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Abstract: The air conditioning (AC) system is the primary building end-use contributor to the peak
demand for energy. The energy consumed by this system has grown as fast as it has in the last few
decades, not only in the residential section but also in the industry and transport sectors. Therefore,
to combat energy crises, urgent actions on energy efficiency should be taken to support energy
security. Consequently, the faults in AC system components increase energy consumption due to the
degradation of the system’s performance and the losses in the energy conversion procedure. In this
work, AC system fault detection and diagnosis (FDD) methods are investigated to propose analytic
tools to identify faults and provide solutions to those problems. The analysis of existing work shows
that data-driven approaches are more accurate for both soft and hard fault detection and diagnosis
in AC systems. Therefore, the proposed methods are not accurate for simultaneous fault detection,
while in some works, authors tested the method with several faults separately without investigating
scenarios that combine more than one fault. Moreover, this study shows that integrating data-driven
approaches requires deploying an optimal sensing and measurement architecture that can detect a
maximum number of faults with minimally deployed sensors. The new sensing, information, and
communication technologies are discussed for their integration in AC system monitoring in order to
optimize system operation and detect faults.

Keywords: air conditioning; data-driven approaches; energy efficiency; fault detection and diagnosis;
power optimization; process history-based; sensor technologies; simultaneous faults

1. Introduction and Literature Review

Electrical energy is considered the “fuel” of the future, with global electricity demand
growing by 4.4% in 2021 to more than 230 TWh [1]. Faced with this increase in global
electricity demand, more urgent actions are needed to develop all clean energy solutions
and improve efficiency, especially in the building sector, which represents 30% of the total
energy consumption [2]. AC systems in industrial, residential, and commercial buildings
consume 50% of the final buildings’ energy demand [3], and they are a main contributor
to greenhouse gas emissions. Depending on the geography and the seasons of the year,
the AC system is used to maintain the comfort of the occupants in the buildings, and its
consumption can reach its maximum during extreme weather conditions (e.g., a heat wave
or a cold wave). Therefore, it is a main factor in energy savings while maintaining comfort
for the occupants within acceptable ranges. In this way, many studies are presented, putting
more emphasis on the control and retrofit of the system components [4–6]. However, faults
in the system components trigger a huge waste of energy, and it is an interesting issue
that is addressed to minimize the consumption of such a system. The objective is to profit
from the maximum performance of the system with high efficiency in order to do the
best with less energy. The severity of the fault depends on the component source of this
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fault and the ability to identify the problem with the existing deployed sensors [7]. These
faults are classified into two families: soft and hard faults [8]. Hard faults in the AC
system cause total damage to the system’s operation and can be detected by the occupants
due to uncomfortable occupant conditions [9], while soft faults result in the AC system’s
performance degradation without affecting occupant comfort [10]. In fact, soft faults are
more difficult to detect, and they increase the electricity consumption of the AC system
because the system is still working with minimal efficiency for an extended time without
the occupant detecting the faults. For example, in the case of a fouled condenser, the system
takes more time to regulate the indoor temperature to the selected setpoint temperature,
causing more consumption of electric power and consequently decreasing the energy
efficiency of the building [11]. This type of fault requires the installation of specified
sensors capable of generating alerts to the occupant indicating the degradation of the
system’s performance.

The motivation for this work is the need to increase the energy efficiency of the building
by minimizing energy consumption while maintaining maximal occupant comfort and
high building service quality. Several approaches are investigated to improve the energy
efficiency of buildings, focusing on the building construction material and insulation [12],
the control of active/passive equipment [13], and the integration of renewable energy
resources [14]. However, service monitoring and fault detection are the main keys to
optimizing energy consumption, especially for the services that consume a large part of
the electrical energy in the building. In this way, the detection of heating, ventilation,
and air conditioning (HVAC) system faults is an active area of research (Table 1). The
benefit is not only to reduce power consumption but also the maintenance cost, refrigerant
leakage, and carbon emissions at power plants. One of the main faults that can drop
the performance of the AC system is the compressor fault, which increases the workload
of the system and is the most expensive repair. The authors in [15] proposed an online
method for compressor liquid flood-back. The backpropagation neural network structure
is used to establish the fault diagnosis model and correlation coefficient to analyze the
relationship between data variables. A set of sensors is installed to form the raw dataset.
The number of neurons in the input layer is assumed to depend on the following eight
measured parameters: compressor discharge temperature, accumulation inlet temperature,
accumulation outlet temperature, compressor/outdoor fan voltages, working current of
the compressor, and compressor/outdoor fan operating frequencies, while the output layer
is assumed to depend on the three operating states of the compressor: normal, fault 1,
and fault 2. Compared with other works about compressor fault detection that used
offline methods [16,17], this work deployed an online method with high performance
under standard test conditions, with fault diagnosis accuracies of 99.83% for the training
and 99.46% for the testing, as mentioned by the authors. The main limitation of the
proposed method is the high number of installed sensors; therefore, the concept of virtual
sensing is discussed in the literature in order to minimize the number of physical sensors
deployed in the AC system. Another interesting work is presented in [18], combining
data-driven and virtual sensing techniques to develop an online refrigerant charge fault
diagnosis strategy based on a virtual sensor technique. The principal component-based
exponentially weighted moving average method is combined with the virtual refrigerant
charge method to identify refrigerant charge faults for variable refrigerant flow (VRF). The
authors showed that the virtual refrigerant charge method is suitable for undercharge fault
detection but is not sensitive to overcharge faults. However, the principal component-based
exponentially weighted moving average method obtained outstanding performance in
detecting overcharge faults but failed to identify severe undercharge faults. For that, the
work investigated a hybrid strategy whose advantages are well exploited. This work was
reinforced by another energy diagnosis method based on data mining and a statistical
quality control approach for VRF [19].
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Table 1. State of the art of the present works on fault detection methods for AC systems.

Ref Type
Faults Fault Investigated Fault Detection Method Simultaneous

Faults Fault Diagnosis System Studied

[7] Soft Drift deviation

Combining kernel principal
component analysis and

double-layer bidirectional
long- and

short-term memory

No No
Heating,

ventilation, and
air conditioning

[9] Hard
Broken heating coil valve

Dampers and
valves control

Three algorithms are
compared: an artificial

neural network, a genetic
algorithm, and multiple

linear regression

Yes No Air handling
units

[10] Soft
Refrigerant leakages and

condenser/evaporator
fouling

On-field measurements and
related degradation

of performance
No Yes Residential

heat pumps

[11] Hard Non-condensable gas and
liquid line restrictions

Experimental study of an
AC system with a microtube
condenser using coefficient

of performance analysis

No No
Air conditioner

with a microtube
condenser

[16] Hard

Refrigerant undercharge,
four-way reversing valve,

and indoor unit
fouling faults

Fault detection strategy
based on

modularized principal
component analysis

Yes Yes
VRF air

conditioning
system

[17] Hard Liquid floodback for
scroll compressor

Classification and regression
trees are used to develop

Decision Tree models
No Yes

VRF air
conditioning

system

[18] Hard Refrigerant charge fault

Principal component
analysis based on the

exponentially weighted
moving average method

No Yes
VRF air

conditioning
system

[19] Hard Refrigerant undercharge
and overcharge

Energy diagnosis
method-based data mining

technique and statistical
quality control approach

No Yes
VRF air

conditioning
system

[20] Hard

Refrigerant charge fault,
four-way valve failure,

and compressor
liquid floodback

Unsupervised principal
component based on hybrid
data mining methods and

analyzed the
thermodynamic
interpretation

Yes Yes
VRF air

conditioning
system

[21] Hard
Compressor liquid

floodback and refrigerant
charge fault

Data-driven methods of
analysis: Decision Tree,

support vector machines,
clustering, shallow neural

networks, and deep
neural networks.

No Yes
VRF air

conditioning
system

[22] Hard

Cooling tower fan failure,
damper stuck, supplied
chilled water clogging,
and air duct leakage

Coefficient of performance
analysis using deep

learning, support vector
machines, and multi-layer

perceptron

No No Air conditioning
system

[23] Soft
The proposed method can

be deployed to detect
several faults

Internet of Things and
cyber-physical systems:
distributed sensor-fault

detection and
diagnosis framework

Yes Yes HVAC

[24] Soft Refrigerant charge faults
and condenser fouling

Virtual sensors and fault
impact models Yes No HVAC

[25] Hard

Damper stuck, air flow
rate reading frozen, and

low supply air static
pressure failures

Proactive FDD No Yes
Variable-air-

volume (VAV) AC
systems
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Table 1. Cont.

Ref Type
Faults Fault Investigated Fault Detection Method Simultaneous

Faults Fault Diagnosis System Studied

[26] Soft Fan, valve, and
temperature sensor faults

Grey-box model approach
based on

polynomial regression
Yes Yes HVAC fan-coil

[27] Hard Refrigerant system faults

Combination of principle
component analysis feature
extraction technology and
binary Decision Tree-based

multiclass support
vector machine

classification algorithm

No Yes

Vapor-
compression
refrigeration

systems

[28] Soft Return and mixed air
temperature sensor faults

Hybrid modeling approach
integrating first-principles

knowledge with
statistical methods

No No HVAC

[29] Hard Obstruction of the
air filters

Physics-based models with
data-driven No Yes HVAC

[30] Soft

Condenser fouling,
refrigerant leak,

non-condensable
refrigerant, reduced

Condenser/evaporator
water flow

Combining extended
Kalman filter and recursive

one-class SVM
Yes No HVAC Chiller

[31] Soft
The proposed method can

be deployed to detect
faults in the chiller

Symbolic artificial
intelligence technique based
on digital twin architecture

Yes Yes HVAC

[32] Soft
Stuck valves and

temperature sensor
offset faults

Evolving learning-based
methods and growing

Gaussian mixture regression
No Yes Chilled beam

systems

[33] Soft
The proposed method can

be deployed to detect
faults in the chiller

Self-attention
mechanism-based temporal

convolutional network
Yes No HVAC Chiller

[34] Soft
Refrigerant charge fault,
condenser fouling, and

evaporator fouling

Supervised and
semi-supervised
machine learning

No Yes Rooftop units

[35] Soft

Reduced
condenser/evaporator
water flow, refrigerant
faults, excess oil, and

condenser fouling

Adaptive 1D-convolutional
neural

network-based approach
Yes Yes Chiller

[36] Soft

Reduced
condenser/evaporator
water flow, refrigerant

faults, and
condenser fouling

Feature-recognition model
and spectral regression

kernel discriminant analysis
Yes No Chiller

The development of data mining and the improvement of computer technologies
encourage researchers to focus more on [20,21]. In this work, the different techniques used
for AC system fault detection are presented, putting more emphasis on the new techniques
based on the new information and communication technologies for data collection and
analysis (e.g., Internet of Things, machine learning, big data, virtual sensing). Moreover, in
order to identify the sensor types and positions that should be installed, soft faults should be
identified and classified depending on their effect on the “coefficient of performance” that
is used in the literature to analyze the AC system efficiency depending on the input/output
power ratio [37,38]. Therefore, there is a need for new fault testing to understand fault
impacts on systems. Additionally, the new concept of “virtual sensor” is investigated
in order to propose new measurement methods for the AC system to detect faults using
minimal physical sensors. In fact, the concept of “virtual sensing” refers to the concept of
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data analysis using software components such as artificial intelligence in order to imitate the
behavior of one or multiple physical sensors by leveraging information available from other
measurements and estimating the quantity of interest. This concept starts to improve in
several research domains due to the development of new information and communication
technologies [39–41]. Consequently, the faults in the AC system shall be detected based on
other measurements that are realized today for other usage in the buildings, such as the
power conception, the inside/outside temperature/humidity, and the total heat load. The
coefficient of performance is estimated based on the available measurements (e.g., weather
conditions, power consumption), and the analytics tool will identify a fault if the real-time
data does not conform to the rules or the optimal relationship [22,23,42].

The remainder of this paper is structured as follows: Section 2 presents the research
methodology together with a summary of the new research on FDD methods for AC
systems. The classification of major common faults in AC systems is presented in Section 3.
This classification helps with the identification of the existing methods used to detect and
diagnose the faults while specifying the limits and the required measurements for the
techniques’ deployment. In Section 4, detection and diagnostic techniques for AC soft
faults are summarized based on the global architecture of the system that depends on the
building size (e.g., residential, commercial, industrial). The existing works are interpreted
depending on the investigated area and the type of sensors and data measurement that
are used to develop the technique. The data source and sensor deployment architecture
are presented in Section 5. Section 6 discusses the shortcomings of the existing methods
and proposes new research perceptions for researchers; therefore, computing-based and
data-driven techniques are present as the main keys for the future development of FDD
methods. Conclusions and perspectives are presented in Section 7.

2. Research Scope and Methodology

The development of a robust method for fault detection with minimal physical sensor
deployment is required for AC systems. The need to improve new FDD methods is
highlighted by their main shortcomings. The literature works considered in this work were
collected through an extensive search in digital academic libraries, as presented in Figure 1.
The method “Reference-by-Reference” is used to organize the relevant publications. The
main objective is to classify the existing FDD methods used for HVAC systems, identify the
limitations of each method, and investigate the possibility of integrating new technologies
to handle these limitations. The classification is based on the statistics presented in the
existing literature. The statistics are collected using the fault reports sent to several heat
pump manufacturers during the warranty period. Most of these recent research efforts
focused on detecting hard faults in the sir handling units for large-scale HVAC systems,
as depicted in Table 1. It is shown that few studies focused on soft faults occurring in
the mechanical system, dampers, valves, sensors, programming, controller errors, and
in general human intervention. Therefore, a main part of the existing work for soft fault
detection focuses on specific safety faults without the ability to detect simultaneous faults
in the HVAC system. On the other hand, the investigated FDD strategies are deployed only
in the laboratory testbeds without having a real strategy used in the existing operational
HVAC systems. By analyzing the new existing research, the process history-based method,
named the data-driven method, can detect both soft and hard faults in the AC systems. The
soft faults are more difficult to detect by the classical methods, and the system still works
for an extended time with minimal performance and high energy consumption, causing
a degradation of the system’s energy efficiency. In many cases, soft faults generate some
parameter deviations without knowing the physical meaning; however, an expert system
can detect the fault source and type depending on the sensor’s position and type.
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In addition, machine learning models for data classification can help with high accu-
racy in the identification of faults. The existing process history-based models are classified
into two categories: black-box and gray-box models. The black-box models form a statistical
model to describe the relationship between the system’s inputs and outputs. The gray-box
models create a relationship between the normal operating conditions and the estimated co-
efficients based on the fundamental physics laws. In this case, physical knowledge is used
to specify the mathematical models, and data history is used to empirically determine the
model parameters. A dataset is used to train machine learning algorithms and to estimate
gray-box AC parameters depending on the measured data. The historical data are obtained
by specific laboratory tests and AC manufacturer information or by the installation of
sensors in different positions during the normal operation of the system. However, in order
to specify the sensor type and position, experts should identify the components that are
frequently damaged in the AC systems and identify the equivalent power losses caused
by each fault. The work presented in [8] presented an approximate breakdown of faults in
the literature for building systems according to system type. The authors mentioned that
air-handling units present more than 42% of the total fault sources in a large commercial AC
system. However, the statistics were based only on the existing work without any technical
details or field statistics. Mainly, the authors in [11] experimented with single-fault impacts
on an AC system with a microtube condenser. A unitary AC was tested in a well-controlled
psychrometric chamber with four individual faults imposed: evaporator airflow, refrigerant
charge, liquid line restrictions, and the presence of non-condensable gas in the system
prior to adding the refrigerant. The impacts of each installation fault on AC capacity and
coefficient of performance are investigated, and interesting results are presented concern-
ing the capacity decrease. The main limitation of the proposed study is the number of
installed sensors. A set of temperature, pressure, and airflow sensors are installed for the
experimental testing. In reality and for economic assessment, the installation of additional
sensors would be expensive and difficult to install in the existing system.

According to the analysis of the existing works, a large part of the proposed FDD
methods focus on hard fault detection, while the proposed soft fault methods are not able
to detect simultaneous soft faults. A set of tests tested more than one fault, but these faults
were established separately without combining more than one failure in the same scenario.
On the other hand, the proposed methods focus on a specific failure in an AC system
and use only the manufacturer’s deployed sensors without proposing an optimal sensing
architecture capable of detecting simultaneous faults. Additionally, existing works focus
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more on the analysis of the coefficient of performance of the studied system; however, it is
difficult to detect soft faults by analyzing this coefficient without considering the lifetime of
the components. Therefore, this work shows that data-driven methods are more accurate
for both soft and hard fault detection and diagnosis, with the ability to be developed to
detect simultaneous faults in AC systems with high accuracy.

3. Major Common Faults in Air Conditioning Systems

The operation of an AC system with faults leads to significant energy loss and af-
fects the occupant’s productivity and health. The energy consumed by this system has a
principal impact on the improvement of energy efficiency in buildings. However, the com-
plexity of the AC system with its several coupling components (e.g., evaporator, condenser,
compressor, fans, and control units) makes it a critical infrastructure requiring numerous
measurements for monitoring. This variability in the components with different disciplines
(e.g., mechanics, thermodynamics, chemical, and electric) requires the use of several sensor
types and locations to detect faults during the system’s operation. For that, common
faults in the AC system should be classified, and an approximation of each component
breakdown should be identified to specify the essential sensors for fault detection, location,
and diagnosis. Depending on the space requirements, air distribution requirements, and
primary equipment requirements, AC systems are classified into two main categories:
Stand-Alone AC units and Split-System AC units (Figure 2). These two categories vary
essentially depending on the space size (e.g., room, offices, distributed course rooms) and
the primary equipment distribution (e.g., central unit, unitary unit).

This classification will help with the identification of the existing installed sensors
and the required measurements and sensors that should be installed for fault detection
and diagnosis. Therefore, in large buildings, the central AC system is more used due to
its central control and management. However, the central AC systems are still the largest
consumers of electricity due to several control constraints and their large size, which causes
more faults and losses in the system. The work will focus more on fault detection and
diagnosis in the central AC systems, while the study is able to be generalized for the
other local units. A comprehensive classification of faults is helpful in understanding
and learning the faults sources and types and thus proposing solutions. The classification
is made in various ways based on different considerations. In this work, we propose
three fault classes in the AC systems (Figure 3). The first class concerns component faults.
Generally, this type of fault is caused by the degradation of the components due to a long
period of use or by failures in the manufacturing process. The second class is the man-made
faults caused by an inexperienced maintenance staff or due to the improper installation
of the system. Generally, man-made faults degrade the system’s operation, such as an
improperly sized duct, a frozen or hot condenser location, a refrigerant quantity that was
not correctly added, and an evaporator that was improperly installed. The third fault class
concerns the faults generated due to ignored commands, decisions, or actions. The actual
AC systems use some temperature sensors to measure the outside/inside temperatures in
order to generate actions for the condenser and the evaporator. Depending on the context-
driven awareness, the system is controlled in a way to minimize energy consumption,
while faults in the sensor installation or the command execution reduce the performance of
the system. This type of fault is detected by the analysis of the context parameters (e.g.,
inside/outside temperature, humidity, pressure) compared with the electrical consumption
of the condenser and evaporator. Therefore, most AC faults are soft faults, meaning that
the system is still working without affecting the occupant’s comfort while the coefficient
performance is at its minimum, causing high energy consumption. The development of
a technique for fault detection, classification, and location is based on the measurable
parameters in the system and the positioning of the installed sensors.
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An accurate technique is one that can detect several types of faults with a minimal
number of sensors. In order to select the sensor types and positions in an AC system to
detect faults, another classification is proposed based on the system components. An AC
system is a combined mechanical, thermodynamic, and electrical environment requiring
several types of sensors to monitor the different quantities. The main measurements in an
AC system are affected by the refrigerant or the air side (Figure 3). The refrigerant side
requires direct interaction with the system to install internal sensors for flow and pressure
measurements at specific points in the system cycle. The data collected from this side
necessitates expert system interpretation and analysis to identify if the system is in optimal
operation or not.

Though air-side measurements are affected by the installation of external sensors (e.g.,
temperature, air flow, pressure, and power consumption) to identify the context driven
of the system and conclude the coefficient performance for a given context, several mea-
surements should be established on the airside to create a direct and indirect relationship
between the system’s operation and other external parameters such as weather conditions
and occupants’ activities. In fact, this is the main research key that researchers focus on
to reduce the energy consumption of the AC system, depending on occupant detection
and activity identification [43]. On the other hand, a relationship is established between
weather conditions and the optimal operation of an AC system using virtual sensing
techniques to detect faults. Mainly, during the lifetime of an AC system, some faults are
more frequent than others, requiring more downtime and maintenance costs. For that
reason, a classification of AC faults depends on their frequency and percentage occurrence.
Consequently, according to the analysis of existing literature, the only sources of data are
the manufacturers, repair and insurance companies, and research laboratories that focus on
specific measurements and data gathering [8,10,44]. In fact, during the warranty period,
the manufacturer’s customer service receives feedback from the end-users for fault repair,
presenting interesting statistics to identify the common faults of AC systems. After the
warranty period, large-scale AC systems (e.g., hospital, multifamily building, university
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campuses) are monitored and maintained by repair/replacement companies. These compa-
nies are the main key to gathering the necessary data collected from real systems during
several types of simultaneous faults while at the same time identifying the fault percentage
and the frequency of repairing each fault [45]. The more frequent and costliest faults are
summarized in Figure 4. The presented results are summarized based on several review
papers that present statistics on common faults in AC systems [46–48].
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These alarming statistics presented in Figure 4 show that more than 60% of repaired
faults are due to refrigerant, compressor, and control/electronics faults. A survey and
analysis of several AC systems in domestic buildings show that more than 72% have
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an improper refrigerant charge, 60% have a degraded compressor’s motor, 54% have
improper air flow, and 20% have failed sensors or control cards, with the possibility to
combine more than one fault [8,49,50]. By the analysis of these faults, a large part affects
significantly the compressor, control/electronics, and sensor units [50]. On the other hand,
the associated faults in these components are generally soft, which are more difficult
to detect, and they will develop into hard faults if they are not detected and maintained
correctly. In the next section, the different existing FDD methods used for AC fault detection
are summarized, focusing more on the actual techniques based on the new information
and communication technologies.

4. Fault Detection and Diagnostic Techniques for Air Conditioning

At this stage, it is important to distinguish between fault detection and fault diagnostic
methods. The task of fault detection is to find faults within the AC system without gener-
ating analytic actions to accurately identify or isolate them. Depending on the proposed
method, in some case studies, the faults are detected and classified in order to identify
the component source of these failures in the system [31,32]. The fault diagnostic task
is generally combined with the fault detection task, and it is responsible for generating
indications for the fault diagnosis process. In some applications, diagnostic and detection
tasks are not explicitly separated because diagnostic methods require the use of sophisti-
cated techniques for automated fault detection, classification, and location. Several existing
works propose classifications of fault detection and diagnostic methods for buildings and
for heating, ventilation, and AC systems [51,52]. The different works classified the methods
into quantitative/qualitative-based models, data-driven-based models, black/gray box
models, and prior knowledge-based models (Figure 5). Focusing more on these classes, the
black/gray box models are presented as a sub-class of the other classes, as is presented
in [28]. For some existing work, the gray box is named a white box, while the analysis
of the method shows that both are based on the estimation of state space model parame-
ters based on a predeveloped mathematical equation of the system [53]. These methods
continuously measured AC operation status and automatically compared the results with
the established baselines of normal operation depicted by physics- and engineering-based
models. The black/gray box models are more robust when combined with data-driven
methods. The use of deep learning methods for data analysis and process history strength-
ens the performance of the model that considers the AC system as a black/gray box. Unlike
the black/gray box models, quantitative model-based systems present a set of mathe-
matical relationships between the system and its fundamental physics, while qualitative
model-based systems involve qualitative relationships resulting from knowledge of the
fundamental physics. On the other hand, process history model-based analysis analyzes
the measurement data during system operation in order to create a typical behavior model
of the system and detect abnormal events. Therefore, process history-based methods are
based on the new information and communication technologies (e.g., Internet of Things,
artificial intelligence, big data) in order to interpret specific measurements to identify faults.
A parameter deviation shall be automatically detected, and the analysis of this deviation
by an expert system can identify exactly the sources of this trouble. Unlike the quantitative
and qualitative model-based methods, this method can detect faults at the beginning before
they cause total damage to the system, avoiding higher energy consumption and long
breakdown times. This method is interpreted in the next section of this work. Moreover,
based on the analysis of other research works, process history-based models are called
data-driven-based models [54,55]. Focusing on these methods’ classification, it is important
to identify the difference between knowledge-based and data-driven-based models that are
confused on the principle of operation. In fact, knowledge-based methods focus more on
the interpretation of real-time data collection or periodic measurements in order to identify
abnormal operating conditions. The model decision is based on the employment of human
experts’ knowledge and expertise to support fault alarms. For the automation area and
maintenance staff, knowledge-based models should be improved by other techniques, such
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as artificial intelligence, to automatically select abnormal events. For that, data-driven
models are developed. Data-driven or process history-based models use both historical
datasets and real-time data collection for the learning of supervised, unsupervised, or
regression-based learning models [56,57]. The different classes are summarized in Figure 5
based on different literature works [28,51–53,55,58–60].
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Actually, the gray-box model is combined with the new artificial intelligence methods
in order to improve the performance of the model. Automated fault detection uses the
physical equation of the system together with process history models for not only fault de-
tection but also to perform diagnostic tasks [33]. For the hybrid approaches, the arrows are
connected depending on the existing works that make a hybridity of methods [34–36,60,61].

The analysis of these methods shows that process history-based methods present
several advantages compared with the other methods. Therefore, process history-based
methods use a diversity of measurements and datasets to learn the model without having
physical knowledge of the system. The achievement of this method is based on the type,
position, and number of deployed sensors to prepare a large amount of data. A set of
relationships should be created between the different measurements and the equivalent
faults that can be detected in order to minimize the number of installed sensors and
maintain high modeling accuracy. A contribution is presented in the next section, classifying
the measurements, sensor positions, and equivalent faults that are detected based on AC
system architectures. The investigated method can be deployed for all types of AC systems,
including those with variable air volume and variable refrigerant flow. The only difference
can depend on the system size (e.g., large-scale, multi-family, window unit).

5. Sensor Deployment and Data Source Architecture

Sensor deployment type, position, and number are the main phases before carry-
ing out the fault detection and diagnostic process. This phase requires more focus from
researchers in order to specify the effect of each fault on the other AC system’s output.
A fault can affect one of several parameters in the system with different intensities. An
accurate positioning (e.g., chiller, heat pump, air handling unit) and type (e.g., temperature,
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refrigerant flow, pressure, humidity) of the sensor is the one that can detect the maximum
number of faults. For that, more studies should be carried out to identify, for the common
faults in the AC system, the equivalent parameters that are more influenced. In this way,
the required measurements for several fault-type detections are assembled into one sensor
with a specific position in the AC architecture. An interesting work is presented in [11],
studying the fault intensity of four faults (improper evaporator airflow, refrigerant charge,
liquid line restriction, and non-condensable gas) during three operating conditions tests
corresponding to AHRI standard 210/240 [62]. A psychrometric chamber is used with a
set of sensors to measure the refrigerant mass flow rate, refrigerant pressure/temperature,
atmospheric pressure, air pressure drops, cooling capacity, and outdoor unit power. The
authors concluded that the evaporator airflow fault had linear impacts on cooling capacity
and the coefficient of performance. Moreover, the refrigerant undercharge and liquid
line faults affected cooling capacity and coefficient of performance, while the coefficient
of performance was more impacted by the non-condensable gas fault than the capacity.
From this study, it is shown that the outdoor unit coefficient of performance allows us to
detect different faults in AC systems. The major problem in this study was the multiple
neglected parameters during the different scenario tests. An optimal method should be
established to select the suitable conditions and the effect of each fault [63,64]. Otherwise, it
is difficult to assume the impact of the studied faults. A set of studies should be established
in order to identify the intensity of the common AC faults, helping with the improvement
of new data-driven methods for fault detection and diagnostics. A centralized AC sys-
tem is presented in Figure 6 with the proposed sensor architecture that is deployed for
testing. Generally, in the AC system, temperature sensors are installed to measure the
indoor/outdoor temperature in order to execute the equivalent command to reach the
setpoint. The actual AC systems are improved by the integration of new techniques (e.g.,
variable air volume, variable refrigerant flow) to optimize the use of energy depending on
different indoor comfort zones. However, the AC system has not yet improved in line with
actual technological developments. It is the first consumer of electricity in the building,
while the different existing research projects focus more on the internal operational system
to increase performance.

Based on the analysis of the existing work in the literature, a large amount of research
used internal system measurements (e.g., refrigerant flow, pressure, and temperature) to
detect the faults. These measurements present acceptable results in the laboratory with
the use of controllable environments such as the psychrometric chambers. Nevertheless,
more research should be conducted by experts to identify the effect of each component
fault on the other measured parameters. This research can help identify the required
sensors that should be installed to detect both soft and hard faults. Figure 6 presents
both internal (e.g., refrigerant flow, refrigerant pressure, and temperature) and external
(e.g., power consumption, outdoor temperature/pressure, indoor temperature/pressure)
measurement architectures to study the effect of faults on the system. In this work, we
propose a data-driven method based on external measurements (e.g., compressor power
consumption, fan power, external/internal temperature) to detect faults in the system.
The coefficient of performance is a parameter rating that is calculated to determine the
effectiveness of AC systems against the amount of electrical power in a given context. The
movement of heat from a low-temperature zone into a high-temperature zone requires
work. The work consumed by the evaporator and the compressor is theoretically equal to
the work used by the condenser. The electrical power consumed to generate the equivalent
work to move a certain quantity of heat at certain conditions (e.g., temperature, pressure,
humidity) is measured during the normal operation of the system, and it will be used for the
machine learning algorithm training. Therefore, a set of sensors, such as current/voltage
sensors, should be installed to measure separately the power consumed by both internal
and external units. Temperature, pressure, and humidity sensors should be installed for
indoor and outdoor use to specify the operating context of the system, which influences
directly the evaporator, the compressor, and the condenser, as well as automatically the
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electrical power consumed. These parameters will be used as input to a multivariable
machine learning model to perform the model objectives.
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6. Synthesis and Contribution
6.1. Synthesis and Discussion

Current FDD methods still have the shortcoming of detecting simultaneous soft faults
in several components in the AC system. A large part of the existing work focuses on
specific components without proposing a new method to detect faults in several parts
(e.g., compressor, evaporator, condenser, and refrigerant) of the AC system simultaneously.
Moreover, in the past decades, literature has focused more on hard fault detection without
improving efficient solutions to detect the faults in the AC systems or planning a shutdown
period for maintenance. However, few papers have been published that use data-driven
approaches for FDD. Data-driven approaches have a high capability for detecting both soft
and hard faults. The authors (Table 1) used an offline model based on machine learning
algorithms to classify datasets in order to detect abnormal operation of a specific component
in the AC systems. The datasets used for the training and testing of the algorithms are
collected during normal and faulty operation of a given AC system, while the obtained
results cannot assume the usefulness of the test FDD methods for all other types of AC
systems. Depending on the manufacturer and the AC size, the method should be totally
changed in order to deploy the FDD method using a data-driven approach. Until now, there
has been no real AC system equipped with the FDD method for real-time fault detection.
The investigated methods are tested in the laboratory with a controllable psychrometric
chamber because the real AC system has a limited number of sensors that are deployed
by the manufacturers only for control and temperature regulation. Consequently, more
studies are required in order to investigate the common faults in AC systems and propose
an optimal sensor architecture that can detect a maximal number of faults with a minimal
number of sensors. Some faults have the same fluctuations in the system, and a sensor
optimally installed is the one that can detect more than one fault with high accuracy
without generating redundant data for the machine learning algorithm. In the laboratory,
researchers can install several types and numbers of sensors; however, for real deployment,
this number should be minimized in order to minimize the cost for manufacturers. In
the existing work, the authors focused on a specific component in the AC system, while
other components faults have the same fluctuations and can be detected by the same
sensors without duplicating the measurements. Studies of simultaneous common faults are



Energies 2023, 16, 4721 14 of 20

required in order to identify the sensors’ architecture that can detect simultaneous faults in
the different AC components. On the other hand, the existing fault detection shortcomings
require the investigation of new FDD methods for AC systems capable of detecting soft
faults that shall be developed to detect hard faults if they are not detected and maintained
correctly. The use of new information and communication technologies (e.g., the Internet
of Things, artificial intelligence, and big data) is a main factor in future data-driven method
investigation and development. As opposed to any other smart service in the building,
the AC system should be improved in a way to allow more interaction with the consumer,
especially for fault alert and identification. After the development of the present study,
possible lines of future research were identified:

• Identifying an optimal sensor architecture to detect a maximal number of faults with a
minimal number of sensors.

• Developing new FDD methods to detect simultaneous faults in AC systems with a
greater on soft faults.

• The development of FDD methods capable of being deployed for each type of AC
system without considering the AC size (e.g., large-scale, multi-family, single-family,
residential AC unit) or the manufacturer.

• Investigating new online FDD methods capable of detecting the abnormal operation
of AC systems without planning a shutdown time for the system.

• The investigation of new FDD methods based on the Internet of Things. The AC
system is a system that will be improved into a smart service in the building in a way
to be connected to other services at the same time as the cloud computing services. In
this case, the deployment of machine learning algorithms for FDD will be robust.

• The use of social sensing methods together with the actual FDD methods is a main
research motivation to minimize the cost of the sensors deployed in the AC system to
detect faults.

• The FDD methods-based, data-driven approaches should be improved to have the
capability to be deployed in isolated areas where the AC system is not connected to
the internet. This research motivation is boosted by the development of new machine
learning algorithms and artificial intelligence methods that minimize the processing
time and reduce the required computing performance [65,66].

6.2. Contribution

The objective is to detect simultaneous faults using data processing history-based
methods. In this way, the model’s input parameter selection is the main challenge. In fact,
the power consumption variability is the main key that is affected by the fault in the system.
Although energy consumption levels are quite variable due to several uncontrollable indoor
and outdoor unit operation states (e.g., different outdoor unit temperatures, different indoor
temperature setpoints), the power consumed by the compressor is affected by all faults
in any component of the AC system as well as internal compressor faults (e.g., defective
electric motor, defective shaft seals, breakdown of the mechanical system). When the
coefficient of performance is degraded due to several faults in the system, the compressor
consumes more energy to generate the same work in a given context (e.g., indoor/outdoor
temperature, compressor temperature, humidity, pressure). Hence, other parameters are
proposed to be combined with energy consumption to detect faults (e.g., compressor
temperature, compressor vibration). The refrigerant flow, the variable compressor speed
control, the compressor vibration, and the system energy consumption are proposed for
future investigation. The framework of the proposed process history-based method is
presented in Figure 7.
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Mainly, in “step 1”, a set of measurements is collected (e.g., power consumption,
refrigerant flow, indoor and outdoor temperature). These measurements are stored in order
to construct the initial database for both normal and faulty scenarios. The initial database
is used for training and algorithm testing. In “step 2”, the training data are used to predict
the future power consumption of the AC system, while the results are compared with the
testing data to identify the accuracy of the model. In the event of accurate results, the model
will restart the test using the actual measurements. However, in the case of a large deviation
from the model, the actual data will be classified using a machine learning classifier model
(e.g., Extra Tree, Random Forest, support vector machines). Since the power fluctuation
is generated for several reasons, other parameters will be used for the diagnosis. In “step
3”, since the speed of the compressor varies depending on the setpoint, the compressor
operates continuously for the “ON” period, consuming an equivalent amount of power.
This energy will be compared with the normal dataset, including indoor and outdoor
conditions. At the same time, the required refrigerant flow is supplied to the indoor fan
coil, and once the setpoint is obtained, the refrigerant flow is adjusted to maintain the room
temperature smoothly without fluctuations. The concept of this model is based on a large
dataset obtained from the same sensors in different operational contexts.

In the first phase, the power consumed by the condenser, evaporator, and compressor
will be used for training. The power consumed by the condenser depends on the differ-
ence between indoor and outdoor temperatures, the pressure, and the humidity. These
measurements are used for the training of the multivariable model, along with the power
consumption. Other internal parameters of the system, such as the refrigerant pressure and
temperature, are used to improve the model parameters. In fact, the work methodology
is the same, while several machine learning methods are used for data classification (e.g.,
support vector machines, Decision Trees, Extra Tree Classifiers, Ada-Boost Classifiers). The
AC system is considered a black box with input and output based on experimental data.
Linear and non-linear models are used to present the process of black-box strategy. Since
the measurements considered are nonlinear due to changes in indoor/outdoor conditions,
artificial neural network models are commonly used for nonlinear prediction in plants with
nonlinear behavior. The artificial neural network models have the ability to learn from
examples to detect faults. Models are trained, and the selected parameters represent the
relationship between the past values and the future measurements to identify abnormal
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events. The idea of the future work is to combine an Extra Tree Classifier model for fault
detection with an artificial neural network for the proposed model (Figure 8).
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The FDD process is organized as follows:

• Selecting the list of common and frequent faults as the objective of the FDD method.
• Identifying the optimal sensor position and number capable of detecting the maximal

number of common faults without having redundant data.
• Collecting the data during normal and faulty cases.
• Training the first ANN model (Figure 8) using the compressor power consumption

dataset and the indoor/outdoor operational context (i.e., temperature, humidity). This
step allows us to detect two cases: normal operation or faulty operation. It requires
less processing and data analysis performance, and it allows you to detect faults at
their beginning.

• In the case of fluctuated compressor power consumption for the same operation
context used for the training, the Extra Tree Classifier model starts the analysis of the
other measurements (e.g., compressor vibration and temperature, refrigerant pressure,
input/output condenser, and evaporator temperature) in a way to identify, from the
fault library, the equivalent fault cause of this fluctuation.

• Detecting simultaneous faults based on the library fault. In the case of faults that have
similar symptoms, another sensor should be added to distinguish the two similar
faults, which is the role of the optimal sensing step.

7. Conclusions and Perspectives

This work highlights the main shortcomings of existing FDD methods for AC systems.
Common faults are summarized, along with the different methods used for fault detection.
Soft faults attracted more attention due to their effect on the performance of the system and
because they were more difficult to detect. During soft faults, the AC system still works
without affecting occupant comfort, but the system’s performance is degraded, which
increases energy consumption and automatically reduces the energy efficiency of buildings.
Some terrifying statistics show that 30% of the actual heating, ventilation, and AC systems
have two or more soft faults. A survey and analysis of several AC systems show that 72%
have an improper refrigerant charge, 54% have improper air flow, 20% have failed sensors,
and more than 80% have non-optimal control. Due to the lack of alarms for examination in
the field and the improper installation, AC systems do not achieve their rated efficiency, and
they are still the largest consumer of electricity in the building. This system should attract
more attention from research communities to make it “smart and interactive”, especially for
fault detection and diagnostics. Existing FDD methods focus more on specific component
faults without the ability to detect simultaneous faults. The development of new methods to
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detect simultaneous faults is required, and the new methods should be capable of detecting
faults independently of the AC size or manufacturer. In fact, data-driven approaches have
the ability to deal with existing limitations due to the integration of new information and
communication technologies. The major conclusions and perspectives are summarized
as follows:

• Significant energy can be saved by the proper diagnosis of AC systems. Simultaneous
faults should be detected as quickly as possible, requiring robust methods for detection,
classification, and diagnostics. The new FDD-based, data-driven approaches should
be capable of being deployed in isolated areas where the AC system is not connected
to the internet.

• The development of information and communication technologies is a key to im-
proving the efficiency of AC systems. The use of artificial intelligence is a factor that
can help automate the system with the deployment of new methods for predictive
maintenance. The Internet of Things concept should be integrated into AC system
monitoring and control to make the system more interactive with its environment and
especially with the occupant. Additionally, the use of the Internet of Things helps with
the data collection and processing integrated for the development of new control and
predictive maintenance methods.

• AC systems can be connected with other building services for optimal control and also
for the integration of new concepts such as virtual sensing in order to have a larger
dataset for monitoring and fault detection. Weather conditions datasets are intercon-
nected with the system control for optimal operation to achieve rated efficiency.

• Research should consider the context-driven awareness of AC systems to minimize
the energy consumed and maintain maximal occupancy comfort. The occupancy and
activity detection in the building are the main keys to optimally controlling the AC
system in a way to minimize the use of this massive consummator of energy. The use
of new information and communication technologies, especially the Internet of Things,
is an interesting concept used to make the AC system a “smart service” that interacts
with the end user and with other services.

• The use of machine learning methods is an interesting key for future work in order to
develop new methods for fault detection, diagnostics, and AC system control. The
identification of accurate machine learning algorithms for parameter prediction and
data classification is required for precise FDD deployment.

In the future, the emphasis should be on the development of a sensor architecture
deployed for optimal control and monitoring of AC systems in order to achieve the men-
tioned objectives. The effect of each fault should be selected to identify the type, the
location, and the number of sensors required to detect a maximal number of faults with
a minimal number of sensors. The AC system should be considered a smart service for
building communication with other devices using the Internet of Things platform. This
communication allows for the combination of social sensing and data-driven methods for
FDD, which reduces the cost of their deployment and increases AC efficiency. In short,
further work needs to be done in optimizing architecture, detecting simultaneous faults,
developing FDD methods independent of AC size, applying the Internet of Things, social
sensing, and deployment in isolated areas.
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