario. Top: number of active inequality constraints at termination
for each time step. Bottom: value of the ADMM parameter µ at termination
for each time step.

E. Limitations

While we have assessed the effectiveness of LOIK over a
wide range of robots, we note that, at present, its expressivity
presents a couple of limitations. First, LOIK does not support
robot topologies with internal closed loops, as its recursive
derivation relies on a tree topology. Supporting closed-loops is
a relevant future research direction, since several recent robots
include them to improve some mechanical properties. Second,
LOIK assumes that all task constraints involve a single link
each, thus not supporting tasks that involve multiple links at
once. This precludes us from, for instance, constraining the
sum of the velocity of two links or constraining the velocity
of the center of mass, which is the inertia-weighted sum of
all link velocities (that is why we approximated the center of
mass by a fixed upper-body target in humanoid scenarios).

VI. CONCLUSION

In this paper, we have proposed a linear complexity dif-
ferential inverse kinematics solver, LOIK, which is capable
of handling both linear equality and inequality constraints.
This was only made possible by effectively exploiting the
kinematic tree-induced sparsity via the proposed three-pass
recursion algorithm that solves the equality-constrained sub-
problem within an ADMM loop. The ADMM formulation
enabled inequality constraints to be integrated into the solver
at minimal cost, as these constraints are resolved via constraint
set projection during each ADMM update. We have also
demonstrated the speed and scalability of our algorithm when
compared to the current state-of-the-art QP solvers on real-
world IK problems across a wide range of robotics platforms
with varying kinematic complexity. We expect this work will
contribute to drastically reducing the computational burden of

existing IK-based controllers, thus facilitating their usage in
applications where computational resources are limited. Other
interesting future directions include integrating LOIK within
larger control architectures for computing global IK [6] and
constrained motion planning [7], as well as exploring the
natural parallelization opportunities that ADMM provides.

ACKNOWLEDGEMENTS

This work was supported in part by the French gov-
ernment under the management of Agence Nationale de la
Recherche (ANR) as part of the ”Investissements d’avenir”
program, references ANR-19-P3IA-0001 (PRAIRIE 3IA In-
stitute) and ANR-22-CE33-0007 (INEXACT), the European
project AGIMUS (Grant 101070165), the Louis Vuitton ENS
Chair on Artificial Intelligence and the Casino ENS Chair on
Algorithmic and Machine Learning. Any opinions, findings,
conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the funding agencies.

REFERENCES

[1] Erwin Aertbeliën and Joris De Schutter. etasl/etc: A
constraint-based task specification language and robot
controller using expression graphs. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, pages 1540–1546. IEEE, 2014.

[2] Dae-Sung Bae and Edward J Haug. A recursive formu-
lation for constrained mechanical system dynamics: Part
i. open loop systems. Journal of Structural Mechanics,
15(3):359–382, 1987.

[3] Antoine Bambade, Fabian Schramm, Sarah El Kazdadi,
Stéphane Caron, Adrien Taylor, and Justin Carpentier.
PROXQP: an Efficient and Versatile Quadratic Program-
ming Solver for Real-Time Robotics Applications and
Beyond. working paper or preprint, September 2023.
URL https://inria.hal.science/hal-04198663.

[4] Antoine Bambade, Fabian Schramm, Adrien Taylor, and
Justin Carpentier. Qplayer: efficient differentiation of
convex quadratic optimization. International Conference
on Learning Representations (ICLR), 2024.

[5] Goran Banjac, Paul Goulart, Bartolomeo Stellato, and
Stephen Boyd. Infeasibility detection in the alternating
direction method of multipliers for convex optimization.
Journal of Optimization Theory and Applications, 183:
490–519, 2019.

[6] Patrick Beeson and Barrett Ames. Trac-ik: An open-
source library for improved solving of generic inverse
kinematics. In 2015 IEEE-RAS 15th International Con-
ference on Humanoid Robots (Humanoids), pages 928–
935. IEEE, 2015.

[7] Dmitry Berenson, Siddhartha Srinivasa, and James
Kuffner. Task space regions: A framework for pose-
constrained manipulation planning. The International
Journal of Robotics Research, 30(12):1435–1460, 2011.

[8] Stephen Boyd and Lieven Vandenberghe. Convex Opti-
mization. Cambridge University Press, 2004.

[9] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
Jonathan Eckstein, et al. Distributed optimization and
statistical learning via the alternating direction method
of multipliers. Foundations and Trends® in Machine
learning, 3(1):1–122, 2011.

[10] Stéphane Caron, Abderrahmane Kheddar, and Olivier
Tempier. Stair climbing stabilization of the hrp-4 hu-
manoid robot using whole-body admittance control. In
2019 International conference on robotics and automa-
tion (ICRA), pages 277–283. IEEE, 2019.

[11] Stéphane Caron, Yann De Mont-Marin, Rohan Budhiraja,
and Seung Hyeon Bang. Pink: Python inverse kinematics
based on Pinocchio, January 2024. URL https://github.
com/stephane-caron/pink.

[12] Stéphane Caron, Giulio Romualdi, Lev Kozlov, Daniel
Ordonez, Hugo Tadashi Kussaba, and Seung Hyeon
Bang. robot descriptions.py: Robot descriptions in
Python, January 2024. URL https://github.com/
robot-descriptions/robot descriptions.py.

[13] Justin Carpentier, Guilhem Saurel, Gabriele Buondonno,
Joseph Mirabel, Florent Lamiraux, Olivier Stasse, and
Nicolas Mansard. The pinocchio c++ library – a fast
and flexible implementation of rigid body dynamics
algorithms and their analytical derivatives. In IEEE
International Symposium on System Integrations (SII),
2019.

[14] A. Chiche and J.C. Gilbert. How the augmented la-
grangian algorithm can deal with an infeasible convex
quadratic optimization problem. Journal of Convex
Analysis, 2016.

[15] Alberto De Marchi. On a primal-dual newton proximal
method for convex quadratic programs. Preprint, 12
2020. Submitted.

[16] Rosen Diankov. Automated construction of robotic
manipulation programs. PhD thesis, Carnegie Mellon
University, The Robotics Institute Pittsburgh, 2010.

[17] Dimitar Dimitrov, Alexander Sherikov, and Pierre-Brice
Wieber. Efficient resolution of potentially conflicting
linear constraints in robotics. Submitted to IEEE TRO
(05/August/2015), August 2015. URL https://inria.hal.
science/hal-01183003.

[18] Adrien Escande, Nicolas Mansard, and Pierre-Brice
Wieber. Hierarchical quadratic programming: Fast online
humanoid-robot motion generation. The International
Journal of Robotics Research, 33(7):1006–1028, 2014.

[19] Roy Featherstone. The calculation of robot dynamics
using articulated-body inertias. The international journal
of robotics research, 2(1):13–30, 1983.

[20] Roy Featherstone. Rigid body dynamics algorithms.
Springer, 2014.

[21] R. Glowinski and A. Marroco. Sur l’approximation,
par éléments finis d’ordre un, et la résolution, par
pénalisation-dualité d’une classe de probl‘emes de
Dirichlet non linéaires. Revue française d’automatique,
informatique, recherche opérationnelle. Analyse
numérique, 9(R2):41–76, 1975.

https://inria.hal.science/hal-04198663
https://github.com/stephane-caron/pink
https://github.com/stephane-caron/pink
https://github.com/robot-descriptions/robot_descriptions.py
https://github.com/robot-descriptions/robot_descriptions.py
https://inria.hal.science/hal-01183003
https://inria.hal.science/hal-01183003

[22] Gaël Guennebaud, Benoı̂t Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[23] B. Hermans, A. Themelis, and P. Patrinos. QPALM: A
Newton-type Proximal Augmented Lagrangian Method
for Quadratic Programs. In 58th IEEE Conference on
Decision and Control, Dec. 2019.

[24] M. R. Hestenes. Multiplier and gradient methods. Jour-
nal of Optimization Theory and Applications, 4:302–320,
1969.

[25] Taylor A Howell, Brian E Jackson, and Zachary Manch-
ester. Altro: A fast solver for constrained trajectory op-
timization. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 7674–
7679. IEEE, 2019.

[26] Wilson Jallet, Antoine Bambade, Nicolas Mansard, and
Justin Carpentier. Constrained differential dynamic
programming: A primal-dual augmented lagrangian ap-
proach. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 13371–
13378. IEEE, 2022.

[27] Shuuji Kajita, Mitsuharu Morisawa, Kanako Miura,
Shin’ichiro Nakaoka, Kensuke Harada, Kenji Kaneko,
Fumio Kanehiro, and Kazuhito Yokoi. Biped walking
stabilization based on linear inverted pendulum tracking.
In 2010 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 4489–4496. IEEE, 2010.

[28] Oussama Kanoun, Florent Lamiraux, and Pierre-Brice
Wieber. Kinematic control of redundant manipulators:
Generalizing the task-priority framework to inequality
task. IEEE Transactions on Robotics, 27(4):785–792,
2011.

[29] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés
Valenzuela, Hongkai Dai, Frank Permenter, Twan
Koolen, Pat Marion, and Russ Tedrake. Optimization-
based locomotion planning, estimation, and control de-
sign for the atlas humanoid robot. Autonomous robots,
40:429–455, 2016.

[30] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen,
Vladlen Koltun, and Marco Hutter. Learning quadrupedal
locomotion over challenging terrain. Science robotics, 5
(47):eabc5986, 2020.

[31] Kevin M Lynch and Frank C Park. Modern robotics.
Cambridge University Press, 2017.

[32] Yoshihiko Nakamura. Advanced robotics: redundancy
and optimization. Addison-Wesley Longman Publishing
Co., Inc., 1990.

[33] Jorge Nocedal and Stephen J Wright. Numerical Opti-
mization. Springer, 2006.

[34] Je P Popov, Anatolij Fedorovic Vereshchagin, and
Stanislav Leonidovic Zenkevic. Manipuljacionnyje
roboty: Dinamika i algoritmy. Nauka, 1978.

[35] M. J. D. Powell. A method for nonlinear constraints
in minimization problems. Optimization, page 283–298,
1969.

[36] James Blake Rawlings, David Q Mayne, and Moritz
Diehl. Model predictive control: theory, computation,

and design, volume 2. Nob Hill Publishing Madison,
WI, 2017.

[37] R. Tyrrell Rockafellar and Roger J. B. Wets. Variational
Analysis. Springer Berlin, Heidelberg, 1997.

[38] Layale Saab, Nicolas Mansard, François Keith, Jean-
Yves Fourquet, and Philippe Souères. Generation of
dynamic motion for anthropomorphic systems under pri-
oritized equality and inequality constraints. In 2011 IEEE
International Conference on Robotics and Automation,
pages 1091–1096. IEEE, 2011.

[39] Ajay Suresha Sathya and Justin Carpentier. Constrained
articulated body dynamics algorithms.

[40] Ajay Suresha Sathya, Herman Bruyninckx, Wilm Decré,
and Goele Pipeleers. Efficient constrained dynamics
algorithms based on an equivalent lqr formulation using
gauss’ principle of least constraint. IEEE Transactions
on Robotics, 2023.

[41] Jean-Jacques Slotine and B Siciliano. A general frame-
work for managing multiple tasks in highly redundant
robotic systems. In proceeding of 5th International Con-
ference on Advanced Robotics, volume 2, pages 1211–
1216, 1991.

[42] Ruben Smits, H Bruyninckx, and E Aertbeliën. Kdl:
Kinematics and dynamics library, 2011.

[43] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Al-
berto Bemporad, and Stephen Boyd. OSQP: an operator
splitting solver for quadratic programs. Mathematical
Programming Computation, 12(4):637–672, 2020.

[44] Tomomichi Sugihara. Solvability-unconcerned inverse
kinematics based on levenberg-marquardt method with
robust damping. In 2009 9th IEEE-RAS international
conference on humanoid robots, pages 555–560. IEEE,
2009.

[45] Russ Tedrake and the Drake Development Team. Drake:
Model-based design and verification for robotics, 2019.
URL https://drake.mit.edu.

[46] AF Vereshchagin. Computer simulation of the dynamics
of complicated mechanisms of robot-manipulators. Eng.
Cybernet., 12:65–70, 1974.

[47] Anatolii Fedorovich Vereshchagin. Modeling and control
of motion of manipulational robots. Soviet Journal of
Computer and Systems Sciences, 27(5):29–38, 1989.

[48] Pierre-Brice Wieber. Trajectory free linear model predic-
tive control for stable walking in the presence of strong
perturbations. In 2006 6th IEEE-RAS International
Conference on Humanoid Robots, pages 137–142. IEEE,
2006.

[49] Pierre-Brice Wieber, Adrien Escande, Dimitar Dimitrov,
and Alexander Sherikov. Geometric and numerical as-
pects of redundancy. Geometric and Numerical Founda-
tions of Movements, pages 67–85, 2017.

https://drake.mit.edu

APPENDIX A
LOIK ALGORITHMIC DETAILS

A. Lagrangian Saddle Point Conditions

To derive the saddle point conditions for Lagrangian
(20), we note that for the differential IK problem of
the form (2), the quadratic objective function is smooth
(therefore continuous), and all the linear equality constraints
form a convex constrained set; additionally, the inequality
constraint sets Ki are all assumed to be convex, under
these conditions, the saddle point conditions for the
Lagrangian (20) is provided by [37] [Thm 6.12], [Cor
11.51], which in turn provides the first order optimality
conditions of the original problem (when it is feasible):

− ∂vi
LIK = −

Href
i vi −Href⊤

i vref
i +A⊤

i yi − fi +
∑

j∈γ(i)

fj


= 0 (31a)

− ∂νiLIK = −
(
S⊤
i fi +wi

)
= 0 (31b)

− ∂ziLIK = wi ∈ NKi(zi) (31c)
zi ∈ Ki (31d)

∂fiLIK = vπ(i) + Siνi − vi = 0 (31e)
∂yiLIK = Aivi − bi = 0 (31f)
∂wiLIK = νi − zi = 0 (31g)
We now show that using the ADMM updates proposed in

(6c) and (6e) (for box constraint sets), first-order optimality
conditions (31c) and (31d) will be automatically satisfied.
Verifying (31d) is straightforward, as (7) has shown that
primal z-update (6c) boils down to a projection of zi onto
the constraint set Ki, therefore zk+1

i ∈ Ki after each ADMM
iteration. For optimality condition (31c), note that when Kis
are box constraints, for any element in the interior of Ki,
NKi(zi) is the zero cone, i.e. NKi(zi) = {0}; for any
element that has components on the lower boundary of Ki,
i.e., zi[j] = zlb[j] the normal cone NKi

(zi) consists of
elements, n, whose jth component is non-positive n[j] ≤ 0;
likewise, for any element that has components on the upper
boundary of Ki, i.e. zi[j] = zub[j], the normal cone NKi(zi)
consists of elements, n, whose jth component is non-negative
n[j] ≥ 0. When zk+1

i is strictly in the interior of Ki,
zk+1
i = ΠKi

(
νk+1
i + 1

µk
box
wk

i

)
= νk+1

i + 1
µk

box
wk

i . Substituting

back into wi-update (6e): wk+1
i = wk

i +µk
box(ν

k+1
i −(νk+1

i +
1

µk
box
wk

i)) = 0. Which proves that wk+1
i ∈ NKi(z

k+1
i) when

zk+1
i is strictly in the interior of Ki. The other two cases where

zk+1
i has components on the boundaries of Ki can be similarly

verified.

B. Dual Infeasibility Detection

Below, we present the dual infeasibility detection algorithm
for differential IK problems of the form (2)

Algorithm 7 Dual infeasibility detection

Require: vis, vprev
i s, ν, νprev, Ais, Href

i s, vref
i s, σdinf

1: δv = v − vprev, δν = ν − νprev

2: εdinf = σdinf ·max(∥δv∥∞, ∥δν∥∞)
3: d1 := ∥Hrefδv∥∞ ≤ εdinf

4: d2 := ∥vref⊤Hrefδv∥∞ ≤ εdinf
5: d3 := −εdinf ≼ δvπ(i) + Siδνi − δvi ≼ εdinf, ∀i ∈ L
6: d4 := −εdinf ≼ Aδv ≼ εdinf
7: d5 := −εdinf ≼ δν ≼ εdinf
8: if (d1 and d2 and d3 and d4 and d5) then
9: Dual Infeasible = True

APPENDIX B
LOIK HYPERPARAMETER VALUES

Table II stores hyperparameter values used within LOIK to
generate all experimental results presented in this paper.

Table II: LOIK hyperparameter values for all experiments

Parameter Value
ρv 1e-5
ρν 1e-5
µ 1e-2
αµ 1e4
σabs 1e-3
σrel 1e-3
σpinf 1e-2
σdinf 1e-2

max iter 100
tail solve max iter 100

APPENDIX C
RANDOM INITIALIZATION AND WARM-STARTING

To quantify LOIK’s performance characteristics against
initial guesses, we tested both warm-starting and random
initialization strategies at the most difficult problem for each
robot IK scenarios. This is achieved by selecting a time
instant during the tracking trajectory for each robot at which
the highest number of iterations is required. At these time
instances, we provided poor initial guesses for each decision
variable, sampled from a uniform distribution supported over
[-1e5, 1e5]. We then performed this random sampling a
thousand times for each robot scenario at these most difficult
problems, and collected the average number of iterations (and
standard deviation) required into Figure 11. Additionally, we
also gathered the number of active inequality constraints at
these time instances for each robot into Figure 12 to verify
that these problems are indeed non-trivial.

ed
o

fa
nu

c
ge

n2

ur
10 ur
3

ur
5 z1

ge
n3 iiw
a

pa
nd

a
ca

ss
ie h1

sig
m

ab
an

dr
ac

o3
at

las
_d

rc
at

las
_v

4
icu

b

jax
on jvr

c

ta
los

er
go

cu
b

va
lky

rie
ro

m
eo

0

10

20

30

40

50

60

Nu
m

be
r o

f I
te

ra
tio

ns

random initialization
warm start

Figure 11: LOIK iteration count with random initialization and warm-starting

ed
o

fa
nu

c
ge

n2

ur
10 ur
3

ur
5 z1

ge
n3 iiw
a

pa
nd

a
ca

ss
ie h1

sig
m

ab
an

dr
ac

o3
at

las
_d

rc
at

las
_v

4
icu

b

jax
on jvr

c

ta
los

er
go

cu
b

va
lky

rie
ro

m
eo

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f A
ct

iv
e

In
eq

ua
lit

y
Co

ns
tra

in
ts

Figure 12: Number of active inequality constraints associated with the problem
set solved in Figure 11

It can be seen that LOIK’s iteration count is quite stable
despite the extremely poor initial guesses. This is perhaps
unsurprising since we are solving convex QPs, which, as
a problem class, are relatively insensitive to initial guesses.
The number of active inequality constraints indicates that
these problems were non-trivial. The problem above was even
infeasible for some robots, with LOIK returning the closest
feasible solution (in weighted l-2 norm) that minimizes the
task function error, as explained in Section IV-B.

Additionally, please note that if LOIK was warm-started
with the solution from the previous instance, the number of
iterations required to converge is significantly reduced, as
is expected from augmented Lagrangian methods, which are
known to be amenable to warm-starting. We also demonstrate
this superb warm-starting property in Figure 11, even for the
most difficult problems.

