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Abstract: The integration of renewable energy sources (RES) was amplified, during the past decades,
in order to tackle the challenges related to energy demands and CO, increases. Recently, many
initiatives have been taken by promoting the deployment and the usage of micro-grids (MG) in
buildings, as decentralized systems, for energy production. However, the variable nature of RESs and
the limited size of energy storage systems require the deployment of adaptive control strategies for
efficient energy balance. In this paper, a generalized predictive control (GPC) strategy is introduced
for energy management (EM) in MG systems. Its main objective is to efficiently connect the electricity
generators and consumers in order to predict the most suitable actions for energy flow management.
In fact, based on energy production and consumption profiles as well as the availability of energy
storage systems, the proposed EM will be able to select the best suitable energy source for supplying
the building’s loads. It will efficiently manage the usage of energy storage and the utility grid
while maximizing RESs power generation. Simulations have been conducted, using real-sitting
scenarios, and results are presented to validate the proposed predictive control approach by showing
its effectiveness for MG systems control.

Keywords: control strategies; cost function; energy management; micro-grid systems; predictive
control; operation constraints; renewable energy sources integration; simulation

1. Introduction

In the past decades, energy management (EM) systems have been proposed for improv-
ing the global performance of buildings while maintaining a suitable occupants’ comfort.
Recent studies showed that energy consumption in buildings could be efficiently reduced
by deploying micro-grid (MG) systems [1]. The aim is to minimize the electrical bill’s cost
while extending the lifetime of the system’s components (e.g., converters, batteries, and
fuel cells). Generally, an EM system incorporates control approaches and functions, which
maximize the MG system’s efficiency and minimize energy consumption. In some cases,
control approaches use single-objective function procedures (e.g., maximizing the quality of
services). Without considering different operating constraints, these procedures are easier
to implement and to deploy in real-sitting scenarios. Moreover, an EM control strategy,
which takes into consideration only the energy availability within MG components (e.g.,
energy sources, storage devices, utility grid), could be implemented by simple algorithms.
These algorithms implement procedures that switch, at each time, from RES to storage
devices or to the traditional electrical grid (TEG). For instance, actual commercial inverters
are able to manage the interconnection between renewable energy sources (RESs), energy
storage systems, and the utility grid by incorporating a single-objective function. In partic-
ular, the MG system’s EM takes into consideration only the availability of the electricity
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for being supplied to buildings loads. For instance, the inverter can use either batteries or
the utility grid without taking into account other parameters, such as the actual electricity
cost as well as batteries charge/discharge cycles. However, high battery charge/discharge
cycles, in a limited time, could decrease their performance, which impact on the system’s
profitability [2]. In other cases, controllers can interact, in real-time, with energy sources
generators (e.g., solar, wind) in order to limit the power generation (limited power point
tracking). The aim is to ensure the quality of electrical services (e.g., frequency, voltage),
and consequently minimizing the profitability of MG system’s components. Despite their
advantages, they could have, however, negative impacts on the batteries’ lifecycle and
system’s profitability. Therefore, context-awareness principles and predictive analytics
could be exploited for developing context-driven and predictive control approaches, such
as generalized predictive control (GPC) [3]. It is worth noting that GPC approaches are not
new and have been applied in grid and EM control applications. However, due to recent
development of information and communication technologies (ICT), these approaches
could be deployed in real-sitting scenarios by using machine learning algorithms and
recent artificial intelligence techniques. The latter are mainly used to forecast/predict
control input parameters, such as power production and consumption. Furthermore, the
improvement of microcontrollers and microprocessors offers more advantages for the
predictive control deployment in embedded devices, such as in power converters [3,4].

The work presented in this paper introduces a predictive control approach for EM
in MG systems. In fact, due to the development of information and communication
technologies (e.g., machine learning, IoT/big-data, smart metering) with its integration
to the energy management component, the predictive control can have a new revolution
using machine learning algorithms to forecast the input control parameters. In addition,
the improvement of microcontrollers and microprocessors offers more advantages for the
predictive control deployment. The proposed control approach is capable to manage energy
flows in MG systems using data prediction and forecasting algorithms. Mainly, collected
data (e.g., power production, power consumption, batteries’ state of charge) can be used to
train machine-learning algorithms in order to generate the control input parameters. The
main objective is to improve the performance of existing predictive control methods by
using recent Internet of things (IoT) and big-data technologies [4-6]. In fact, unlike the
above-mentioned approaches, the proposed control approach considers multiple objective
functions, which take into consideration batteries charge/discharge cycles as well as the
electricity price forecasting. Its main aim is to ensure, in an optimal way, the continuous
electricity supply, from different installed sources (e.g., RESs, batteries, TEG), to building’s
services. The proposed approach is based on the GPC model, which is able, based on
forecasted inputs values, to generate a sequence of future control actions over a prediction
horizon. This requires an advanced metering infrastructure, which allows measuring and
predicting all inputs values. Therefore, an MG was deployed together with an [oT/big-data
platform in order to conduct experiments and validate developed models. As depicted in
Figure 1, the MG system contains RESs and battery storage systems, which are connected
together with the utility grid in order to supply the electrical energy to building’s loads
(e.g., lighting, ventilation). The IoT/big-data platform was developed and deployed in
order to allow measuring and forecasting RESs power generation, loads consumption,
and batteries state of charge (SoC) [7,8]. An embedded system was also developed and
contains mainly a microcontroller, which is connected to several sensors (e.g., current,
voltage) and actuators for performing selected and generated actions by the GPC-based
controller. This later, based on forecasted values, allows switching between different energy
sources, batteries, and the utility grid. The GPC is deployed for conducting experiments
and compared against a model predictive control (MPC) strategy, as already developed in
our previous work [3].
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Figure 1. Energy management schemes with GPC operation processes (Reprinted from ref. [3]).

The remainder of this paper is organized as follows. Section 2 presents a brief state of
the art of predictive control deployment for EM and power converter control. Materials
and methods are presented in Section 3, by putting more emphasize on system modeling
for the GPC algorithm deployment together with its optimization functions and constraints.
The results and interpretations are discussed in Section 4, by deploying the investigated
GPC model and control strategy. Conclusions and perspectives are outlined in Section 5.

2. Related Work

Appropriate EM systems, incorporating control strategies, are required for reliable
and robust operation of MG systems. These control strategies must take into consideration
the nature of installed RES, storage systems, and their interconnection to the electrical
networks. Figure 2 presents the future architecture of MG systems together with the
required control strategies, which could be adopted at each system’s level. It highlights
the role of participating entities in this new smart electricity network (e.g., manufacturers,
electricity operators, consumers). However, the most significant challenge of this new MG
system’s architecture is the development and the deployment of suitable control strategies.
These strategies are required for efficient energy balance while ensuring a high level of
power quality and favoring the active integration of prosumers in its related emerging
electricity market. In addition, within this new MG system architecture, control strategies
must take into consideration the multiple disturbance variables and constraints, which are
present at different time scales.

Recently, numerous approaches have been proposed and could be classified according
to the MG system’s layers, as depicted in Figure 2, including primary, secondary and
tertiary controls. At the primary control level, the power converter is connected to RESs and
interacts directly with the EM system. This later is responsible for improving the frequency
and the voltage stability by preventing circulating the current among converters. Generally,
frequency- and voltage-power droop controls are deployed as the primary controller [9].
The droop control method is often used at this level in order to emulate physical behaviors
that make the system stable and more damped [10]. In fact, the load changes in the
MG cause direct current (DC) link voltage variation and the droop controller can change
the output power of the converter by interacting on the voltage variation. It includes a
virtual impedance control loop to emulate physical output impedance. Moreover, in this
hierarchical layer, the control signals are sent in milliseconds [11] in order to stabilize the
internal MG buses, to address some power quality issues, and to track the maximum power
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Figure 2. Micro-grid energy management levels.

At the secondary control layer, the controller ensures, after system load variation, that
the power levels (e.g., frequency, voltage, current) into the MG systems are within the
required standards values. The standardization is considered by the converters” manufac-
turers in order to ensure a seamless MG connection or disconnection to or from the utility
grid. It can include a synchronization control loop in order to avoid voltage and current
violations by sending modified power references to the distributed energy sources. In
addition, this control layer is considered as a mediator between the third and the primary
layers. In fact, the second layer corrects the frequency and voltage deviations between
the optimization upper reference signals and real MG’s measurements, which have not
been solved by the primary control. In this context, this control level can be formulated
as a redundant optimization problem in order to achieve more accurate outputs [12]. As
shown in Figure 3, this control level is considered as a lower controller layer. It can be
designed to reach the optimal power references toward the primary control layer, which is
responsible for generating the commands (e.g., turn-on, switch-off) to each commendable
unites in the converter to reach the desired set point. At this layer, the EM system takes its
decisions based on dedicated inputs, mainly RES power generation, power consumption,
battery SoC, weather forecast, and the energy price estimation [13,14]. Generally, the
control strategy is designed as an optimization problem taking into account both discrete
(e.g., RESs disconnection decisions, the operation state) and continuous variables (e.g., bus
voltage, active and reactive power). This optimization is most often solved using integer
linear programming techniques [15-17].
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Unlike primary and secondary control layers, the tertiary control manages the power
flow between the MG and the electrical grid on the one hand and between the MG and
eventually neighboring MG on the other hand. This control, throughout the EM, allows
the optimal operation and planning of the MG system taking into consideration the second
layer control outputs [9]. The main objective functions of this control layer are to minimize
the daily operating costs, to maximize the profitability of the installed RES system, and to
improve the self-consumption of the RESs. These functions are formulated as optimization
problems by including the energy cost function and environmental/operational system’s
constraints, as shown in Figure 3. By considering those constraints, the optimization
problem could be solved using convex optimization techniques (COT), which compute the
appropriate MG system’s operations and daily cost. The commands and actions in this layer
are updated every second, minute, hour, or even daily, depending on deployed control
strategies. In addition, the power generation and consumption together with batteries’
SoC have to be measured and processed in order to generate new reference values to the
controller. Recently, predictive approaches have been proposed for advanced systems’
control according to defined constraints. Their aim was to develop predictive controllers
for efficient energy flow in MG systems. These controllers could forecast future actions and
decisions, but they require forecasted inputs’ values (e.g., power consumption/production).
With recent progress in IoT and big-data technologies together with machine learning
and artificial intelligence techniques, it is now possible to deploy sensors for gathering
contextual data [13]. These data could be processed and used for predicting n-step-ahead
values. Therefore, the forecasted values are the main inputs that are used by predictive
control approaches for generating the most suitable and future actions [5].

MPC and GPC are the well-known approaches having the capabilities of predicting
future events and forecasting right control decisions accordingly. In fact, they have the abil-
ity to incorporate optimization mechanisms, which allows integrating system’s constraints
and disturbances in forecasted control decisions. For instance, the GPC is widely used in
advanced control applications, such as in EM and buildings” automation systems [6,18-20].
For example, the work presented in [21] introduced a home EM system for battery storage
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and PV systems. The proposed planning, for the optimal operation strategy, is expressed as
a stochastic mixed-integer nonlinear programming. The power generated by the PV system
is considered as an uncertain parameter and modeled by a probability distribution function.
The battery storage system is used to store energy during off-peak/low-cost hours and
discharge energy during on-peak/high-cost hours. However, the main limitation of this
EM strategy is the passive reaction of the system with the cost and the peak demand
variability. It is programmed by a fixed time interval, which represents the predefined
periods of on-peak and high-cost. In addition, it is not defined by an active function
for the interactive variability of the cost and the electricity demand. Moreover, authors
in [20] proposed an adaptive and dynamic optimization technique based on the stochastic
MPC approach. The proposed EM approach is applied for distributed energy resources
scheduling problem for a set of smart homes with different sources of energy. Its aim is
to address the uncertainty and variability issues of the PV power generation. This study
is designed for large-scale smart houses by taking into consideration their cooperation
with their surrounding neighbors. Another interesting work is presented in [22], in which
the authors proposed an EM system using the MPC where a simple state-space model
is used for the performance modeling of a MG system. This work considered the RESs
power production and the consumption as measured disturbances parameters for the EM
system. Therefore, the storage systems and the cost are modeled as constraints for the
MG system, which are solved by the state-space equations. In addition, other works are
presented in literature, which refer to optimal control of RES in MG systems, considering
hybrid storage systems, as detailed in [23]. In [24], the authors used the MPC for optimal
control of distributed energy resources with a battery storage system. In other works, the
MPC is used for EM of MG systems that are connected to the charging station for electrical
vehicles [25-27]. Generic MPC models are introduced in [28,29] for economic optimization
in MG systems. Another interesting work is presented in [30], where authors proposed
a MPC methodology to manage the power quality of MG system. The power converters
are regulated in order to achieve the requirement by applying the algorithm to a four-wire
three-phase voltage source inverter, which works as master of a microgrid with unbalanced
and non-linear loads and generators connected.

It is worth noting that the MPC family was proposed for electronic power, and es-
pecially for power converter control. The GPC is one of the continuous control set MPC
(CCS-MPC) methods that calculate a continuous control command in order to generate
the desired output of the power converter. The CCS-MPC models have a lower computa-
tional cost than other existing methods, such as the finite control set (FCS-MPC), optimal
switching vector (OSV-MPC), and optimal switching sequence (OSS-MPC) [31]. It can
be used for a long predictive horizon by calculating the control actions beforehand and
then limiting the online computation burden. Mainly, the calculation time is the main
factor for the deployment of MPC control families. In past decades, the development of
computing units and the integration of ICTs and machine-learning algorithms for power
electronic applications encourage the use of predictive control for power converters. For
instance, in [32,33], a FCS-MPC is used for current control of three-phase inverter. It is
studied in [34] for a multiphase inverter, in [35,36] for a multilevel inverter, and in [37,38]
for a matrix converter. For more details, we refer readers to recent interesting reviews,
which are related to predictive control applications in power electronics [39-42]. The work
presented in [43] investigated decentralized MPC based hierarchical control scheme with
both primary and secondary level for an islanded alternative current (AC) MG system.
The aim was to address power quality and unequal power sharing problems. The control
scheme consists of an inner control loop, primary and secondary control. The FCS-MPC
is incorporated in the inner loop to track the reference voltage and fix the capacitor volt-
age in each distributed generator unit. Primary control comprises of virtual impedance
loop and droop control to manage the power flow and power sharing among distributed
generator systems. Moreover, state space predictor based secondary control is proposed
for regulating frequency of the MG and node voltage to their nominal values in islanded
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operation. In [40], authors reviewed the system components, modeling, and control of MG
for future smart buildings. An overview of MG control and optimization is given in terms
of optimization methods, constraints, and objectives. Mainly, depending on the scale of
the controlled system, several works are presented. In fact, for some research works, the
control constraints and the objective functions are investigated for large scale MG systems.
For example, authors in [44] presented a good control strategy based on an economic MPC
approach for community-based MG systems. The control strategy is applied to design the
central controller of a large number of MG systems. It mainly showed the capability to
efficiently deal with multivariable dynamic constrained systems and to predict properly
its actions in order to achieve the optimal performance according to user defined cost
functions. Authors realized a comparative analysis of both heuristic and MPC approaches.
Reported results showed that the MPC approach has a strong impact on the overall cost
of the system. It is able to guarantee a 20-year lifetime of the battery avoiding then its
replacement while satisfying the other required criteria.

In this work, a hierarchical approach is proposed to control the energy flow in single
MG systems. Unlike the works that investigated the control approaches for multiple MG
systems, this work focuses on the EM of a single MG system with the perspective to develop
a smart inverter, which can execute predictive control approaches. More precisely, an EM
system is deployed based on GPC model in order to manage the operation of such MG and
in particular its interaction with the main utility grid. A power converter is then modeled
and controlled by a GPC model for ensuring the interaction with the grid. An optimization
function with dedicated constraints is modeled for both secondary and tertiary layers.
For the second layer, the charge/discharge cycle of the battery and the maximum power
extracted from RESs are designed as the main constraint to be optimized by the GPC model,
while for the tertiary layer the electricity price is integrated as an input parameter for the
controller.

3. Materials and Methods

The MG system is connected together with the utility grid and storage systems in order
to supply the power to the building’s load. Furthermore, the MG system could operate in
either connected or standalone modes while ensuring frequency and voltage quality. This
section provides more details of the MG system modeling for the GPC integration. The
GPC model is presented by focusing on its key elements, which we have considered in the
present study.

3.1. Control Strategy Design and GPC Integration

The GPC s a predictive approach that allows computing and predicting the suitable ac-
tions for being performed according to forecasted and contextual information/constraints
of MG systems. It can be classified with advanced process control families with less
variation in process variables. Its main concept, as depicted in Figure 4a, is described
as follows. Based on a predefined model of the MG system, optimal future actions (con-
trols/commands) are computed to reach the desired set point according to the defined
constraints and optimization functions. These functions consider future errors, constraints,
and control parameters (Figure 4b). An interesting work is presented in [45] about model
predictive control for buildings. The work provides a unified framework for model predic-
tive building control technology with a focus on the real-world applications.
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As described in Figure 4a, the predictor generally calculates, for each instant ¢, the
predictions of the dynamic evolution of the process [y(t+1), ..., y(t+ N)] through-
out the defined horizon, N — steps ahead. This prediction is based on the dynamic
parameters, which are measured at ¢, as well as the future control system’s regulation
[u(t), u(t+1), ..., u(t+ N)]", along the prediction horizon N. The future control actions
are then generated in order to optimize the desired cost function by resolving, at each
defined time step, the predefined constraints. The designed cost function keeps the sys-
tem’s output at (¢ + k) as close as possible to the defined setpoint. This setpoint dictates
the output evolution accordingly by considering the evolution of the constraints position
(Figure 4b). As is explained in Figure 4b, the system should be controlled to reach the set
point by calculating the minimum trajectory from the actual measurements respecting the
cost function to be minimized and avoiding the obstacles (constraints) at the same time.
Generally, the cost function takes the form of a quadratic function of the errors between the
predicted output and the set point [46].

For GPC integration within the MG system, we focus only on secondary and tertiary
control. The former control considers that the EM supervises the MG system by gathering
the required data from its entities, mainly RES, batteries, and loads. It mainly manages the
energy for both grid-connected and islanded modes with reliable and secure operation.
Accordingly, the controllable units of the studied MG system, in both modes, are modeled
by a state-space equation, described in Equation (1), where x(t) is the system state, u(t) is
the vector of manipulated variables, y(t) is the output vector, and A, B, C are respectively
the system matrix, the control matrix, and output matrix.

{ x(t+1) = Ax(t) + Bu(t) 1)
y(t) = Cx(t)
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In the secondary layer, we have incorporated the GPC within the EM in order to
generate suitable control actions for efficient power Demand /Response balance. More
precisely, the batteries SoC is controlled by the GPC strategy according to the variability of
predicted power production, power consumption, and electricity cost. In fact, the power
generated by the RESs and the power consumption are considered as disturbances sources
for the MG system during its operation. Mainly, the storage system is the main unit
used to smooth power fluctuations in MG systems and the main parameter considered
for studies in the literature is the SoC variability [47]. For that, the control strategy is
designed based on the SoC variability in a MG system, which is used to smooth the
power generation on the one hand, and to minimize the electricity price for another hand.
Therefore, batteries” SoC could be modeled by a state-space equation while the variability
of these controllable parameters is considered because of the disturbances variation, which
is described as follows:

p. — | PrEs = Pioa; if O < Prps and SoCpin < S0C < S0Ciax o)
bat = Pioad; if Pres = 0 and SoC,yy < SoC

where Py, is the power generated or extracted from the battery, Prgs is the power generated
by RES, Py, is the load demand, SoC,,;;, is the minimum batteries SoC (to avoid a deep
discharge), and SoCy,y is the SOC when the batteries are fully-charged.

Generally, the controller cannot manipulate the disturbances of the system. Hence, in
our GPC model, the RES power generation and the load consumption are represented as
measured system’s disturbances. These disturbances can be computed using actual mea-
sured power production/consumption, which are in turn affected by external disturbances
(e.g., weather conditions, occupant’s activities). The deployed lIoT/big-data platform, as
stated above, could handle this task by forecasting these disturbance parameters (i.e., RES,
load power), and consequently, minimizing the GPC prediction errors [4,5]. In fact, if
the disturbances can be measured or predicted, their influence on the system’s output
can be included in the GPC model. This allows anticipating their effect on the control
command. Like any predictive control model, the GPC can reject disturbances according to
the feedback mechanism. In this way, the GPC can inherently include a feed-forward effect.
Therefore, the d(t) disturbances’ effect is added to the state-space formulation (Equation (1))
and the equivalent dynamic model is then written in Equation (3), where B is the matrix,
which quantifies the effect of the disturbances on the system states, and d(t) = Pres — Pload
combines the disturbances into one variable.

{ x(t+1) = Ax(t) + Bu(t) + Byd(t)
y(t) = Cx(t)

As stated above, the main aim of the GPC is to control the battery charging /discharging
power. In fact, the GPC regulates the battery state in order to reach the operating goal
(i.e., demand/response balance) and to make the right decision: charge, discharge, or
battery-at-rest. At a first step, these decisions are made depending on the conditions, which
are mentioned in Equation (2). It is worth noting that for modeling the SoC dynamics,
the disturbances could be indirectly integrated in the control variables. More precisely,
the future values SoC(t + 1) can be calculated by accumulating the actual SoC(t) and the
battery charge/discharge current, as described in Equation (4), where Ip;; = Ires — Lipad
is the batteries’ charge/discharge current, Iggs and Ij,,; are respectively the PV and load
current, C is the nominal capacity of the battery, and At is the operating period.

®)

SoC(t+1) = SoC(t) + Ipa (t).A/C )

By considering the SoC(t) as the system state, Equation (4) can be rewritten by Equa-
tion (5), where x(t) is the system state, A = 1, and the I;,;;(t) = B is the system input.

x(k+1) = Ax(k) + BU(k) (5)
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By interpolation, Equation (4) to n-step-ahead, the above-mentioned form (Equation
(5)) could be rewritten in a matrix form as follows:

B 0o ... 0
x(k+1) A L U (k)
‘ B o L : ©)

x(k+n) A" : - B 0 Uk+n+1)
A" B ... AB B

Mainly, for the input vectors, we consider the following change:

U (k) = U(k—1) + AU(k)
U (k+1) = U(k) + AU(k+1) = U(k— 1) + AU(K) + AU(k +1)

@)
Uk+n—-1)=U(k—-1)+AUk)+ AUk —1)+...+ AU(k+n—1)
The input vectors u(k) could be similarly rewritten as follows:
u(k) . 1 0 ... 0 AU (k)
U(k+1) 1 . e AU(k+1)
) = : U(k—-1)+ ) ®)
: 1" : .. .0 :
U(k +n) 1 ... 1 1 AU(k+n+1)
It is equivalent to:
U= LU(k—1)+ LAU(k) )

We can then obtain the following predictive model by replacing Equation (9) in
Equation (6):
{ X = Ax(k) + BLU(k—1) + BLAT(K) -

Y = 6x(k) + 5[1U(k — 1) + 5[2AU(I()

The main constraint, we have considered in the secondary control layer, is related to
the batteries’ charge/discharge (i.e., the SoC stays at its maximum as much as possible).
Therefore, the aim is to minimize the given objective function Ey (Equation (12)) within a
prediction horizon N. It should be noted that the prediction horizon N has a length strictly
superior to the control horizon n. However, for some scenarios, when a machine-learning
algorithm is used to generate the control input parameters, the prediction horizon can be
minimized and the optimization function can generate its optimal behavior based on the
forecasted values [3]. However, in order to get the control sequence AU, the criterion that
will be optimized is described by Equation (13). It is composed of the quadratic error and
the command level.

Yyer = [S0Chax(k +1), S0Ciax(k+2),...,S0Chax(k + N)] (11)
1 SoC(t)
N SoC(t+N)
= % (EQET +AUR AUT) (13)

Alike the secondary control, which manages the energy for both grid-connected and
islanded modes with reliable and secure operation, the tertiary control tackles all issues
related to the interconnection between the MG system and the utility grid. It mainly adjusts
the power set point in order to efficiently manage the power flows by having the possibility
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Pres = Ppar

to interconnect multiple MG systems. This control layer is mainly considered at the same
time as a part of the main grid and the MG system. Under this control, several constraints
could be included as a cost function for the efficient management of MG systems. Examples
are the electricity price (i.e., the cost for purchasing electricity from the utility grid), the
system’s profitability (i.e., daily operation costs of the battery storage system and RESs),
and the revenue related to the excess energy, which is injected to the utility grid (i.e., selling
energy to the neighboring MG systems).

In this work, the electricity price is considered as a fundamental constraint, which is
shared between the secondary and the tertiary control layers. In fact, by interpolating this
constraint in both layers, the control actions must be generated according to the electricity
price variability. The cost function variability used in our work follows the energy price,
as presented by the European foundation [48]. In fact, the following control strategy
is adopted. When the electricity price is inexpensive, the control strategy could charge
the batteries from the main grid for being used during the morning peak consumption,
otherwise, the batteries and RESs could be used to supply the power to building’s loads
while the surplus can be injected into the utility grid. Mainly, when the price is less
than a defined threshold value, a simple conditional control strategy could be deployed
to balance the power flow by providing the priority to RESs and the utility grid than
batteries, otherwise, the batteries and the RESs have the priority to supply the building’s
loads, as shown in Figure 5. In all cases, the battery can be charged from either RESs or
the utility grid according to the daily electricity price variation. In order to include the
above-mentioned constraints into the GPC, we use an incremental model by considering
Au(t) = u(t) — u(t — 1) as the control decision variable, and, therefore, the state-space
equation could be represented as in Equation (14), where the new state vector is z(t) =
[x(t).u(t —1)]" and the matrices M, N, and Q are obtained by comparing Equation (3)
and Equation (14).

{ z(t+1) = Mz(t) + N Au(t) + Nyd(t)
(14)
y(t) = Qz(t)

Start

Measure
Pres, Proaa, SOC

Yes

*Proad = Pgria Proaa = Pres+ Ppat
Battery at rest *Pres = Ppar

Pload = Pgria + Pres
Autonomy

* Ppar = Pyria
* Charging the * Injection to grid « Injection to grid
battery from grid battery « Battery at rest « Battery at rest

* Charging the

Yes
Energy price > Threshold

Figure 5. Energy management and control strategy.
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It is worth noting that the basic theory of GPC is to compute a sequence of future
control actions in order to minimize a multi-stage cost function, which is defined over a
prediction horizon. The criterion to be optimized is the expectation of quadratic function
that measures the distance between the system’s outputs prediction and the reference se-
quence over a prediction horizon. In the presented state-space equation (Equation (14)), the
prediction includes the estimated disturbances (i.e., RESs production, load consumption).
The GPC original algorithm is extended to include the cases of measurable disturbances
and to change in the predictor. In fact, by considering a system that operates around a
practical set point, the single-input single-output of the system plant can be described by
Equation (15), after linearization, as follows:

A(zfl)y(t) = z*dB(zfl)u(t -1)+ C(zil> .% (15)

This model is known as a CARIMA (controller auto-regressive integrated moving-
average), where A = 1 —z7 1, ¢(t) is a zero mean white noise, d is the dead time of
the system, and the polynomials A, B, and C, in the backward shift operator z~ 1 are
presented by:

Az Y =14mz t +az 2+ +agz ™
Bz 1) =by+ b1z +bpz 2+ + bz (16)
Clz ) =14az+oz 2+ +cpz ™

The most transfer function model, used by the GPC method, is the commonly used
model, called CARIMA model. This form of plant model is formulated in a way that the
uncertainty is added into a good representation, so that slow variation of disturbances could
have non-zero steady-state. We then synthetize from the CARIMA model a one-step-ahead
prediction equation that represents a set of simultaneous prediction equations. The unified
GPC algorithm based on CARIMA model can be implemented using model parameters
without the need of solving Diophantine equations. The procedure of unified GPC starts by
estimating the model parameters and choosing the appropriate values of the maximum and
the minimum costing horizon. The model calculates the j-th step response parameter and
predicts the plant output assuming future controls equal u(t — 1) [49]. Therefore, the main
objective of predictive control is to predict the future control actions u(t), u(t+ 1), and
u(t + 1) in such a way that the future system’s output is driven to reach the set point. At the
end, the unified GPC calculates the future control increment, extract the first element Au(t),
and computes the u(t). This step is inspired from the model presented in [49]. Basically,
the GPC model consists of applying a sequence of control actions in order to minimize a
defined multi-objective cost function. It is worth noting that this vector is generated by a
machine-learning algorithm, which is mainly used to forecast the RESs power generation
and load consumption [13,50,51]. Consequently, the GPC predictor can reject the effect
of these disturbances, along the horizon N, by providing a feed-forward effect. Within
this context, the prediction is generated by considering only the cost function, which is
modeled by the electricity price as well as the cost associated to the energy mainly used to
keep the batteries” SoC at its maximum. Therefore, the constraint defined for the tertiary
level control can be written as follows:

N2 N2 Nu
J(N1, Na, Nu) = ‘ZI:\H u(t+j =1, + -szln [9(t+7)IE) —w(t+ IR+ Zi/\(]')mu(fﬂ'— 1)I3, (17)
= = =

The first term of Equation (17) represents the cost related to the energy supplied, by
RESs and storage devices, to the building’s load. §(¢) is the reference, w(t) is the plant
prediction, Nu is the control horizon, A(j) is the control weighting, and Nj is the minimum
costing horizon and it is equal to one if the delay is unknown and equal to delay if this
last is known, N, represents the maximum costing horizon. The matrix Q; is generally
diagonal and its values depend on the defined priority, which is set-up to control energy
sources, as stated above (Figure 5). The second term is responsible for set point tracking;
at each moment the main aim is to regulate the equality Ip,;; = Irps — [jpaq by regulating
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the battery current while respecting, as much as possible, the constraint described by
Equation (12). The third term considers the variability of the electricity price along the
prediction horizon N. It mainly represents the cost optimization function for the GPC.
However, keeping the SoC at its maximum is highly desirable in order to avoid high cycles
of charge/discharge, which could have a direct impact on batteries’ state-of-health. At
the same time, overcharging of batteries must also be avoided, as is presented in Equation
(2), to keep a good state of the health for battery storage. This constraint is, however,
not mandatory for the MG system’s operations. Therefore, the elements of the matrix R
will be smaller than other matrix elements. Accordingly, the optimal solution of Equation
(17) could be obtained by solving a quadratic programming problem, as presented in [52].
Moreover, the best prediction of §(¢ + j) can be expressed by Equation (18) based on the
model developed in [52]:

g(t+)1H) = G (=) du(t+j—d = 1)+ F (1 )y(t) (18)

where, Gj(z ') = Ej(z7!)Bj(z!), Ej and F; are uniquely defined with degrees j — 1 and
na respectively.

The set of control signals u(t), u(t +1), ..., u(t + n), are obtained in order to solve the
GPC problem by optimizing the constraint in Equation (17). By considering that the system
has a dead time of d sampling period, the output of the system is influenced by the signal
output u(t) after sampling period d + 1. The minimum costing horizon, the maximum
costing horizon, and the control horizon can be defined respectively by: Ny = d +1,
Ny = d +n,and N, = n. However, the GPC law can be calculated using the Diophantine
equation. To obtain the control law, it is necessary to know the free response f, which
depends on the past and it is calculated recursively by:

fin=y(1—=A(z")) f+B(z7")dult —d + ) (19)

where A(z7!) = AA(z71), fo = y(t), and Au(t +j) = 0 for j > 0.
Equation (17) can be expressed as follow:

J=(Gu+f—w) (Gu+f—w)+AruTu (20)

where the matrix G is composed of the plant step response coefficients, so that the elements
of the first column of this matrix are the first n coefficients and the output sequence
[§(t+1), 9(t+2), ..., §(t+n)]" is equal to the first column of the matrix G, and w =
w(t+d+1) w(t+d+2)...w(t+d+n)".

The minimum of | can be calculated by considering the gradient of | equal to zero
and assuming there are no constraints on the control signal, which leads to:

U= (GTG + AI) T w— ) (21)

The control signal sent to the process is the first element of the vector u expressed by

Au(t) = K(w — f), where K represents the first row of the matrix (GG + AI) el

It is worth noting that the control strategy decisions are generated for a DC MG bus,
but the main grid is an AC power system. Thus, a voltage source inverter is required
to convert the DC voltage into AC voltage. This will allow generating efficiently the
control actions by the above-mentioned GPC model. The next section focuses on the MG
synchronization issue by providing a single-phase power converter model.

3.2. Single-Phase Modeling for MG Synchronization

The simulated MG system is connected to the utility grid by a bidirectional interface.
The aim is to have a complete scenario in order to study the usefulness of the GPC-
based control strategy. However, the converter is one of the power electronic devices,
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which requires time’s latency of tens to hundreds of microseconds in order to operate
efficiently [53]. This technical constraint could be avoided using the GPC for predictive
control. In fact, in order to compute the predictive output parameters (e.g., voltage, current),
a state-space equation is required to generate equivalent duty cycle impulse. As depicted
in Figure 6, the simulated model is, therefore, represented by a closed-loop configuration
of a single-phase MG system. The system is modeled by a DC voltage source and other
electronics components, which act as an interface between RESs and the AC utility grid.
Usually, an insulated gate bipolar transistor (IGBT) is used as a voltage source inverter due
to its fast-switching speed, which is represented by Vs, = 7(s)V;., where V. meant for
the deployed DC voltage sources, and 7(s) is the duty ratio, which is controlled by the
GPC model.

Voltage Source

Inverter
’ de |

S(te) Vaem— | |
] Vac IVdcref
/ l 1 \ I
-1 ~x vy VvV V¥
z lg+1 ( . I
< Predictive il
A 4
Cost function [ o model
minimization * ilt+1 Reference
S(tie+1) < design
: *
\ Vier1 /
@)
e

l Current Controller

Gating Signals | Vgrid

U, i :

S
m [pcc SHE ©

=
AY|
/1

L

DC Link VSC Line Reactor Filter Coupling
Transformer

Utility Grid ‘

(b)
Figure 6. (a) Single-phase MG system, (b) the test system with one-line diagram.

For the PID testing system, it is used for current regulation of the single-phase systems.
In single-phase systems, the common approach is to create a set of imaginary quantities
orthogonal to those of the single-phase system so as to obtain DC quantities by means of a
stationary-to-rotating frame (« fo dg) transformation. The orthogonal imaginary-current
component is usually obtained by phase shifting the measured real signals by a quarter
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of the fundamental period. The measured and the shifted current components are then
employed in an af — dg transformation, and a conventional dg current controller with
decoupling strategy is used. The output quantities of the controller are back-transformed
to the a8 frame to obtain the AC control signals. Usually, the « component of the control
signal is employed and fed into the PWM modulator, while the f component is discarded.
This approach is relatively simple and straightforward; however, the introduction of such
delay in the system tends to deteriorate the dynamic response, which becomes slower
and oscillatory. The main idea is to create an alternative current-regulation in which the
component of the control signal, along with that of the grid voltage, is adopted. The aim is
to create the imaginary current orthogonal to the converter current. The main objective
of this system’s model is to convert the DC power generated by RESs to AC power while
controlling the active and reactive power in order to have an equal power of both DC and
AC sides. In fact, the voltage through the inductor of the single-phase MG is described by
VL = L%L (see Figure 6). By considering Vs, as the switching voltage, the equation can be

written as follows:
dIL o E o Vs'w - Vg

dt L L
where, V¢ is the voltage through the capacitor, which acts as a MG voltage, and I is the
current across the inductor. By deploying the Laplace Transform, we obtain:

(22)

VL) _ Vals) ~ (o)

sL sL (23)

IL(S)

. . . . av, .
Moreover, the grid voltage of the single-phase is written as: C—* = I, where I is the
current across the capacitor. Therefore, we obtain the following equation:

vy 1
g _ =
3 —Clk (24)

The system state-space equation for a linear time invariant is:

dx(t) — A (t)+B (t)
{ yb(ii) = Cxx(t) + Dz(t) (25)

From Equation (22) and Equation (24), we obtain respectively the system state matrix,

the input variable, and the disturbances matrix: x = [ ‘I/L }, u = Vo), and d = [I;]. The
8

duplication of this presentation with Equation (25), we obtain Equation (26) as follows,

where, y = [V,] = [01] [ ‘I/L ] represents the output of the system.
g

8118 L[ S

Generally, the GPC-based controller computes, for each sampling time, a sequence
of actions that minimize the defined cost function. Only the first action is applied to the
controllable system by solving the open-loop optimal control problem. This process is
repeated, at every sampling time horizon, for remaining actions. In our case, the GPC
strategy is applied to the current’s control of a power converter, as described in the block
diagram of Figure 6. For instance, when the predictive time horizon is 1, the optimal control
action S(ty), calculated at t;_1, is applied to the converter. The measured current i, and
voltage V. . are used by the reference design model in order to generate the reference
current i ; and voltage ij: ", 1- The predictive model allows then computing the predicted

current i} ; and voltage Vi ;. Furthermore, the defined references and the predicted cur-
rent and voltage values are used to improve the cost function, and consequently generating
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the optimal control action S(t;, ) for being applied at t; ;1. However, the main problem,
which could face this predictive approach, is its deployment in actual inverters for real-time
control. This is due mainly to the considerable processing time delay, which is required
to generate predictive values. This delay must be considered in the design of the power
controller, and consequently, the delay compensation is a practical method that is used to
solve such problem [54]. Within this context, we consider a single-phase system, which
is interfaced with the utility grid, as depicted in Figure 6. Therefore, for a voltage-source
converter with regulated input currents, the dynamics of the AC-side of the MG system
can be represented by Equation (27), where L and R are respectively the inductance and
the resistance of the voltage-source converter filter.

. digyp
Va,abc = Rlubc + L% + Vi, abc (27)

The predicted current vector i , is calculated, during a sampling time T, by a discrete-
time model, which is a function of the measured currents iy, the inverter voltage Vg, and

the electromotive force e (k). This current vector is described as follows:

N RT,\., T ~

According to the model of Equation (28), the cost function for the power converter is
defined as the error between the reference and the predicted current values. It is described
by Equation (29), where i, is the real part and iy is the imaginary part of the reference

current vector i/, and if and i g are respectively the real and imaginary parts of the predicted
current vector iy ;.

J = |ix —ix| +

Moreover, as stated in [54,55], the three-phase is presented by seven different voltage
vectors. To simplify the presentation, the system is represented by three values of  in
order to have only three possible trajectories for ig, in particular for a single-phase system.
Figure 7 highlights the problem related to the processing delay, especially for ideal and

practical cases.

i;-%‘ (29)
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Figure 7. Predictive control operation, (a) ideal case: calculation time is negligible, (b) practical case: calculation time

is significant.
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In Figure 7, the red curve represents the predicted current, as mentioned in Equation
(28), the green curve is the actual current, which is obtained by minimizing the cost function
of Equation (29), and the black line is the considered current reference. Depending on
the processing speed and the sampling frequency, the time is significant between the
parameters’ measurement and the application time (including the time for prediction) of
the new control action. For an ideal case, the processing time, spent by the microcontroller,
is insignificant and the predictive control model operates as shown in Figure 7a. In fact,
at the present time f;, the cur