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Abstract

This paper contains a review of the theory and applications of nonlinear normal modes,
which are developed during last decade. This review has more than 200 references. It is a
continuation of two previous review papers by the same authors. The following theoretical
issues of nonlinear normal modes are treated: basic concepts and definitions; application of the
normal form theory for nonlinear modes construction; nonlinear modes in finite degrees of
freedom systems; resonances and bifurcations; reduced-order modelling; nonlinear modes in
stochastic dynamical systems; numerical methods; identification of mechanical systems using
nonlinear modes. The following applied issues of this theory are treated in this review:
experimental measurement of nonlinear modes; nonlinear modes in continuous systems;
engineering applications (aerospace engineering, power engineering, piecewise-linear systems
and structures with dry friction); nonlinear modes in nanostructures and physical systems;
targeted energy transfer and absorption problem.



1. Introduction

1.1. Basic Concepts and Main Definitions

This review is a continuation of the previous ones [1] and [2]. Over the last decade, a
large number of publications have appeared relating to the theoretical and applied aspects of the
nonlinear normal vibrations modes (NNMs). This indicates the importance of this area in
nonlinear dynamics. There has been a significant increase of studies devoted to different
dynamical systems including applied systems, whose dynamics are studied using NNMs. The
analytical and numerical methods for NNMs analysis are significantly developed during the last
decade. Moreover, the studies of NNMs in a stochastic dynamical system, the identification of
mechanical systems using NNMs, are initiated. The NNMs analysis is a useful tool for the first
step of nonlinear system complex behavior study.

In this review, we touch the historical aspects of the NNMs, which are a generalization of
the well-known linear normal vibrations. Turning to the origin of NNMs, we note the
contribution by A.M. Lyapunov [3], who at the end of the 19th century developed the method
for construction of the periodic solutions in finite-dimensional dynamical systems with a first
analytic integral. Such solutions tend to normal modes of linear systems, if the vibration
amplitudes tend to zero. The generalization of the Lyapunov’s results is made for Hamiltonian
systems by A. Weinstein [4]. Later it is shown [5] that the Lyapunov solutions have properties
of the NNMs.

H. Seifert [6] proved the existence at least of one periodic solution of the conservative
system, which trajectory twice intersects the maximal equipotential surface during one period.
Later such solutions were called BB-solutions (“boundary—boundary’), or BOB-solutions,
when the trajectory passes through the origin. The Seifert’s theorem is generalized in [7, 8]
where the existence at least n BOB-solutions in the finite DOF systems with even potential
energy is proven.

H. Kauderer [9] was the first who constructed NNMs of two-DOF conservative system
with cubic nonlinearity, using the equations of motions in the system configuration space. R.
Rosenberg in the papers [10-13] proposed the first definition of NNM as “vibrations in unison,”
i.e., synchronous periodic motions, when all generalized coordinates of the finite-DOF system
reach their maximum and minimum values at the same instants of time. Rosenberg obtains
several classes of nonlinear systems, including nonlinearized ones, which have NNMs with
straight modal lines (so-called “similar” NNMs). These NNMs are a direct generalization of the
linear normal modes to a nonlinear case. The Kauderer-Rosenberg (K-R) concept of the NNMs
is based on the construction of the trajectories (modal lines) in the configuration space.

The K-R concept can be used in systems with significant and even predominant non-
linearity. It seems that the K-R NNMs are an effective tool to study free and forced large
amplitude vibrations of low dimensional essential nonlinear systems without dissipation. Note
that the construction of modal lines is most efficient when they are close to the rectilinear ones
[14]. This concept is applied to analyze the mechanical systems having nonlinear absorbers,
shallow shells and arches with snap-through motions, other finite-DOF mechanical systems
[1,2].

Different concept of the NNMs was proposed by S.Shaw and C.Pierre [15-17]. They
considered NNMs as invariant manifolds in the system phase space, which are tangent to the
linear normal modes. Note that a similar approach is suggested to construct periodic solutions



in phase space by A.M. Lyapunov [3]. The Shaw-Pierre (S-P) approach can be used for
dissipative dynamical systems and does not imply binding to conservative condition as in the
K-R concept. At present, both K-R NNMs and S-P NNMs can be used for mechanical systems
with significant nonlinearity.

S-P NNMs can be used to analyze the continuous mechanical systems, which are reduced
to nonlinear ordinary differential equations (ODEs) by means of finite element methods,
Galerkin approach, or assumed-mode method. This S-P concept is successfully used to analyze
both conservative and dissipative mechanical systems [1,2]. Moreover, this technique can be
applied to analyze free and forced nonlinear vibrations of mechanical systems with dozens and
hundreds DOF. The detailed description of the S-P NNMs and their use in different theoretical
and applied problems are made in the book chapter [18].

A continuation and generalization of the S-P concept of NNMs is made in recent
publications by Haller with co-authors. The authors introduced spectral submanifold (SSM) in
phase space. They treated it as the smoothest invariant manifold tangent to a nonresonant
spectral subspace at a fixed point under the condition that there are no low-order resonances
with the rest of the linearized spectrum. A corresponding strict mathematical definition of
SSMs is given in [19, Definition 3]. Using this definition, the authors explore the existence and
uniqueness of SSMs from prior abstract results on mappings on Banach spaces, as well the
smoothness and robustness of these manifolds. The existence and uniqueness of SSM depends
on the spectral quotient, which is calculated from the real part of the linearized system
spectrum. Such definition of SSMs has a general form, which can be also (5) used for the
systems under the action of a periodic or quasi-periodic external excitation. The fast,
intermediate and slow SSMs are obtained. Connection of the proposed SSMs with the K-R
NNDMs is explained.

a. b.
Fig.1  Non-unique invariant manifolds, which are tangent to the slower-decaying
spectral subspace in the planer and finite-dimensional cases. Figure courtesy of G. Haller

The non-unique invariant manifolds tangent to the slower-decaying spectral subspace of a
planar linear dynamical system (Fig. 1a). But the invariant manifold, which is tangent to the
faster-decaying spectral subspace, is unique. The non-unique invariant manifolds of the finite
dimensional dynamical system, which are tangent to the individual spectral subspace, are
shown in Fig. 1b. Both the choice of the co-dimension one boundary surface /" and the
boundary values f;°(I") of the invariant manifold are arbitrary, as long as I is transverse to the
linear vector field (Fig.1b).



Other publications by G. Haller with co-authors, where the concept of the SSMs is
developed, are presented in next sections'.

At the end of this Section, we note that the different aspects of the theory of NNMs and
their applications are reviewed over the past years in several papers [28-31].

1.2. NNMs and theory of normal forms

There are many studies that compare the NNMs theory in the framework of the S-P
concept with the normal form (NF) theory originated in classical works by Poincaré and
Birkhoff. A part of the NF theory is treated in the section devoted to reduced-order modeling.

Consider the following dynamical system in the form of a system of ordinary differential
equations (ODEs):

q=Aq+ N,(q),q € CP, (1)

where ¢ is a vector of the phase coordinates. The principal transform of the NF method is the
following near-identity one to the new variables u € CP:

q = u+ h(uw). (2)

This transformation permits to remove the non-resonant terms of the successively
higher powers in the Taylor expansion of the nonlinear terms N, (q). As a result, the new more

simple dynamical system is derived in the following form:
u = Au+ N, (u), 3)

where N, (u) contains only resonant terms. Schematic representation of the NF mapping
transform (2) from the phase coordinates q to a curvilinear coordinate system u is shown for a
four-dimensional phase space in Fig.2. Here M;, M, are two-dimensional invariant manifolds.
Components of the vector q are presented by the modal coordinates (Y;, Y,, Z;, Z,). The normal
coordinates corresponding to the vector u are denoted by (G4, G,, A1, ;). These coordinates
generate the curved grid, which is associated with the invariant-based span of the phase space.

! The NNMs concept was generalized previously to non-conservative systems. Namely, the K-
R NNMs together with Rauscher method are used to analyze the forced and self-sustained
vibrations in [17, 20-23]. The S-P NNMs and the Rauscher method are used together to analyze
the forced vibrations in [24] and parametric vibrations in [25]. Moreover, NNMs of forced
vibrations with smooth trajectories in the configuration space and chaotic behavior in time are
presented in [26] for two-DOF systems with more than one equilibrium positions. Localized
mode with chaotic behavior in time is described in the paper [27].
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Fig.2 Schematic representation of the NF mapping transform in a four-dimensional
phase space. Figure courtesy of C. Touzé

The combination of the NF approach, singularity theory and variational technique are
used to prove the NNMs existence in [32]. It seems to us, that the relationship between the
NNMs and NF construction is first discussed in [33].

A detailed analysis of the connection between the NNMs, the NF theory and a use of
NNDMs for reduced-order modeling is made in [34, 35, 36]. Large amplitude vibrations of thin-
walled structures are considered in these papers.

The application of the NF theory for the NNMs analysis is treated in [37]. The NF theory
is applied to obtain the NNMs of two-DOF cable model with account of the internal resonance
between in-phase and out-of-phase modes. The transition from planar to whirling motions is
described by the second-order NF.

Note that the effectiveness of the NF approach, as one of the most developed in nonlinear
dynamics, is beyond doubt. NF theory is applied to wide classes of nonlinear mechanical
systems. In particular, nonlinear vibrations of the thin-walled structures, rotors, etc., are
analyzed by this approach.

2. NNMs of finite-DOF systems

In this section the publications devoted to NNMs in finite DOF mechanical systems are
analyzed by different approaches.

The paper [38] is dedicated to a nonlinear modal analysis of dissipative mechanical
systems using the complex nonlinear modes (CNMs), when the complex non-linear eigenvalue
problem in the frequency-domain is formulated. The corresponding eigenfunctions are
determined in the form of the generalized Fourier series. The NNMs in the turbomachinery
bladed disk with dry-friction contacts are analyzed.

The resonant NNMs in the self-excited and parametrically coupled oscillators under the
action of the periodic excitation are analyzed by the multiple scales method (MSM) in [39].

The K-R NNMs of the spring pendulum and the mechanical system with pendulum
absorber are analyzed in [21]. The combination of the NNM approach and the Rauscher
method, when the generalized coordinate associated with the NNM is chosen as new



independent variable instead of time, is used to describe the forced vibrations of such two DOF
systems.

The existence of the in-phase and the out-of-phase NNMs in two coupled nonlinear
oscillators is proved using the comparison principle for ODEs in [40].

The extended definition of NNMs as a family of periodic motions is proposed for
autonomous systems in [41]. These periodic motions are excited by the mass-proportional auto-
oscillations force. The harmonic balance method (HBM) are used to construct these periodic
motions.

New representation of the NNMs using eigenfunctions of the Koopman operator, which
is associated with the system observables. In this case, the relative displacements, potential or
kinetic energies are discussed in [42, 43]. The expansions by the eigenfunctions of the
Koopman operator are used. The analogy with the S-P NNMs is discussed. The numerical
technique for the construction of invariant manifolds in larger domains of the phase space is
proposed to overcome local properties of the expansions.

The NF technique and the energy balance method (EBM) are used to determine the forced
responses of two-DOF nonlinear dynamical system in [44, 45]. The resonance crossing points
between the forced responses and the backbone curves of the system free vibrations are
obtained.

We can note that the EBM approach is based on the assumption, that the total vibration
energy for the periodic steady-state response is equal to zero over one period. Moreover, this
assumption is used in different perturbation techniques and can be expressed by the following
equation:

[ f (xo, %o, )Xodt = § f (xg, X, t)dxo = O, 4)

where f(...) is the perturbation vector function for ODEs; X, is a solution of the unperturbed
ODEs. The integral (4) is calculated along the unperturbed solution x,. In particular, the
condition (4) is used to study the bifurcations of NNMs in [14]. The well-known subharmonic
Melnikov function also has the form of the integral (4). The authors of [46] prove a generalized
version of the equation (4) that is valid for finite DOFs system.

Nonlinear dynamics of two DOF system with a cubic nonlinearity, which is obtained
from the Galerkin projections of the simply supported geometrically nonlinear model of beam,
is analyzed in [47]. NNMs of the systems are studied using the continuation technique. The
main attention is paid to the branches of NNMs, which correspond to different internal
resonances. The phase-locked and phase-unlocked branches of the NNMs are obtained. Then
the modes are studied in the presence of the external excitation. It is assumed that this
excitation and damping mutually balance each other. Results of the numerical analysis show
that the phase-locked NNMs are strongly attractive, while the non-phase-locked NNMs are
weakly attractive. As follows from the numerical analysis, the energy transfer mechanism is
much less intensive for the phase-unlocked modes.

S-P NNMs are used to describe the spacecraft relative motion on Kepler orbits in [48].
The Lyapunov-Floquet transformation, invariant manifold-based order reduction and time-
dependent NF are used to obtain NNMs.

The vibration localization of the cyclic symmetric chain of six externally excited weakly-
coupled Duffing oscillators is analyzed in [49]. The system periodic motions have fifty two



different modes (including the trivial one) due to the system symmetry. Twenty two of these
solutions can be obtained from the linear modes. These modes undergo the bifurcations, which
are observed if the amplitudes of vibrations are varied from low to high values. The others
isolated thirty branches of the periodic oscillations exist after a certain energy threshold that is
these branches disappear at low energy. If all oscillators are excited by the same force, spatial
localized vibrations take place. The degree of this localization is strongly dependent on the
excitation level.

The localized NNMs in a system of the linearly coupled Duffing oscillators under the
action of a harmonic excitation are treated in [27]. Such localization is obtained in the form of
the intrinsic localized modes, which can be both symmetric modes and asymmetric ones. The
free and forced responses are approximated by a single harmonic. As follows from the analysis,
if linear coupling disappear, then these localized modes are stable, but they are chaotic in time.

The SSM concept is used to analyze the forced nonlinear vibrations of finite-DOF
mechanical systems under the non-resonance conditions in [50]. The two-dimensional SSMs
for non-autonomous system are obtained in vicinity of the origin using the small parameter
method. These SSMs can be used for the forced system analysis, if the forcing frequency does
not satisfy the resonance condition with an imaginary part of the eigenvalues of the linearized
system. Amplitudes of the forced response are obtained as roots of polynomial. For the cases of
internal resonances, the system dynamics is not observed on two-dimensional SSM. In this
case, the higher-dimensional SSM must be derived. Such SSMs are also used to derive
analytically the response of periodically forced finite DOF mechanical systems in [51]. The
proposed algorithm permits to obtain the analytical solution. The analytical predictions include
an explicit criterion for the existence of the isolated forced response (“isola”) (Fig.3), which
belongs to the time-periodic SSM. As follows from this Figure, three limit cycles for the
forcing frequency (2 = (2, are observed. The proposed approach is used to analyze two DOF
system with cubic nonlinearity and the Euler-Bernoulli beam transversal vibrations with a cubic
spring and damper attached to the beam end.
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Fig.3  Periodic SSM and forced frequency periodic response. Figure courtesy by G.
Haller

The paper [46] is dedicated to study of stability and bifurcations of the periodic forced
vibrations in the dissipative mechanical system beginning from the backbone curves analysis in
the conservative limit. This problem is reduced to analysis of the generalized subharmonic
Melnikov function, which is a leading term in the equation of the energy balance over one



period of motion. The proposed approach allows obtaining maximal amplitudes of the forced
vibrations and the saddle-node bifurcation points.

The modal superposition method based on, so-called, the hybrid mode shape concept is
developed to obtain the steady state forced response of nonlinear systems in [52]. This mode
shape is presented as linear combination of the modal vectors of the limiting linear systems.
This approach is applied to the nonlinear system with dry friction.

The S-P NNMs are obtained using the Grobner polynomials basis in [53]. This permits to
increase accuracy of the NNMs approximation.
A modification of the EBM is applied to the dissipative forced nonlinear systems using a

concept of the damped nonlinear normal modes (AINNMs) [54]. This modification of the EBM
allows to carry out the balance between the energy losses from the damping and the external
excitation energy. The EMB approach predicts resonances of forced NNMs. The self-sustained
vibrations of two-DOF system interacting with a moving belt are considered.

The nonlinear mechanical subsystems with linear attachments are considered in [55]. The
numerical simulations of the cantilevered beam with cubic spring are treated.

A stability of NNMs, standing and traveling waves is analyzed using the method of the
Ince algebraization in [56]. The positional coordinate describing the unperturbed NNM is used
as the independent variable instead of time. In this case, equations in variations are transformed
into the equations with singular points. Then solutions corresponding to boundaries of the
stability/instability regions are obtained. Another analytical-numerical approach of the NNM
stability analysis, which is associated with the classical Lyapunov definition of stability, is also
used.

The dynamics of two coupled pendulums under a magnetic field are considered in [S7].
The small parameter method is used to construct two nonlinear normal modes one of them is
the coupled vibration mode, and the second is the localized one. The influence of the masses
ratio and other system parameters to these NNMs for small and not small initial angles of the
pendulums is studied.

In publications presented in this Section, various methods for NNMs analysis are used, in
particular, the K-R approach, S-P expansions, SSMs, the harmonic balance method (HBM), the
multiple scales method (MSM), the energy balance method (EBM), the Rauscher method, the
Fourier expansions etc. At the same time, it can be noticed that a number of new kinds of
NNMs have been introduced, in particular, complex, damped, transient, phase-locked NNMs,
are considered. We also believe that it is not always possible to establish a direct
correspondence of the obtained vibration modes to the basic concepts of NNMs, which are
presented at the beginning of this review. It seems to us that the significance of certain
definitions and their connection with the main definitions of NNMs will be estimated only by
further research.

3. Resonances and bifurcations of NNMs

This section is devoted to free and forced NNMs in the vicinity of resonances of various
origins.



Fig.4 The chain of particles. Reprinted with permission from Society for Industrial and
Applied Mathematics

The papers [58, 59] are dedicated to study of the in-plane oscillations of the strongly
nonlinear finite chain of particles with clamped-clamped boundary conditions (Fig.5). In the
low energy case, transversal geometrically nonlinear oscillations are predominant. This case is
called "nonlinear acoustic vacuum" and the nonlinear terms are predominant in the equations of
motion. The continuum limit of the system is described by the following partial differential
equations (PDEs):

22 0%u(i, 1) _ i au(i., T) +l(6v(i.’ -L-)>2' o
dt? di| di 2 di
02v(i,7)  d [[ou(i,T) 10w, N>\ dv(i,T)]
otz oi ( oi +E( o) )|t ®)

where & is a small parameter, which describes the order of the axial and transverse
displacements. The main variables u(i,t) and v(i,7) are shown on Fig.5. In this continuum
limit the nonlinear sonic vacuum leads to absence of any linear acoustics and zero speed of
sound. The NNMs of the system are identical to ones of the linear chain. The case of the 1:1
resonance is studied asymptotically. The strong energy exchange between the modes is
observed. As follows from [59], all NNMs excepting one with high wavelength are unstable.
Two different cases are considered for low system energies. In the first case, the predominantly
transverse NNMs are excited by the spatially extended transverse loads, which act on the
lattice. In the second case, the localized transverse impulse excitations occur. An intense and
repetitive energy exchange between the directly excited NNM and other NNMs with higher
wave numbers is observed.

The phase-locking between the modes in the case of the internal resonance is analyzed
using the NF technique in [60]. Both phase-locked and phase-unlocked backbone curves of the
weakly nonlinear cable are obtained. The phase-locking occurs between in-plane and out-of-
plane motions. For the phase-locked and the phase-unlocked cases the mixed-mode backbone
curves appear due to the bifurcation of the single-mode motions. The EBM is used to determine
the system forced responses from the backbone curves analysis. A stability analysis is used to
show that the phase locking is associated with the internal resonance. It is also shown that the
phase-unlocked modes may lead to stiffening effects in the system.

The NNMs backbone curves of free nonlinear vibrations are used to describe forced
responses of the dissipative systems in the next two papers. The EBM and the continuation



technique are used to describe the forced resonance vibrations using the backbone curves in
[61]. As follows from the numerical analysis, the “isola” frequency response curve appears due
to interactions between the NNMs.

The NNMs interaction in a three-DOF system with weak cubic nonlinearity is considered
in [62]. The system with the internal resonance, when all eigenfrequencies are close, is treated.
Then the NF approach is used to obtain the backbone curves of the dissipative system forced
response.

Free and forced vibrations of the finite-DOFs dissipative mechanical systems in the case
of internal and/or forced resonance conditions are considered in [63-65]. The NNMs
interactions are analyzed using the MSM. The modulation equations are transformed to the so-
called reduced system with respect to three variables (the system energy, the arc tangent of the
amplitudes ratio and phases difference). The analysis of the reduced system permits to describe
transition from unstable nonlinear modes to stable ones. The conditions of the vibrations energy
localization are obtained. Besides, the transient NNMs (TNNMs) are observed. Such modes
exist, if the energy exceeds the threshold values for some time instant. These transient NNMs
attract other motions of the system near this time value. If the transient mode disappears, the
motions of the system move to some stable NNM.

The nonlinear mode localization in the boundary-interior coupled structures with cubic
nonlinearity (Fig.6) is considered in [66]. Resonant and non-resonant boundary motions are
described by the boundary modulation operator. An asymptotic approach permits to describe
three types of NNMs. In the case of the localized NNM (Fig.6a), the displacements of the cable
A are essentially larger than the displacements of the bridge desk C. Therefore, the nonlinearity
of the component C is not accounted. The global NNM (Fig.6b) has comparable amplitudes of
the substructures A and C. The NNM frequency is close to one of the component C. The
frequencies of both components are close for the hybrid mode. In this case, the weak boundary
motions of the A-C coupling interface excite the motions of the component A. Nonlinear
frequencies of these three modes and their invariant manifolds are obtained. The localized and
global modes are induced as NNMs pairs, if frequencies of the linearized system are not close.
Four hybrid NNMs are obtained with two different frequencies. The localized/global/hybrid
NNMs of the beam-beam coupled structure are obtained by the same asymptotic method. The
phenomenon of abrupt asymptote exchange caused by the structural nonlinearity, has been
found for the frequencies of hybrid NNMs.

Fig.5 NNM of boundary-interior coupled structures. Reprinted with permission
from Elsevier
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The bifurcation analysis of a system of two coupled cubic oscillators in a case of the 1:1
internal resonance is considered in [67]. MSM is used for such analysis. The bifurcations
curves are presented on the system parametric plane. An experimental analysis is also
performed. The geometrically nonlinear circular plate vibrations obtained experimentally are
compared with the nonlinear dynamics of two coupled oscillators. Imperfect bifurcations have
been discussed to explain the slight differences between the theory and the experiments.

4. Reduced-order modeling

Reduced-order modeling (ROM) based on the NNM theory is a rapidly growing area of
research. The number of publications on this subject has increased significantly over the last
decade, as the NNM approach is a very useful tool to solve this problem. In most of the
presented papers the ROM of the thin-walled structures with geometrical nonlinearity are
treated. Various definitions of NNMs are used here.

The NNMs used in the ROM is the subject of a detailed, recently published reviews [35,
36, 68, 69]. We also refer to several first publications [15, 70, 71, 72] devoted to ROM.

In some subsequent papers by C. Touzé with co-authors, the computational procedures
based on the NF method are used to perform ROMs in several geometrically nonlinear thin-
walled structures.

The moderate vibrations amplitudes of the thin shells and the doubly-curved panels are
studied with account of the in-plane inertia by using the ROM in [34]. Two approaches (S-P
NNMs and proper orthogonal decomposition (POD)) are compared for ROM. The author notes
that the NNM method is directly applicable to the original dynamical system. The obtained
results have better accuracy, than the modes obtained by POD. If the vibrations amplitudes are
increased, the S-P NNM-based ROM may lose accuracy, as the used S-P NNMs are local.

The ROMs of the geometrically nonlinear thin shell free and forced vibrations are
obtained in [72]. The expansions of the shell displacements by the eigenmodes are used to
discretize the continuous system. The obtained finite-DOF dynamical system with quadratic
and cubic nonlinearities is analyzed by the NF method. Two methods for ROM of the
geometrically nonlinear structure vibrations are compared in [73]. The first method is based on
the NF theory to obtain the reduced-order dynamics on the invariant manifolds. The second
method is based on the modal derivatives approach, which is suggested to derive the quadratic
manifold (QM). The NF theory is used to obtain ROMs of the geometrically nonlinear structure
in [74]. This structure is discretized by the finite element method (FEM). The suggested
procedure is used the direct NFs, which has not limitation on the number of the master
coordinates in the resonance case. The third-order approximation of the S-P NNM is derived.
The proposed approach is applied to analyze both the clamped-clamped beam nonlinear
dynamics and the FE model of the fan blade.

NF theory is used for ROM of the mechanical systems with quadratic and cubic
nonlinearities in [75]. The direct NF approach leads to the homological equations, which permit
to obtain the reduced system parameters. A special emphasis has been put on the treatment of
the second-order internal resonance, which induces the strong energy exchange between the
resonance modes. A comparison of the implicit condensation, expansion method and the NNM
approach is suggested to construct ROM in geometrically nonlinear structures in [76]. It is
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shown that NNMs in the form of invariant manifolds generate accurate ROM. The simplified
procedure, which is based on the NF approach to identify only resonant terms in the nonlinear
stiffness, is developed. The obtained results are illustrated on the beams and plates nonlinear
vibrations.

A comparison of the implicit condensation and expansion method and the NNM approach
to construct ROM in geometrically nonlinear structures is suggested in [72]. It is shown that
NNMs in the form of invariant manifolds generate accurate ROM. The simplified procedure,
which is based on the NF approach and identification of only resonant terms in the nonlinear
stiffness, is developed. The obtained results are illustrated on the beams and plates nonlinear
vibrations.

The direct parametrization of the invariant manifolds for multiple DOF finite element
approximation of continuous system with geometric nonlinearity is suggested in [77-79]. The
main idea of this method is to consider the coordinate nonlinear change applied to the basic
mechanical system generalized coordinates and velocities. New coordinates describe the
evolution of dynamical systems along a low-dimensional invariant-based manifold in the
system phase space. For the non-autonomous case the dimension of the dynamical system is
enlarged to make it autonomous and the added coordinates related to the forcing is treated.
Different types of parametrization are introduced, namely, the graph style, the complex normal
form and the real normal form. The proposed approach is applied to models of shallow arch,
cantilever beam, twisted plate (fan blade) and MEMS. It is shown that the parametrization
method generates efficient ROMs for forced vibrations, including superharmonic resonances.

The different approaches for ROM of the geometrically nonlinear structures, which are
approximated by FE models, are compared in the following three publications. The authors of
the papers [80, 81] study the convergence of the ROM of nonlinear systems, which are
obtained by the FEM and nonlinear modal analysis. The implicit condensation approaches are
applied to estimate ROM in such systems. NNM of the full dimension model is used as a metric
to estimate a convergence of the ROM equations. Two FE models of the clamped-clamped
beam and the exhaust panel are analyzed using the above-mentioned approaches. A
convergence of different ROM is analyzed using the frequency-energy plots constructed from
NNDMs. The thin-walled structure, which consists of the coupled sub-structures, is considered in
[82]. The implicit condensation and expansion method using fixed-interface modes and system-
level characteristic constraint modes chosen as a basis (the Craig-Bampton basis [83]) is used.
Ae a result, the dimension of the obtained FE model is significantly reduced. The structure
NNMs are obtained with high precision.

The extension of the component mode synthesis methods to NNMs is suggested in [84,
85]. The concept of the CNMs [38] is used for the structures, which are divided on
substructures. The complex modes of each substructure are computed by the HBM. The
responses of the substructures are approximated by the multi-harmonic sum of nonlinear
eigenvectors and by a set of linear static modes. The suggested approach is applied to mistuned
cyclic structure with dry friction under the action of the external harmonic excitation. The FE
model of the bladed disk vibrations with dry frictions nonlinear contacts is studied. Forced
responses of the randomly mistuning bladed disk are analyzed too.
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Fig. 6 Geometrical sense of requirements (R1) and (R2) for ROM. Figure courtesy by
G. Haller

In the subsequent papers the slow-fast decomposition and the SSMs are used for model
reduction. The methodology for ROM in finite DOF mechanical systems is developed in [86].
Two requirements for ROM in nonlinear non-autonomous dynamical systems are suggested:
(R1). An attracting lower-dimensional invariant manifold M(#) exists. The system generalized
coordinates and velocities are smooth functions of the master generalized coordinates and the
velocities along the manifold M(#) (Fig. 6a); (R2). The general trajectories approaching M(?) is
faster than the rates within M(#). Fig.6b shows the case, when the requirement R2 is not
satisfied.

Then the attracting invariant manifold M does not provide accurate ROM for the full
nonlinear dynamical system. The explicit expressions for the slow manifold are obtained. A
boundary of the slow manifold instability is derived. The obtained analytical results are
illustrated by several examples, including a three-DOF system with a pendulum damper.

The SSM reduction is applied to the model of the von Karman beam with viscoelastic
damping in [87]. This model is reduced up to two-DOF system with cubic nonlinearities. The
forced dynamics of the finite DOF dissipative mechanical system is reduced using time-
periodic SSMs in [88]. The forced response of the discretized cantilever Euler- Bernoulli beam
with nonlinear spring attachment is treated. The SSM reduction technique advantages are
discussed. As follows from [89], the backbone curves and the forced responses of finite DOF
mechanical systems can be described by the Lyapunov subcenter manifolds (LSMs) and the
SSMs, respectively. The LSM reduction is effective for conservative systems. The more
general SSM reduction is suitable to analyze the forced response. It is shown that the third-
order LSM reduced model of the beam leads to the Duffing oscillator in the case of the non-
resonance condition. As follows from this paper, the near-identity transformation used in the
NF based reduction method is not needed.

SSM theory is applied for ROM of forced vibrations of nonlinear mechanical systems
with internal resonances in [90, 91]. The dimension of ROM is obtained from the mode number
taking place in internal resonances. The finite element models of nonlinear beams and plates
are used to show the effectiveness of suggested reduction approaches.
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The quadratic manifold approach for the reduction of the geometrically nonlinear thin-
walled structures is considered in [92, 93]. The quadratic transform of the vector of initial
physical displacements u € R" is applied in the following form:

u=L(z) =Vz+ 0.50zz, (6)

where z € R" is a vector of the reduced generalized coordinates. Note, that V' << n. Here O is
a symmetric third order tensor. The approach for the derivation of the reduced nonlinear
dynamical system is suggested. The clamped-clamped bending oscillations of the plate are
treated under the action of the multiple harmonic periodic force. The shell finite elements and
the von Karman theory are used. The thin-walled wing structure with NACA 0012 airfoil,
which is stiffened by ribs in longitudinal and lateral directions, is treated in [92]. This structure
is discretized by the triangular finite elements with 18 DOFs. The transient responses of this
structure under the action of pulse pressure are analyzed using the reduced order finite DOF
mechanical systems.

The paper [94] is dedicated to the ROM implementation using dNNMs. The forced
vibrations of the nonlinear system with friction joints are analyzed. The truncated Fourier series
are used to approximate such damped modes. This ROM approach permits to obtain the
resonance response with high accuracy in wide range of the vibration amplitudes. Besides, the
dNNMs are used to predict the forced resonance responses using the nonlinear modal synthesis
and the EBM.

5. NNMs of stochastic dynamical systems

Several recent papers initiate a new direction in the NNM theory associated with the
dynamics of systems under a stochastic excitation.

The influence of the random excitation on NNMs of mechanical system free vibrations is
analyzed in [95, 96]. The power spectrum of random vibrations can be predicted using the
frequency-energy plot of the NNMs. In particular, such frequency-energy plots for a two-DOF
system with cubic nonlinearity are shown in Fig.8. Here vertical lines indicate the energy
percentile levels in the random response. The connection between the undamped NNMs and the
spectrum of its response to high amplitude random forcing is investigated. A spring-mass
system and the random model of a clamped-clamped beam are considered. The authors
conclude that the NNMs are a global property of mechanical systems that do not depend on the
form of random excitation®.

The stability of the similar NNMs in two DOF mechanical system under the stochastic
excitation is analyzed in [97] using the approach proposed in [26] which is an implementation
of the Lyapunov stability criterion. Taking into account specific properties of the stability
problem in the system under stochastic excitation, a modification to the approach is suggested.
Namely, it is allowed that small part of perturbations of NNMs can be out of their given
neighborhood during each fixed interval of time. The stability analysis is performed for four
different kinds of the stochastic excitation. Boundaries of the stability/ instability regions are

2 The authors of this review suppose that this result significantly depends on the intensity
of the random excitation.
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obtained in the plane of the system parameters. Similar results on the NNMs stability are
obtained for all considered types of the stochastic excitation.
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Fig.7 NNM frequency-energy plots of the clamped-clamped beam. Reprinted with
permission from Elsevier

The system of two coupled Duffing oscillators under the action of resonance harmonic
and random excitation is treated in [98]. The possible transition from one stable vibrations
mode to another one is analyzed, when the short duration Gaussian white noise acts on the
system. The transient probability density functions at discrete time points are obtained using the
modification of the path integral method. It is shown that, the localized mode with a high
probability collapses faster for a strong connection between oscillators than for a weak
connection. Probability values in each basin of attraction of the vibration modes and the shifts
of the probability density at different energy levels are obtained.

As follows from the paper [99], the invariant manifolds of deterministic dynamical
system can be used, when small white noise excitation acts on dynamical system. The authors
show the importance of normally hyperbolic invariant manifolds and the SSMs for analysis of
the random dynamical systems.

As follows from the results presented in this Section, the study of NNMs in systems
under the action of random excitations is just beginning. We emphasize the importance to study
the influence of the random fluctuations for various engineering applications, for example, self-
sustained vibrations of thin-walled structures under the action of turbulent boundary layer
fluctuations et al. The significance of the study of NNMs in such problems, as a kind of
"framework" of dynamic behavior, can be clarified in subsequent studies.

6. Numerical methods for NNMs

The use of numerical methods in problems related to NNMs has received significant
development in the last decade.
Different numerical methods for NNMs analysis are described in the review paper

[100]. First of all, the authors present definitions and the frequency-energy dependence of
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NNMs. The shooting technique and methods of discretization for NNMs analysis are presented.
The pseudo-arclength or asymptotic continuation can be used to calculate NNMs. NNMs in the
form of two-dimensional invariant manifolds, which are described by governing PDEs, are
suggested to calculate numerically by the Galerkin based approach, the transport method
associated with a fluid dynamics and FEM. Besides, the boundary-value formulation is possible
for such NNMs, when the trajectory-based method, the graph transform and complex nonlinear
modes are used. An assessment and comparison of different approaches for NNMs numerical
analysis is presented.

The papers [101, 102] are dedicated to use of the shooting technique and continuation
method for analysis of NNMs. The shooting technique permits to solve the boundary-value
problem defined for NNMs by the following periodicity condition:

H(T, zpo) = zp(T, zpo) —Zp =0, (7)

where z, = z,(t,Zp0) is a vector of the phase coordinates; z,(0) is a vector of the initial
conditions; H(T, zpo) is the so-called shooting function; T is a period of the solution. The

relation (7) is supplemented by the so-called phase condition. The Newton method is used to
solve the nonlinear equations (7). The combination of the shooting technique and pseudo-
arclength continuation method are used too. The proposed approaches permit to calculate the
backbone curves of the NNMs and to analyze their stability and bifurcations.

The numerical method for S-P NNMs analysis is suggested in the paper [103]. The
PDE:s of the S-P NNMs are rewritten in the form of the transport problem:

V-"P=Q(V:-7Q+ w?P =, (8)

where P(a, p) = (P, ..., Py); Q(a, ¢) = (Q,, ..., Qy) are vector-functions with respect to the
slave coordinates; a,¢ are master coordinates; V= (d, (]5), w? is diagonal matrix of the
squared eigenfrequences; f is a vector of nonlinear terms in equations of motions. The method

of flux analysis is used to solve the equations (8). The transport problem is supplemented by
the periodicity constraint as

P(a,0) = Py(a); Q(a,0) = Qo(a);
P(a, 2m) = Py(a); Q(a, 21) = Qo(a), 9

where Py(a), Qg(a) are the vector-functions, which are obtained from the minimization of the
cost functional:

A
J(Py,Qo) = 0.5 j{[P(a, 2m) — Po(@)]? +[Q(a, 2m) — Qo(a)]*}da. (10)
0

Then iterative procedure is proposed to minimize the functional (10). The finite
difference numerical scheme is used to solve the invariant manifold equations (8).

The FEM is used to compute the S-P NNMs of non-conservative system in [104]. The
NNMs are described by the PDEs (8). Then the streamline upwind Petrov-Galerkin method is
applied to solve such PDEs
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f(V- VP, — Q;) 6Q;dQ2 = 0;
0

f[?/- VQ; + w?P; — f,;| 6P,d2 = 0,i = 2, ..., N, (11)
0N

where 60Q;,6P; are variations of the corresponding slave variables. The finite element
discretization of the equations (11) permits to transform PDEs into the coupled nonlinear
algebraic equations, which are solved numerically.

The HBM with the multi harmonic approximations of NNMs is applied to calculate
forced vibrations in [105]. The system of the nonlinear algebraic equations with respect to the
amplitudes of the Fourier series harmonics is obtained and solved by the Newton method.

The dynamical models, which are described by the system of nonlinear ODEs, are
considered in [106]. As follows from this paper, such models describe the nonlinear vibrations
of the thin-walled structures (beams, plates and shells). The authors obtain that many of the
included modes lead to a static effect on the response. Therefore, the generalized coordinates
describing these modes can be considered statically’. NNMs in [106] are analyzed by using the
combination of the shooting technique and the pseudo-arclength continuation.

The dynamical models, which are described by the system of nonlinear ODEs, are
considered in [97]. As follows from this paper, such models describe the nonlinear vibrations of
the thin-walled structures (beams, plates and shells). The authors discovered that many of the
included modes lead to a static effect on the response. Therefore, the generalized coordinates
describing these modes, can be considered statically. NNMs are analyzed by using the
combination of the shooting technique and the pseudo-arclength continuation.

A numerical approach is proposed to study a slow dynamics of nonlinear modes in
[107]. The complexification-averaging approach suggested by L. Manevitch [108] is used. Two
computational approaches for the modal analysis are suggested. One of these approaches is
based on the HBM and the second one is based on the shooting technique. The proposed
approaches are restricted to the nonlinear modes analysis. Both approaches are applicable to
generic nonlinearities, including non-smooth forces.

A modification of the S-P NNMs calculations is suggested in [109]. A use of the
proposed approach makes it possible to halve the dimension of the systems of nonlinear
algebraic equations obtained for NNMs calculation in comparison with the systems from [16].
This modification is also applied for modal analysis of the forced vibrations in [110], where the
Rauscher method is used together with S-P NNMs.

A modification of the shooting technique is suggested to analyze NNMs of forced
vibrations in [111, 112]. The Jacobian matrix is used to implement the Newton method for
shooting technique. The special approach, which improves the Jacobian matrix calculation, is
suggested to guarantee fast convergence of the Newton method. The systems of ODEs, which
solutions are elements of the Jacobian matrix, are derived.

* The authors of this review draw attention that the static approximation of vibration
modes results in loss of some properties of precisely dynamic modes.
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The method of the K-R NNMs numerical calculations is suggested in the paper [113].
The basis of this method is an analysis of ODEs, which describe the modal lines in
configurational space of the n-DOF conservative system. Then all generalized coordinates are
presented as the single-valued functions of the single selected generalized coordinate x;: x; =

xj(xl);j=2,...,n. Two subspaces are considered in the form: zg = (xy,...,x,); Zy =

(@ D dﬂ). The differential of the arc length s of the modal line is

dxl' ' dx1
dS = 4/ ZTzdt = \/S(xl, Z4, Zv)dxl, (12)

where T, is kinetic energy of the mechanical system; /S(x1,Zq,Zy) is a metric of the
configurational space. Applying the least — action variational principle, the dynamical system,
which describes the motions in the configurational space, is presented as

Zq = Zy;
M(xli Zy, Zd)z\’/ = _K(xli Zy, zd)zv - Nc (x1» Zy, zd)- (13)

The i" row of the matrices MW (xy, zy, 2q); K® (x4, Z,, 2q) and i" element of Ngi) (X1, Zy, Zq)
take the following forms:

)

. a%s S as
MY = (h—V) <25 )

02,,0Z, 0z, 07y

)

) GERY S S
KO =((h-1)[2S

azdazvi B aZd aZm'

NO = (b vy |as (L2075 _ 05\ _0s 0] [, v (v oV os|
© 0x,0z,; 0Zg;) 0x1 02y 0zg; \0x; 01Z4 Za 0Zy; !

=1,...,n—1,

where h is the system total energy; V is the system potential energy. Then the numerical
shooting technique is used to calculate the NNM modal lines. Two end boundary points of the
NNMs are located at the equipotential surface V = h. The numerical calculations start inside
the energy enclosure surface, when x; = 0. From this point the integration of differential
equations (13) performs forward to reach the boundary point x; = x;4. Then the integrations of
the equations (13) perform backward to reach the other boundary point x; = x;5. The modal
line in the configurational space consists of two intervals x; € (x,5;0] u x; € [0; x;4). This
shooting technique is based on the Runge-Kutta and the Newton- Raphson methods.

The parametrization method for invariant manifolds calculations is developed in [114].
This approach is used in [115] to calculate the two-dimensional SSMs of finite DOFs
autonomous nonlinear systems. The parameterized SSM is approximated around the fixed point
by polynomials. The proposed approach permits to obtain reduced dynamics and the backbone
curves with required precision. The implementation of the SSM tool helps to analyze near-
resonances cases. In the presence of the forced resonance, the calculation of SSM is not
possible, whereas the presence of the internal resonances leads to the nonlinear terms in the
dynamics on the SSMs. The developed numerical method is used to obtain the ROM for the
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nonlinear vibrations of the Timoshenko beam. The fully automated Matlab code which is
available to computed SSMs of any dimension for autonomous or periodically forced systems
of arbitrary dimension and nonlinearities is used in this paper. The various capabilities of this
code (including built-in bifurcation analysis and handling of mechanical systems with
constraints) have been developed in the series of publications [90, 91, 116, 117].

Vibrations of the geometrically nonlinear thin-walled structures are treated in [118].
These vibrations are described by the autonomous systems of high dimension nonlinear ODEs,
which is obtained by the Galerkin method. The NNMs of the obtained dynamical system are
calculated by the shooting technique, which is incorporated with the pseudo-arclength
continuation. Numerical analysis is implemented for frame, rod and arch shows that interacting
of vibrations modes describes accurately the nonlinear effects associated with nonlinear
coupling. The comparison between the NNMs computed from the full and reduced order
models is made.

The generalized continuation method incorporating with proper generalized
decomposition is used to calculate NNMs in [119]. This procedure permits to decrease
significantly a number of generalized coordinates for the NNMs description. The proposed
approach is applied to two models of the Euler-Bernoulli cantilever beam with cubic spring or
unilateral contact.

The finite DOF nonlinear mechanical systems under the action of a single-harmonic
excitation are studied in [120]. The harmonic balance-based computational method is suggested
to predict the mode shapes and the oscillation frequencies at phase resonance. The obtained
motions are called phase resonance nonlinear modes. The repeated resonance dynamic
behaviors of superharmonic, subharmonic and ultra-subharmonic motions are reported in two
DOF system with cubic nonlinearity.

As follows from this section, various numerical methods are applied to analyze NNMs. In
our opinion, the most effective method for numerical calculations of NNMs is the shooting
technique in combination with the continuation method. This approach is used in most of the
works presented in this section. The shooting technique permits to calculate any periodic
motions, which maybe both NNMs and others periodic motions. In particular, the modified
shooting technique is used to study NNMs modal lines in the system configurational space. The
numerical methods for PDEs, which describe S-P NNMs, is developed using the FEM and
finite difference methods. The HBM is also used to calculate NNMs. Finally, we can note that
recent publications describe mathematical procedures for calculating the SSMs in various
classes of dynamic systems.

7. Identification of mechanical systems

The essential advance in identification of nonlinear dynamical system by means of
NNDMs is achieved during the last decade. Note that, mainly, the dynamical system parameters
are identified from the experimental data. Therefore, this section is closely connected with the
subsequent one, which is devoted to experimental analysis.

Different problems of identification of mechanical system, including the application of
NNDMs, are discussed in two reviews [121, 122].

The time-frequency signal processing approach based on the Hilbert-Huang
transformation and the conjugate-pair decomposition is applied for an analysis of NNMs and
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the parametric identification of finite DOF nonlinear mechanical systems in [123]. Finite DOF
nonlinear dynamical system is studied to illustrate the proposed methodology and to analyze
NNDMs, vibration localization, and nonlinear modal coupling. Numerical analysis shows that the
suggested method gives accurate time-frequency characterization of the NNMs and parametric
identification of the considered system.

The nonlinear modal identification of the four-storey steel frame under the action of
pendulum-like exciter is considered in [124]. This structure performs nonlinear longitudinal
vibrations, which are analyzed both experimentally and numerically. Four generalized
coordinates describe the storey motions. Experiments show that mode shapes can be considered
as linear one in the acceleration range. Thus, the modal curves are straight lines in
configuration space, that is, these motions belong to K-R NNMs. The backbone curves of the
NNDMs are also obtained experimentally. The behavior of the structure is nonlinear for both low
and large displacements. The harmonic linearization technique is used for the structure
parameters identification by fitting the numerical results to the experimental data.

The time-frequency signal processing approach, which is used the Hilbert-Huang
transformation and the conjugate-pair decomposition, is applied for an analysis of NNMs and
the parametric identification of finite DOF nonlinear mechanical systems in [112]. Finite DOF
nonlinear dynamical system is studied to illustrate the proposed methodology and to analyze
NNMs, vibration localization, and nonlinear modal coupling. Numerical analysis shows that the
suggested method gives accurate time-frequency characterization of the NNMs and parametric
identification of the considered system.

The method for identification of the backbone curves of the finite DOF mechanical
system is suggested in [125]. The used technique is based on estimation of the instantaneous
frequency and the envelope amplitude corresponding to the steady-state oscillations of the
system. The experimental data can be used to obtain damping ratio and backbone curves with a
good accuracy.

The approach for identification of the backbone curve of finite DOF mechanical system
from the experimental data is suggested in [126]. The control-based continuation is used in this
approach. The backbone curves are directly traced from the experiment. The NNMs of the
underlying conservative system are used to construct such backbone curves using the
continuation technique. Then the proposed approach is used to NNMs analysis in multi DOF
nonlinear mechanical systems.

The forced damped nonlinear mechanical system is described by the following system of
the ODEs [127, 128]:

Md + Cq + Kq + f(q) = p(b), (14)
where p(t) is vector of the external forces. The nonlinear elastic forces f(q) are expanded by

using linear combination of the trial functions h;(q) as:
S

f(@) = ) chy(@. (15)

j=1
Knowing the measurements of q(t), the frequency domain nonlinear subspace
identification method developed in is used to identify the vectors ¢;. In order to perform the

identification, the nonlinear terms are transferred into the right-hand side of the ODEs (14):
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S
Mg + Cq + Kq = p(t) — Z ¢h;(q).
j=1
Then the nonlinear terms are considered as the addition excitation and the obtained pseudo-
linear dynamical system is analyzed. The transfer function matrices are used to determine the

coefficients ¢;. The shooting technique is used to extract numerically NNMs in modal space of
the system from measurements collected under broadband forcing. Knowing the measurements
of q(t) , the frequency domain nonlinear subspace identification method developed in [119] is
used to identify the vectors ¢;. In order to perform the identification, the nonlinear terms are
transferred into the right-hand side of the ODEs (14):

S
Mg + Cq + Kq = p(t) — z cih;(q).
j=1
Then the nonlinear terms are considered as the addition excitation. Thus, such pseudo-linear
dynamical system is analyzed. The transfer function matrices are used to obtain the coefficients
¢;j. The shooting technique is used to calculate the NNMs numerically.

The methodology of the parametric identification based on comparison of experimental
and analytical NNMs backbone curves is proposed in [129]. The K-R NNMs concept with the
extension to the internal resonances is used. An experimental setup has the clamped beam with
a small beam at the tip. The main beam is locally excited with an electrodynamic shaker. The
HBM is used for NNM backbone curves calculation. Then the difference between experimental
data and numerical calculations of backbone curves is minimized, which permits to obtain all
unknown system parameters included in the identification.

The method of two-dimensional SSMs identification is proposed in [130]. The dynamical
system (14) is presented with respect to the phase coordinates X:

% = G(x), (16)

RZN

where X € . The solution vector x(t) gives rise to the flow map:

0.:x¢ — x(t). (17)

The scalar observable parameter along the trajectories of the mechanical system (16) is
considered. This is accounted by a scalar function of the phase coordinates ¢(x): R — R.
The new state vector & € R?¥, which contains the 2v subsequent observations of the parameter,
take the following form:

=0 = (9, 0(0.x), .. (6771 (9))). (18)
The second dynamical system is the sampling map F, which is used to describe the
experimental data for identification. This sampling map takes the following form:

&1 = F&); &0 = P (Xo). (19)

The experimental sampling of the system vibrations is described by the map (19). The

sampling map F(&y) is computed by the approach, suggested in [130]. The significant stages of
methodology of SSMs computation from the data fitted measured vibrations are treated.

The general approach for the reduced order model identification of the nonlinear

mechanical system from the observable data is treated in [131]. This method constructs the NF

of the attracting SSM. The most general NF of 2m dimensional SSM is derived. The suggested
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algorithm uses observable data to identify model of nonlinear dynamics. The Takens delay
embedding theorem is applied to identify the SSM.

The open-source Matlab package (https://github.com/haller-group/SSMLearn) is used for
identification of the SSMs from experimental and numerical data in [132,133].

The approach for NNMs analysis, which is used a generalization of the principal
orthogonal decomposition, is suggested in [134, 135]. The data-based approach measures the
statistically independence (or orthogonality) of the derived modes from the random data. It
permits to optimize a parametric form of the NNMs mapping. The equations of motions are not
used, as the method is applied for the experimentally measured nonlinear system data. The
proposed approach is illustrated by few examples based on both simulated and experimental
data. The analysis of the statistically-independent NNMs using the nonlinear system
identification is presented in [136]. These NNMs are investigated in nonlinear cubic-stiffness
systems using the neural-network approach. The nonlinear system identification models are
fitted to physical displacements. Statistically independent NNMs are analyzed to study
nonlinear structures under the action of broadband random excitation. The obtained NNMs are
successful for a practical nonlinear extension to modal analysis and single-input-single-output

decomposition.

The experimental identification of NNMs of the structure, which consists of the main
beam and the cross beam, which is welded in the middle to the main beam, is studied in [137,
138]. The main beam is clamped at both ends. The NNMs are measured experimentally, when a
shaker is attached to the main beam. Then this beam performs pure bending vibrations. The
structure dynamics, when natural frequencies of the bending and torsion modes are close, is
considered. The finite element model of the beam structure in Abacus is generated taking into
account the geometrical nonlinearity [137]. The implicit condensation method (ICM) is applied
to obtain the finite DOF reduced order dynamical system with quadratic and cubic
nonlinearities. NNMs of this system are obtained by the combination of the shooting technique
and the pseudo-arclength continuation. The comparison between the NNMs and the forced
response is made. The considered system is approximated by two DOF dynamical model in
[138]. Then NNMs are obtained by HBM. The energy transfer between such modes is
considered.

Identification of finite-DOF nonlinear models of the thin-walled structures is performed
in [139]. The considered structures have several sources of nonlinearities: piezoelectric material
properties and geometrical nonlinearity. The concept of NNMs and NF theory are used for the
theoretical analysis. Experimental approach to measure NNMs backbone curve is suggested.
The measurement method based on the phase-locked loop is used for identification of the
ROM. The whole procedure is used for a circular plate, a Chinese gong and a piezo-electric
cantilever beam.

The NNMs identification method, which is applied to a nonlinear beam model, is
proposed in [140]. The beam with one clamped end and the other one connected to a thin beam
is studied experimentally. The frequency-domain nonlinear subspace identification method is
applied for NNMs identification from the simulated data. The shooting method combined with
pseudo-arclength continuation technics is used to compute NNMs. The Bayesian approach is
used to obtain the posterior probability distribution of updating parameters by means the
stochastic simulation methods. The numerical simulations to the nonlinear beam dynamics
show that both deterministic and Bayesian approaches are capable to estimate the updating
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parameters with a small error. The Bayesian approach is used for the wing-engine system,
which consists of wing plate and two pylons in [141]. The finite element model is generated
and simplified by the Craig-Bampton reduction method (CBM) [83]. HBM is used to calculate
NNMs. Good agreement exists between the calculated and experimentally identified NNMs.
The polynomial nonlinearity state-space model is based on multiple-input-multiple-

output formulation in [142]. This model takes the following form:

X(ty+1) = Ax(ty) + Bu(ty) + ES(X(tk),u(tk));

y(te) = Cx(t,) + Du(ty) + Fx(x(t), u(t)), (20)
where t; is a discrete time; X € R4 is a state vector. The linear part of the model is determined
by the A, B, C, D matrices. Nonlinear part of the model is characterized by the E, F matrixes.
The nonlinear vectors functions € and ) are polynomials. The input u € R, which describe the
excitation force, is generated by shaker. The output vibrations response is obtained
experimentally. The matrices A, B, C,D,E, F are fitted from experimental data. The nonlinear
optimization problem is formulated with the cost function in the following form:

i 2
(ABCDEF) Zk: €Il 21)

where §(tx) = Vrer(tk) — Ysim(tr); Yrep (ti) is experimentally measured output; ygim, (tx) is
numerically simulated data. The aim of the identification is to minimize the difference between
the numerically simulated data and the experimentally measured output by correct choosing the
model (20) parameters. The nonlinear vibrations of the cantilever beam with repelling magnets
are analyzed. The nonlinearities are approximated by polynomial functions. The nonlinear
mode model shows a vicinity of the numerical results and the experimental measurements.

The approach for identification of nonlinear multi DOF system is suggested in [143].
The basis of this algorithm is the single nonlinear resonant mode method. Then the one DOF
approximation of the system solution in the vicinity of the principle resonances is used. Several
measurements with different forcing amplitudes are used for identification of nonlinear motions
and the dependence of damping on amplitude. The suggested approach can be used to analyze
the structure vibrations without internal resonances. The models of clamped-clamped curved
and flat beams are treated. The approach uses measurements of the NNMs backbone curves.

8. Experimental measurement of NNMs

Till recently majority researches of NNMs are performed numerically and analytically
on the basis of nonlinear ODEs analysis. The first studies on NNMs experimental analysis
originate during the last decade. The approaches and results of NNMs experimental analysis are
treated in this Section.

The aim of the papers [144, 145] is developing the methodology of the practical
experimental modal analysis of nonlinear mechanical structures. The new approach for
extracting NNM modal curves from the experimental time series is suggested. The finite DOF
nonlinear dynamical system has the form (14). It is assumed that the extracted NNM qunm(t)
satisfy this system and, simultaneously, this NNM satisfies the equations of the corresponding
conservative system. As a result, the following equation can be derived from (14):

annm = pnnm (t) (22)

23



Thus, the excitation is compensated by the structure damping. The NNMs, which satisfy the
Rosenberg definition, are obtained as the following truncated Fourier series:

Qo (£) = Z XM cos(kwt). (23)
k=1
Then the special type of the excitation satisfied the relation (22) takes the form:
pnnm(t) = - CXl({nnm)k w sin(kwt).
k=1

Thus, the NNM (unm is excited by special type of the external force. The proposed
methodology is used in experimental studies of NNMs. The forced NNMs approximation is
expressed according the above-considered method. Nonlinear system oscillates according the
NNM of the conservative system, if the response is monophase periodic motions with the phase
lag of 90° with respect to the excitation.

The periodic response of the nonlinear system (14) is expressed as the following
complex Fourier series:

q(t) = z Re(Zy exp(ikwt)), (24)
K

The mode indicator function A is used to define the NNM approximation as

1 i Re(Zy)"Re(Zy)
NLT T

(25)

where N is number of essential harmonics in (24). The function A indicates the accuracy of the
NNM appropriation. The parameter A is used for identification of NNM, which is
experimentally observed.

The paper [146] is devoted to experimental and numerical analysis of the perforated
circular plate dynamics. Two finite element models are obtained. One of them is constructed
with zero initial curvature over the center of the plate, and the second one is constructed
without this assumption. The authors use the assumption that the perforated plate behaves
identically to non-perforated one with reduced mechanical properties. The electrodynamic
shaker is used to excite the perforated plate vibrations. The reduced elastic modulus and density
are updated from the experimental analysis. The frequency responses of the plate nonlinear
vibrations are measured and the NNMs backbone curves are extracted. Then the experimentally
measured NNMs are compared with numerically calculated NNMs.

The NNMs can be measured experimentally by the action of the multi-harmonic
excitation even in the case of the internal resonance [147]. The system (14) is analyzed using
the EBM when the following equation is satisfied for NNMs:

Edis/cyc = Eforce/cycr (26)
where Egis/cyc = ) OT q(t)*C q(t)dt is the total dissipated energy of per one cycle of vibrations;

T is period of vibrations; the asterisk denotes transposition; Efoyce/cyc = ) OT q(®) p(t) dt is the

energy of the external force p(t). The nonlinear vibrations of the clamped-clamped beam with
concentrated magnetic force are studied numerically and experimentally. The indicator (25) is
used to isolate accurately the NNMs in the experimental analysis and to obtain their backbone
curves. The nonlinear vibrations of the clamped-clamped beam with concentrated magnetic
force are studied experimentally. As follows from experimental analysis, NNM even in the case
of the internal resonance can be isolated by the action of the multi-harmonic excitation. The
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indicator (25) is used in experimental analysis to isolate accurately the NNMs. Two NNMs,
which are obtained experimentally, are shown on backbone curves. As follows from the
experimental analysis, these backbones curves are very sensitive to the beam initial shape and
the boundary conditions.

The structure consisting of two beams is treated in [148]. The main clamped-clamped
beam has non-linear behavior due to the axial stresses, which are generated by the moderate
transversal displacements. The cross beam with a movable mass at each end is attached to the
main beam. Changing the position of one mass with respect to the others masses positions leads
to the modal interaction. A nonlinear ROM is constructed and the NNMs are used to describe
the resonance nonlinear behavior of the system. The NNMs backbone curves, which are
obtained numerically and experimentally, are compared. The EBM helps to predict the points,
where the resonance forced responses cross the backbone curves. Then the forced vibrations of
the structure are studied using several analytical and numerical approached. These results
demonstrate a good agreement with the experimental measurements. The NNMs considered in
[148] are analyzed in the general 2-DOF system with the cubic nonlinearity and 1:3 internal
resonance condition in [149]. Such system can be obtained as ROM from the continuous
geometrically nonlinear cross-beams structure that exhibits a coupling between its bending and
torsional modes. Origination of the NNM from a set of the bifurcations is analyzed
numerically. The comparison of the experimental measurements of NNMs with the numerical
results is performed.

The new experimental method to measure the backbone curve using the phase-locked-
loop (PLL) is suggested in [150,151]. Such method permits to track the energy dependent
backbone curves associated with NNMs. The EBM is used to study the forced vibrations by
balancing forcing with damping. The NNMs of the beam with essentially nonlinear end spring
are analyzed experimentally. The structure is excited by the electrodynamics shaker. The mode
indicator function (25) is used to identify the forced NNMs, which are obtained experimentally.
The effect of internal resonance on the experimentally measured PLL is discussed. The beam
structure excited by the electrodynamics shaker with the small beam to adjust the pretension of
the beam is considered in [151]. The PLL controller permits to tune excitation phase to measure
the backbone curves of the NNM using a series of steady-state measurements.

The approach suggested in [152,153] is an experimental procedure for nonlinear modal
testing of damped structures. It is assumed that the local phase resonance corresponding to a
single general coordinate is taken place. The excitation frequency is recorded when the PLL
has the locked state. The verification of the experimental tests is carried out on the friction-
damped system. The extractions of the frequencies, damping ratio, deflection shapes are
performed due to this method. The backbone curves of mechanical system are extracted. The
NNMs of lightly damped slender beam with geometric nonlinearity excited by the
electrodynamical shaker is analyzed experimentally in [153]. Seven accelerometers are
mounted on the beam point to measure the structure nonlinear response. The synthesis method
relies on a superposition of one nonlinear mode with several linear modal contributions and is
limited to NNMs without internal resonances. For lower vibration energy the linear modal
analysis can be used, but a phase-controlled tracking of the backbone curves associated with
NNMs permits to obtain a good estimation of the nonlinear frequency response.

The mechanical system with a rotating nonlinear energy sink (NES) is analyzed in
[154]. The NES is attached to a linear two floors structure modeled by the two-DOF system

25



with strongly nonlinear coupling. The transient dynamics of the structure under shock
excitation is analyzed both numerically by the NNM energy-frequency plot calculation and
experimentally. It is shown that the oscillatory mode is not appropriate for initial energy
dissipation and the rotational mode guarantees the fast shock mitigation. The NES absorbs a
significant portion of the input energy.

The approach for detection of nonlinear modal interactions from the transient time
series response is suggested in [155]. The POD is used to extract the modes shapes, which is
applied in Rayleigh quotient for the system eigenfrequencies calculations. The method is used
to analyze the response of the cantilever beam with local strongly nonlinear spring. The
suggested method can be used to detect the strongly nonlinear interactions from measured
transient response.

The machine learning scheme is used to perform nonlinear modal analysis in [156]. The
one-to-one mapping from modal space to the natural coordinate space is applied. The
generative network and the neural networks, which support the orthogonality properties, are
used. Three-storey frame with the bumper nonlinearity in the form of bilinear stiffness is
studied experimentally. Four sensors are used to measure the accelerations of all storeys and
the base.

As follows from this section, NNMs are analyzed experimentally a little. The authors of
this review believe that this direction will be developed due to importance of relevant research
for the NNM theory.

9. Continuous systems

Note that geometrically nonlinear deformation is inherent in thin-walled structures, such
as rods, plates and shells. The use of NNMs to analyze the dynamics of such distributed
systems is very useful.

The flexural-longitudinal vibrations of isotropic rotating beam are described by the
system of the nonlinear PDEs, which is obtained from the Hamiltonian principle in [157]. Both
three to one and two to one internal resonances are accounted by the MSM. The expressions for
the backbone curves are derived. The backbone curves, which are obtained for the first and the
second internal resonances, are soft and hard, respectively.

In the next three publications, the dynamics of isotropic and anisotropic rods is studied
using the Cosserat theory.

The paper [158] is devoted to study NNMs of the beam vibrations, when internal
forces/moments and translational/angular velocities are introduced as primary degrees of
freedom. The system of PDEs obtained by Hodges [159] is used. This system contains the
equations of motion and the compatibility equations:

mx; — x; —ex, + L;(x;)mx; + L,(x,)cx, = fy; 27
cx, —x; +e"x; — LI (x)cx, = 0.

Here x; is a vector of the velocities, x, is a vector of the internal-forces/moments, m is the
cross-section mass matrix, ¢ is the cross-section flexibility matrix, e presents the shear/bending
coupling coefficients in equilibrium equations; L, L, are matrix operators of the nonlinear
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equilibrium equations. The variables are expanded in terms of the linear space mode shapes.
Then the S-P NNMs are used to analyse the isotropic and composite beams in-plane vibrations
without internal resonances.

The nonlinear PDEs of the pre-twisted rotating composite beams vibrations are derived
by using the Cosserat theory in [160, 161]. The constitutive equations of the composite beam
material are obtained from three dimension theory of elasticity. The MSM is applied directly to
the nonlinear PDEs in [160]. As follows from the analysis, the lowest flapping mode of the
composite beam has soft backbone curve at low angular velocity and the backbone curve of the
second flapping mode is hard. The nonlinear modal interaction due to the 2:1 internal
resonance is studied. The Galerkin technique is applied to the mentioned PDEs in [161]. Then
MSM is applied to the system of nonlinear ODEs to analyze the nonlinear flapping modes.

The nonlinear planar oscillations of the functionally graded box beam in the case of
internal resonance are considered in [162]. The combination of thermal and mechanical
harmonic transverse loads act on the structure. The beam is rotated with constant angular
velocity 2. It is assumed that the beam cross section remains plane during the structure flexure
vibrations. The Euler-Bernoulli beam theory is used. The flexural vibrations of beam are
described by the following nonlinear integro-differential equations:

L
B — yv" + v + 2uv — yv” f v'"2dx + Av' = fcos(wt), (28)
0

where y:ﬂ-1:52(05+ﬁ)-f:—F(x)L4-Q_zzﬂzjflL4-X:]fll“z(f+ﬂ)_(22_
2EI’ ' L)’ El '’ EI '’ EI \6 2

L? %; EA, EI are axial and flexural stiffness; L is length of the beam; R is radius of the hub;

Qr = aAT; «a is thermal expansion coefficient; F(x) is spatial distribution of the harmonic

load; ]fl = , P(n) dsdn; p is graded mass density; n is normal axis to the beam cross section

contour; A4 is area of the beam cross section. The PDE (28) is solved directly by MSM. As a
result, the system of four modulation equations is derived. Numerical analysis is used to obtain
a steady-state response. Frequency responses and bifurcation behavior in the case of internal
resonances are obtained. In particular, the saddle-node and the Hopf bifurcations are studied. It
is shown that chaotic behavior of the system is possible due to the period-doubling bifurcations.

The offshore compliant articulated tower consists of stiffened inverted column and mass
at the end of the column [163]. This column is pinned at the base. Dynamics of the system is
described by two-DOF nonlinear system with respect to two direction angles. Four stable
similar NNMs of free vibrations are obtained. The Poincaré¢ sections are used to describe global
dynamics of the system. The resonance forced responses are obtained by the combination of the
HBM and the arc-length continuation method. Jump phenomena, pitchfork and saddle-node
bifurcations are analyzed.

The paper [164] is dedicated to the gradient-based optimization using NNMs. Such
optimization is proposed for tailoring the hardening/softening backbone curves behavior of the
geometrically nonlinear thin-walled structures, which are discretized by FEM. The HBM with
multi harmonic approximation is used to study periodic free vibrations. The system of the
nonlinear algebraic equations with respect to the amplitudes of the harmonics is solved
numerically by the iterative Newton- Raphson method. In order to obtain the frequency
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response, the arclength continuation method with adaptive steps is used. The one-floor frames
of two different configurations consisting of three beams are studied.

The nonlinear dynamics of simply supported beams is studied by computing the NNMs
and to predict damage in such structure [165]. The structure damage is modeled by a reduction
of the flexural stiffness within a small segment of the beam span. MMS is used to compute the
NNMs and the corresponding backbone curves. The comparison between the damaged and
undamaged beams shows the high sensitivity of the effective nonlinearity coefficients on the
damaged structure. An effective strategy for the identification of the damage position is
proposed.

NNMs of simply supported beams are considered in [166]. The integro-differential
equation of the lateral displacement motions is approximated by the system of nonlinear ODEs.
The S-P NNMs of the obtained ODEs are analyzed using the perturbation technique. The
obtained backbone curves are compared with the results of the finite element calculations.

The vibrations of the geometrically nonlinear circular perforated plate with rolled ends
are discussed in [167]. The finite element model of the perforated plate is obtained using the
implicit condensation method with extremely small mesh. The perforated structure vibrates
identically to non-perforated one with the same dimension and effective modulus of elasticity,
which is calculated from the perforated structure using linear natural frequencies. The obtained
finite DOF nonlinear dynamical system contains quadratic and cubic nonlinearities. The
shooting method and pseudo arc-length continuation are used together to calculate the NNM
backbone curves. Moreover, the NNMs of the perforated plate are analyzed experimentally
when the structure vibrations are excited by the periodic force. Then the obtained numerical
results are compared with the experimental data.

The method for computing of invariant manifolds in high dimensional nonlinear
mechanical system, which is derived from finite element discretization of partial differential
equations, is suggested in [116]. SSMs are used to analyze frequency responses and backbone
curves of nonlinear damped mechanical systems. Lyapunov subcenter manifolds are applied to
study conservative nonlinear systems. The computation method is applied to the nonlinear
dynamics of aircraft wing with hundred-thousand DOF.

The geometrical nonlinear vibrations of the simply supported cylindrical shell are
described by the system of three PDEs of the Donnell theory [168]. Three displacement
projections of the shell middle surfaces are expended using the eigenmodes and the generalized
coordinates. The interactions of two conjugate modes are considered. The Galerkin technique is
used to derive the system of nonlinear ODEs with respect to the generalized coordinates. K-R
NNMs are analyzed. The results are shown on the backbone curves. The obtained NNMs
describe the standing waves in the cylindrical shell.

The nonlinear vibrations of clamped shallow shell and plates with cuts are considered in
[169, 170]. The thin shallow shell with two cuts is treated in [169]. The lateral displacements
are assumed to be commeasurable with the structure thickness. The clamped shallow shell
flexural vibrations are described by the Donnell-Mushtari equations with the following
boundary conditions:

ow
ulagp = 0; v|sp = 0; wlyp = n 5 =0, (29)
D
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where u, v, w are displacements projections on (x,y, z); dD is the shallow shell boundary; n is
a normal to the boundary. The shell base has the two cuts. Therefore, the boundary of this
shallow shell has complex shape. The R-function 2(x,y) [171] is used to describe such
conmplex shape boundary. The finction (2 satisfies the following relations:

2(x,y) = 0; V(x,y) € 0D;
N(x,y) >0; V(x,y) €D. (30)

In order to satisfy the boundary conditions, the shell linear vibrations are presented using
finction {2 in the form:

u(x,y,t) = 2(x,y)P;(x,y) cos(wt) ;
v(x,y,t) = 2(x,y)P,(x,y) cos(wt) ;
W(x' y’ t) = ,Qz(x, Y)P3(x' }’) COS((A)t),

where w is a frequency of linear vibrations. Then the Rayleigh-Ritz method is used to obtain
trial functions. The functions P; (x,y), P,(x,y), P;(x,y) are presented as truncation series with
trial functions and unknown coefficients. These coefficients and eigenfrequencies are obtained
from the eigenvalue problem. Using the Galerkin technique, the nonlinear dynamical system
with respect to the generalized coordinates is derived. The backbone curves of free vibrations
are obtained using S-P NNMs. The clamped circular isotropic plate with two cutouts is treated
in [170]. The R-function is used to describe the plate boundary conditions. Nonlinear vibrations
of the plate are described by von Karman geometrically nonlinear plate theory. The system of
three nonlinear PDEs with respect to displacements projections is used. The vibrational
eigenmodes are obtained by the Rayleigh-Ritz method. Applying the Galerkin technique, the
nonlinear system of ODEs with small parameter is derived and analyzed by MSM. The NNMs
backbone curves are described by the system of algebraic nonlinear modulation equations.

The isotropic shallow shell with complex boundaries is considered in [172]. The part of
the boundary is clamped and the rest part is free. The geometrically nonlinear vibrations of the
shell interacting with the motionless fluid are treated. The wet vibrational eigenmodes of the
shell are expanded into truncation series of the dry eigenmodes. The coefficients of this series
are calculated from the eigenvalue problem, which are obtained using the Galerkin technique.
The interaction of the shell with the fluid is described by the following singular integral
equation:

| 700 g () 5 = Wi (31)
S

where W is wet eigenmodes of the shell vibrations; [y is circulations, which is induced by wet
eigenmode Wy; X, { are spatial coordinates vectors; S is shell surface; ny, ng are normals to the
shell surface. The hypersingular equation (31) is solved by the boundary element method [173].
Namely, the surface of the shell S is divided into J triangles S;; j = 1, ..., J. The coordinates of

the triangles gravity centers Xq;;j = 1,...,J are used. The circulation is assumed constant in
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every triangular element Ty ; = T (Xg;). Then the hypersingular equation (31) is transformed

into the system of the linear algebraic equations, which has the following form:

]

z HiyTp = Wi(x0j); =1, ..., (32)
u=1

where Hj, is determined from the hypersingular integral. In order to study the nonlinear
vibrations of the shell/fluid system with account of the structure geometrical nonlinearity, the
assumed-mode method is used. The potential and kinematic energies of the structure are
derived. The system of the nonlinear ODEs of the structure motions is obtained. Then S-P
NNDMs are used to study the backbone curves of nonlinear vibrations.

The simply supported isotropic cylindrical shell under the action of the parametric
excitation Ny + N;cos(2vt) is considered in [174]. The geometrical nonlinearity is accounted
to study the parametric vibrations, which are described by the Donnell-Mushtari equations.
Three conjugate modes are taken into account in the expansion of the shell radial
displacements. After discretization using the Galerkin technique, the parametric vibrations are
described by the following eight DOF nonlinear dynamical system with respect to the
generalized coordinates (f, ..., fg):

fi + W?fi + fiR; + G; + xi(Ny + Nycos(2vt))f; = 0;i = 1, ...,6;

4 6
frb s ok 3fs 4 @y + ) yrif? = 0;
=1

6
L1 5
fok 5+ @Bfo+ @3f + ) vef? =0, (33)
j=1

where R;(fi, ..., f7),Gi(fi, ..., fs) are nonlinear functions of the generalized coordinates;
Y7j, V8js w2, @%, w3, @2 are constants, which depend on the structure parameters. Two K- R
NNDMs in the form

fai-1 = xfoi 1 = 1,2,3;

exist in the system (33). The parametric vibrations on these NNMs are described by three DOF
nonlinear dynamical systems, which are studied by the HBM.

The nonlinear vibrations of the simply supported rectangular plate with the moderate
amplitudes are treated in [175]. The plate potential energy is derived using the von Karman
nonlinear plate theory. The assumed-mode method is used to derived the system of nonlinear
ODE:s from kinetic and potential energies. The S-P NNMs are used to obtain the backbone
curves of the free nonlinear vibrations.

NNMs are studied mainly in roods, certain plates and shallow shells. The NNMs in
cylindrical and conical shells are not analyzed. Preferably the internal resonance 1:1 is
observed in these structures and circular plates and circular shallow shells. We think that the
multi-mode invariant manifold [16] can be used to study NNMs. The most of thin-walled
structures have internal resonances; therefore, a use of the multi-mode invariant manifolds is
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useful. We emphasize that such studies with rare exceptions have not been carried out. Note
also that NNMs of shell structures from composite, functionally gradient materials and
nanocomposites are not carried out, although the authors of this review believe that this
direction is promising.

10. Engineering applications

10.1. Aerospace engineering

Linear normal vibration modes are very popular tools to analyze a dynamics of the
engineering structures. Unfortunately, the NNMs approach has been used in a few studies
related to engineering problems.

Note, that the CBM [83] is used to reduce a dimension of the finite element structure
model in the several subsequently considered papers.

The NNMs of the Morane—Saulnier Paris aircraft airframe without its jet engine are
analyzed in [176, 177]. It stands on the ground through landing gears. The soft backbone curve
is observed experimentally by the ground vibration test. The connection between fuel tanks and
wings are the source of the nonlinearity, which is piecewise linear. The finite element model of
the full aircraft is generated. The wings, fuselage, tails are modeled using the beams and the
shells finite elements. The shooting technique and the pseudo-arclength continuation, which are
mentioned in Section 6, are used to compute the NNMs from the reduced-order nonlinear finite
element model.

The papers [178,179] are dedicated to study of nonlinear dynamics of the spacecraft
structure with nonlinear mechanical stops. This spacecraft structure supports telescope, which
is mounted on the base. The telescope plate is connected to the floor by shock attenuators,
which exhibit nonlinear properties. The bracket connects to wheel mounting system to absorb
the high-frequency excitation. The experimental identification of this structure including
detecting of important nonlinear effects is made in [178]. The composite telescope structure is
discretized using orthotropic shell elements. The floor wheel supports are modeled using shell
finite elements. The nonlinearity of the wheel mounting system is modeled by the trilinear
elastic characteristics. The ROM is obtained using the CBM. Then NNMs of the obtained
trilinear nonlinear reduced system are analyzed numerically by using the shooting technique.
The frequency-energy plots of the NNMs are calculated.

The nonlinear oscillations of the feed line of the launch vehicle (Fig.9) are treated in
[180]. The fuel is moved into the pump 3 from the tank 1. The gas-liquid damper 2, 3 absorbs
the fuel oscillations. The fuel dynamics are described by the pressure oscillations, which are
modeled by one linear partial differential equation and one nonlinear boundary condition. This
mathematical problem is reduced to the system of nonlinear ODEs using the weighted residual
method. Then the S-P NNMs are used to obtain the backbone curves.
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Fig.8 Feed line of launch vehicle

The turbofan engine, which is a part of the aircraft thrust, consists of blades and discs on
the rotating shaft [181]. The nonlinearity of this structure is concentrated in the dovetail joints.
The friction joints are the source of nonlinearity. The FEM is used to obtain the blade model.
3D node to node contact elements are used to model the contact interface. The CBM is used to
obtain the ROM. Then the HBM and the alternating frequency-time technique, which permits
to calculate the nonlinear contact friction force, are applied to study the damped NNMs of the
ROM. The obtained backbone curves of NNMs are hard.

10.2. Power engineering

The modal analysis of the turbomachinery compressor blades with dry—friction
nonlinearity is considered in [38]. The concept of the complex nonlinear modes (CNMs), which
is considered in the Section 2, is used to study mechanical systems with dry friction. The
reduced order model for the blade is obtained by FEM and then essentially simplified by the
CBM. The influence of the dry friction on the compressor blades vibrations is analyzed.

The self-sustained vibrations of one disc elastic rotor in two identical journals bearing
are analyzed in [182]. The rotor is rotated with constant angular velocity (2 around z axis. The
disc motions are described by four coordinates, namely, two plane translations x,y and two
rotation angles 8;; 8,. The journal motions are described by four variables xq, ¥4, X3, ¥, which
are obtained as a function of four generalized coordinates x, 84,7y, 8,. The rotor motions are
described by four DOF dynamical system, which has the following matrix form:

d+Fq+Qq=W(qq), (34)

where q = [x,0,,y,0,]7 is a vector of the generalized coordinates; F¢q describes the linear
damping forces of the journal bearings fluid films and the gyroscopic forces; Qq presents the
shaft elastic forces and linear elastic forces of the journal bearing fluid film; W(q, q) is the
nonlinear part of the journal bearing forces. The self-sustained oscillations of the rotor are
arisen due to the Hopf bifurcation of trivial equilibrium. The S-P NNMs are developed to
analyze these oscillations.
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The motions of the rotor with nonlinear stator contact are described by finite DOF
piecewise smooth system in [183]. Such motions are analyzed analytically using the NNMs. As
follows from the analysis, NNMs can be used to obtain the self-excited whirl motions. These
motions are observed due to the Hopf bifurcation.

The paper [184] is devoted to study of the spar floating platform dynamics. The
nonlinear dynamics of this platform is described by 2-DOF model. The heave and pitch
dynamical responses of free and forced vibrations are analyzed. The wave motions are
described by the single harmonic approximation. The S-P NNMs are obtained by Galerkin
approach using the polynomial series approximations. The stability of the NNMs is analyzed by
the Floque theory. As follows from the numerical simulations, the similar and non-similar K-R
NNDMs exist in the system configurational space.

The torsional vibrations of the power train with piecewise-linear elastic moments are
studied in the paper [185]. The clutches are described by these moments. The system dynamics
is approximated by finite-DOF nonlinear dynamical system. NNMs of the torsional vibrations
are studied by HBM. The power train parameters are chosen so, that the resonance forced
vibrations turn away from the operation frequency range of the crankshaft. The linearized
model and the theorem about sensitivity of the eigenfrequencies are used to detune the forced
vibrations. After detuning the linearized system, the backbone curves of the NNMs are
calculated to verify the choice of the system parameters.

The rubbing rotor, which consists of the stator and the Jeffcott rotor, is analyzed in [186,
187]. The rotor massless model has elastic shaft and solid disc. The mass center of the disc and
its geometrical center are located at the distance e. The rotor is moved with constant angular
velocity w. Governing equations for modified Jeffcott rotor system free vibrations with a rub-
impact take the following non-dimensional form:

R
X"+2(X"+yX+H(R —Ry) (1 — %) (X — sign(Vye DY) = 2%cosNt; (35)

R
Y"+2¢Y"+yY + H(R — Ry) (1 - FO) (Y + sign(Vye)uX) = 2%sinfl1.
Here X = X/e Y = y /e ;x,y are horizontal and vertical displacements of the disc; R =

[ 42 2
x +y/e, Rozro/e andro

is the distance between stator and disc; H( ) is the Heaviside
function; u is the friction coefficient; y = k / k. k is the shaft stiffness; k. is the stator stiffness;
c

Vietr = QR4isc + Rw; (2 =ma/\/k—; Raisc =rdi5c/e; Tgisc 18 radius of the disc; 2 =
C

\/ﬁww/ \/k_; wy 1s the whirl angular velocity of the rotor. The concept of CNMs is used to
Cc

analyze corresponding autonomous system, that is the unbalance forces on the right side of the
governing equations (35) are ignored. Then nonlinear free oscillations and the nonlinear
rubbing forces are presented in the form of the truncated Fourier series. The system of algebraic
equations for determination of these series coefficients is solved numerically by the Newton
method. As follows from the numerical analysis, the rotor has backward and forward whirl
motions. The whirl amplitude and whirl frequency of the dry whip are approximately equal to
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the modal amplitude and modal frequency of the backward whirl mode motions. The existence
boundary of the dry whip can be predicted by this mode.

The paper [188] is devoted to study the nonlinear dry friction dampers in aircraft
engine. The influence of the contact parameters on the system dynamics is analyzed
numerically. NNMs calculations are based on the implementation of the HBM together with the
continuation technique. The backbone curves of the NNMs have soft behavior. The robustness
of the frictional damper is discussed.

The hybrid damper, coupling the dry-frictional mechanism and the piezoelectric
shunting circuit is used to absorb the turbine blade vibrations in [189]. The concept of CNMs
and the multi-HBM permit to calculate the steady-state forced vibrations of the cyclic
symmetric system. Two indicators (the modal damping ratio and the nonlinear modal
electromechanical coupling factor) are used to estimate both the frictional and the piezo-electric
damping effects. The FEM analysis is shown that the proposed hybrid damper is effective for
absorption of the dominant blade and disc-blade vibrations modes.

The wing-engine system, which consists of wing plate and two pylons, is analyzed
experimentally and numerically in [190]. The pylons have thin plates, which are clamped at the
thin wing plate (Fig.9a). The plate restoring force has nonlinear dependence of the pylon
displacements. The software Abaqus is used to generate finite element model (Fig.9b), which
has huge dimension. The CBM is applied to obtain ROM. Then the HBM is used to calculate
NNMs. The NNMs backbone curves show hard behavior.
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Fig.9 The wing-engine structure. Reprinted with permission from Elsevier

10.3. Piecewise-linear systems and structures with dry friction

Piecewise linear systems are often encountered in mechanical engineering. Thus,
piecewise linear forces and moments are used to describe the dynamics of splined and elastic
couplings, gears, rotors and aircraft structures. Piecewise linear systems are models of beams
with cracks, etc. In such systems, both regular and complex dynamic behavior can be observed.
We believe, and this is confirmed by the papers presented in this sub-Section, that the study of
NNDMs is important to study the dynamics of the piecewise linear systems.
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Papers [191-193] are devoted to analysis of the NNMs in the two-DOF piecewise-linear
dynamical systems, which represent beams with a breathing crack. Numerical procedures and
the Poincaré map are used for the NNMs analysis. The non-linear frequencies are independent
of the energy level but depend on the crack parameters. It is shown that the influence of crack
leads to bifurcations of the basic NNMs due to existence of internal resonances. Then
additional branches of the NNM backbone curve are arisen. The influence of the crack on the
NNM frequencies is studied. The two-DOF structure under the action of the harmonic
excitation is analyzed experimentally. It is possible to match the NNM with the forced response
of the system, which gives the ability to determine the crack position. All observed NNMs are
divided into two types: persistent and ghost. If the NNM of free vibration exists in the forced
response, then this NNM is called persistent. If the NNM of free vibration is lost under the
action of the periodic force, then this NNM is called ghost.

As follows from [194, 195], the NNMs are useful tools to analyze the dynamics of the
finite granular homogenous chains. The Hertzian contact between neighboring beads leads to
essentially nonlinear dynamical system with discontinuous. As follows from the numerical
analysis, the in-phase NNM is non-synchronous and discontinuity in slope of the phase plane.
The in-phase NNM is similar to the traveling wave propagating backward and forward through
the granular chain. The out-of phase NNM is smooth. The interaction of each bead with the
wall or with the other bead is observed on this NNM. The nonlinear forced response of the
structure under the harmonic excitation is analyzed numerically. As follows from the analysis,
this granular media can be used as the shock protector.

Two DOF system with two particles and bilinear elastic force is treated in [196]. The
NNMs are considered as periodic motions in unison according to the Rosenberg definition. The
two impacts motions are analyzed as the modal lines in the configurational plane. The HBM
and the continuation asymptotic numerical method are used to solve nonlinear algebraic
equations. The energy-frequency plots are obtained numerically. The NNMs stability is studied.

Free vibrations of finite DOF system with the piecewise-linear elastic force are
considered in [109]. This system is described by the ODEs in the matrix form,

MZ + F(z) = 0; (36)

Klz; AzS hTZ < A3;
F(z) ={ K;z—b,; hTz<A,;
K3Z — b3; A3< hTZ;

where M = diag(M4, ..., My); Z is vector of the generalized coordinates; Ky, K, K3 are
matrices of N X N dimension; b,, b are vectors, which allow to obtain continuity of the elastic
force. The following change of the variables is used z = Qm, where the matrix Q is the set of
the eigenvectors of the matrix M~1K;. The S-P NNMs are used to study the dynamical system
(36). The suggested modification of NNMs calculations allows reducing twice the dimension of
the system of nonlinear algebraic equations in comparison with the approach suggested in [15].
The proposed approach is used to analyze the torsional vibrations of the internal combustion
engine transmission. This transmission consists of gear train and two crankshafts. The
crankshafts are joined by gear train, which has five spur gears (Fig.10a). One spur gear has a
clutch, which is described by the piecewise-linear elastic characteristic (Fig.10b). The model
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consists of the rigid discs and massless shafts and it has fifteen DOFs (Fig.10c). The S-P NNMs
are used to obtain backbone curves of the torsional vibrations.

Fig.10 Sketch of diesel engine transmission: a). kinematic diagram; b). outline of elastic

clutch; ¢) dynamical model

The forced vibrations of the piecewise linear mechanical systems are described by the
ODE:s similar to (36) with external periodic excitation [110]:

nNM+Am=£f(n) + Q;ll{Acos(wt), (37)

where k is number the particle, which is excited by the periodic force Acos(wt); Q:ﬁ =

(Q; L, Q,;}c) is ™ column of the matrix QL. The coordinates 1,,7); are chosen as master
ones. All the rest coordinates are slave. The motions are taken in the form of the single
harmonic approximation (1, = acos¢; 1, = —aw,sing). The periodic motions in the vicinity
of the principle resonance (w = w;) has the following form:

1, = a cos(wt). (38)
The periodic force is rewritten in the following form:

Amn,y
Vi +wr’ng
The nonautonomous dynamical system (37) is transformed into the pseudo-autonomous one as

i+ Am = g), (39)

where the elements of the vector g(1) are the following:

Acos(wt) = Acos¢p =

AQim

g =i + —
Vi + o7 %n;
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The pseudo-autonomous dynamical system (39) is analyzed by the S-P NNMs. The
proposed procedure permits to study nonlinear torsional vibrations of the fifteen DOF model of
the diesel engine transmission (Fig.10c). The forced vibrations of the piecewise linear
dynamical system (37) is considered in the vicinity of the superharmonic resonance in [197].

This resonance satisfies the following condition: w = %+ ey, where u is eigenfrequency

number; M is integer number; 0 < € < 1 is small parameter; y is detuning parameter. As
follows from the resonance condition, the generalized coordinate 1, is active. Therefore, it
takes as the master coordinates (7,,7,) = (acos¢; —aw,sing), ¢ = w,t.

The Raucher’s method is also used to study the NNMs of the forced superharmonic
vibrations. The external force (37) is presented in the following form:

cos(wt) = cos (%) + 0(¢) = cos I% arccos (ﬁ)] +0(¢e) = G(nu,ﬁﬂ) + 0(¢).

Van + g
(40)

Then pseudo-autonomous dynamical system (39), which describes superharmonic resonance
vibrations, is obtained using the relation (40).

The torsional vibrations of the transmission are treated in the vicinity of the
superharmonic resonance. These torsional vibrations are described by a two DOF mechanical
system. The rotation angles of the discs 6;; 8, are chosen for the generalized coordinates. The
shaft with clutch connects two discs. This clutch is described by the tri-linear elastic moment
[198]:

61(91 - 02), —A<L 01 - 02 < A,
f(6, —6;) =1 (0, —0;) + A(cy—c1); 6, — 6, = A;
(6, — 0;) — A(cy—cy1); 6, — 0, < —A.

The dynamical system has the following form where moments of inertia of the discs are
denoted by I; and I,:

1,6, + (6, — 6,) = Acos(wt); (41)
1252 _f(gl - 92) + CIQZ = O

The superharmonic resonance vibrations are analyzed in the system configuration space.
The resonance vibrations are presented at the frequency response.

Nonlinear oscillations of thin-walled structures with unilateral contact forces are
considered in [199]. The beam interacts with unilateral elastic stops due to vibrations. The
discrete lattice method is used to transform the continuous structure to finite DOF piecewise-
linear dynamical system. Then the shooting technique is used to calculate NNMs. The
frequency-stiffness plots and evolution of the NNM trajectories in the system configuration
space are presented. The Floquet multipliers are calculated to analyze stability of these modes.
Bifurcations of NNMs are analyzed numerically. NNMs in the tensionless granular chain with
non-smooth Hertzian contact between the identical particles are studied numerically.

The research [200] is devoted to detection of thin beam health through the analysis of the
nonlinear vibrations. The simply supported thin-walled beam with one crack is described by
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nonlinear PDE of the beam flexural vibrations. This equation solution is expanded by
eigenmodes of the simply supported beam without crack to obtain a multi-DOF nonlinear
dynamical system using the Galerkin technique. The MSM is applied to study NNMs of the
forced vibrations in the vicinity of the principle resonance. The frequency responses of the
forced vibrations are obtained. The criteria of the crack existence are deduced from the analysis
of the system nonlinear vibrations.

Two DOF nonlinear mechanical system with vibro-impact energy sink is treated in
[201, 202]. This system is studied by using MSM to obtain the steady-state response, when the
ratio of masses is used as a small parameter. The system forced vibrations in the vicinity of the
resonance are analyzed. The closed form approximation of the NNM is obtained. The energy
pumping mode takes place only at non-conservative impact conditions. PLL is used to obtain
an appropriate excitation, where the frequency and phase are synchronized with respect to a
reference signal. The parameters of the impact nonlinear energy sink, which results in low
amplitude vibrations of the main subsystem, are chosen from the numerical analysis.

The self — sustained friction induced oscillations of the mass-spring chain with a
generalized Rayleigh’s dissipative term are analyzed in [203]. Equations of motion for the two-
DOF chain are transformed to new model with respect to the following variables: total
excitation level, its distribution between the oscillators and coherency of the oscillations. Then
the excitation threshold is observed, when the self-sustained oscillations are taken place. The
threshold value of the nonlinearity corresponds to the out-of-phase NNM, when instability
through saddle —node bifurcation is observed. The numerical simulations show the existence of
the self-sustained waves propagating in the chain of many particles.

11. Nanostructures and physical systems

The application of NNMs for the nanostructures and physical systems analysis is rapidly
developed.

Two DOF mechanical model of vocal fold is derived in [204]. This model describes the
behavior of vocal fold during voice production. The external forces act on the system masses.
In order to estimate the pressure distribution along the vocal folds area, the Bernoulli equations
are applied. This model helps to study NNMs taking into account tissue stress-strain curve
nonlinearity. The NNMs are calculated numerically using the combination of the shooting
technique and arclength continuation algorithm. The simulation of NNMs helps to analyze
some phenomena obtained during phonation. Vocal folds undergo bifurcation behavior in
vicinity of internal resonances.

The geometrical nonlinear vibrations of the micro-beams with moderate transverse
deflection are described by one nonlinear PDE in [205]. The dominant damping is described
using well-known thermo-elastic damping mechanism. The S-P continuous NNMs are used to
study the micro-beam dynamic behavior.

Micro-electro mechanical structures with geometric nonlinearity are used as sensors
[206]. The deep learning based ROMs and invariant manifolds are applied to analyze nonlinear
vibrations of microstructures. The internal resonances in microstructures result in interaction
between different modes. Nonlinear autoparametric effects are studied.

A concept of the NNMs bushes is used to study of the dynamics of the molecular and
crystal structures in a series of papers. Every bush possesses its own symmetry group. It is an
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invariant manifold containing the set of NNMs. If the bush dimension is greater than unity, it
describes a quasi-periodic dynamical mode. The technique for the symmetry group is used for
the bushes analysis. Appling this concept, it is possible to find exact solutions using the
harmonic series. The detailed description of the bushes of NNMs theory is presented in [207].
An analysis of such bushes for N particles mechanical systems with the symmetry of 230 space
groups is made using the analytical potentials. Such bushes in SFg; molecule are analyzed
numerically using the group-theoretical technique in [208]. The density functional theory is
applied to analyze the SFg molecule with symmetry. The bushes of NNMs are used to study the
in-plane atomic vibrations of the graphene monolayer in [209]. The low-dimensional bushes of
the graphene are calculated using the density functional theory. The transfer between NNMs of
different symmetry belonging to the same bush is studied.

The paper [210] is dedicated to study of vibrations of the graphene, which is considered
as a crystal with a hexagonal lattice. Three-component delocalized nonlinear vibration modes
(DNVMs), which describe atomic vibrations in the lattice plane, are considered. Such modes
are exact solutions to the atomic equations of motions with arbitrary values of amplitudes. They
are determined using the lattice symmetry. The dependences of the mode frequencies, energy
per atom, and average stresses on the root mode amplitudes are obtained. One- and two-
component DNVMs in graphene are analyzed in [211]. The mode excitation results in the
appearance of negative in-plane pressure. The DNVMs of the nonlinear lattices are analyzed
using two different interatomic potentials in [212]. Using space symmetry group of the fcc
lattice, all one-component DNVMs are treated. Stability of DNVMs in graphene lattice is
studied in [213]. DNVM instability results in formation of large amplitude localized vibrational
modes. If the DNVM loses stability, the atom trajectories deviate from the mode exponentially
in time.

The influence of the large amplitudes, short-wavelength modes on the elastic properties
of the nanostructure is analyzed using the molecular dynamics simulations in [214]. The
structure particles interact due to the § —Fermi-Pasta-Ulam pair potential. Spatially localized
modes (discrete breather) are treated too. The instability of the modes is studied by the direct
numerical simulations of the finite DOF nonlinear ODEs. The modulation instability of
delocalized short-wave vibrations modes is analyzed in [215] for the two-dimensional
hexagonal lattice using the molecular dynamics simulations.

The large amplitude oscillations of harmonically coupled pendulums are considered in
[216]. An example of such structure is the Frenkel-Kontorova model, which describes the
dislocations in the crystal lattice. Multiple resonances between NNMs exist even with different
wave numbers. It is shown that the modes interaction in the vicinity of the long wavelength
leads to the oscillations localization.

A finite DOF model of the nanobeam is obtained using the Euler-Bernoulli beam
theory, nonlocal elasticity theory and finite element discretization in [217]. The von Karman
type of nonlinearity is accounted. The first three NNMs are analyzed by HBM and continuation
technique. The system of three PDEs is derived in [218] using the Timoshenko’s beam theory
and the von Karman’s nonlinear theory to study oscillations of electrostatically actuated
nanostructure. The Hamilton’s principle is used to derive the system of PDEs. As a result of the
finite element discretization with the Galerkin technique, the finite DOF nonlinear dynamical
system is derived. The electrostatic force is derived by the nonlinear function of the nanobeam
transversal displacements. In order to calculate the nonlinear oscillations, the HBM and arc-

39



length continuation are used jointly to obtain NNMs. Nonlinear dynamic response in the case
of the internal resonance contains the bifurcations points. The influence of the electrostatic
force on the system dynamics is analyzed.

Nonlinear modal dynamics of two gas bubbles located in a distance from stationary
sound stream is analyzed in [219]. The bubbles oscillations are excited by time periodic
pressure field. The oscillations are described by the variations of bubbles radii. The obtained
two-DOF nonlinear dynamical system is analyzed using the MSM. The NNMs and the steady-
state motions are studied. The results of the bifurcations analysis are treated.

The system of three nonlinear PDEs of the isotropic single-walled carbon nanotubes
free oscillations is derived accounting nonlocal elasticity and the Sanders-Koiter nonlinear shell
theory [220]. The system of nonlinear ODEs with quadratic and cubic nonlinearities describes
the shell like carbon nanotubes nonlinear vibrations. The NNMs of the system are obtained by
HBM with a single harmonic approximation. The NNM backbone curves are soft. The system
free nonlinear vibrations losses stability due to the Neimark-Sacker bifurcation. As a result, the
almost periodic oscillations are observed.

The Sanders-Koiter nonlinear shell theory is used to obtain ODEs of the nanotube
oscillations in [221]. The nonlinear resonance interactions between bending and circumferential
modes in single-walled nanotube are considered. The model of the NNMs interactions is
analyzed. As a result of this study, the energy localization over nanotube surface is observed.

The B-Fermi-Pasta—Ulam-Tsingou chain with finite number of the Duffing type coupled
oscillators is considered in [222]. The two DOF limit of the system has similar NNMs in the
following form:

x;(t) = A;sn(wt, k), (42)
where sn(wt, k) is the Jacobi elliptic function; w is the oscillation frequency; A; are oscillation
amplitude. The relation A, = {A; defines similar K-R NNMs. The general N DOFs chain has
such similar NNMs for the case of purely nonlinear couplings. The localized NNM of the
considered system is analyzed numerically.

12. Targeted energy transfer and absorption problem

Variety of passive and active absorbers of mechanical vibrations is used in engineering.
The description of such systems and their analysis are not subject of the present study. Thus,
only few publications, where the targeted energy transfer (TET) and absorption problems are
analyzed by means of NNMs, are included in this Section.

The target energy transfer (TET) has been analyzed intensively in the last decade. Most
of these studies are devoted to analyze the target energy transfer in the mechanical systems
with the nonlinear energy sink (NES). The current state of the art and perspectives of TET
analysis are discussed in the review [223].

The method of complexification-averaging developed by L.I. Manevitch, the MSM and
numerical simulations are used to analyze two-DOF systems, which consists of the primary
linear subsystem and the NES in the case of the 1:1 internal resonance [224]. Two DOF
mechanical system with NES in the form of the eccentric rotator attached to the primary
subsystem is considered. The sequence of the resonances captures is observed in the system, if
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the system energy is decreased due to the dissipation®. The study of the rotator nonlinear
dynamics shows that it is predominantly chaotic for sufficiently large values of the system total
energy in the case 1:1 resonance capture. The motions in each resonance capture are described
by the system NNM. As follows from the simulations, the full energy transfer to the NES
occurs after a threshold value of the primary mass oscillations. These motions depend on the
initial system energy and dissipation parameters.

The essentially nonlinear weakly damped attachment is used for NES in [225]. Steady-
state responses are analyzed for three cases: Hamiltonian, periodically forced and forced-
damped systems. An approximate slow-flow analysis permits to obtain the in-phase and out-of-
phase NNMs of the system. The frequency-energy plots are obtained for a comparative
evaluation of the NES and the linear oscillator amplitudes. The numerical simulations show
that the considered NES permits to significantly reduce the vibrations amplitudes.

The absorption of torsional vibrations of the single-cylinder diesel engine with crankshaft
is performed by NES in [226]. The analytical study of the system is made using the
complexification-averaging method. An analysis of modulation equations shows that the in-
phase NNM can be eliminated by NES at very low energies. The out-of-phase strongly
localized NNM is effective to reduce the crankshaft system vibrations at sufficiently high
energies.

The nine-story building primary substructure containing a more rigid core (secondary
substructure) is considered in [227]. The blast excitation is modeled by initial velocities applied
to each floor. Explosive energy transfer is achieved by energy transition of explosion-excited
low-frequency vibration modes in the linear primary structure to high-frequency ones. Such
transition is provided by strong nonlinear Hertzian vibro-impacts between the primary and
secondary structures. The distribution of clearance between the primary and secondary
structures is chosen to ensure the fast absorption of the main structure vibrations. The
simulation results show that TET provides fast and irreversible dissipation of the explosion
energy.

The book [228] is devoted to the study of resonance energy transfer problem in finite-
DOF nonlinear systems based on the concept of limiting phase trajectories (LPT) proposed by
L.I. Manevitch. An important elements of the NNM theory, as well a comparison and principal
differences between NNMs and LPT concepts are discussed in details.

Conclusion

The review of the NNMs, which are considered in the previous two papers by the same
authors [1,2], is developed in this paper. The NNMs theory is developed significantly during
the last decade. The following problems are discussed both in this review and in the previous
two reviews: concepts by Kauderer—Rosenberg and Shaw- Pierre, new definitions of NNMs,
resonances and bifurcations of NNMs, NNMs in finite degrees-of-freedom systems, NNMs in
continuous dynamical systems, reduce order modelling, numerical methods for nonlinear
modes.

* It seems to the authors, that the NNMs described in the paper [224] correspond to the
“transient NNMs” described in publications [63-65] which are considered in the Section 3.
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The problems, which are initiated to study during the last decade, are reviewed here.
Namely, they are the following: NNMs in stochastic dynamical systems, identification of
mechanical systems using NNMs, experimental measurement of NNMs, applications of NNMs
in aerospace engineering and power engineering, applications of NNMs for nanostructures.

New trend of the NNMs theory, which is developed during the last decade by Haller
with co-authors, is the spectral sub-manifolds.

The essential development of the numerical methods for all issues of NNMs is the
important basis of the theory during the last decade. In the previous decades, the researches
gave attention mainly for development of analytical methods for NNMs.

As follows from this review, NNMs is started to use for real engineering problems,
which are originated in aerospace engineering and power engineering. We can note that the
FEM, which transforms the nonlinear continuous system to the system of nonlinear ODEs, is
developed significantly for discretization of real nonlinear engineering structures. In this case,
the reduced order modelling is used.

The NNMs experimental analysis and identification of mechanical systems from
NNMs analysis are very important for progress of the NNMs theory. The authors of this review
believe that these areas will be significantly developed in future research.

As follows from this review the application of NNMs for nanostructure nonlinear
dynamics is developed slightly. We suppose that this subject will be also developed in future
investigations.
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