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Abstract 

This paper contains a review of the theory and applications of nonlinear normal modes, 

which are developed during last decade. This review has more than 200 references. It is a 

continuation of two previous review papers by the same authors. The following theoretical 

issues of nonlinear normal modes are treated: basic concepts and definitions; application of the 

normal form theory for nonlinear modes construction; nonlinear modes in finite degrees of 

freedom systems; resonances and bifurcations; reduced-order modelling; nonlinear modes in 

stochastic dynamical systems; numerical methods; identification of mechanical systems using 

nonlinear modes. The following applied issues of this theory are treated in this review: 

experimental measurement of nonlinear modes; nonlinear modes in continuous systems; 

engineering applications (aerospace engineering, power engineering, piecewise-linear systems 

and structures with dry friction); nonlinear modes in nanostructures and physical systems; 

targeted energy transfer and absorption problem. 
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1. Introduction

1.1. Basic Concepts and Main Definitions

This review is a continuation of the previous ones [1] and [2]. Over the last decade, a 

large number of publications have appeared relating to the theoretical and applied aspects of the 

nonlinear normal vibrations modes (NNMs). This indicates the importance of this area in 

nonlinear dynamics. There has been a significant increase of studies devoted to different 

dynamical systems including applied systems, whose dynamics are studied using NNMs. The 

analytical and numerical methods for NNMs analysis are significantly developed during the last 

decade. Moreover, the studies of NNMs in a stochastic dynamical system, the identification of 

mechanical systems using NNMs, are initiated. The NNMs analysis is a useful tool for the first 

step of nonlinear system complex behavior study.  

In this review, we touch the historical aspects of the NNMs, which are a generalization of 

the well-known linear normal vibrations. Turning to the origin of NNMs, we note the 

contribution by A.M. Lyapunov [3], who at the end of the 19th century developed the method 

for construction of the periodic solutions in finite-dimensional dynamical systems with a first 

analytic integral. Such solutions tend to normal modes of linear systems, if the vibration 

amplitudes tend to zero. for Hamiltonian 

systems by A. Weinstein [4]. Later it is shown [5] that the Lyapunov solutions have properties 

of the NNMs.  

H. Seifert [6] proved the existence at least of one periodic solution of the conservative 

system, which trajectory twice intersects the maximal equipotential surface during one period. 

Later such solutions were called BB- -solutions, 

when the trajectory passes thro

where the existence at least n BOB-solutions in the finite DOF systems with even potential 

energy is proven. 

H. Kauderer [9] was the first who constructed NNMs of two-DOF conservative system

with cubic nonlinearity, using the equations of motions in the system configuration space. R. 

Rosenberg in the papers [10-13] proposed 

i.e., synchronous periodic motions, when all generalized coordinates of the finite-DOF system 

reach their maximum and minimum values at the same instants of time. Rosenberg obtains 

several classes of nonlinear systems, including nonlinearized ones, which have NNMs with 

straight modal lines (so-c  of the 

linear normal modes to a nonlinear case. The Kauderer-Rosenberg (K-R) concept of the NNMs 

is based on the construction of the trajectories (modal lines) in the configuration space. 

The K-R concept can be used in systems with significant and even predominant non-

linearity. It seems that the K R NNMs are an effective tool to study free and forced large 

amplitude vibrations of low dimensional essential nonlinear systems without dissipation. Note 

that the construction of modal lines is most efficient when they are close to the rectilinear ones 

[14]. This concept is applied to analyze the mechanical systems having nonlinear absorbers, 

shallow shells and arches with snap-through motions, other finite-DOF mechanical systems 

[1,2]. 

Different concept of the NNMs was proposed by S.Shaw and C.Pierre [15 17]. They 

considered NNMs as invariant manifolds in the system phase space, which are tangent to the 

linear normal modes. Note that a similar approach is suggested to construct periodic solutions 
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in phase space by A.M. Lyapunov [3]. The Shaw-Pierre (S-P) approach can be used for 

dissipative dynamical systems and does not imply binding to conservative condition as in the 

K-R concept. At present, both K-R NNMs and S-P NNMs can be used for mechanical systems

with significant nonlinearity.

S-P NNMs can be used to analyze the continuous mechanical systems, which are reduced

to nonlinear ordinary differential equations (ODEs) by means of finite element methods, 

Galerkin approach, or assumed-mode method. This S-P concept is successfully used to analyze 

both conservative and dissipative mechanical systems [1,2]. Moreover, this technique can be 

applied to analyze free and forced nonlinear vibrations of mechanical systems with dozens and 

hundreds DOF. The detailed description of the S-P NNMs and their use in different theoretical 

and applied problems are made in the book chapter [18]. 

A continuation and generalization of the S-P concept of NNMs is made in recent 

publications by Haller with co-authors. The authors introduced spectral submanifold (SSM) in 

phase space. They treated it as the smoothest invariant manifold tangent to a nonresonant 

spectral subspace at a fixed point under the condition that there are no low-order resonances 

with the rest of the linearized spectrum. A corresponding strict mathematical definition of 

SSMs is given in [19, Definition 3]. Using this definition, the authors explore the existence and 

uniqueness of SSMs from prior abstract results on mappings on Banach spaces, as well the 

smoothness and robustness of these manifolds. The existence and uniqueness of SSM depends 

on the spectral quotient, which is calculated from the real part of the linearized system 

spectrum. Such definition of SSMs has a general form, which can be also (5) used for the 

systems under the action of a periodic or quasi-periodic external excitation. The fast, 

intermediate and slow SSMs are obtained. Connection of the proposed SSMs with the K-R 

NNMs is explained. 

a.                                                    b. 

Fig.1 Non-unique invariant manifolds, which are tangent to the slower-decaying 

spectral subspace in the planer and finite-dimensional cases. Figure courtesy of G. Haller 

The non-unique invariant manifolds tangent to the slower-decaying spectral subspace of a 

planar linear dynamical system (Fig. 1a). But the invariant manifold, which is tangent to the 

faster-decaying spectral subspace, is unique. The non-unique invariant manifolds of the finite 

dimensional dynamical system, which are tangent to the individual spectral subspace, are 

shown in Fig. 1b. Both the choice of the co-dimension one boundary surface  and the 

boundary values  of the invariant manifold are arbitrary, as long as  is transverse to the

linear vector field (Fig.1b).   
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Other publications by G. Haller with co-authors, where the concept of the SSMs is 

developed, are presented in next sections
1
.  

At the end of this Section, we note that the different aspects of the theory of NNMs and 

their applications are reviewed over the past years in several papers [28-31].  

1.2. NNMs and theory of normal forms 

There are many studies that compare the NNMs theory in the framework of the S-P 

concept with the normal form (NF) theory originated in classical works by 

Birkhoff. A part of the NF theory is treated in the section devoted to reduced-order modeling. 

Consider the following dynamical system in the form of a system of ordinary differential 

equations (ODEs): 

, (1) 

where q is a vector of the phase coordinates. The principal transform of the NF method is the 

following near-identity one to the new variables   

  (2) 

This transformation permits to remove the non-resonant terms of the successively 

higher powers in the Taylor expansion of the nonlinear terms . As a result, the new more 

simple dynamical system is derived in the following form:  

(3) 

where  contains only resonant terms. Schematic representation of the NF mapping

transform (2) from the phase coordinates  to a curvilinear coordinate system  is shown for a 

four-dimensional phase space in Fig.2. Here  are two-dimensional invariant manifolds. 

Components of the vector  are presented by the modal coordinates ( , ,  ). The normal 

coordinates corresponding to the vector  are denoted by ( , , , ). These coordinates 

generate the curved grid, which is associated with the invariant-based span of the phase space. 

he NNMs concept was generalized previously to non-conservative systems. Namely, the K-

R NNMs together with Rauscher method are used to analyze the forced and self-sustained 

vibrations in [17, 20-23]. The S-P NNMs and the Rauscher method are used together to analyze 

the forced vibrations in [24] and parametric vibrations in [25]. Moreover, NNMs of forced 

vibrations with smooth trajectories in the configuration space and chaotic behavior in time are 

presented in [26] for two-DOF systems with more than one equilibrium positions. Localized 

mode with chaotic behavior in time is described in the paper [27]. 
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Fig. 2 Schematic representation of the NF mapping transform in a four-dimensional 

phase space. Figure courtesy of   

The combination of the NF approach, singularity theory and variational technique are 

used to prove the NNMs existence in [32]. It seems to us, that the relationship between the 

NNMs and NF construction is first discussed in [33].  

A detailed analysis of the connection between the NNMs, the NF theory and a use of 

NNMs for reduced-order modeling is made in [34, 35, 36]. Large amplitude vibrations of thin-

walled structures are considered in these papers.  

The application of the NF theory for the NNMs analysis is treated in [37]. The NF theory 

is applied to obtain the NNMs of two-DOF cable model with account of the internal resonance 

between in-phase and out-of-phase modes. The transition from planar to whirling motions is 

described by the second-order NF. 

Note that the effectiveness of the NF approach, as one of the most developed in nonlinear 

dynamics, is beyond doubt. NF theory is applied to wide classes of nonlinear mechanical 

systems. In particular, nonlinear vibrations of the thin-walled structures, rotors, etc., are 

analyzed by this approach. 

2. NNMs of finite-DOF systems

In this section the publications devoted to NNMs in finite DOF mechanical systems are 

analyzed by different approaches.  

The paper [38] is dedicated to a nonlinear modal analysis of dissipative mechanical 

systems using the complex nonlinear modes (CNMs), when the complex non-linear eigenvalue 

problem in the frequency-domain is formulated. The corresponding eigenfunctions are 

determined in the form of the generalized Fourier series. The NNMs in the turbomachinery 

bladed disk with dry-friction contacts are analyzed.  

The resonant NNMs in the self-excited and parametrically coupled oscillators under the 

action of the periodic excitation are analyzed by the multiple scales method (MSM) in [39]. 

The K-R NNMs of the spring pendulum and the mechanical system with pendulum 

absorber are analyzed in [21]. The combination of the NNM approach and the Rauscher 

method, when the generalized coordinate associated with the NNM is chosen as new 
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independent variable instead of time, is used to describe the forced vibrations of such two DOF 

systems.  

The existence of the in-phase and the out-of-phase NNMs in two coupled nonlinear 

oscillators is proved using the comparison principle for ODEs in [40].  

The extended definition of NNMs as a family of periodic motions is proposed for 

autonomous systems in [41]. These periodic motions are excited by the mass-proportional auto-

oscillations force. The harmonic balance method (HBM) are used to construct these periodic 

motions.  

New representation of the NNMs using eigenfunctions of the Koopman operator, which 

is associated with the system observables. In this case, the relative displacements, potential or 

kinetic energies are discussed in [42, 43]. The expansions by the eigenfunctions of the 

Koopman operator are used. The analogy with the S-P NNMs is discussed. The numerical 

technique for the construction of invariant manifolds in larger domains of the phase space is 

proposed to overcome local properties of the expansions.  

The NF technique and the energy balance method (EBM) are used to determine the forced 

responses of two-DOF nonlinear dynamical system in [44, 45]. The resonance crossing points 

between the forced responses and the backbone curves of the system free vibrations are 

obtained.  

We can note that the EBM approach is based on the assumption, that the total vibration 

energy for the periodic steady-state response is equal to zero over one period. Moreover, this 

assumption is used in different perturbation techniques and can be expressed by the following 

equation: 

,                              (4) 

where  is the perturbation vector function for ODEs;  is a solution of the unperturbed 

ODEs. The integral (4) is calculated along the unperturbed solution . In particular, the 

condition (4) is used to study the bifurcations of NNMs in [14]. The well-known subharmonic 

Melnikov function also has the form of the integral (4). The authors of [46] prove a generalized 

version of the equation (4) that is valid for finite DOFs system. 

Nonlinear dynamics of two DOF system with a cubic nonlinearity, which is obtained 

from the Galerkin projections of the simply supported geometrically nonlinear model of beam, 

is analyzed in [47]. NNMs of the systems are studied using the continuation technique. The 

main attention is paid to the branches of NNMs, which correspond to different internal 

resonances. The phase-locked and phase-unlocked branches of the NNMs are obtained. Then 

the modes are studied in the presence of the external excitation. It is assumed that this 

excitation and damping mutually balance each other. Results of the numerical analysis show 

that the phase-locked NNMs are strongly attractive, while the non-phase-locked NNMs are 

weakly attractive. As follows from the numerical analysis, the energy transfer mechanism is 

much less intensive for the phase-unlocked modes.  

S-P NNMs are used to describe the spacecraft relative motion on Kepler orbits in [48]. 

The Lyapunov-Floquet transformation, invariant manifold-based order reduction and time-

dependent NF are used to obtain NNMs.   

The vibration localization of the cyclic symmetric chain of six externally excited weakly-

coupled Duffing oscillators is analyzed in [49]. The system periodic motions have fifty two 
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different modes (including the trivial one) due to the system symmetry. Twenty two of these 

solutions can be obtained from the linear modes. These modes undergo the bifurcations, which 

are observed if the amplitudes of vibrations are varied from low to high values. The others 

isolated thirty branches of the periodic oscillations exist after a certain energy threshold that is 

these branches disappear at low energy. If all oscillators are excited by the same force, spatial 

localized vibrations take place. The degree of this localization is strongly dependent on the 

excitation level.  

The localized NNMs in a system of the linearly coupled Duffing oscillators under the 

action of a harmonic excitation are treated in [27]. Such localization is obtained in the form of 

the intrinsic localized modes, which can be both symmetric modes and asymmetric ones. The 

free and forced responses are approximated by a single harmonic. As follows from the analysis, 

if linear coupling disappear, then these localized modes are stable, but they are chaotic in time. 

The SSM concept is used to analyze the forced nonlinear vibrations of finite-DOF 

mechanical systems under the non-resonance conditions in [50]. The two-dimensional SSMs 

for non-autonomous system are obtained in vicinity of the origin using the small parameter 

method. These SSMs can be used for the forced system analysis, if the forcing frequency does 

not satisfy the resonance condition with an imaginary part of the eigenvalues of the linearized 

system. Amplitudes of the forced response are obtained as roots of polynomial. For the cases of 

internal resonances, the system dynamics is not observed on two-dimensional SSM. In this 

case, the higher-dimensional SSM must be derived. Such SSMs are also used to derive 

analytically the response of periodically forced finite DOF mechanical systems in [51]. The 

proposed algorithm permits to obtain the analytical solution. The analytical predictions include 

g.3), which 

belongs to the time-periodic SSM. As follows from this Figure, three limit cycles for the 

forcing frequency  are observed. The proposed approach is used to analyze two DOF 

system with cubic nonlinearity and the Euler-Bernoulli beam transversal vibrations with a cubic 

spring and damper attached to the beam end. 

Fig. 3 Periodic SSM and forced frequency periodic response. Figure courtesy by G. 

Haller 

The paper [46] is dedicated to study of stability and bifurcations of the periodic forced 

vibrations in the dissipative mechanical system beginning from the backbone curves analysis in 

the conservative limit. This problem is reduced to analysis of the generalized subharmonic 

Melnikov function, which is a leading term in the equation of the energy balance over one 
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period of motion. The proposed approach allows obtaining maximal amplitudes of the forced 

vibrations and the saddle-node bifurcation points.  

The modal superposition method based on, so-called, the hybrid mode shape concept is 

developed to obtain the steady state forced response of nonlinear systems in [52]. This mode 

shape is presented as linear combination of the modal vectors of the limiting linear systems. 

This approach is applied to the nonlinear system with dry friction.  

The S-P NNMs are obtained using the  polynomials basis in [53]. This permits to 

increase accuracy of the NNMs approximation.  

A modification of the EBM is applied to the dissipative forced nonlinear systems using a 

concept of the damped nonlinear normal modes (dNNMs) [54]. This modification of the EBM 

allows to carry out the balance between the energy losses from the damping and the external 

excitation energy. The EMB approach predicts resonances of forced NNMs. The self-sustained 

vibrations of two-DOF system interacting with a moving belt are considered. 

The nonlinear mechanical subsystems with linear attachments are considered in [55]. The 

numerical simulations of the cantilevered beam with cubic spring are treated. 

A stability of NNMs, standing and traveling waves is analyzed using the method of the 

Ince algebraization in [56]. The positional coordinate describing the unperturbed NNM is used 

as the independent variable instead of time. In this case, equations in variations are transformed 

into the equations with singular points. Then solutions corresponding to boundaries of the 

stability/instability regions are obtained. Another analytical-numerical approach of the NNM 

stability analysis, which is associated with the classical Lyapunov definition of stability, is also 

used.  

The dynamics of two coupled pendulums under a magnetic field are considered in [57]. 

The small parameter method is used to construct two nonlinear normal modes one of them is 

the coupled vibration mode, and the second is the localized one. The influence of the masses 

ratio and other system parameters to these NNMs for small and not small initial angles of the 

pendulums is studied. 

 In publications presented in this Section, various methods for NNMs analysis are used, in 

particular, the K-R approach, S-P expansions, SSMs, the harmonic balance method (HBM), the 

multiple scales method (MSM), the energy balance method (EBM), the Rauscher method, the 

Fourier expansions etc. At the same time, it can be noticed that a number of new kinds of 

NNMs have been introduced, in particular, complex, damped, transient, phase-locked NNMs, 

are considered. We also believe that it is not always possible to establish a direct 

correspondence of the obtained vibration modes to the basic concepts of NNMs, which are 

presented at the beginning of this review. It seems to us that the significance of certain 

definitions and their connection with the main definitions of NNMs will be estimated only by 

further research.  

 

3. Resonances and bifurcations of NNMs 

 

This section is devoted to free and forced NNMs in the vicinity of resonances of various 

origins.  
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Fig.4 The chain of particles. Reprinted with permission from Society for Industrial and 

Applied Mathematics 

 

The papers [58, 59] are dedicated to study of the in-plane oscillations of the strongly 

nonlinear finite chain of particles with clamped-clamped boundary conditions (Fig.5). In the 

low energy case, transversal geometrically nonlinear oscillations are predominant. This case is 

called "nonlinear acoustic vacuum" and the nonlinear terms are predominant in the equations of 

motion. The continuum limit of the system is described by the following partial differential 

equations (PDEs):  

 

 

where  is a small parameter, which describes the order of the axial and transverse 

displacements. The main variables  and  are shown on Fig.5. In this continuum 

limit the nonlinear sonic vacuum leads to absence of any linear acoustics and zero speed of 

sound. The NNMs of the system are identical to ones of the linear chain. The case of the 1:1 

resonance is studied asymptotically. The strong energy exchange between the modes is 

observed. As follows from [59], all NNMs excepting one with high wavelength are unstable. 

Two different cases are considered for low system energies. In the first case, the predominantly 

transverse NNMs are excited by the spatially extended transverse loads, which act on the 

lattice. In the second case, the localized transverse impulse excitations occur. An intense and 

repetitive energy exchange between the directly excited NNM and other NNMs with higher 

wave numbers is observed.  

The phase-locking between the modes in the case of the internal resonance is analyzed 

using the NF technique in [60]. Both phase-locked and phase-unlocked backbone curves of the 

weakly nonlinear cable are obtained. The phase-locking occurs between in-plane and out-of- 

plane motions. For the phase-locked and the phase-unlocked cases the mixed-mode backbone 

curves appear due to the bifurcation of the single-mode motions. The EBM is used to determine 

the system forced responses from the backbone curves analysis. A stability analysis is used to 

show that the phase locking is associated with the internal resonance. It is also shown that the 

phase-unlocked modes may lead to stiffening effects in the system. 

The NNMs backbone curves of free nonlinear vibrations are used to describe forced 

responses of the dissipative systems in the next two papers. The EBM and the continuation 

oscillationcillati

dary condiry con

ons are pres are p

are predome predom

by the foy the f

hich descch de

s  a

m leads toleads

tem are idm are 

mptoticallymptotical

m m [5[59], a9],

e considerconsid

re excitedexcit

ond case, nd cas

gy exchangexcha

s is observis obse

phase-lockase-lo

e NF technNF tec

y nonlineanonlin

motionoti

9



technique are used to describe the forced resonance vibrations using the backbone curves in 

[61

to interactions between the NNMs.  

The NNMs interaction in a three-DOF system with weak cubic nonlinearity is considered 

in [62]. The system with the internal resonance, when all eigenfrequencies are close, is treated. 

Then the NF approach is used to obtain the backbone curves of the dissipative system forced 

response.  

Free and forced vibrations of the finite-DOFs dissipative mechanical systems in the case 

of internal and/or forced resonance conditions are considered in [63-65]. The NNMs 

interactions are analyzed using the MSM. The modulation equations are transformed to the so-

called reduced system with respect to three variables (the system energy, the arc tangent of the 

amplitudes ratio and phases difference). The analysis of the reduced system permits to describe 

transition from unstable nonlinear modes to stable ones. The conditions of the vibrations energy 

localization are obtained. Besides, the transient NNMs (TNNMs) are observed. Such modes 

exist, if the energy exceeds the threshold values for some time instant. These transient NNMs 

attract other motions of the system near this time value. If the transient mode disappears, the 

motions of the system move to some stable NNM.  

The nonlinear mode localization in the boundary-interior coupled structures with cubic 

nonlinearity (Fig.6) is considered in [66]. Resonant and non-resonant boundary motions are 

described by the boundary modulation operator. An asymptotic approach permits to describe 

three types of NNMs. In the case of the localized NNM (Fig.6a), the displacements of the cable 

A are essentially larger than the displacements of the bridge desk C. Therefore, the nonlinearity 

of the component C is not accounted. The global NNM (Fig.6b) has comparable amplitudes of 

the substructures A and C. The NNM frequency is close to one of the component C. The 

frequencies of both components are close for the hybrid mode. In this case, the weak boundary 

motions of the A-C coupling interface excite the motions of the component A. Nonlinear 

frequencies of these three modes and their invariant manifolds are obtained. The localized and 

global modes are induced as NNMs pairs, if frequencies of the linearized system are not close. 

Four hybrid NNMs are obtained with two different frequencies. The localized/global/hybrid 

NNMs of the beam-beam coupled structure are obtained by the same asymptotic method. The 

phenomenon of abrupt asymptote exchange caused by the structural nonlinearity, has been 

found for the frequencies of hybrid NNMs.  

 

a.     b. 

Fig.5 NNM of boundary-interior coupled structures. Reprinted with permission 

from Elsevier 
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The bifurcation analysis of a system of two coupled cubic oscillators in a case of the 1:1 

internal resonance is considered in [67]. MSM is used for such analysis. The bifurcations 

curves are presented on the system parametric plane. An experimental analysis is also 

performed. The geometrically nonlinear circular plate vibrations obtained experimentally are 

compared with the nonlinear dynamics of two coupled oscillators. Imperfect bifurcations have 

been discussed to explain the slight differences between the theory and the experiments. 

4. Reduced-order modeling

Reduced-order modeling (ROM) based on the NNM theory is a rapidly growing area of 

research. The number of publications on this subject has increased significantly over the last 

decade, as the NNM approach is a very useful tool to solve this problem. In most of the 

presented papers the ROM of the thin-walled structures with geometrical nonlinearity are 

treated. Various definitions of NNMs are used here.  

The NNMs used in the ROM is the subject of a detailed, recently published reviews [35, 

36, 68, 69]. We also refer to several first publications [15, 70, 71, 72] devoted to ROM.  

In some subsequent papers by -authors, the computational procedures 

based on the NF method are used to perform ROMs in several geometrically nonlinear thin-

walled structures. 

The moderate vibrations amplitudes of the thin shells and the doubly-curved panels are 

studied with account of the in-plane inertia by using the ROM in [34]. Two approaches (S-P 

NNMs and proper orthogonal decomposition (POD)) are compared for ROM. The author notes 

that the NNM method is directly applicable to the original dynamical system. The obtained 

results have better accuracy, than the modes obtained by POD. If the vibrations amplitudes are 

increased, the S-P NNM-based ROM may lose accuracy, as the used S-P NNMs are local. 

The ROMs of the geometrically nonlinear thin shell free and forced vibrations are 

obtained in [72]. The expansions of the shell displacements by the eigenmodes are used to 

discretize the continuous system. The obtained finite-DOF dynamical system with quadratic 

and cubic nonlinearities is analyzed by the NF method. Two methods for ROM of the 

geometrically nonlinear structure vibrations are compared in [73]. The first method is based on 

the NF theory to obtain the reduced-order dynamics on the invariant manifolds. The second 

method is based on the modal derivatives approach, which is suggested to derive the quadratic 

manifold (QM). The NF theory is used to obtain ROMs of the geometrically nonlinear structure 

in [74]. This structure is discretized by the finite element method (FEM). The suggested 

procedure is used the direct NFs, which has not limitation on the number of the master 

coordinates in the resonance case. The third-order approximation of the S-P NNM is derived. 

The proposed approach is applied to analyze both the clamped-clamped beam nonlinear 

dynamics and the FE model of the fan blade.  

NF theory is used for ROM of the mechanical systems with quadratic and cubic 

nonlinearities in [75]. The direct NF approach leads to the homological equations, which permit 

to obtain the reduced system parameters. A special emphasis has been put on the treatment of 

the second-order internal resonance, which induces the strong energy exchange between the 

resonance modes. A comparison of the implicit condensation, expansion method and the NNM 

approach is suggested to construct ROM in geometrically nonlinear structures in [76]. It is 
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shown that NNMs in the form of invariant manifolds generate accurate ROM. The simplified 

procedure, which is based on the NF approach to identify only resonant terms in the nonlinear 

stiffness, is developed. The obtained results are illustrated on the beams and plates nonlinear 

vibrations.  

A comparison of the implicit condensation and expansion method and the NNM approach 

to construct ROM in geometrically nonlinear structures is suggested in [72]. It is shown that 

NNMs in the form of invariant manifolds generate accurate ROM. The simplified procedure, 

which is based on the NF approach and identification of only resonant terms in the nonlinear 

stiffness, is developed. The obtained results are illustrated on the beams and plates nonlinear 

vibrations.   

The direct parametrization of the invariant manifolds for multiple DOF finite element 

approximation of continuous system with geometric nonlinearity is suggested in [77-79]. The 

main idea of this method is to consider the coordinate nonlinear change applied to the basic 

mechanical system generalized coordinates and velocities. New coordinates describe the 

evolution of dynamical systems along a low-dimensional invariant-based manifold in the 

system phase space. For the non-autonomous case the dimension of the dynamical system is 

enlarged to make it autonomous and the added coordinates related to the forcing is treated. 

Different types of parametrization are introduced, namely, the graph style, the complex normal 

form and the real normal form. The proposed approach is applied to models of shallow arch, 

cantilever beam, twisted plate (fan blade) and MEMS. It is shown that the parametrization 

method generates efficient ROMs for forced vibrations, including superharmonic resonances.  

The different approaches for ROM of the geometrically nonlinear structures, which are 

approximated by FE models, are compared in the following three publications. The authors of 

the papers [80, 81] study the convergence of the ROM of nonlinear systems, which are 

obtained by the FEM and nonlinear modal analysis. The implicit condensation approaches are 

applied to estimate ROM in such systems. NNM of the full dimension model is used as a metric 

to estimate a convergence of the ROM equations. Two FE models of the clamped-clamped 

beam and the exhaust panel are analyzed using the above-mentioned approaches. A 

convergence of different ROM is analyzed using the frequency-energy plots constructed from 

NNMs. The thin-walled structure, which consists of the coupled sub-structures, is considered in 

[82]. The implicit condensation and expansion method using fixed-interface modes and system-

level characteristic constraint modes chosen as a basis (the Craig-Bampton basis [83]) is used. 

Ae a result, the dimension of the obtained FE model is significantly reduced. The structure 

NNMs are obtained with high precision.  

The extension of the component mode synthesis methods to NNMs is suggested in [84, 

85]. The concept of the CNMs [38] is used for the structures, which are divided on 

substructures. The complex modes of each substructure are computed by the HBM. The 

responses of the substructures are approximated by the multi-harmonic sum of nonlinear 

eigenvectors and by a set of linear static modes. The suggested approach is applied to mistuned 

cyclic structure with dry friction under the action of the external harmonic excitation. The FE 

model of the bladed disk vibrations with dry frictions nonlinear contacts is studied. Forced 

responses of the randomly mistuning bladed disk are analyzed too. 
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a.                                                              b. 

Fig. 6 Geometrical sense of requirements (R1) and (R2) for ROM. Figure courtesy by 

G. Haller 

 

In the subsequent papers the slow-fast decomposition and the SSMs are used for model 

reduction. The methodology for ROM in finite DOF mechanical systems is developed in [86]. 

Two requirements for ROM in nonlinear non-autonomous dynamical systems are suggested: 

(R1). An attracting lower-dimensional invariant manifold M(t) exists. The system generalized 

coordinates and velocities are smooth functions of the master generalized coordinates and the 

velocities along the manifold M(t) (Fig. 6a); (R2). The general trajectories approaching M(t) is 

faster than the rates within M(t). Fig.6b shows the case, when the requirement R2 is not 

satisfied.  

Then the attracting invariant manifold M does not provide accurate ROM for the full 

nonlinear dynamical system. The explicit expressions for the slow manifold are obtained. A 

boundary of the slow manifold instability is derived. The obtained analytical results are 

illustrated by several examples, including a three-DOF system with a pendulum damper.  

The SSM reduction is applied to the model of 

damping in [87]. This model is reduced up to two-DOF system with cubic nonlinearities. The 

forced dynamics of the finite DOF dissipative mechanical system is reduced using time-

periodic SSMs in [88]. The forced response of the discretized cantilever Euler- Bernoulli beam 

with nonlinear spring attachment is treated. The SSM reduction technique advantages are 

discussed. As follows from [89], the backbone curves and the forced responses of finite DOF 

mechanical systems can be described by the Lyapunov subcenter manifolds (LSMs) and the 

SSMs, respectively. The LSM reduction is effective for conservative systems. The more 

general SSM reduction is suitable to analyze the forced response. It is shown that the third-

order LSM reduced model of the beam leads to the Duffing oscillator in the case of the non-

resonance condition. As follows from this paper, the near-identity transformation used in the 

NF based reduction method is not needed. 

SSM theory is applied for ROM of forced vibrations of nonlinear mechanical systems 

with internal resonances in [90, 91]. The dimension of ROM is obtained from the mode number 

taking place in internal resonances. The finite element models of nonlinear beams and plates 

are used to show the effectiveness of suggested reduction approaches.  
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The quadratic manifold approach for the reduction of the geometrically nonlinear thin-

walled structures is considered in [92, 93]. The quadratic transform of the vector of initial 

physical displacements  is applied in the following form:  

 

where  is a vector of the reduced generalized coordinates. Note, that . Here  is 

a symmetric third order tensor. The approach for the derivation of the reduced nonlinear 

dynamical system is suggested. The clamped-clamped bending oscillations of the plate are 

treated under the action of the multiple harmonic periodic force. The shell finite elements and 

the von Karman theory are used. The thin-walled wing structure with NACA 0012 airfoil, 

which is stiffened by ribs in longitudinal and lateral directions, is treated in [92]. This structure 

is discretized by the triangular finite elements with 18 DOFs. The transient responses of this 

structure under the action of pulse pressure are analyzed using the reduced order finite DOF 

mechanical systems.  

The paper [94] is dedicated to the ROM implementation using dNNMs. The forced 

vibrations of the nonlinear system with friction joints are analyzed. The truncated Fourier series 

are used to approximate such damped modes. This ROM approach permits to obtain the 

resonance response with high accuracy in wide range of the vibration amplitudes. Besides, the 

dNNMs are used to predict the forced resonance responses using the nonlinear modal synthesis 

and the EBM.  

 

5. NNMs of stochastic dynamical systems  

 

Several recent papers initiate a new direction in the NNM theory associated with the 

dynamics of systems under a stochastic excitation.  

The influence of the random excitation on NNMs of mechanical system free vibrations is 

analyzed in [95, 96]. The power spectrum of random vibrations can be predicted using the 

frequency-energy plot of the NNMs. In particular, such frequency-energy plots for  two-DOF 

system with cubic nonlinearity are shown in Fig.8. Here vertical lines indicate the energy 

percentile levels in the random response. The connection between the undamped NNMs and the 

spectrum of its response to high amplitude random forcing is investigated. A spring-mass 

system and the random model of a clamped-clamped beam are considered. The authors 

conclude that the NNMs are a global property of mechanical systems that do not depend on the 

form of random excitation
2
. 

The stability of the similar NNMs in two DOF mechanical system under the stochastic 

excitation is analyzed in [97] using the approach proposed in [26] which is an implementation 

of the Lyapunov stability criterion. Taking into account specific properties of the stability 

problem in the system under stochastic excitation, a modification to the approach is suggested. 

Namely, it is allowed that small part of perturbations of NNMs can be out of their given 

neighborhood during each fixed interval of time. The stability analysis is performed for four 

different kinds of the stochastic excitation. Boundaries of the stability/ instability regions are 

The authors of this review suppose that this result significantly depends on the intensity 

of the random excitation. 
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obtained in the plane of the system parameters. Similar results on the NNMs stability are 

obtained for all considered types of the stochastic excitation.  

 

 

Fig.7 NNM frequency-energy plots of the clamped-clamped beam. Reprinted with 

permission from Elsevier 

 

The system of two coupled Duffing oscillators under the action of resonance harmonic 

and random excitation is treated in [98]. The possible transition from one stable vibrations 

mode to another one is analyzed, when the short duration Gaussian white noise acts on the 

system. The transient probability density functions at discrete time points are obtained using the 

modification of the path integral method. It is shown that, the localized mode with a high 

probability collapses faster for a strong connection between oscillators than for a weak 

connection. Probability values in each basin of attraction of the vibration modes and the shifts 

of the probability density at different energy levels are obtained.  

As follows from the paper [99], the invariant manifolds of deterministic dynamical 

system can be used, when small white noise excitation acts on dynamical system. The authors 

show the importance of normally hyperbolic invariant manifolds and the SSMs for analysis of 

the random dynamical systems.  

As follows from the results presented in this Section, the study of NNMs in systems 

under the action of random excitations is just beginning. We emphasize the importance to study 

the influence of the random fluctuations for various engineering applications, for example, self-

sustained vibrations of thin-walled structures under the action of turbulent boundary layer 

fluctuations et al. The significance of the study of NNMs in such problems, as a kind of 

"framework" of dynamic behavior, can be clarified in subsequent studies. 

 

6. Numerical methods for NNMs 

 

The use of numerical methods in problems related to NNMs has received significant 

development in the last decade. 

Different numerical methods for NNMs analysis are described in the review paper 

[100]. First of all, the authors present definitions and the frequency-energy dependence of 
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NNMs. The shooting technique and methods of discretization for NNMs analysis are presented. 

The pseudo-arclength or asymptotic continuation can be used to calculate NNMs. NNMs in the 

form of two-dimensional invariant manifolds, which are described by governing PDEs, are 

suggested to calculate numerically by the Galerkin based approach, the transport method 

associated with a fluid dynamics and FEM. Besides, the boundary-value formulation is possible 

for such NNMs, when the trajectory-based method, the graph transform and complex nonlinear 

modes are used. An assessment and comparison of different approaches for NNMs numerical 

analysis is presented.  

The papers [101, 102] are dedicated to use of the shooting technique and continuation 

method for analysis of NNMs. The shooting technique permits to solve the boundary-value 

problem defined for NNMs by the following periodicity condition: 

where  is a vector of the phase coordinates;  is a vector of the initial 

conditions;  is the so-called shooting function;  is a period of the solution. The 

relation (7) is supplemented by the so-called phase condition. The Newton method is used to 

solve the nonlinear equations (7). The combination of the shooting technique and pseudo-

arclength continuation method are used too. The proposed approaches permit to calculate the 

backbone curves of the NNMs and to analyze their stability and bifurcations. 

The numerical method for S-P NNMs analysis is suggested in the paper [103]. The 

PDEs of the S-P NNMs are rewritten in the form of the transport problem: 

where  are vector-functions with respect to the

slave coordinates;  are master coordinates;   is diagonal matrix of the

squared eigenfrequences;  is a vector of nonlinear terms in equations of motions. The method 

of flux analysis is used to solve the equations (8). The transport problem is supplemented by 

the periodicity constraint as 

where  are the vector-functions, which are obtained from the minimization of the

cost functional: 

Then iterative procedure is proposed to minimize the functional (10). The finite 

difference numerical scheme is used to solve the invariant manifold equations (8).  

The FEM is used to compute the S-P NNMs of non-conservative system in [104]. The 

NNMs are described by the PDEs (8). Then the streamline upwind Petrov-Galerkin method is 

applied to solve such PDEs  

que and e and

lve the bove the b

;  i 

 is a p is a 

ndition. Thdition. 

n of the sof the 

proposed aoposed

eir stabilityeir stabil

s analysisanalys

form of thorm of

er coordincoor

vector of ector o

olve the eqve the 

s 

 are t are

al: 

16



 

 

where  are variations of the corresponding slave variables. The finite element 

discretization of the equations (11) permits to transform PDEs into the coupled nonlinear 

algebraic equations, which are solved numerically. 

The HBM with the multi harmonic approximations of NNMs is applied to calculate 

forced vibrations in [105]. The system of the nonlinear algebraic equations with respect to the 

amplitudes of the Fourier series harmonics is obtained and solved by the Newton method. 

The dynamical models, which are described by the system of nonlinear ODEs, are 

considered in [106]. As follows from this paper, such models describe the nonlinear vibrations 

of the thin-walled structures (beams, plates and shells). The authors obtain that many of the 

included modes lead to a static effect on the response. Therefore, the generalized coordinates 

describing these modes can be considered statically
3
. NNMs in [106] are analyzed by using the 

combination of the shooting technique and the pseudo-arclength continuation.  

The dynamical models, which are described by the system of nonlinear ODEs, are 

considered in [97]. As follows from this paper, such models describe the nonlinear vibrations of 

the thin-walled structures (beams, plates and shells). The authors discovered that many of the 

included modes lead to a static effect on the response. Therefore, the generalized coordinates 

describing these modes, can be considered statically. NNMs are analyzed by using the 

combination of the shooting technique and the pseudo-arclength continuation.  

A numerical approach is proposed to study a slow dynamics of nonlinear modes in 

[107]. The complexification-averaging approach suggested by L. Manevitch [108] is used. Two 

computational approaches for the modal analysis are suggested. One of these approaches is 

based on the HBM and the second one is based on the shooting technique. The proposed 

approaches are restricted to the nonlinear modes analysis. Both approaches are applicable to 

generic nonlinearities, including non-smooth forces.  

A modification of the S-P NNMs calculations is suggested in [109]. A use of the 

proposed approach makes it possible to halve the dimension of the systems of nonlinear 

algebraic equations obtained for NNMs calculation in comparison with the systems from [16]. 

This modification is also applied for modal analysis of the forced vibrations in [110], where the 

Rauscher method is used together with S-P NNMs.  

A modification of the shooting technique is suggested to analyze NNMs of forced 

vibrations in [111, 112]. The Jacobian matrix is used to implement the Newton method for 

shooting technique. The special approach, which improves the Jacobian matrix calculation, is 

suggested to guarantee fast convergence of the Newton method. The systems of ODEs, which 

solutions are elements of the Jacobian matrix, are derived. 

The authors of this review draw attention that the static approximation of vibration 

modes results in loss of some properties of precisely dynamic modes.  
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The method of the K-R NNMs numerical calculations is suggested in the paper [113]. 

The basis of this method is an analysis of ODEs, which describe the modal lines in 

configurational space of the n-DOF conservative system. Then all generalized coordinates are 

presented as the single-valued functions of the single selected generalized coordinate  

. Two subspaces are considered in the form:  

. The differential of the arc length  of the modal line is  

 

where  is kinetic energy of the mechanical system;  is a metric of the 

configurational space. Applying the least  action variational principle, the dynamical system, 

which describes the motions in the configurational space, is presented as  

 

 

The i
th

 row of the matrices  and i
th 

element of  

take the following forms: 

 

 

 

where  is the system total energy;  is the system potential energy. Then the numerical 

shooting technique is used to calculate the NNM modal lines. Two end boundary points of the 

NNMs are located at the equipotential surface . The numerical calculations start inside 

the energy enclosure surface, when . From this point the integration of differential 

equations (13) performs forward to reach the boundary point . Then the integrations of 

the equations (13) perform backward to reach the other boundary point . The modal 

line in the configurational space consists of two intervals   . This 

shooting technique is based on the Runge-Kutta and the Newton- Raphson methods.  

 The parametrization method for invariant manifolds calculations is developed in [114]. 

This approach is used in [115] to calculate the two-dimensional SSMs of finite DOFs 

autonomous nonlinear systems. The parameterized SSM is approximated around the fixed point 

by polynomials. The proposed approach permits to obtain reduced dynamics and the backbone 

curves with required precision. The implementation of the SSM tool helps to analyze near-

resonances cases. In the presence of the forced resonance, the calculation of SSM is not 

possible, whereas the presence of the internal resonances leads to the nonlinear terms in the 

dynamics on the SSMs. The developed numerical method is used to obtain the ROM for the 
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nonlinear vibrations of the Timoshenko beam. The fully automated Matlab code which is 

available to computed SSMs of any dimension for autonomous or periodically forced systems 

of arbitrary dimension and nonlinearities is used in this paper. The various capabilities of this 

code (including built-in bifurcation analysis and handling of mechanical systems with 

constraints) have been developed in the series of publications [90, 91, 116, 117].  

Vibrations of the geometrically nonlinear thin-walled structures are treated in [118]. 

These vibrations are described by the autonomous systems of high dimension nonlinear ODEs, 

which is obtained by the Galerkin method. The NNMs of the obtained dynamical system are 

calculated by the shooting technique, which is incorporated with the pseudo-arclength 

continuation. Numerical analysis is implemented for frame, rod and arch shows that interacting 

of vibrations modes describes accurately the nonlinear effects associated with nonlinear 

coupling. The comparison between the NNMs computed from the full and reduced order 

models is made.  

The generalized continuation method incorporating with proper generalized 

decomposition is used to calculate NNMs in [119]. This procedure permits to decrease 

significantly a number of generalized coordinates for the NNMs description. The proposed 

approach is applied to two models of the Euler-Bernoulli cantilever beam with cubic spring or 

unilateral contact.  

The finite DOF nonlinear mechanical systems under the action of a single-harmonic 

excitation are studied in [120]. The harmonic balance-based computational method is suggested 

to predict the mode shapes and the oscillation frequencies at phase resonance. The obtained 

motions are called phase resonance nonlinear modes. The repeated resonance dynamic 

behaviors of superharmonic, subharmonic and ultra-subharmonic motions are reported in two 

DOF system with cubic nonlinearity.  

 As follows from this section, various numerical methods are applied to analyze NNMs. In 

our opinion, the most effective method for numerical calculations of NNMs is the shooting 

technique in combination with the continuation method. This approach is used in most of the 

works presented in this section. The shooting technique permits to calculate any periodic 

motions, which maybe both NNMs and others periodic motions. In particular, the modified 

shooting technique is used to study NNMs modal lines in the system configurational space. The 

numerical methods for PDEs, which describe S-P NNMs, is developed using the FEM and 

finite difference methods. The HBM is also used to calculate NNMs. Finally, we can note that 

recent publications describe mathematical procedures for calculating the SSMs in various 

classes of dynamic systems. 

 

7. Identification of mechanical systems  

 

The essential advance in identification of nonlinear dynamical system by means of 

NNMs is achieved during the last decade. Note that, mainly, the dynamical system parameters 

are identified from the experimental data. Therefore, this section is closely connected with the 

subsequent one, which is devoted to experimental analysis.   

Different problems of identification of mechanical system, including the application of 

NNMs, are discussed in two reviews [121, 122].  

The time-frequency signal processing approach based on the Hilbert-Huang 

transformation and the conjugate-pair decomposition is applied for an analysis of NNMs and 
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the parametric identification of finite DOF nonlinear mechanical systems in [123]. Finite DOF 

nonlinear dynamical system is studied to illustrate the proposed methodology and to analyze 

NNMs, vibration localization, and nonlinear modal coupling. Numerical analysis shows that the 

suggested method gives accurate time-frequency characterization of the NNMs and parametric 

identification of the considered system.   

The nonlinear modal identification of the four-storey steel frame under the action of 

pendulum-like exciter is considered in [124]. This structure performs nonlinear longitudinal 

vibrations, which are analyzed both experimentally and numerically. Four generalized 

coordinates describe the storey motions. Experiments show that mode shapes can be considered 

as linear one in the acceleration range. Thus, the modal curves are straight lines in 

configuration space, that is, these motions belong to K-R NNMs. The backbone curves of the 

NNMs are also obtained experimentally. The behavior of the structure is nonlinear for both low 

and large displacements. The harmonic linearization technique is used for the structure 

parameters identification by fitting the numerical results to the experimental data. 

The time-frequency signal processing approach, which is used the Hilbert-Huang 

transformation and the conjugate-pair decomposition, is applied for an analysis of NNMs and 

the parametric identification of finite DOF nonlinear mechanical systems in [112]. Finite DOF 

nonlinear dynamical system is studied to illustrate the proposed methodology and to analyze 

NNMs, vibration localization, and nonlinear modal coupling. Numerical analysis shows that the 

suggested method gives accurate time-frequency characterization of the NNMs and parametric 

identification of the considered system.   

The method for identification of the backbone curves of the finite DOF mechanical 

system is suggested in [125]. The used technique is based on estimation of the instantaneous 

frequency and the envelope amplitude corresponding to the steady-state oscillations of the 

system. The experimental data can be used to obtain damping ratio and backbone curves with a 

good accuracy. 

The approach for identification of the backbone curve of finite DOF mechanical system 

from the experimental data is suggested in [126]. The control-based continuation is used in this 

approach. The backbone curves are directly traced from the experiment. The NNMs of the 

underlying conservative system are used to construct such backbone curves using the 

continuation technique. Then the proposed approach is used to NNMs analysis in multi DOF 

nonlinear mechanical systems. 

The forced damped nonlinear mechanical system is described by the following system of 

the ODEs [127, 128]: 

 

where  is vector of the external forces. The nonlinear elastic forces  are expanded by 

using linear combination of the trial functions  as: 

 

Knowing the measurements of , the frequency domain nonlinear subspace 

identification method developed in is used to identify the vectors . In order to perform the 

identification, the nonlinear terms are transferred into the right-hand side of the ODEs (14): 
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Then the nonlinear terms are considered as the addition excitation and the obtained pseudo-

linear dynamical system is analyzed. The transfer function matrices are used to determine the 

coefficients . The shooting technique is used to extract numerically NNMs in modal space of 

the system from measurements collected under broadband forcing. Knowing the measurements 

of , the frequency domain nonlinear subspace identification method developed in [119] is 

used to identify the vectors . In order to perform the identification, the nonlinear terms are 

transferred into the right-hand side of the ODEs (14): 

 

Then the nonlinear terms are considered as the addition excitation. Thus, such pseudo-linear 

dynamical system is analyzed. The transfer function matrices are used to obtain the coefficients 

. The shooting technique is used to calculate the NNMs numerically.  

The methodology of the parametric identification based on comparison of experimental 

and analytical NNMs backbone curves is proposed in [129]. The K-R NNMs concept with the 

extension to the internal resonances is used. An experimental setup has the clamped beam with 

a small beam at the tip. The main beam is locally excited with an electrodynamic shaker. The 

HBM is used for NNM backbone curves calculation. Then the difference between experimental 

data and numerical calculations of backbone curves is minimized, which permits to obtain all 

unknown system parameters included in the identification.  

The method of two-dimensional SSMs identification is proposed in [130]. The dynamical 

system (14) is presented with respect to the phase coordinates : 

 

where . The solution vector  gives rise to the flow map: 

 

The scalar observable parameter along the trajectories of the mechanical system (16) is 

considered. This is accounted by a scalar function of the phase coordinates  

The new state vector , which contains the 2  subsequent observations of the parameter, 

take the following form: 

 

The second dynamical system is the sampling map , which is used to describe the 

experimental data for identification. This sampling map takes the following form: 

 

The experimental sampling of the system vibrations is described by the map (19). The 

sampling map  is computed by the approach, suggested in [130]. The significant stages of 

methodology of SSMs computation from the data fitted measured vibrations are treated.  

The general approach for the reduced order model identification of the nonlinear 

mechanical system from the observable data is treated in [131]. This method constructs the NF 

of the attracting SSM. The most general NF of 2m dimensional SSM is derived. The suggested 
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algorithm uses observable data to identify model of nonlinear dynamics. The Takens delay 

embedding theorem is applied to identify the SSM.  

The open-source Matlab package (https://github.com/haller-group/SSMLearn) is used for 

identification of the SSMs from experimental and numerical data in [132,133].  

The approach for NNMs analysis, which is used a generalization of the principal 

orthogonal decomposition, is suggested in [134, 135]. The data-based approach measures the 

statistically independence (or orthogonality) of the derived modes from the random data. It 

permits to optimize a parametric form of the NNMs mapping. The equations of motions are not 

used, as the method is applied for the experimentally measured nonlinear system data. The 

proposed approach is illustrated by few examples based on both simulated and experimental 

data. The analysis of the statistically-independent NNMs using the nonlinear system 

identification is presented in [136]. These NNMs are investigated in nonlinear cubic-stiffness 

systems using the neural-network approach. The nonlinear system identification models are 

fitted to physical displacements. Statistically independent NNMs are analyzed to study 

nonlinear structures under the action of broadband random excitation. The obtained NNMs are 

successful for a practical nonlinear extension to modal analysis and single-input-single-output 

decomposition.  

The experimental identification of NNMs of the structure, which consists of the main 

beam and the cross beam, which is welded in the middle to the main beam, is studied in [137, 

138]. The main beam is clamped at both ends. The NNMs are measured experimentally, when a 

shaker is attached to the main beam. Then this beam performs pure bending vibrations. The 

structure dynamics, when natural frequencies of the bending and torsion modes are close, is 

considered. The finite element model of the beam structure in Abacus is generated taking into 

account the geometrical nonlinearity [137]. The implicit condensation method (ICM) is applied 

to obtain the finite DOF reduced order dynamical system with quadratic and cubic 

nonlinearities. NNMs of this system are obtained by the combination of the shooting technique 

and the pseudo-arclength continuation. The comparison between the NNMs and the forced 

response is made. The considered system is approximated by two DOF dynamical model in 

[138]. Then NNMs are obtained by HBM. The energy transfer between such modes is 

considered. 

Identification of finite-DOF nonlinear models of the thin-walled structures is performed 

in [139]. The considered structures have several sources of nonlinearities: piezoelectric material 

properties and geometrical nonlinearity. The concept of NNMs and NF theory are used for the 

theoretical analysis. Experimental approach to measure NNMs backbone curve is suggested. 

The measurement method based on the phase-locked loop is used for identification of the 

ROM. The whole procedure is used for a circular plate, a Chinese gong and a piezo-electric 

cantilever beam.  

The NNMs identification method, which is applied to a nonlinear beam model, is 

proposed in [140]. The beam with one clamped end and the other one connected to a thin beam 

is studied experimentally. The  is 

applied for NNMs identification from the simulated data. The shooting method combined with 

technics is used to compute NNMs. The Bayesian approach is 

used to obtain the posterior probability distribution of updating parameters by means the 

stochastic simulation methods. The numerical simulations to the nonlinear beam dynamics 

show that both deterministic and Bayesian approaches are capable to estimate the updating 
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parameters with a small error. The Bayesian approach is used for the wing-engine system, 

which consists of wing plate and two pylons in [141]. The finite element model is generated 

and simplified by the Craig-Bampton reduction method (CBM) [83]. HBM is used to calculate 

NNMs. Good agreement exists between the calculated and experimentally identified NNMs.  

The polynomial nonlinearity state-space model is based on multiple-input-multiple-

output formulation in [142]. This model takes the following form:  

 

 

where  is a discrete time;  is a state vector. The linear part of the model is determined 

by the A, B, C, D matrices. Nonlinear part of the model is characterized by the E, F matrixes. 

The nonlinear vectors functions  and  are polynomials. The input , which describe the 

excitation force, is generated by shaker. The output vibrations response is obtained 

experimentally. The matrices  are fitted from experimental data. The nonlinear 

optimization problem is formulated with the cost function in the following form:   

 

where   is experimentally measured output;  is 

numerically simulated data. The aim of the identification is to minimize the difference between 

the numerically simulated data and the experimentally measured output by correct choosing the 

model (20) parameters. The nonlinear vibrations of the cantilever beam with repelling magnets 

are analyzed. The nonlinearities are approximated by polynomial functions. The nonlinear 

mode model shows a vicinity of the numerical results and the experimental measurements.  

 The approach for identification of nonlinear multi DOF system is suggested in [143]. 

The basis of this algorithm is the single nonlinear resonant mode method. Then the one DOF 

approximation of the system solution in the vicinity of the principle resonances is used. Several 

measurements with different forcing amplitudes are used for identification of nonlinear motions 

and the dependence of damping on amplitude. The suggested approach can be used to analyze 

the structure vibrations without internal resonances. The models of clamped-clamped curved 

and flat beams are treated. The approach uses measurements of the NNMs backbone curves. 

 

8. Experimental measurement of NNMs 

 

 Till recently majority researches of NNMs are performed numerically and analytically 

on the basis of nonlinear ODEs analysis. The first studies on NNMs experimental analysis 

originate during the last decade. The approaches and results of NNMs experimental analysis are 

treated in this Section.  

 The aim of the papers [144, 145] is developing the methodology of the practical 

experimental modal analysis of nonlinear mechanical structures. The new approach for 

extracting NNM modal curves from the experimental time series is suggested. The finite DOF 

nonlinear dynamical system has the form (14). It is assumed that the extracted NNM  

satisfy this system and, simultaneously, this NNM satisfies the equations of the corresponding 

conservative system. As a result, the following equation can be derived from (14): 

C  

e model imodel 

ed by the d by th E

, whw

tions respons re

perimentaerimen

he followie follow

erimentallymenta

cation is totion is

ntally meatally m

ns of the cs of the

ximated bmated

rical resultrical res

of nonlinf nonlin

ngle nonline non

on in the vn in th

cing ampling am

ng on ampon a

hout interhout int

d. The appr. The ap

easuremenurem

cently majntly m

s of nonliof nonli

during theuring t

in this Secin this S

The aimThe a

nta

23



Thus, the excitation is compensated by the structure damping. The NNMs, which satisfy the 

Rosenberg definition, are obtained as the following truncated Fourier series: 

 

Then the special type of the excitation satisfied the relation (22) takes the form: 

 

Thus, the NNM  is excited by special type of the external force. The proposed 

methodology is used in experimental studies of NNMs. The forced NNMs approximation is 

expressed according the above-considered method. Nonlinear system oscillates according the 

NNM of the conservative system, if the response is monophase periodic motions with the phase 

lag of 90
0
 with respect to the excitation.  

The periodic response of the nonlinear system (14) is expressed as the following 

complex Fourier series: 

 

The mode indicator function  is used to define the NNM approximation as 

 

where  is number of essential harmonics in (24). The function  indicates the accuracy of the 

NNM appropriation. The parameter  is used for identification of NNM, which is 

experimentally observed.  

The paper [146] is devoted to experimental and numerical analysis of the perforated 

circular plate dynamics. Two finite element models are obtained. One of them is constructed 

with zero initial curvature over the center of the plate, and the second one is constructed 

without this assumption. The authors use the assumption that the perforated plate behaves 

identically to non-perforated one with reduced mechanical properties. The electrodynamic 

shaker is used to excite the perforated plate vibrations. The reduced elastic modulus and density 

are updated from the experimental analysis. The frequency responses of the plate nonlinear 

vibrations are measured and the NNMs backbone curves are extracted. Then the experimentally 

measured NNMs are compared with numerically calculated NNMs.  

The NNMs can be measured experimentally by the action of the multi-harmonic 

excitation even in the case of the internal resonance [147]. The system (14) is analyzed using 

the EBM when the following equation is satisfied for NNMs: 

 

where  is the total dissipated energy of per one cycle of vibrations; 

 is period of vibrations; the asterisk denotes transposition;  is the 

energy of the external force . The nonlinear vibrations of the clamped-clamped beam with 

concentrated magnetic force are studied numerically and experimentally. The indicator (25) is 

used to isolate accurately the NNMs in the experimental analysis and to obtain their backbone 

curves. The nonlinear vibrations of the clamped-clamped beam with concentrated magnetic 

force are studied experimentally. As follows from experimental analysis, NNM even in the case 

of the internal resonance can be isolated by the action of the multi-harmonic excitation. The 
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indicator (25) is used in experimental analysis to isolate accurately the NNMs. Two NNMs, 

which are obtained experimentally, are shown on backbone curves. As follows from the 

experimental analysis, these backbones curves are very sensitive to the beam initial shape and 

the boundary conditions.  

The structure consisting of two beams is treated in [148]. The main clamped-clamped 

beam has non-linear behavior due to the axial stresses, which are generated by the moderate 

transversal displacements. The cross beam with a movable mass at each end is attached to the 

main beam. Changing the position of one mass with respect to the others masses positions leads 

to the modal interaction. A nonlinear ROM is constructed and the NNMs are used to describe 

the resonance nonlinear behavior of the system. The NNMs backbone curves, which are 

obtained numerically and experimentally, are compared. The EBM helps to predict the points, 

where the resonance forced responses cross the backbone curves. Then the forced vibrations of 

the structure are studied using several analytical and numerical approached. These results 

demonstrate a good agreement with the experimental measurements. The NNMs considered in 

[148] are analyzed in the general 2-DOF system with the cubic nonlinearity and 1:3 internal 

resonance condition in [149]. Such system can be obtained as ROM from the continuous 

geometrically nonlinear cross-beams structure that exhibits a coupling between its bending and 

torsional modes. Origination of the NNM from a set of the bifurcations is analyzed 

numerically. The comparison of the experimental measurements of NNMs with the numerical 

results is performed.  

The new experimental method to measure the backbone curve using the phase-locked-

loop (PLL) is suggested in [150,151]. Such method permits to track the energy dependent 

backbone curves associated with NNMs. The EBM is used to study the forced vibrations by 

balancing forcing with damping. The NNMs of the beam with essentially nonlinear end spring 

are analyzed experimentally. The structure is excited by the electrodynamics shaker. The mode 

indicator function (25) is used to identify the forced NNMs, which are obtained experimentally. 

The effect of internal resonance on the experimentally measured PLL is discussed. The beam 

structure excited by the electrodynamics shaker with the small beam to adjust the pretension of 

the beam is considered in [151]. The PLL controller permits to tune excitation phase to measure 

the backbone curves of the NNM using a series of steady-state measurements.  

The approach suggested in [152,153] is an experimental procedure for nonlinear modal 

testing of damped structures. It is assumed that the local phase resonance corresponding to a 

single general coordinate is taken place. The excitation frequency is recorded when the PLL 

has the locked state. The verification of the experimental tests is carried out on the friction-

damped system. The extractions of the frequencies, damping ratio, deflection shapes are 

performed due to this method. The backbone curves of mechanical system are extracted. The 

NNMs of lightly damped slender beam with geometric nonlinearity excited by the 

electrodynamical shaker is analyzed experimentally in [153]. Seven accelerometers are 

mounted on the beam point to measure the structure nonlinear response. The synthesis method 

relies on a superposition of one nonlinear mode with several linear modal contributions and is 

limited to NNMs without internal resonances. For lower vibration energy the linear modal 

analysis can be used, but a phase-controlled tracking of the backbone curves associated with 

NNMs permits to obtain a good estimation of the nonlinear frequency response.   

The mechanical system with a rotating nonlinear energy sink (NES) is analyzed in 

[154]. The NES is attached to a linear two floors structure modeled by the two-DOF system 
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with strongly nonlinear coupling. The transient dynamics of the structure under shock 

excitation is analyzed both numerically by the NNM energy-frequency plot calculation and 

experimentally. It is shown that the oscillatory mode is not appropriate for initial energy 

dissipation and the rotational mode guarantees the fast shock mitigation. The NES absorbs a 

significant portion of the input energy.  

The approach for detection of nonlinear modal interactions from the transient time 

series response is suggested in [155]. The POD is used to extract the modes shapes, which is 

applied in Rayleigh quotient for the system eigenfrequencies calculations. The method is used 

to analyze the response of the cantilever beam with local strongly nonlinear spring. The 

suggested method can be used to detect the strongly nonlinear interactions from measured 

transient response.  

The machine learning scheme is used to perform nonlinear modal analysis in [156]. The 

one-to-one mapping from modal space to the natural coordinate space is applied. The 

generative network and the neural networks, which support the orthogonality properties, are 

used. Three-stor y frame with the bumper nonlinearity in the form of bilinear stiffness is 

studied experimentally. Four sensors are used to measure the accelerations of all storeys and 

the base.  

 As follows from this section, NNMs are analyzed experimentally a little. The authors of 

this review believe that this direction will be developed due to importance of relevant research 

for the NNM theory.  

 

9. Continuous systems 

 

Note that geometrically nonlinear deformation is inherent in thin-walled structures, such 

as rods, plates and shells. The use of NNMs to analyze the dynamics of such distributed 

systems is very useful. 

The flexural-longitudinal vibrations of isotropic rotating beam are described by the 

system of the nonlinear PDEs, which is obtained from the Hamiltonian principle in [157]. Both 

three to one and two to one internal resonances are accounted by the MSM. The expressions for 

the backbone curves are derived. The backbone curves, which are obtained for the first and the 

second internal resonances, are soft and hard, respectively.  

In the next three publications, the dynamics of isotropic and anisotropic rods is studied 

using the Cosserat theory.  

The paper [158] is devoted to study NNMs of the beam vibrations, when internal 

forces/moments and translational/angular velocities are introduced as primary degrees of 

freedom. The system of PDEs obtained by Hodges [159] is used. This system contains the 

equations of motion and the compatibility equations: 

;  (27) 

. 

Here  is a vector of the velocities,  is a vector of the internal-forces/moments, m is the 

cross-section mass matrix, c is the cross-section flexibility matrix, e presents the shear/bending 

coupling coefficients in equilibrium equations; ,  are matrix operators of the nonlinear 
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equilibrium equations. The variables are expanded in terms of the linear space mode shapes. 

Then the S-P NNMs are used to analyse the isotropic and composite beams in-plane vibrations 

without internal resonances.  

The nonlinear PDEs of the pre-twisted rotating composite beams vibrations are derived 

by using the Cosserat theory in [160, 161]. The constitutive equations of the composite beam 

material are obtained from three dimension theory of elasticity. The MSM is applied directly to 

the nonlinear PDEs in [160]. As follows from the analysis, the lowest flapping mode of the 

composite beam has soft backbone curve at low angular velocity and the backbone curve of the 

second flapping mode is hard. The nonlinear modal interaction due to the 2:1 internal 

resonance is studied. The Galerkin technique is applied to the mentioned PDEs in [161]. Then 

MSM is applied to the system of nonlinear ODEs to analyze the nonlinear flapping modes.  

The nonlinear planar oscillations of the functionally graded box beam in the case of 

internal resonance are considered in [162]. The combination of thermal and mechanical 

harmonic transverse loads act on the structure. The beam is rotated with constant angular 

velocity . It is assumed that the beam cross section remains plane during the structure flexure 

vibrations. The Euler-Bernoulli beam theory is used. The flexural vibrations of beam are 

described by the following nonlinear integro-differential equations:  

 

where 

  are axial and flexural stiffness;  is length of the beam;  is radius of the hub; 

 is thermal expansion coefficient;  is spatial distribution of the harmonic 

load; ;  is graded mass density;  is normal axis to the beam cross section 

contour;  is area of the beam cross section. The PDE (28) is solved directly by MSM. As a 

result, the system of four modulation equations is derived. Numerical analysis is used to obtain 

a steady-state response. Frequency responses and bifurcation behavior in the case of internal 

resonances are obtained. In particular, the saddle-node and the Hopf bifurcations are studied. It 

is shown that chaotic behavior of the system is possible due to the period-doubling bifurcations.  

 The offshore compliant articulated tower consists of stiffened inverted column and mass 

at the end of the column [163]. This column is pinned at the base. Dynamics of the system is 

described by two-DOF nonlinear system with respect to two direction angles. Four stable 

similar NNMs of free vibrations are obtained. T

dynamics of the system. The resonance forced responses are obtained by the combination of the 

HBM and the arc-length continuation method. Jump phenomena, pitchfork and saddle-node 

bifurcations are analyzed.  

The paper [164] is dedicated to the gradient-based optimization using NNMs. Such 

optimization is proposed for tailoring the hardening/softening backbone curves behavior of the 

geometrically nonlinear thin-walled structures, which are discretized by FEM. The HBM with 

multi harmonic approximation is used to study periodic free vibrations. The system of the 

nonlinear algebraic equations with respect to the amplitudes of the harmonics is solved 

numerically by the iterative Newton- Raphson method. In order to obtain the frequency 
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response, the arclength continuation method with adaptive steps is used. The one-floor frames 

of two different configurations consisting of three beams are studied.  

 The nonlinear dynamics of simply supported beams is studied by computing the NNMs 

and to predict damage in such structure [165]. The structure damage is modeled by a reduction 

of the flexural stiffness within a small segment of the beam span. MMS is used to compute the 

NNMs and the corresponding backbone curves. The comparison between the damaged and 

undamaged beams shows the high sensitivity of the effective nonlinearity coefficients on the 

damaged structure. An effective strategy for the identification of the damage position is 

proposed.  

NNMs of simply supported beams are considered in [166]. The integro-differential 

equation of the lateral displacement motions is approximated by the system of nonlinear ODEs. 

The S-P NNMs of the obtained ODEs are analyzed using the perturbation technique. The 

obtained backbone curves are compared with the results of the finite element calculations.  

The vibrations of the geometrically nonlinear circular perforated plate with rolled ends 

are discussed in [167]. The finite element model of the perforated plate is obtained using the 

implicit condensation method with extremely small mesh. The perforated structure vibrates 

identically to non-perforated one with the same dimension and effective modulus of elasticity, 

which is calculated from the perforated structure using linear natural frequencies. The obtained 

finite DOF nonlinear dynamical system contains quadratic and cubic nonlinearities. The 

shooting method and pseudo arc-length continuation are used together to calculate the NNM 

backbone curves. Moreover, the NNMs of the perforated plate are analyzed experimentally 

when the structure vibrations are excited by the periodic force. Then the obtained numerical 

results are compared with the experimental data.  

The method for computing of invariant manifolds in high dimensional nonlinear 

mechanical system, which is derived from finite element discretization of partial differential 

equations, is suggested in [116]. SSMs are used to analyze frequency responses and backbone 

curves of nonlinear damped mechanical systems. Lyapunov subcenter manifolds are applied to 

study conservative nonlinear systems. The computation method is applied to the nonlinear 

dynamics of aircraft wing with hundred-thousand DOF.  

The geometrical nonlinear vibrations of the simply supported cylindrical shell are 

described by the system of three PDEs of the Donnell theory [168]. Three displacement 

projections of the shell middle surfaces are expended using the eigenmodes and the generalized 

coordinates. The interactions of two conjugate modes are considered. The Galerkin technique is 

used to derive the system of nonlinear ODEs with respect to the generalized coordinates. K-R 

NNMs are analyzed. The results are shown on the backbone curves. The obtained NNMs 

describe the standing waves in the cylindrical shell.  

The nonlinear vibrations of clamped shallow shell and plates with cuts are considered in 

[169, 170]. The thin shallow shell with two cuts is treated in [169]. The lateral displacements 

are assumed to be commeasurable with the structure thickness. The clamped shallow shell 

flexural vibrations are described by the Donnell-Mushtari equations with the following 

boundary conditions: 
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where  are displacements projections on   is the shallow shell boundary;  is 

a normal to the boundary. The shell base has the two cuts. Therefore, the boundary of this 

shallow shell has complex shape. The R-function  [171] is used to describe such 

conmplex shape boundary. The finction  satisfies the following relations:  

 

 

In order to satisfy the boundary conditions, the shell linear vibrations are presented using 

finction  in the form: 

 

 

 

where  is a frequency of linear vibrations. Then the Rayleigh-Ritz method is used to obtain 

trial functions. The functions  are presented as truncation series with 

trial functions and unknown coefficients. These coefficients and eigenfrequencies are obtained 

from the eigenvalue problem. Using the Galerkin technique, the nonlinear dynamical system 

with respect to the generalized coordinates is derived. The backbone curves of free vibrations 

are obtained using S-P NNMs. The clamped circular isotropic plate with two cutouts is treated 

in [170]. The R-function is used to describe the plate boundary conditions. Nonlinear vibrations 

of the plate are described by 

three nonlinear PDEs with respect to displacements projections is used. The vibrational 

eigenmodes are obtained by the Rayleigh-Ritz method. Applying the Galerkin technique, the 

nonlinear system of ODEs with small parameter is derived and analyzed by MSM. The NNMs 

backbone curves are described by the system of algebraic nonlinear modulation equations.  

The isotropic shallow shell with complex boundaries is considered in [172]. The part of 

the boundary is clamped and the rest part is free. The geometrically nonlinear vibrations of the 

shell interacting with the motionless fluid are treated. The wet vibrational eigenmodes of the 

shell are expanded into truncation series of the dry eigenmodes. The coefficients of this series 

are calculated from the eigenvalue problem, which are obtained using the Galerkin technique. 

The interaction of the shell with the fluid is described by the following singular integral 

equation: 

 

where  is wet eigenmodes of the shell vibrations;  is circulations, which is induced by wet 

eigenmode ;  are spatial coordinates vectors;  is shell surface;  are normals to the 

shell surface. The hypersingular equation (31) is solved by the boundary element method [173]. 

Namely, the surface of the shell  is divided into  triangles . The coordinates of 

the triangles gravity centers  are used. The circulation is assumed constant in 
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every triangular element . Then the hypersingular equation (31) is transformed 

into the system of the linear algebraic equations, which has the following form:  

 

where  is determined from the hypersingular integral. In order to study the nonlinear 

vibrations of the shell/fluid system with account of the structure geometrical nonlinearity, the 

assumed-mode method is used. The potential and kinematic energies of the structure are 

derived. The system of the nonlinear ODEs of the structure motions is obtained. Then S-P 

NNMs are used to study the backbone curves of nonlinear vibrations.  

 The simply supported isotropic cylindrical shell under the action of the parametric 

excitation  is considered in [174]. The geometrical nonlinearity is accounted 

to study the parametric vibrations, which are described by the Donnell-Mushtari equations. 

Three conjugate modes are taken into account in the expansion of the shell radial 

displacements. After discretization using the Galerkin technique, the parametric vibrations are 

described by the following eight DOF nonlinear dynamical system with respect to the 

generalized coordinates ( ):  

 

 

 

where  are nonlinear functions of the generalized coordinates; 

   are constants, which depend on the structure parameters. Two K- R 

NNMs in the form 

 

exist in the system (33). The parametric vibrations on these NNMs are described by three DOF 

nonlinear dynamical systems, which are studied by the HBM.  

The nonlinear vibrations of the simply supported rectangular plate with the moderate 

amplitudes are treated in [175]. The plate potential energy is derived using the von Karman 

nonlinear plate theory. The assumed-mode method is used to derived the system of nonlinear 

ODEs from kinetic and potential energies. The S-P NNMs are used to obtain the backbone 

curves of the free nonlinear vibrations.  

 NNMs are studied mainly in roods, certain plates and shallow shells. The NNMs in 

cylindrical and conical shells are not analyzed. Preferably the internal resonance 1:1 is 

observed in these structures and circular plates and circular shallow shells. We think that the 

multi-mode invariant manifold [16] can be used to study NNMs. The most of thin-walled 

structures have internal resonances; therefore, a use of the multi-mode invariant manifolds is 

al nal n

of the sof the 

s is obtainis obt

 

he action e actio

trical nonlcal no

the Donnhe Don

he expansexpans

chnique, tchnique, t

dynamicalnami

 ar a

are constaare con

tem (33). m (33

namical symical s

e nonlineanonli

des are trdes are

near platear pla

omom

30



useful. We emphasize that such studies with rare exceptions have not been carried out. Note 

also that NNMs of shell structures from composite, functionally gradient materials and 

nanocomposites are not carried out, although the authors of this review believe that this 

direction is promising.  

 

10. Engineering applications  

10.1. Aerospace engineering  

 

Linear normal vibration modes are very popular tools to analyze a dynamics of the 

engineering structures. Unfortunately, the NNMs approach has been used in a few studies 

related to engineering problems.  

Note, that the CBM [83] is used to reduce a dimension of the finite element structure 

model in the several subsequently considered papers.  

The NNMs of the Morane Saulnier Paris aircraft airframe without its jet engine are 

analyzed in [176, 177]. It stands on the ground through landing gears. The soft backbone curve 

is observed experimentally by the ground vibration test. The connection between fuel tanks and 

wings are the source of the nonlinearity, which is piecewise linear. The finite element model of 

the full aircraft is generated. The wings, fuselage, tails are modeled using the beams and the 

shells finite elements. The shooting technique and the pseudo-arclength continuation, which are 

mentioned in Section 6, are used to compute the NNMs from the reduced-order nonlinear finite 

element model.  

The papers [178,179] are dedicated to study of nonlinear dynamics of the spacecraft 

structure with nonlinear mechanical stops. This spacecraft structure supports telescope, which 

is mounted on the base. The telescope plate is connected to the floor by shock attenuators, 

which exhibit nonlinear properties. The bracket connects to wheel mounting system to absorb 

the high-frequency excitation. The experimental identification of this structure including 

detecting of important nonlinear effects is made in [178]. The composite telescope structure is 

discretized using orthotropic shell elements. The floor wheel supports are modeled using shell 

finite elements. The nonlinearity of the wheel mounting system is modeled by the trilinear 

elastic characteristics. The ROM is obtained using the CBM. Then NNMs of the obtained 

trilinear nonlinear reduced system are analyzed numerically by using the shooting technique. 

The frequency-energy plots of the NNMs are calculated.  

The nonlinear oscillations of the feed line of the launch vehicle (Fig.9) are treated in 

[180]. The fuel is moved into the pump 3 from the tank 1. The gas-liquid damper 2, 3 absorbs 

the fuel oscillations. The fuel dynamics are described by the pressure oscillations, which are 

modeled by one linear partial differential equation and one nonlinear boundary condition. This 

mathematical problem is reduced to the system of nonlinear ODEs using the weighted residual 

method. Then the S-P NNMs are used to obtain the backbone curves.  
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Fig.8 Feed line of launch vehicle 

 

The turbofan engine, which is a part of the aircraft thrust, consists of blades and discs on 

the rotating shaft [181]. The nonlinearity of this structure is concentrated in the dovetail joints. 

The friction joints are the source of nonlinearity. The FEM is used to obtain the blade model. 

3D node to node contact elements are used to model the contact interface. The CBM is used to 

obtain the ROM. Then the HBM and the alternating frequency-time technique, which permits 

to calculate the nonlinear contact friction force, are applied to study the damped NNMs of the 

ROM. The obtained backbone curves of NNMs are hard.  

 

 

10.2. Power engineering 

 

The modal analysis of the turbomachinery compressor blades with dry friction 

nonlinearity is considered in [38]. The concept of the complex nonlinear modes (CNMs), which 

is considered in the Section 2, is used to study mechanical systems with dry friction. The 

reduced order model for the blade is obtained by FEM and then essentially simplified by the 

CBM. The influence of the dry friction on the compressor blades vibrations is analyzed. 

The self-sustained vibrations of one disc elastic rotor in two identical journals bearing 

are analyzed in [182]. The rotor is rotated with constant angular velocity  around z axis. The 

disc motions are described by four coordinates, namely, two plane translations  and two 

rotation angles . The journal motions are described by four variables , which 

are obtained as a function of four generalized coordinates . The rotor motions are 

described by four DOF dynamical system, which has the following matrix form:  

 

where  is a vector of the generalized coordinates;  describes the linear 

damping forces of the journal bearings fluid films and the gyroscopic forces;  presents the 

shaft elastic forces and linear elastic forces of the journal bearing fluid film;  is the 

nonlinear part of the journal bearing forces. The self-sustained oscillations of the rotor are 

arisen due to the Hopf bifurcation of trivial equilibrium. The S-P NNMs are developed to 

analyze these oscillations. 
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The motions of the rotor with nonlinear stator contact are described by finite DOF 

piecewise smooth system in [183]. Such motions are analyzed analytically using the NNMs. As 

follows from the analysis, NNMs can be used to obtain the self-excited whirl motions. These 

motions are observed due to the Hopf bifurcation.  

The paper [184] is devoted to study of the spar floating platform dynamics. The 

nonlinear dynamics of this platform is described by 2-DOF model. The heave and pitch 

dynamical responses of free and forced vibrations are analyzed. The wave motions are 

described by the single harmonic approximation. The S-P NNMs are obtained by Galerkin 

approach using the polynomial series approximations. The stability of the NNMs is analyzed by 

the Floque theory. As follows from the numerical simulations, the similar and non-similar K-R 

NNMs exist in the system configurational space.  

The torsional vibrations of the power train with piecewise-linear elastic moments are 

studied in the paper [185]. The clutches are described by these moments. The system dynamics 

is approximated by finite-DOF nonlinear dynamical system. NNMs of the torsional vibrations 

are studied by HBM. The power train parameters are chosen so, that the resonance forced 

vibrations turn away from the operation frequency range of the crankshaft. The linearized 

model and the theorem about sensitivity of the eigenfrequencies are used to detune the forced 

vibrations. After detuning the linearized system, the backbone curves of the NNMs are 

calculated to verify the choice of the system parameters.  

The rubbing rotor, which consists of the stator and the Jeffcott rotor, is analyzed in [186, 

187]. The rotor massless model has elastic shaft and solid disc. The mass center of the disc and 

its geometrical center are located at the distance . The rotor is moved with constant angular 

velocity . Governing equations for modified Jeffcott rotor system free vibrations with a rub-

impact take the following non-dimensional form:  

 

 

Here  are horizontal and vertical displacements of the disc; 

;  and  is the distance between stator and disc;  is the Heaviside 

function;  is the friction coefficient; ;  is the shaft stiffness;  is the stator stiffness; 

  ;  is radius of the disc; 

;  is the whirl angular velocity of the rotor. The concept of CNMs is used to 

analyze corresponding autonomous system, that is the unbalance forces on the right side of the 

governing equations (35) are ignored. Then nonlinear free oscillations and the nonlinear 

rubbing forces are presented in the form of the truncated Fourier series  The system of algebraic 

equations for determination of these series coefficients is solved numerically by the Newton 

method. As follows from the numerical analysis, the rotor has backward and forward whirl 

motions. The whirl amplitude and whirl frequency of the dry whip are approximately equal to 
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the modal amplitude and modal frequency of the backward whirl mode motions. The existence 

boundary of the dry whip can be predicted by this mode.  

 The paper [188] is devoted to study the nonlinear dry friction dampers in aircraft 

engine. The influence of the contact parameters on the system dynamics is analyzed 

numerically. NNMs calculations are based on the implementation of the HBM together with the 

continuation technique. The backbone curves of the NNMs have soft behavior. The robustness 

of the frictional damper is discussed.  

The hybrid damper, coupling the dry-frictional mechanism and the piezoelectric 

shunting circuit is used to absorb the turbine blade vibrations in [189]. The concept of CNMs 

and the multi-HBM permit to calculate the steady-state forced vibrations of the cyclic 

symmetric system. Two indicators (the modal damping ratio and the nonlinear modal 

electromechanical coupling factor) are used to estimate both the frictional and the piezo-electric 

damping effects. The FEM analysis is shown that the proposed hybrid damper is effective for 

absorption of the dominant blade and disc-blade vibrations modes.  

The wing-engine system, which consists of wing plate and two pylons, is analyzed 

experimentally and numerically in [190]. The pylons have thin plates, which are clamped at the 

thin wing plate (Fig.9a). The plate restoring force has nonlinear dependence of the pylon 

displacements. The software Abaqus is used to generate finite element model (Fig.9b), which 

has huge dimension. The CBM is applied to obtain ROM. Then the HBM is used to calculate 

NNMs. The NNMs backbone curves show hard behavior. 

 

        
a)                                                           b)     

Fig.9 The wing-engine structure. Reprinted with permission from Elsevier 

 

10.3. Piecewise-linear systems and structures with dry friction 

 

Piecewise linear systems are often encountered in mechanical engineering. Thus, 

piecewise linear forces and moments are used to describe the dynamics of splined and elastic 

couplings, gears, rotors and aircraft structures. Piecewise linear systems are models of beams 

with cracks, etc. In such systems, both regular and complex dynamic behavior can be observed. 

We believe, and this is confirmed by the papers presented in this sub-Section, that the study of 

NNMs is important to study the dynamics of the piecewise linear systems. 
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Papers [191-193] are devoted to analysis of the NNMs in the two-DOF piecewise-linear 

dynamical systems, which represent beams with a breathing crack. Numerical procedures and 

-linear frequencies are independent 

of the energy level but depend on the crack parameters. It is shown that the influence of crack 

leads to bifurcations of the basic NNMs due to existence of internal resonances. Then 

additional branches of the NNM backbone curve are arisen. The influence of the crack on the 

NNM frequencies is studied. The two-DOF structure under the action of the harmonic 

excitation is analyzed experimentally. It is possible to match the NNM with the forced response 

of the system, which gives the ability to determine the crack position. All observed NNMs are 

divided into two types: persistent and ghost. If the NNM of free vibration exists in the forced 

response, then this NNM is called persistent. If the NNM of free vibration is lost under the 

action of the periodic force, then this NNM is called ghost.  

As follows from [194, 195], the NNMs are useful tools to analyze the dynamics of the 

finite granular homogenous chains. The Hertzian contact between neighboring beads leads to 

essentially nonlinear dynamical system with discontinuous. As follows from the numerical 

analysis, the in-phase NNM is non-synchronous and discontinuity in slope of the phase plane. 

The in-phase NNM is similar to the traveling wave propagating backward and forward through 

the granular chain. The out-of phase NNM is smooth. The interaction of each bead with the 

wall or with the other bead is observed on this NNM. The nonlinear forced response of the 

structure under the harmonic excitation is analyzed numerically. As follows from the analysis, 

this granular media can be used as the shock protector.  

Two DOF system with two particles and bilinear elastic force is treated in [196]. The 

NNMs are considered as periodic motions in unison according to the Rosenberg definition. The 

two impacts motions are analyzed as the modal lines in the configurational plane. The HBM 

and the continuation asymptotic numerical method are used to solve nonlinear algebraic 

equations. The energy-frequency plots are obtained numerically. The NNMs stability is studied.  

Free vibrations of finite DOF system with the piecewise-linear elastic force are 

considered in [109]. This system is described by the ODEs in the matrix form,   

 

 

where   is vector of the generalized coordinates;  are 

matrices of  dimension;  are vectors, which allow to obtain continuity of the elastic 

force. The following change of the variables is used  where the matrix  is the set of 

the eigenvectors of the matrix . The S-P NNMs are used to study the dynamical system 

(36). The suggested modification of NNMs calculations allows reducing twice the dimension of 

the system of nonlinear algebraic equations in comparison with the approach suggested in [15]. 

The proposed approach is used to analyze the torsional vibrations of the internal combustion 

engine transmission. This transmission consists of gear train and two crankshafts. The 

crankshafts are joined by gear train, which has five spur gears (Fig.10a). One spur gear has a 

clutch, which is described by the piecewise-linear elastic characteristic (Fig.10b). The model 
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consists of the rigid discs and massless shafts and it has fifteen DOFs (Fig.10c). The S-P NNMs 

are used to obtain backbone curves of the torsional vibrations.   

 

                        

a.                                      b.                                                                  c. 

Fig.10 Sketch of diesel engine transmission: a). kinematic diagram; b). outline of elastic 

clutch; c) dynamical model 

 

 The forced vibrations of the piecewise linear mechanical systems are described by the 

ODEs similar to (36) with external periodic excitation [110]: 

 

where  is number the particle, which is excited by the periodic force ; 

 is k
th

 column of the matrix . The coordinates  are chosen as master 

ones. All the rest coordinates are slave. The motions are taken in the form of the single 

harmonic approximation ( ). The periodic motions in the vicinity 

of the principle resonance ( ) has the following form: 

 

The periodic force is rewritten in the following form: 

 

The nonautonomous dynamical system (37) is transformed into the pseudo-autonomous one as 

 

where the elements of the vector  are the following:  
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The pseudo-autonomous dynamical system (39) is analyzed by the S-P NNMs. The 

proposed procedure permits to study nonlinear torsional vibrations of the fifteen DOF model of 

the diesel engine transmission (Fig.10c). The forced vibrations of the piecewise linear 

dynamical system (37) is considered in the vicinity of the superharmonic resonance in [197]. 

This resonance satisfies the following condition:  where  is eigenfrequency 

number;  is integer number;  is small parameter;  is detuning parameter. As 

follows from the resonance condition, the generalized coordinate  is active. Therefore, it 

takes as the master coordinates ), .  

 The Rau

vibrations. The external force (37) is presented in the following form: 

 

 

Then pseudo-autonomous dynamical system (39), which describes superharmonic resonance 

vibrations, is obtained using the relation (40).  

 The torsional vibrations of the transmission are treated in the vicinity of the 

superharmonic resonance. These torsional vibrations are described by a two DOF mechanical 

system. The rotation angles of the discs  are chosen for the generalized coordinates. The 

shaft with clutch connects two discs. This clutch is described by the tri-linear elastic moment 

[198]: 

 

The dynamical system has the following form where moments of inertia of the discs are 

denoted by  and :  

 

 

 The superharmonic resonance vibrations are analyzed in the system configuration space. 

The resonance vibrations are presented at the frequency response.  

Nonlinear oscillations of thin-walled structures with unilateral contact forces are 

considered in [199]. The beam interacts with unilateral elastic stops due to vibrations. The 

discrete lattice method is used to transform the continuous structure to finite DOF piecewise- 

linear dynamical system. Then the shooting technique is used to calculate NNMs. The 

frequency-stiffness plots and evolution of the NNM trajectories in the system configuration 

space are presented. The Floquet multipliers are calculated to analyze stability of these modes. 

Bifurcations of NNMs are analyzed numerically. NNMs in the tensionless granular chain with 

non-smooth Hertzian contact between the identical particles are studied numerically. 

 The research [200] is devoted to detection of thin beam health through the analysis of the 

nonlinear vibrations. The simply supported thin-walled beam with one crack is described by 
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nonlinear PDE of the beam flexural vibrations. This equation solution is expanded by 

eigenmodes of the simply supported beam without crack to obtain a multi-DOF nonlinear 

dynamical system using the Galerkin technique. The MSM is applied to study NNMs of the 

forced vibrations in the vicinity of the principle resonance. The frequency responses of the 

forced vibrations are obtained. The criteria of the crack existence are deduced from the analysis 

of the system nonlinear vibrations.  

Two DOF nonlinear mechanical system with vibro-impact energy sink is treated in 

[201, 202]. This system is studied by using MSM to obtain the steady-state response, when the 

ratio of masses is used as a small parameter. The system forced vibrations in the vicinity of the 

resonance are analyzed. The closed form approximation of the NNM is obtained. The energy 

pumping mode takes place only at non-conservative impact conditions. PLL is used to obtain 

an appropriate excitation, where the frequency and phase are synchronized with respect to a 

reference signal. The parameters of the impact nonlinear energy sink, which results in low 

amplitude vibrations of the main subsystem, are chosen from the numerical analysis.  

The self  sustained friction induced oscillations of the mass-spring chain with a 

203]. Equations of motion for the two-

DOF chain are transformed to new model with respect to the following variables: total 

excitation level, its distribution between the oscillators and coherency of the oscillations. Then 

the excitation threshold is observed, when the self-sustained oscillations are taken place. The 

threshold value of the nonlinearity corresponds to the out-of-phase NNM, when instability 

through saddle node bifurcation is observed. The numerical simulations show the existence of 

the self-sustained waves propagating in the chain of many particles. 

 

11. Nanostructures and physical systems  

 

 The application of NNMs for the nanostructures and physical systems analysis is rapidly 

developed.   

Two DOF mechanical model of vocal fold is derived in [204]. This model describes the 

behavior of vocal fold during voice production. The external forces act on the system masses. 

In order to estimate the pressure distribution along the vocal folds area, the Bernoulli equations 

are applied. This model helps to study NNMs taking into account tissue stress-strain curve 

nonlinearity. The NNMs are calculated numerically using the combination of the shooting 

technique and arclength continuation algorithm. The simulation of NNMs helps to analyze 

some phenomena obtained during phonation. Vocal folds undergo bifurcation behavior in 

vicinity of internal resonances.  

The geometrical nonlinear vibrations of the micro-beams with moderate transverse 

deflection are described by one nonlinear PDE in [205]. The dominant damping is described 

using well-known thermo-elastic damping mechanism. The S-P continuous NNMs are used to 

study the micro-beam dynamic behavior. 

Micro-electro mechanical structures with geometric nonlinearity are used as sensors 

[206]. The deep learning based ROMs and invariant manifolds are applied to analyze nonlinear 

vibrations of microstructures. The internal resonances in microstructures result in interaction 

between different modes. Nonlinear autoparametric effects are studied. 

A concept of the NNMs bushes is used to study of the dynamics of the molecular and 

crystal structures in a series of papers. Every bush possesses its own symmetry group. It is an 
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invariant manifold containing the set of NNMs. If the bush dimension is greater than unity, it 

describes a quasi-periodic dynamical mode. The technique for the symmetry group is used for 

the bushes analysis. Appling this concept, it is possible to find exact solutions using the 

harmonic series. The detailed description of the bushes of NNMs theory is presented in [207]. 

An analysis of such bushes for N particles mechanical systems with the symmetry of 230 space 

groups is made using the analytical potentials. Such bushes in  molecule are analyzed 

numerically using the group-theoretical technique in [208]. The density functional theory is 

applied to analyze the  molecule with symmetry. The bushes of NNMs are used to study the 

in-plane atomic vibrations of the graphene monolayer in [209]. The low-dimensional bushes of 

the graphene are calculated using the density functional theory. The transfer between NNMs of 

different symmetry belonging to the same bush is studied.  

The paper [210] is dedicated to study of vibrations of the graphene, which is considered 

as a crystal with a hexagonal lattice. Three-component delocalized nonlinear vibration modes 

(DNVMs), which describe atomic vibrations in the lattice plane, are considered. Such modes 

are exact solutions to the atomic equations of motions with arbitrary values of amplitudes. They 

are determined using the lattice symmetry. The dependences of the mode frequencies, energy 

per atom, and average stresses on the root mode amplitudes are obtained. One- and two-

component DNVMs in graphene are analyzed in [211]. The mode excitation results in the 

appearance of negative in-plane pressure. The DNVMs of the nonlinear lattices are analyzed 

using two different interatomic potentials in [212]. Using space symmetry group of the fcc 

lattice, all one-component DNVMs are treated. Stability of DNVMs in graphene lattice is 

studied in [213]. DNVM instability results in formation of large amplitude localized vibrational 

modes. If the DNVM loses stability, the atom trajectories deviate from the mode exponentially 

in time.  

The influence of the large amplitudes, short-wavelength modes on the elastic properties 

of the nanostructure is analyzed using the molecular dynamics simulations in [214]. The 

structure particles interact due to the Fermi-Pasta-Ulam pair potential. Spatially localized 

modes (discrete breather) are treated too. The instability of the modes is studied by the direct 

numerical simulations of the finite DOF nonlinear ODEs. The modulation instability of 

delocalized short-wave vibrations modes is analyzed in [215] for the two-dimensional 

hexagonal lattice using the molecular dynamics simulations.  

The large amplitude oscillations of harmonically coupled pendulums are considered in 

[216]. An example of such structure is the Frenkel Kontorova model, which describes the 

dislocations in the crystal lattice. Multiple resonances between NNMs exist even with different 

wave numbers. It is shown that the modes interaction in the vicinity of the long wavelength 

leads to the oscillations localization.  

A finite DOF model of the nanobeam is obtained using the Euler-Bernoulli beam 

theory, nonlocal elasticity theory and finite element discretization in [217]. The von Karman 

type of nonlinearity is accounted. The first three NNMs are analyzed by HBM and continuation 

technique. The system of three PDEs is derived in [218] 

nanostructure. The Hamilton

finite element discretization with the Galerkin technique, the finite DOF nonlinear dynamical 

system is derived. The electrostatic force is derived by the nonlinear function of the nanobeam 

transversal displacements. In order to calculate the nonlinear oscillations, the HBM and arc-
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length continuation are used jointly to obtain NNMs. Nonlinear dynamic response in the case 

of the internal resonance contains the bifurcations points. The influence of the electrostatic 

force on the system dynamics is analyzed. 

Nonlinear modal dynamics of two gas bubbles located in a distance from stationary 

sound stream is analyzed in [219]. The bubbles oscillations are excited by time periodic 

pressure field. The oscillations are described by the variations of bubbles radii. The obtained 

two-DOF nonlinear dynamical system is analyzed using the MSM. The NNMs and the steady-

state motions are studied. The results of the bifurcations analysis are treated.  

The system of three nonlinear PDEs of the isotropic single-walled carbon nanotubes 

free oscillations is derived accounting nonlocal elasticity and the Sanders-Koiter nonlinear shell 

theory [220]. The system of nonlinear ODEs with quadratic and cubic nonlinearities describes 

the shell like carbon nanotubes nonlinear vibrations. The NNMs of the system are obtained by 

HBM with a single harmonic approximation. The NNM backbone curves are soft. The system 

free nonlinear vibrations losses stability due to the Neimark-Sacker bifurcation. As a result, the 

almost periodic oscillations are observed.  

The Sanders-Koiter nonlinear shell theory is used to obtain ODEs of the nanotube 

oscillations in [221]. The nonlinear resonance interactions between bending and circumferential 

modes in single-walled nanotube are considered. The model of the NNMs interactions is 

analyzed. As a result of this study, the energy localization over nanotube surface is observed.  

The -Fermi-Pasta Ulam-Tsingou chain with finite number of the Duffing type coupled 

oscillators is considered in [222]. The two DOF limit of the system has similar NNMs in the 

following form: 

 

where  is the Jacobi elliptic function;  is the oscillation frequency;  are oscillation 

amplitude. The relation  defines similar K-R NNMs. The general N DOFs chain has 

such similar NNMs for the case of purely nonlinear couplings. The localized NNM of the 

considered system is analyzed numerically.  

 

12. Targeted energy transfer and absorption problem 

 

Variety of passive and active absorbers of mechanical vibrations is used in engineering. 

The description of such systems and their analysis are not subject of the present study. Thus, 

only few publications, where the targeted energy transfer (TET) and absorption problems are 

analyzed by means of NNMs, are included in this Section.  

The target energy transfer (TET) has been analyzed intensively in the last decade. Most 

of these studies are devoted to analyze the target energy transfer in the mechanical systems 

with the nonlinear energy sink (NES). The current state of the art and perspectives of TET 

analysis are discussed in the review [223].  

The method of complexification-averaging developed by L.I. Manevitch, the MSM and 

numerical simulations are used to analyze two-DOF systems, which consists of the primary 

linear subsystem and the NES in the case of the 1:1 internal resonance [224]. Two DOF 

mechanical system with NES in the form of the eccentric rotator attached to the primary 

subsystem is considered. The sequence of the resonances captures is observed in the system, if 
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the system energy is decreased due to the dissipation
4
. The study of the rotator nonlinear 

dynamics shows that it is predominantly chaotic for sufficiently large values of the system total 

energy in the case 1:1 resonance capture. The motions in each resonance capture are described 

by the system NNM. As follows from the simulations, the full energy transfer to the NES 

occurs after a threshold value of the primary mass oscillations. These motions depend on the 

initial system energy and dissipation parameters. 

The essentially nonlinear weakly damped attachment is used for NES in [225]. Steady-

state responses are analyzed for three cases: Hamiltonian, periodically forced and forced-

damped systems. An approximate slow-flow analysis permits to obtain the in-phase and out-of-

phase NNMs of the system. The frequency-energy plots are obtained for a comparative 

evaluation of the NES and the linear oscillator amplitudes. The numerical simulations show 

that the considered NES permits to significantly reduce the vibrations amplitudes.  

The absorption of torsional vibrations of the single-cylinder diesel engine with crankshaft 

is performed by NES in [226]. The analytical study of the system is made using the 

complexification-averaging method. An analysis of modulation equations shows that the in-

phase NNM can be eliminated by NES at very low energies. The out-of-phase strongly 

localized NNM is effective to reduce the crankshaft system vibrations at sufficiently high 

energies.  

The nine-story building primary substructure containing a more rigid core (secondary 

substructure) is considered in [227]. The blast excitation is modeled by initial velocities applied 

to each floor. Explosive energy transfer is achieved by energy transition of explosion-excited 

low-frequency vibration modes in the linear primary structure to high-frequency ones. Such 

transition is provided by strong nonlinear Hertzian vibro-impacts between the primary and 

secondary structures. The distribution of clearance between the primary and secondary 

structures is chosen to ensure the fast absorption of the main structure vibrations. The 

simulation results show that TET provides fast and irreversible dissipation of the explosion 

energy.  

The book [228] is devoted to the study of resonance energy transfer problem in finite-

DOF nonlinear systems based on the concept of limiting phase trajectories (LPT) proposed by 

L.I. Manevitch. An important elements of the NNM theory, as well a comparison and principal 

differences between NNMs and LPT concepts are discussed in details.  

 

Conclusion 

 

 The review of the NNMs, which are considered in the previous two papers by the same 

authors [1,2], is developed in this paper. The NNMs theory is developed significantly during 

the last decade. The following problems are discussed both in this review and in the previous 

two reviews: concepts by Kauderer Rosenberg and Shaw- Pierre, new definitions of NNMs, 

resonances and bifurcations of NNMs, NNMs in finite degrees-of-freedom systems, NNMs in 

continuous dynamical systems, reduce order modelling, numerical methods for nonlinear 

modes.  

It seems to the authors, that the NNMs described in the paper [224] correspond to the 

-65] which are considered in the Section 3.
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 The problems, which are initiated to study during the last decade, are reviewed here. 

Namely, they are the following: NNMs in stochastic dynamical systems, identification of 

mechanical systems using NNMs, experimental measurement of NNMs, applications of NNMs 

in aerospace engineering and power engineering, applications of NNMs for nanostructures.  

New trend of the NNMs theory, which is developed during the last decade by Haller 

with co-authors, is the spectral sub-manifolds.  

The essential development of the numerical methods for all issues of NNMs is the 

important basis of the theory during the last decade. In the previous decades, the researches 

gave attention mainly for development of analytical methods for NNMs.  

 As follows from this review, NNMs is started to use for real engineering problems, 

which are originated in aerospace engineering and power engineering. We can note that the 

FEM, which transforms the nonlinear continuous system to the system of nonlinear ODEs, is 

developed significantly for discretization of real nonlinear engineering structures. In this case, 

the reduced order modelling is used. 

 The NNMs experimental analysis and identification of mechanical systems from 

NNMs analysis are very important for progress of the NNMs theory. The authors of this review 

believe that these areas will be significantly developed in future research. 

 As follows from this review the application of NNMs for nanostructure nonlinear 

dynamics is developed slightly. We suppose that this subject will be also developed in future 

investigations.  
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