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Abstract

How is trait diversity in a community apportioned between and within co-evolving species? Dis-

ruptive selection may result in either a few species with large intraspecific trait variation (ITV)3

or many species with different mean traits but little ITV. Similar questions arise in spatially

structured communities: heterogeneous environments could result in either a few species that

exhibit local adaptation or many species with different mean traits but little local adaptation. To6

date, theory has been well-equipped to either include ITV or to dynamically determine the num-

ber of coexisting species, but not both. Here, we devise a theoretical framework that combines

these facets, and apply it to the above questions of how trait variation is apportioned within9

and between species in unstructured and structured populations, using two simple models of

Lotka-Volterra competition. For unstructured communities, we find that as the breadth of re-

sources increases, ITV goes from being unimportant to crucial for characterizing the community.12

For spatially structured communities on two patches, we find that either no local adaptation,

symmetric local adaptation, or asymmetric local adaptation prevails depending on how much

the patches differ. Our framework provides a general approach to incorporate ITV in models of15

eco-evolutionary community assembly.

2



Introduction

In recent years, the need to understand intraspecific variation of functional traits has been in-18

creasingly recognized as important for understanding the functioning of ecological communities

(Albert et al., 2010; Violle et al., 2012). For example, intraspecific trait variation (ITV) has been

shown to be important for detecting niche differentiation and environmental filtering (Paine21

et al., 2011) and for quantifying how pairwise species interactions affect the total biomass in ex-

perimentally assembled communities (Kraft et al., 2014). ITV in functional traits has also been

shown to often be substantial compared to variation between species (Siefert et al., 2015).24

If species have heritable variation in traits that affect fitness, natural selection will act on that

variation, changing the distribution of traits in the community over time. In the long run, a

community with a fixed number of species will approach an attractor for the eco-evolutionary27

dynamics, in the simplest case an equilibrium. However, such an eco-evolutionary equilibrium

could still be invasible by other species from outside the community with other trait distributions,

and one of the resident species might be under selective forces that results in an ‘evolutionary30

branching’, where a species ends up at fitness minimum as a result of directional selection and

consequently splits into two (Geritz et al., 1998). Thus, in the longer term, the species richness of a

community at an eco-evolutionary equilibrium might not be stable. Eventually, a community that33

is in equilibrium and is stable to further addition of species may be reached. Such a community

has been called an evolutionarily stable community (ESC); since such a community can persist

over long time scales and serves as an attractor for eco-evolutionary dynamics, ESCs can serve36

as important model communities (Edwards et al., 2018).

If both the number of species and the trait variation within each species are driven by eco-

evolutionary dynamics, this then raises questions regarding how trait variation is apportioned39

between and within species in ESCs. For example, what happens when selection goes from

being stabilizing to being disruptive? In general, this can depend on many factors—including

genetic architecture, phenotypic plasticity, and mating patterns (Rueffler et al., 2006)—but even42
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in simplified, purely phenotypic trait-based modeling, theory gives different answers depending

on the basic assumptions the theory uses. When the theory includes ITV but fixes the number of

species, weaker stabilizing selection will lead to more ITV (Kimura, 1965; Bürger, 1986), whereas45

in theory where the number of species is dynamic, but with no ITV, weaker stabilizing selection

will lead to more species coexisting (Levins, 1962; MacArthur and Levins, 1964; Dieckmann

and Doebeli, 1999). If one could incorporate both facets, the actual ESC would likely be some48

combination of the two, but whether the ESC will comprise a few species with great ITV or many

species with little ITV can not currently be determined as theoretical approaches for assembling

ESCs that take ITV into account are not yet developed.51

This tension between ITV and species coexistence can also play out in spatially structured

communities. Given sufficient heritable trait variation, spatially varying selection can lead species’

traits to vary across space, resulting in different degrees of local adaptation (Kirkpatrick and Bar-54

ton, 1997; Bruggeman, 2009; Norberg et al., 2012; Le Gland et al., 2020). However, when all

individuals of a species are assumed to be identical, local adaptation is not possible, but vari-

able spatial conditions can promote species coexistence (Troost et al., 2005; Débarre and Gandon,57

2010; Fortelius et al., 2015; Wickman et al., 2017, 2019). Thus, to cover trait space on the regional

scale, an ESC might comprise a few species with substantial local adaptation or many species

with little local adaptation.60

The current state of eco-evolutionary theory is not well equipped to deal with these questions.

On one hand, quantitative genetics (Lande, 1979; Lande and Arnold, 1983) and other moment-

equation-based frameworks (Wirtz and Eckhardt, 1996; Norberg et al., 2001; Savage et al., 2007;63

Sasaki and Dieckmann, 2011; Merico et al., 2014) readily incorporate ITV into the models. How-

ever, even the versions of these models that can treat multiple species (Sasaki and Dieckmann,

2011; Débarre et al., 2014) assume that the number of species is fixed rather than a dynamic66

outcome of eco-evolutionary community assembly. On the other hand, using a different mod-

eling approach called adaptive dynamics (Metz et al., 1992; Dieckmann and Law, 1996; Geritz

et al., 1998; Dercole and Rinaldi, 2008; Brännström et al., 2013) one can easily determine whether69
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a community is closed to evolutionary branching and/or invasion by other species. Thus, us-

ing adaptive dynamics, one can assemble a community that is not only at an eco-evolutionary

equilibrium, but which is also stable against further diversification into more species by invasion72

or evolutionary branching. However, by construction, adaptive dynamics assumes that all indi-

viduals within a species are identical, so it cannot take ITV into account. While model-specific

studies in structured communities that combine species assembly with ITV have been carried75

out (Débarre et al., 2013), and the moment equations for a fixed number of species for a gen-

eral category of class-structured communities has recently been developed (Lion et al., 2022), a

framework for systematically assembling ESCs that take ITV into account does not exist.78

In this paper we synthesize many recent advances in describing eco-evolutionary dynamics

through moment equations taking the total density, mean traits, and trait variances into account,

and adapt the community-assembly capabilities of adaptive dynamics to work with these mo-81

ment equations. This yields a general framework for eco-evolutionary community assembly for

class-structured communities that allows us to assemble ESCs that take ITV into account. The

framework can handle complex models that include for example multiple traits and external84

resources, but in the main text we will focus on resolving the twin tensions described above

regarding whether trait diversity will be apportioned within or between species, and within a

local community or across a spatial gradient. We illustrate the framework using two simple87

models of Lotka-Volterra competition. First, we describe the framework in the simplest possible

setting without population (spatial) structure, and use the first Lotka-Volterra model to investi-

gate the simultaneous increase in ITV and number of species that result from weaker stabilizing90

selection. We then extend the framework to class-structured populations, which we illustrate

with a two-patch spatially structured Lotka-Volterra model to investigate the tension between

local adaptation and species coexistence as the two patches become increasingly different. These93

analyses show that rich patterns of intra- and interspecific trait variation emerge even in these

simple models, and thus demonstrate the utility we believe this framework has for furthering our

understanding of the interaction between eco-evolutionary dynamics and individual variation in96
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traits.

Eco-evolutionary dynamics and community assembly in unstructured

communities99

In this section we will introduce the trait-space equations that underlie our approach, and de-

scribe how these equations can be approximated by moment equations that track the total densi-

ties, mean traits, and trait variances of several species. We will then explain how these equations102

can be used in conjunction with a community-assembly approach to determine the evolutionarily

stable community (ESC). To explore the tension between intraspecific trait variation and species

coexistence, we employ a simple Lotka-Volterra competition model.105

Trait-space equations for unstructured communities

We consider a single trait value x that encodes some property of an organism such as body

mass or resource-uptake ability. The entire community can then be described by the trait-density108

distribution v(x), which tells us how many individuals there are with trait x; to be more precise,∫ b
a v(x)dx describes the total density of individuals that has a trait value in the interval a ≤ x ≤ b.

We assume that the density of individuals grows due to births with per capita rate b(x, v) and111

declines due to mortality with per capita rate m(x, v), where both birth and death rates can

depend both on the trait of an individual, x, as well as the entire trait-density distribution in

which the individual exists, v. We will assume that reproduction is clonal but that parents do not114

give birth to exact copies of themselves, but instead produce offspring with normally distributed

traits. Thus, a parent with trait y will produce offspring with trait x according to

N (x, y, M) :=
1√

2πM
exp

(
− (x− y)2

2M

)
, (1)117

where M is the mutation variance. We will use the notation N (x, µ, V) throughout for the

probability-density function of a normal distribution with mean µ and variance V evaluated at

6



x. As in adaptive dynamics and trait-diffusion approaches (Merico et al., 2014; Le Gland et al.,120

2020; Nordbotten et al., 2020), we do not specify the genetic makeup that would result in these

dynamics for phenotypic traits, but simply assume that new heritable variation is generated

through mutations that are associated with some ecological process, such as births.123

We can now write down how the trait-density distribution will change over time, which is

given by the equation

dv(x)
dt

=
∫ ∞

−∞
b(y, v)v(y)N (x, y, M)dy−m(x, v)v(x) , (2)126

where N (x, y, M) is the normal mutation kernel with variance M, describing how different off-

spring are from their parents on average. We will refer to these types of equations as trait-space

equations. These models are similar to classic work in quantitative genetics (Kimura, 1965; Bürger,129

1986), and models like this have been shown to be the limit of certain individual-based models

in the limit of large populations (Champagnat et al., 2006).

Trait-space equations for the unstructured Lotka-Volterra model132

To take a concrete example, we will consider a simple model of Lotka-Volterra competition

(Lotka, 1925; Volterra, 1928). The model is similar to Lotka-Volterra models in many other recent

studies using for example ‘oligomorphic dynamics’ (Sasaki and Dieckmann, 2011), quantitative135

genetics (Barabás et al., 2022), and adaptive dynamics (Ranjan and Klausmeier, 2022). For this

model, we assume that individuals experience a net density-independent per capita growth r(x)

in the absence of other individuals due to the environment, which we split into a birth rate138

b(x) and background death rate µ(x). Additionally, all individuals experience extra density-

dependent mortality due to competition with all other individuals, at a per capita rate a(x, v), in

a way such that competition is most intense between individuals with similar traits. Comparing141

with Eq. 2, we thus have that m(x, v) = µ(x) + a(x, v), and the trait-space equations are given by

dv(x)
dt

=
∫ ∞

−∞
b(y)v(y)N (y, x, M)dy− µ(x)v(x)− a(x, v)v(x) , (3a)144
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b(x) = r0 , µ(x) =
x2

Vr
, r(x) = b(x)− µ(x) = r0 −

x2

Vr
, (3b)

a(x, v) =
∫ ∞

−∞
α(y, x)v(y)dy , α(y, x) = exp

(
− (y− x)2

2Vc

)
. (3c)

Here, Vr is the environmental variance and Vc is the competition variance, which is a measure of147

how broad competition is in trait space, with larger Vc increasing competition between individ-

uals of different traits. For Vc → 0, individuals will compete only with other individuals with

exactly the same trait, and for Vc → ∞ individuals will compete equally with individuals with150

any trait. Trait-matching competition of this type can be motivated by, for example, that birds

with similarly-sized beaks will compete more strongly since they compete for similarly-sized

seeds (MacArthur, 1972).153

In general, the generic trait-space equations (Eq. 2) will not be analytically tractable; even

the equilibrium of Eq. 2 will be hard to ascertain, even for very simple examples (e.g., Kimura,

1965; Bürger, 1986). Numerically too, discretizing trait space and solving Eq. 2 often requires156

significant computational power. For the more complicated models we will study later in this

manuscript especially, the feasibility of numerical explorations of the equations is highly limited.

Instead, we will study approximations of the trait-space equations where the moments of the159

trait-density distribution are tracked. Such moment equations have the additional benefit that

they are often more ecologically interpretable than the trait-space equations.

Moment equations for unstructured communities162

Here, we will follow the general approach of previous moment-based frameworks (Slatkin, 1980;

Wirtz and Eckhardt, 1996; Norberg et al., 2001; Bruggeman, 2009; Sasaki and Dieckmann, 2011;

Tirok et al., 2011; Merico et al., 2014; Débarre et al., 2014; Nordbotten et al., 2020) to derive165

approximate equations that track the total density, mean trait, and trait variance of populations.

These approaches, and ours, all result in similar equations, but as the details differ we will here

detail the precise assumptions we make to derive these equations. We will assume that the168

trait-density distribution v(x) can be decomposed into a set of S ‘species’, where each species
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represents a peak in the trait-density distribution so that

v(x) =
S

∑
i=1

vi(x) . (4)171

We will then assume that each such species can be approximated with a normal distribution so

that

vi(x) ≈ uiN (x, x̄i, Vi) , (5)174

where ui =
∫ ∞
−∞ vi(x)dx is the total density of species i, x̄i = (1/ui)

∫ ∞
−∞ xvi(x)dx is the mean

trait of species i, and Vi = (1/ui)
∫ ∞
−∞(x − x̄i)

2vi(x)dx is the trait variance of species i. We will

use the notation177

ṽ(x) :=
S

∑
i=1

uiN (x, x̄i, Vi) ≈ v(x) (6)

for the approximate trait-density distribution. In words, the approximate community trait-

density distribution ṽ(x) is the sum of all approximate trait-density distributions for each species,180

uiN (x, x̄i, Vi). We will assume that each species is reproductively isolated so that individuals

born in species i end up as species i individuals. Finally, for the birth rate b(x, v) and mortality

rate m(x, v) we will introduce notation that describes the population-level per capita rates for a183

normally-distributed population with mean trait x̄ and trait variance V in the environment set

by the resident community with trait-density ṽ. These population-level rates are given by the

Gaussian integrals186

b̂(x̄, V, ṽ) :=
∫ ∞

−∞
b(x, ṽ)N (x, x̄, V)dx , (7a)

m̂(x̄, V, ṽ) :=
∫ ∞

−∞
m(x, ṽ)N (x, x̄, V)dx . (7b)

Given these assumptions, without further approximation, we can derive the following equa-189

tions for the total densities, mean traits, and trait variances for each species i = 1, ..., S, which are

given by (see Appendix A for the derivation):

dui

dt
=
(

b̂(x̄i, Vi, ṽ)− m̂(x̄i, Vi, ṽ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

population-level per capita net growth

)
ui , (8a)192
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d x̄i

dt
= Vi

(
∂b̂
∂x̄

(x̄i, Vi, ṽ)− ∂m̂
∂x̄

(x̄i, Vi, ṽ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

directional selection

)
, (8b)

dVi

dt
= V2

i

(
∂2b̂
∂x̄2 (x̄i, Vi, ṽ)− ∂2m̂

∂x̄2 (x̄i, Vi, ṽ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

stabilizing/disruptive selection

)
+ b̂(x̄i, Vi, ṽ)M
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

mutation

. (8c)

We will refer to these equations as moment equations. Equation 8a describes how the total density195

ui of species i increases in response to its population-level birth rate b̂(x̄, V, ṽ) evaluated at its

mean trait x̄i and trait variance Vi, and how it decreases in response to the population-level

mortality rate m̂(x̄, V, ṽ). Note that the birth and mortality rates may depend on the approximate198

trait-density distribution ṽ of the entire community, not just conspecifics. Equation 8b describes

how the mean trait x̄i of species i responds to directional selection. The mean trait will move

along the selection gradient induced by births and deaths towards mean traits that yield higher201

per capita net growth, similar to the gradient dynamics of the canonical equation of adaptive

dynamics (Dieckmann and Law, 1996; Champagnat, 2003) or in quantitative genetics (Lande

and Arnold, 1983). The speed at which this directional selection acts depends on the selection204

gradient multiplied by the level of trait variance Vi in species i, but note that here the selection

gradients themselves, ∂b̂/∂x̄ and ∂m̂/∂x̄, can also depend on the trait variance (due to Eqs. 7).

Equation 8c describes how the trait variance Vi of species i responds to stabilizing/disruptive207

selection and mutations. Selection is stabilizing—resulting in a reduction in trait variance over

time—if the sign of the sum of the second derivatives is negative and selection is disruptive—

resulting in an increase in trait variance over time—if the sign is positive. The second term210

corresponds to an increase in trait variance over time due to mutations, which depends on the

population-level per capita birth rate b̂ as well as the mutation kernel variance M.

Moment equations for the unstructured Lotka-Volterra model213

To get the moment equations for our Lotka-Volterra model, we first need to compute the population-

level rates which can be calculated to be (see Appendix C)

b̂(x̄, V) = r0 , (9a)216
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r̂(x̄, V) = b̂(x̄, V)− µ̂(x̄, V) = r0 −
x̄2 + V

Vr
, (9b)

â(x̄, V, ṽ) =
√

2πVc

S

∑
j=1

ujN (x̄, x̄j, V + Vj + Vc) . (9c)

Having done this, we can plug these expressions into the general moment equations (Eqs. 8),219

which yields the equations

dui

dt
=

[ (
r0 −

x̄2
i + Vi

Vr

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r̂(x̄i , Vi) = b̂(x̄i , Vi)− µ̂(x̄i , Vi)

−
√

2πVc

S

∑
j=1

ujN (x̄i, x̄j, Vi + Vj + Vc)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
â(x̄i , Vi , ṽ)

]
ui , (10a)

d x̄i

dt
= Vi

[
−2x̄i

Vr

²
∂r̂
∂x̄ (x̄i , Vi)

+
√

2πVc

S

∑
j=1

uj
x̄i − x̄j

Vi + Vj + Vc
N (x̄i, x̄j, Vi + Vj + Vc)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
− ∂â

∂x̄ (x̄i , Vi , ṽ)

]
, (10b)222

dVi

dt
= V2

i

[
− 2

Vr

±
∂2 r̂
∂x̄2 (x̄i , Vi)

+
√

2πVc

S

∑
j=1

uj
Vi + Vj + Vc − (x̄i − x̄j)

2

(Vi + Vj + Vc)2 N (x̄i, x̄j, Vi + Vj + Vc)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
− ∂2 â

∂x̄2 (x̄i , Vi , ṽ)

]

+ r0®
b̂(x̄i , Vi)

M . (10c)

The growth rate of the total density ui of species i (Eq. 10a) depends on the environmental growth225

rate, which is determined by the species’ distance in trait mean x̄i from the optimal trait x̄i = 0

and decreased due to the species’ trait variance Vi. The species then suffers additional mortality

from intra- and inter-specific competition, which depends on the mean traits and trait variances228

of both the focal species i and its competitor j. Interspecific competition is most intense between

species whose mean traits x̄i and x̄j are close, and is mediated by the trait variance of both species

i and j as well as the competition variance Vc.231

The rate of change of the mean trait x̄i of species i (Eq. 10b) depends on the directional

selection induced by both the environmental growth rate and competition. The first term, which

is the selection induced by the environment, always exerts selective pressure towards the optimal234

trait x̄i = 0. The second term, which is the selection induced by competition, always exerts

selective pressure for the mean traits of any species to separate from one another.
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The rate of change of the trait variance Vi of species i (Eq. 10c) depends on stabilizing/disruptive237

selection induced by the environment and competition. The first term, due to the environment, is

always stabilizing and acts to reduce trait variance over time. This is because the quadratic envi-

ronmental growth rate universally disfavors trait variance. The second term, due to competition240

is stabilizing if (x̄i − x̄j)
2 > Vi + Vj + Vc and disruptive if the opposite is true. For intraspecific

competition (i = j) the difference between the means is zero, so intraspecific competition is al-

ways disruptive. This is because a species with more trait variance will have its individuals more243

spread out in trait space and consequently suffer less intraspecific competition. If two different

species are far enough apart, selection will act stabilizingly on both species to reduce their over-

lap in trait space by reducing the trait variance of both species. The final term is the mutation246

term, which always acts to increase trait variance over time.

Together, equations 10 describe the dynamics of the first three moments (zeroth: total density,

first: mean trait, second: trait variance) of each species in a community of S species. As we249

have made a normal approximation for the trait-density distribution for each species, no higher

moments have to be tracked. We further discuss our choice of normal approximation in the

discussion section.252

Eco-evolutionary community assembly for unstructured communities

So far we have derived how to treat a fixed number of species, S, and their eco-evolutionary

dynamics, including the effects on the intraspecific trait variance of the species, but this then255

raises the question: how many species can coexist? For our Lotka-Volterra model (Eqs. 10) we

can see an example of how there exists an intrinsic tension between large intraspecific variance

and the number of species: Intraspecific competition will increase trait variance and interspecific258

competition can reduce it, thus, under weak stabilizing selection (e.g., small Vc or large Vr) will

we get many species with small trait variance or a few—or even just one—species with large trait

variance? Likely the answer is some combination of the two, but without some method for being261

able to ascertain whether a community where intraspecific variation is taken into account is open

12



to the addition of more species, it is not possible to determine the relative importance of these

two effects.264

To be able to answer these questions we need to adapt the eco-evolutionary community-

assembly methods available in adaptive dynamics. Specifically, we devise a method for determin-

ing whether a species in a community can undergo evolutionary branching when in equilibrium267

and a method for determining whether a community is invasible by any other rare species.

Evolutionary branchings

In adaptive dynamics, evolutionary branching occurs when a species has evolved a trait in accor-270

dance with directional selection until directional selection ceases and the species finds itself at a

fitness minimum causing the species to split in two (Geritz et al., 1998). This procedure cannot

be directly translated to our moment-equation framework due to the fact that we include trait273

variance. Instead, after Eqs. 8 have reached an equilibrium for S species we virtually split each

species into two identical copies and examine the linear stability of the resulting S + 1 species

equilibrium. If such a split-species equilibrium is unstable, we say that the system has under-276

gone an evolutionary branching and keep the split-species pair. The details of the procedure are

available in Appendix B. Figure 1 depicts an example of a branching in the Lotka-Volterra model.

Invasion analysis279

Even if no evolutionary branchings are possible, the community might not be closed to invasion

by types that are farther away in trait space. We will here employ a scheme for carrying out

a global invasion analysis inspired by Kremer and Klausmeier (2013). To determine whether a282

community is closed to invasion, we introduce a rare invading population with mean trait x̄inv

and trait variance Vinv into a resident community whose species are all in equilibrium. Let ṽres

denote the sum-of-normals trait-density distribution of the residents. As we assume that the285

invader will initially remain rare, we do not need to track its total density, and the equations for
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Figure 1: Community assembly through invasion and branching in the unstructured Lotka-Volterra model. The panels depict

how mean traits x̄i and trait variances Vi (Panel A, one standard deviation is depicted as a filled area) and the total densities ui (Panel

B) evolve over time during a community-assembly procedure. To start with, a single species with initial moments u = 1, x̄ = −0.5,

and V = 0.001 is introduced. Selection from the environment and competition leads to changes in the density, mean trait (‘ecological

character displacement’; Slatkin, 1980), and variance according to Eqs. 10, until it reaches an eco-evolutionary equilibrium (first

dotted line). Then, the system is checked for whether any branchings or invasions are possible. In this case, no branching is possible,

but an invader with positive invasion fitness is found and introduced. After that, Eqs. 10 are once again run for the two-species

community until it reaches an eco-evolutionary equilibrium (second dotted line). Here, a branching is detected and the top species

is split into two new species with slightly different mean traits. We then once again solve Eqs. 10 until equilibrium, during which the

branching species diverge. At the final time point the system is once again at an eco-evolutionary equilibrium, and no branchings

or invasions are possible meaning that we have reached a three-species eco-evolutionarily stable community (ESC). To show all

pertinent events, time has been rescaled nonuniformly. Parameter values: Vr = 9.0, M = 10−4, and other parameters are as in Table

1.

its mean trait and trait variance are given by

d x̄inv

dt
= Vinv

(
∂b̂
∂x̄

(x̄inv, Vinv, ṽres)− ∂m̂
∂x̄

(x̄inv, Vinv, ṽres)

)
, (11a)288

dVinv

dt
= (Vinv)2

(
∂2b̂
∂x̄2 (x̄inv, Vinv, ṽres)− ∂2m̂

∂x̄2 (x̄inv, Vinv, ṽres)

)
+ b̂(x̄inv, Vinv, ṽres)M , (11b)

where we note that the invader rates depend only on the resident densities, because we assume

it to be so rare that its effect on itself is negligible.291

As long as the invader starts out sufficiently rare, we can assume that its mean trait and trait

variance will settle onto an attractor, in the simplest case an equilibrium, where its exponential
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growth rate can be determined (c.f., Lin et al., 2020). Since the invader equations are nonlinear,294

several attractors may possibly exist. We will here assume equilibrium dynamics, and we can

thus assume that a rare invader will eventually settle onto one of several equilibria. Assume

that there are N such equilibria and denote invaders’ means and variances by x̄inv,n and Vinv,n
297

respectively for equilibrium n = 1, ..., N. Once an invader’s trait distribution has reached an

equilibrium mean and variance, we can calculate its per capita growth λn as

λn = b̂(x̄inv,n, Vinv,n, ṽres)− m̂(x̄inv,n, Vinv,n, ṽres) . (12)300

If λn > 0, the per capita growth rate of the invader will be positive in the environment set by the

residents and the invader can successfully invade, and if λn ≤ 0, the invader will not be able to

invade. Note that all resident species will show up as neutrally stable (λn = 0) equilibria for the303

invader, though not necessarily attractors.

In Fig. 1 we depict an invasion event in the Lotka-Volterra model. For the single resident

species depicted at equilibrium at the dotted line marked “invasion” we can find two invader306

equilibria given by

x̄inv,1 ≈ −1.81 , Vinv,1 ≈ 0.0182 , λ1 ≈ 0.0962 , (13a)

x̄inv,2 ≈ 1.81 , Vinv,2 ≈ 0.0182 , λ2 ≈ 0.0962 . (13b)309

The Lotka-Volterra model is symmetric in trait space, and thus, with a single resident with x̄ = 0,

we find two invaders equidistant from the middle, both with positive invasion fitness. As in

adaptive dynamics, we assume that only one invasion event is allowed to happen at once, and so312

for this example, invader one was chosen at random to invade the community.

In principle, this procedure gives us an invasion criterion for a community. If there exists

any invader equilibrium with λn > 0 we can add a species to the community at a low density315

with mean trait x̄inv,n and trait variance Vinv,n. However, in practice, exhaustively proving that

all such equilibria have been found is in general not feasible, so we will use a heuristic. For

a given resident community we compute the invasion fitness for all invaders across a range of318
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mean traits and with zero trait variance. This is equivalent to computing the invasion-fitness

landscape in adaptive dynamics. We then find all the local maxima of this adaptive-dynamics

fitness landscape and use those as the initial conditions for the invader equations (Eqs. 11), and321

solve the equations until they reach equilibrium. We can then compute the invasion fitness for all

these equilibria to determine whether the community is closed to invasion. While theoretically

not exhaustive, we have found this heuristic to work very well in practice, as the zero-variance324

invaders serve as good first approximations to where positive invasion fitness might be available.

Assembly protocol

We can now use the moment equations, the branching condition, and the invasion process to as-327

semble an eco-evolutionarily stable community. To assemble a globally eco-evolutionarily stable

community we start with an arbitrarily specified community of S species with total densities u0
i ,

mean traits x̄0
i and trait variances V0

i . We then proceed along the following steps.330

1. We let the community evolve according to Eqs. 8 until it reaches equilibrium.

2. We check each species for evolutionary branching. In case of a branching we split the

species undergoing branching into two new species and then return to step 1, letting the new333

community of S + 1 species evolve according to Eqs. 8.

3. In case the moment equations for the resident community reach equilibrium and there are

no branchings, we use our invasion scheme to see if any invader with positive invasion fitness336

exists. If an invader with positive invasion fitness is found, it is added to the community with a

small density, and we return to step 1, and let the new community evolve once again according

to Eqs. 8.339

We continue going through these steps until we have reached a community where Eqs. 8 are in

equilibrium and no more invaders with positive invasion fitness can be found. This community

is thus eco-evolutionarily stable. In Fig. 1 we depict an example of this process for the Lotka-342

Volterra model. Note that at the first dotted line in Fig. 1, we first calculate the branching

criterion, but a branching is not possible for that configuration, and we thus move on to step 3.
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to check for invasions.345

The purpose of our algorithm is to find the final evolutionarily stable community (ESC). Our

assembly process cannot accurately capture the temporal dynamics of the trait-space equations

or other assembly processes, as we integrate the moment equations to equilibrium between each348

branching or invasion event. Moreover, we have necessarily made some choices regarding the

order in which we carry out our assembly steps. We have chosen to check for evolutionary

branchings before invasions, as the existence of a branching implies a successful invasion but351

not vice versa. When a single final ESC exists, the order will not matter much as the assembly

process will converge on this ESC. Our Lotka-Volterra example models in this paper are of this

type. However, for more complicated eco-evolutionary dynamics, multiple alternate ESCs may354

exist, and under such conditions choices made regarding assembly order may yield different

final communities. This situation is, however, no different compared to community assembly in

adaptive dynamics, and similarly to the situation there, care must be taken when multiple ESCs357

are present, using tools from, for example, bifurcation theory to capture all the possible ESCs.

Eco-evolutionarily stable communities in the unstructured Lotka-Volterra model

We now have all the tools necessary for assembling ESCs, so we will now turn to applying them360

to our unstructured Lotka-Volterra model (Eqs. 10). As we stated, the Lotka-Volterra model ex-

hibits an inherent tension between the tendency towards multiple species and larger intraspecific

trait variation (ITV) in each species under disruptive or weak stabilizing selection. Using adaptive363

dynamics, where no species has any ITV, Ranjan and Klausmeier (2022) studied a similar Lotka-

Volterra model and found that as the environmental width became wider, an increasingly large

number of species could co-exist in the assembled eco-evolutionarily stable community. Con-366

versely, in another similar Lotka-Volterra model Barabás et al. (2022) found that ITV decreased

when more species were included in a quantitative genetics models for a given environmental

width, but had no way of systematically determine whether any of their communities were stable369

to invasions or evolutionary branchings. Here, we will use our moment equations together with
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our assembly procedure to determine how community trait variation is partitioned into inter-

and intraspecific terms in our Lotka-Volterra model.372

To see how this tension manifests, we assemble eco-evolutionarily stable communities for a

range of different environments. Specifically, we vary the environment variance Vr from 1 to

36, although for ease of interpretation we will here present results using wr =
√

r0Vr as the375

independent variable, which describes the half-width of where the net growth function r(x)

is positive (the fundamental community sensu Klausmeier et al. 2020). We depict the results in

Fig. 2A. To further examine the role of ITV in eco-evolutionary community assembly, we also378

compare the results from our model with ITV to a model that does not incorporate ITV (adaptive

dynamics, see Appendix C), depicted in Fig. 2B.

When wr = 1, selection is strongly stabilizing, and only mutations prevent the trait variance381

of the single species from collapsing to zero. As wr becomes wider, stabilizing selection weakens,

and the disruptive selection from intraspecific competition initially increases trait variance, but

eventually the one-species community becomes invasible and the community transitions into a384

two-species community. As we increase wr the ESCs with ITV initially follows the ESCs without

ITV closely (Fig. 2D). However, as wr becomes increasingly large, the role of ITV becomes in-

creasingly important, and the bifurcations into more species desynchronize between our model387

and the one without ITV (Fig. 2A–B). In particular, the species more centrally located in trait

space show large differences for when ITV is included compared to when it is not.

Figure 2E–F show two communities where our model with ITV exhibits large discrepancies390

compared to when ITV is not taken into account, both in terms of the number of species present

in the community as well as the values of the mean traits. One primary reason for this discrep-

ancy is the fact that species close to the center of the environment develop large trait variances.393

This is in contrast to the species closer to the edges of the environment, which have less trait

variance. These differences come about through intra- and interspecific competition. As can be

seen in Eq. 10c, intraspecific competition always generates disruptive selection, and inter-specific396

competition can engender either stabilizing or disruptive selection, depending on how far apart
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Figure 2: Eco-evolutionarily stable communities for different environmental widths and mutation variances in the unstructured

Lotka-Volterra model. (A) For each value of environmental half-widths wr =
√

r0Vr we depict the mean traits (solid blue lines)

and one standard deviation (filled blue areas) for each species in the eco-evolutionarily stable community (ESC) computed assuming

species with intraspecific variation (ITV) for that environmental width. The gray area depicts where the environment yields positive

growth rate, i.e., r(x) ≥ 0. The mutation variance is M = 10−3.5. (B) Same as panel A, but black lines here depict the mean traits in

ESCs computed assuming species without ITV. (C) For each value of mutation variance M we depict the mean traits (solid blue lines)

and one standard deviation (filled blue areas) for each species in the eco-evolutionarily stable community (ESC) for that mutation

variance. Arrows on the right indicate the mean traits of the ESCs without ITV. The environmental width is wr ≈ 4.2. (D–G) ESCs

computed assuming species with and without ITV for the values of wr and M indicated by dotted lines in panels A, B, and C. The

gray line depicts the numerical solution of the trait-space equations (Eqs. 3), v(x) , and the black broken line depicts the numerical

solution of the moment equations (Eqs. 10), ṽ(x) = ∑S
i=1 uiN (x, x̄i , Vi), where the number of species S was determined through our

assembly procedure. The colored areas depict the trait-densities of each species i = 1, ..., S when ITV is included, and the black bars

depict the densities and traits of species when ITV is not included. Parameter values other than wr and M are as in Table 1.



the species’ mean traits are. Additionally, all species are not equally prevalent since the environ-

mental conditions are better towards the center of trait space, and the species there have larger399

total densities u compared to species close to the edge. This means that species close to the cen-

ter will experience more intraspecific competition and less interspecific competition resulting in

stronger disruptive selection, which in turn translates to more standing variation in the ESC for402

these species. This model is thus an example of when being able to keep track of both ITV and

dynamically assembling a community with a variable number of species is required for under-

standing how trait variation is partitioned over the long term. We also note that the substantial405

differences in trait variances between species in the ESCs for larger environmental widths means

that models that incorporate ITV, but fixes the trait variances, would also have been insufficient

for a good characterization of the distribution of traits.408

Figure 2D–E show good agreement between the trait-space solution (in gray) and the moment-

equation approximation (in black). Although qualitative agreement is usually good between the

moment solution and trait-space solution for the ESC (e.g., Fig. 2F), the moment approximation411

becomes less accurate near transitions in species richness for the moment equation ESC. This

is due to the fact that while the moment equations by construction always has a well-defined

number of species, the trait-space equations have no such constraints and around the transition414

points in species richness for the moment equations, the trait-space ESCs tend to exhibit non-

normal shapes that are ambiguous with regards to the number of species. We provide examples

of this in Supplementary S1 where assembled communities can be seen for all different levels of417

environmental widths wr.

The amount of standing variation in an ESC also depends on how much variation is gener-

ated through mutation (Fig. 2C). For exceedingly low mutation variances M, the ESCs with ITV420

closely resemble those without ITV (Fig. 2G). However, for the species located in the middle of

trait space, even very low levels of mutation variance can result in qualitative differences, with

the two central species merging around M ≈ 10−8. To better understand why this merging hap-423

pens, we note as trait variances get larger due to increased mutation widths, both the directional
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selection repulsing the two species (Eq. 10b) and the stabilizing selection generated by interspe-

cific competition with other species (Eq. 10c) will get weaker. This will ultimately lead to the426

two species collapsing into one as the mutation variance gets bigger. As the mutation variance

is further increased, other species will merge for the same reasons, but as stated above, more

centrally located species are more sensitive to this pattern as they experience more intraspecific429

competition.

Table 1: Parameters for the two Lotka-Volterra models.

Value/Range

Symbol Description Unstructured Two-patch

r0 Maximal growth rate 1 1

Vr Environment variance [1,36] 4

Vc Competition variance 1 1

M Mutation variance 10−3.5 10−4

xopt
1 Optimal trait, patch 1 - [-2,0]

xopt
2 Optimal trait, patch 2 - [0,2]

d Dispersal rate - 10−3

Eco-evolutionary dynamics and community assembly in structured

populations432

For communities of unstructured populations we saw how weakened stabilizing selection could

increase both the number of species and intraspecific trait variation (ITV), and that there was

an inherent tension between these two forces. In spatially structured communities a related435

phenomenon spread over space can take place. In heterogeneous environments, spatially varying

selection can lead to local adaptation within a species (Kirkpatrick and Barton, 1997; Bruggeman,

2009; Norberg et al., 2012; Le Gland et al., 2020), resulting in greater ITV across the landscape438

(essentially, increased beta trait diversity within a species). On the other hand, under the no-

variance conditions of adaptive dynamics, variable local conditions can lead to coexistence of

multiple species (Troost et al., 2005; Débarre and Gandon, 2010; Fortelius et al., 2015; Wickman441
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et al., 2017). Additionally, using models with fixed trait variance, large fixed variances have

been shown to lead to communities with fewer surviving species but with more local adaptation,

and smaller fixed variances to more surviving species but with less local adaptation (Norberg444

et al., 2012; Edwards et al., 2018). Thus, we here have a similar but distinct tension between

ITV and diversification into multiple types, but now playing out over space in the form of local

adaptation. To be able to model such scenarios, we need to generalize Eq. 2 to take population447

structure (including spatial structure) into account.

Trait-space equations for class-structured communities

Since populations can be structured in ways other than spatial, for generality we will here assume450

that the community is class-structured, meaning that the community can be sorted into K discrete

bins such as spatial patches, age classes, or size classes. The trait-density distribution in each class

k is given by vk(x), k = 1, 2, . . . , K, which describes how abundant individuals with a given trait453

x in class k are. We also write v := (v1, ..., vK) for the vector of all trait-density distributions. For

unstructured communities it was sufficient to consider a birth rate and a mortality rate, but in

general structured communities other demographic processes can cause the trait-density vk(x)456

in each class to change over time. We can consider separately the contribution of each process

with per-capita rate f (x, v) from a source class s to a destination class d. Within-class processes

(s = d) may include local birth and mortality rates on a spatial patch, whereas between-class459

processes (s 6= d) may include immigration from spatial patch s or from births from adult class

s to juvenile class d in a stage-structured model. Each such process can have a mutation kernel

N (x, y, M) associated with it (most processes will have M = 0). The contribution of each process462

to the trait-space equations is given by

dvd(x)
dt

+
=
∫ ∞

−∞
f (y, v)vs(y)N (y, x, M)dy , (14)

where the +
= operator means addition to the left-hand side, so that we sum up the rates of all465

processes to get the rate of change of vd(x). For (most) processes where M = 0, we will interpret
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integration of the process rate against the mutation kernel in the delta-Dirac sense so that simply∫ ∞

−∞
f (y, v)vs(y)N (y, x, 0)dy = f (x, v)vs(x) . (15)468

Trait-space equations for the two-patch Lotka-Volterra model

To take a concrete example, we generalize our Lotka-Volterra competition model to take place

on two patches, so that K = 2, with local births b1 and b2, deaths µ1 and µ2, competition a on471

each patch, and a constant symmetric rate of dispersal d between the patches. The trait-space

equations are given by

dv1(x)
dt

=
∫ ∞

−∞
b1(y)v1(y)N (y, x, M)dy− µ1(x)v1(x)− a(x, v1)v1(x)− dv1(x) + dv2(x) , (16a)474

dv2(x)
dt

=
∫ ∞

−∞
b2(y)v2(y)N (y, x, M)dy− µ2(x)v2(x)− a(x, v2)v2(x) + dv1(x)− dv2(x) , (16b)

bk(x) = r0 , µk(x) =
(x− xopt

k )2

Vr
, rk(x) = bk(x)− µk(x) = r0 −

(x− xopt
k )2

Vr
. (16c)

This model is locally the same as the unstructured Lotka-Volterra model (Eqs. 3) on each patch477

apart from the optimal traits xopt
1 and xopt

2 now potentially being different. Comparing with the

generic trait-space equations (Eq. 14), when patch one is the destination patch (Eq. 16a), we thus

have five demographic processes, four for which patch one is the source patch, namely b1, −µ1,480

−a, and −d, and one for which patch two is the source patch, d. Of these, only b1 has a non-zero

mutation variance M associated with it.

Moment equations for class-structured communities483

As for the unstructured community, we will assume that we can approximate each trait-density

distribution vk(x) in each class with a sum of S normal distributions with total density uik, mean

trait x̄ik and trait variance Vik for species i = 1, ..., S in class k = 1, ..., K, so that486

vk(x) ≈ ṽk(x) =
S

∑
i=1

uikN (x, x̄ik, Vik) . (17)

Note that a species will exist across all classes (even if its density could be very close to zero in

some) so that the species richness in each class, as well as globally, is equal to S. We define ṽ =489
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(ṽ1, ..., ṽK) to be the vector of approximate densities. Also as for the unstructured communities

we define the population-level per capita rate for a population with mean x̄ and trait variance V

to be492

f̂ (x̄, V, ṽ) =
∫ ∞

−∞
f (x, ṽ)N (x, x̄, V)dx . (18)

We can now derive the moment equations for our class-structured system (see Appendix A),

which, when summing over all demographic processes, are given by495

duid

dt
+
=

(i) population-level per capita rate³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
f̂ (x̄is, Vis, ṽ) uis , (19a)

d x̄id

dt
+
=

(ii) relative-density weight«
uis

uid

[
Vis

∂ f̂
∂x̄

(x̄is, Vis, ṽ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(iii) directional selection

+ f̂ (x̄is, Vis, ṽ)(x̄is − x̄id)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(iv) mean-trait flow

]
, (19b)

dVid

dt
+
=

(ii)«
uis

uid

[
V2

is
∂2 f̂
∂x̄2 (x̄is, Vis, ṽ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(v) stabilizing/disruptive selection

+ f̂ (x̄is, Vis, ṽ)(Vis −Vid)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(vi) trait-variance flow

498

+ f̂ (x̄is, Vis, ṽ)(x̄is − x̄id)
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(viia) between-to-within class variation

+ 2Vis
∂ f̂
∂x̄

(x̄is, Vis, ṽ)(x̄is − x̄id)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(viib) class-local adaptation

and directional selection interaction

+ f̂ (x̄is, Vis, ṽ)M
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(viii) mutation

]
. (19c)

Interpreting the moment equations for class-structured communities501

As noted for other moment-based frameworks (e.g., Norberg et al., 2001), in addition to being

more tractable, moment equations can also be more interpretable than the trait-space equations

from which they are derived. We now go through the various terms and factors in the moment504

equations (Eqs. 19) and their interpretations. Table 2 contains a list of symbols and descriptions

of the various quantities related to the class-structured trait-space and moment equations.

Equation 19a describes the rate of change of the total density uid of species i in destination507

class d. Term (i), population per capita growth, describes the per capita rate of process f̂ between
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Table 2: Quantities involved in the trait-space and moment equations for class-structured communities.

Symbol Description Definition Label in Eqs. 19

x Trait value

K Number of classes

vk(x) Trait-density distribution in class k =

1, ..., K

v Vector of trait-density distributions v = (v1, ..., vK)

f (x, v) Per capita rate of a demographic process

M Mutation variance associated with pro-

cess f

f̂ (x̄, V, v) Population-level rate for mean trait x̄

and trait variance V for rate f

f̂ (x̄, V, v) =
∫ ∞
−∞ f (x, v)N (x, x̄, V)dx

S Number of species

vik(x) Trait-density distribution of species i in

class k

uik Total density of species i in class k uik =
∫ ∞
−∞ vik(x)dx

x̄ik Mean trait of species i in class k x̄ik = (1/uik)
∫ ∞
−∞ xvik(x)dx

Vik Trait variance of species i in class k Vik = (1/uik)
∫ ∞
−∞(x− x̄ik)

2vik(x)dx

ṽk(x) Approximate trait-density distribution

in class k

ṽk(x) = ∑S
i=1 uiN (x, x̄ik , Vik)

ṽ Vector of approximate trait-density dis-

tributions

ṽ = (ṽ1, ..., ṽK)

d Index of the destination class

s Index of the source class

f̂ (x̄is, Vis, ṽ) Population-level per capita growth (i)

uis/uid Relative-density weight (ii)

Vis
∂ f̂
∂x̄ (x̄is, Vis, ṽ) Directional selection (iii)

f̂ (x̄is, Vis, ṽ)(x̄is − x̄id) Mean-trait flow (iv)

V2
is

∂2 f̂
∂x̄2 (x̄is, Vis, ṽ) Stabilizing/disruptive selection (v)

f̂ (x̄is, Vis, ṽ)(Vis −Vid) Trait-variance flow (vi)

f̂ (x̄is, Vis, ṽ)(x̄is − x̄id)
2 Between-to-within class variation (viia)

2Vis
∂ f̂
∂x̄ (x̄is, Vis, ṽ)(x̄is − x̄id) Class-local adaptation and directional

selection interaction

(viib)

(viia) + (viib) Effects of class-local adaptation on vari-

ance

(vii) = (viia) + (viib) (vii)

f̂ (x̄is, Vis, ṽ)M Mutation (viii)



source class s and destination class d evaluated at the mean trait x̄is and trait variance Vis of

species i in the source class s. The equations capture how the total population densities of510

species change both due to within-class processes (s = d) such as local birth and death, and

between-class processes (s 6= d) such as dispersal between patches.

Equation 19b describes the rate of change of the mean trait x̄id of species i in destination class513

d. Term (ii), relative-density weight, weighs contributions by the relative total densities of classes

d and s, so that if the density in the destination class d is much greater than that in the source

class s, the ecological processes going from s to d will only have a marginal impact on the mean516

trait in class d. Conversely, if the total density in the source class s is much greater than in the

destination class d, the ecological process will have a large impact on the mean trait in class d.

The change of the mean trait is then governed by two terms, (iii) and (iv). The first term, (iii),519

directional selection, describes the effect of directional selection in the process f̂ in class s, pushing

x̄id in the direction of maximum increase of f̂ , at a rate proportional to the trait variance of species

i in class s, Vis. This effect comes about since the process in the source class will produce more522

trait-density on the side of the mean in which the slope is pointing, and less on the other side.

The second term, (iv), mean-trait flow, describes how mean traits are homogenized by between-

class transitions, where the rate of homogenization is governed by the per capita rate function f̂ ,525

so that the mean trait of the destination class, x̄id, will change in the direction of the mean trait

in the source class, x̄is. For within-class processes (s = d) we note that the relative-density weight

(ii) = 1 and the mean-trait flow (iv) = 0, meaning that for within-class processes only directional528

selection (iii) is relevant. If the process under consideration is trait-independent, such as for a

constant dispersal rate between patches, directional selection (iii) would be equal to zero, but

mean-trait flow (iv) could still contribute towards changing the mean trait in class d if the mean531

traits in s and d differ.

Equation 19c describes the rate of change of the trait variance Vid of species i in destination

class d. As for the mean traits, the changes are weighted by the relative densities between class534

d and s, term (ii). The dynamics of the trait variance then depends on five terms. The first
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term, (v), describes stabilizing/disruptive selection resulting from the process with rate f̂ . Roughly

speaking, if individuals close to the mean trait x̄is of species i in class s contribute more than537

individuals away from this optimum to process f̂ then the curvature as measured by ∂2 f̂ /∂x̄2

will be negative, which will contribute to a decrease in trait variances. Conversely, if individ-

uals close to the mean contribute less, the curvature will be positive and this will contribute540

towards increases in trait variances. The second term, (vi), trait-variance flow, homogenizes trait

variance between classes, so that having trait-density flow from class s to d drive the variance

Vid of species i in class d closer to the trait variance Vis in class s. Terms (vii), effects of class-543

local adaptation on variance, describe the effects of variability in mean traits between classes on

the trait variance within each class. In the case where the classes are spatial patches, a species

having different mean traits for different patches would simply be referred to as ‘local adapta-546

tion’, and we adapt this moniker here to the broader context of any class-structured community.

Term (viia), between-to-within class variation, describes how trait variances are increased by the

differences in mean traits between classes, converting between-class variance into within-class549

variance. Term (viib), class-local adaptation and directional selection interaction, describes the in-

teraction between directional selection and between-class differences in mean traits. Roughly

speaking, trait variances will decrease when the mean trait difference and the selection gradient552

point in opposite directions, and increase if they are aligned. Finally, term (viii), mutation, is

the contribution to trait variance from mutations in process f̂ , which will contribute towards in-

creasing trait variances. Note that typically for most processes under consideration M would be555

zero, as in our Lotka-Volterra example (Eqs. 16), where only birth processes are assumed to have

mutations associated with them. How much mutations contribute towards trait variance increase

also depends on the rate f̂ . Thus, for example, in a system with high birth and death rates with558

mutations associated with births the mutations would have a stronger impact on trait variance

than in a system with low birth and death rates even if net per capita growth were the same in

both systems. For within-class processes (s = d), the relative density weight (ii) will be equal to561

one, and only stabilizing/disruptive selection (v) and mutations (viii) will be nonzero, making
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these the only contributing factors. If the process f̂ under consideration is trait independent, sta-

bilizing/disruptive selection (v) and class-local adaptation and directional selection interaction564

(viib) will be zero, but mutations (viii), variance flow (vi), and between-to-within class variation

(viia) may still contribute to changes in the trait variances.

Moment equations for the two-patch Lotka-Volterra model567

For a specific example, we take our two-patch Lotka-Volterra model with trait-space equations

given by Eqs. 16. We can, after identifying the various rates now plug these into the generic

class-structured moment equations (Eqs. 19) to yield the moment equations for the two-patch570

Lotka-Volterra system. Below we display the moment equations for the dynamics on patch one;

the dynamics on patch two are nearly identical with patch index one swapped for patch index

two as necessary:573

dui1

dt
=

[(
r0 −

(x̄i1 − xopt
1 )2 + Vi1

Vr

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(i), r̂1(x̄i1, Vi1) = b̂1(x̄i1, Vi1)− µ̂1(x̄i1, Vi1)

−
√

2πVc

S

∑
j=1

uj1N (x̄i1, x̄j1, Vi1 + Vj1 + Vc)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(i), â(x̄i1, Vi1, ṽ1)

]
ui1

− d®
(i)

ui1 + d®
(i)

ui2 , (20a)

d x̄i1

dt
= Vi1

[
−

2(x̄i1 − xopt
1 )

Vr´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(iii), ∂r̂1

∂x̄ (x̄i1, Vi1)

+
√

2πVc

S

∑
j=1

uj1
x̄i1 − x̄j1

Vi1 + Vj1 + Vc
N (x̄i1, x̄j1, Vi1 + Vj1 + Vc)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(iii), − ∂â

∂x̄ (x̄i1, Vi1, ṽ1)

]
576

+
ui2

ui1°
(ii)

d(x̄i2 − x̄i1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(iv)

, (20b)

dVi1

dt
= V2

i1

[
− 2

Vr±
(v), ∂2 r̂1

∂x̄2 (x̄i1, Vi1)

+
√

2πVc

S

∑
j=1

uj1
Vi1 + Vj1 + Vc − (x̄i1 − x̄j1)

2

(Vi1 + Vj1 + Vc)2 N (x̄i1, x̄j1, Vi1 + Vj1 + Vc)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(v), − ∂2 â

∂x̄2 (x̄i1, Vi1, ṽ1)

]

+
ui2

ui1°
(ii)

d (Vi2 −Vi1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(vi)

+
ui2

ui1°
(ii)

d(x̄i2 − x̄i1)
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(viia)

+ r0M±
(viii)

. (20c)579
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Here, we have marked the various terms with their corresponding terms in the generic equations

Eqs. 19. The total-density dynamics (Eq. 20a) describe the local net growth on patch one due

to the environmental birth and death rates, the mortality from local competition, and dispersal582

to and from patch two. The mean-trait dynamics (Eq. 20b) describe local selection on patch

one, where the selection due to the environmental growth rate drives the mean trait towards the

patch one optimum xopt
1 , and the selection due to local competition drives each species mean585

trait apart from the mean traits of other species. The second term describes mean-trait flow from

patch two driving the mean trait on patch one to become more similar on patch two, eroding

local adaptation over time. The first term of the trait-variance dynamics (Eq. 20c) describes local588

stabilizing/disruptive selection, where selection due the environmental growth rate is universally

stabilizing, and selection from local competition can be both stabilizing or disruptive in the same

way as for the unstructured model. The next term describes trait-variance flow which drives591

the trait variance on patch one to become closer to the variance on patch two. The final term

describes how between-patch variation, i.e., the difference between mean traits on the patches, is

converted to within-patch variation by driving an increase in variance. Note that since the only594

between-patch process, with rate d, is trait independent, term (viib) in the generic equations

(Eq. 19c) does not arise in this two-patch model.

Eco-evolutionary community assembly for class-structured communities597

Our general approach for community assembly in class-structured communities closely resem-

bles that for unstructured communities, albeit with more involved mathematical machinery. For

evolutionary branchings, we perform the same kind of splitting and stability analysis as for the600

unstructured communities. The invasion analysis too proceeds along similar lines, but since the

community is now structured we need to keep track of the frequency distribution of invaders

across classes. As for the unstructured model, we can use these branching and invasion criteria603

to build up a community one species at a time until no more invasions or branchings are possi-

ble and we have an eco-evolutionarily stable community. The details of how the branching and
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invasion analysis are carried out for structured communities are available in Appendix B.606

Eco-evolutionarily stable communities in the two-patch Lotka-Volterra model

When the optimal traits on the patches xopt
1 and xopt

2 differ between the patches there will be local

selection towards different traits on the two patches (Eq. 20b). Under sufficiently low dispersal609

a single species can thus be expected to exhibit local adaptation, with its mean trait differing

between patches. However, based on insights derived from adaptive dynamics, we expect to

instead see multiple species as a response to heterogeneous local conditions. This then raises the612

question when these two possibilities are combined: with heterogeneous local conditions and

weak dispersal, will we end up with fewer locally adapted species or more species with less local

adaptation but differing in their mean traits?615

In the two-patch Lotka-Volterra model (Eqs. 20) as well as the general class-structured mo-

ment equations (Eqs. 19), we can see that directional selection (term (iii)) is multiplied by the

within-patch trait variance of the species to determine the effect of directional selection on618

changes in the mean trait. We can also see that that there is a term that converts between-patch

variation into within-patch variation (term (viia)). This means that if the trait optima on the two

different patches are different, there will be selective pressure for the mean traits in a species621

to separate, and as they separate, term (viia) will increase within-class variation strengthening

local directional selection, further increasing the selective pressure on trait separation. This, then,

creates a positive feedback between local adaptation (between-class variation) and within-class624

variation. However, the potential of local adaptation as a strategy for covering more of trait space

on the regional scale has two limitations potentially opening up a locally adapted species to in-

vasion. First, the mean-trait-flow term (iv) acts as a barrier to local adaptation by exerting a force627

towards mean-trait homogenization and may prevent sufficient local adaptation from develop-

ing, leaving unused trait space available for invasion. Conversely, if local adaptation, and hence

within-patch trait variance, becomes too large this might make the species relatively maladapted630

by covering too much unfavorable trait space, again opening up the species to invasion. None of
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these scenarios are universally favored above another, and local adaptation, multiple species, or

neither will be model- and parameter-dependent.633

To explore a specific instance of this tension between local adaptation and divergence into

multiple species we use our Lotka-Volterra model (Eqs. 20) and assemble eco-evolutionarily sta-

ble communities under conditions of weak dispersal and for a range of differences in the trait636

optima between the two patches. Specifically, we let Vr = 4 on each patch, which is enough

environmental breadth for two species to coexist in the unstructured model, and then make the

patches more dissimilar by varying xopt
2 = −xopt

1 from 0 to 2. The results are depicted in Fig. 3,639

and parameter values are listed in Table 1.

Generally, the outcomes when we vary the patch dissimilarity fall into three categories with

regards to local adaptation. The first is no local adaptation (for example, Fig. 3E–F). The second642

is symmetric local adaptation, meaning that a species is split roughly equally between the two

patches, and the mean traits between the patches differ (for example, Fig. 3C). The third is

asymmetric local adaptation, where species are significantly more prevalent on one patch, and645

their mean trait on the sink patch differs from that of the main patch (for example, Fig. 3D). To

better illustrate the effects of the inclusion of intraspecific trait variation (ITV), we also depict

ESCs for a model which does not incorporate ITV (adaptive dynamics, see Appendix C). Note648

that without ITV, all individuals in a species are identical, meaning that a species necessarily has

the same mean trait on both patches. Below we describe in detail how the ESCs change as the

patch optima become further separated.651

When the optima are both equal to zero, the patches are identical and the two-patch system is

functionally equivalent to an unstructured model. Conversely, when the optima are equal to ±2

there is no overlap in trait space of positive growth rates between the two patches, and for any654

species having a positive environmental net growth rate on one patch, the other patch will be a

pure sink. To the very left in Fig. 3A–B the communities with and without ITV agree in terms of

mean traits, and since the patches are identical, two species exist across the region. However, after657

the patch optima separate only slightly, the community without ITV diverges into a four-species
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system, with two species roughly corresponding to the community that would have evolved on

patch one in isolation and one community corresponding to the one that would have evolved on660

patch two in isolation. In contrast, the communities with ITV remain as a two-species system all

the way up to roughly xopt
k = ±0.25, but with both species exhibiting symmetric local adaptation

between the patches (Fig. 3C).663

The community with ITV does split into four species around xopt
k = ±0.25, but the resulting

four-species community is still characterized by significant asymmetric local adaptation in at least

two species for the interval between approximately 0.25 ≤ ±xopt
k ≤ 0.5 (Fig. 3D). The two species666

depicted in blue and orange are here primarily patch-one specialists and the species depicted in

green and red are primarily patch-two specialists. The asymmetry in local adaptation can come

about through the weighted effect of densities on mean-trait flow between the patches, terms (ii)669

and (iii) in Eqs. 20, where the species density on the off-patch exerts relatively little pressure on

the mean trait on the main patch to diverge from its local optimum.

Around xopt
k = ±0.7 the two sets of lines describing the community without ITV on each patch672

cross, and there is a small interval where the community without ITV will have only three species

before the lines separate after the cross into four species again. For the community with ITV, the

interval with three species is significantly larger, spanning roughly 0.5 ≤ ±xopt
k ≤ 0.9. For675

this interval, the community is characterized by two outer species (blue and red) with little local

adaptation and a central species (olive) that exhibits significant and symmetrical local adaptation,

except in the middle of the interval, where there is no significant local adaptation in any of the678

three species (Fig. 3E).

After xopt = ±0.9 the community with ITV once again splits into four species, where the cen-

tral two species (orange and green) are initially characterized by asymmetrical local adaptation.681

As the environmental optima separate further the means converge onto those for the community

without ITV, and for large separations |xopt
k | > 1.1 the system for both the communities with and

without ITV are characterized by two species (blue and orange) being present almost entirely on684

patch one, and two species (green and red) being present almost entirely on patch two (Fig. 3F).
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Due to the huge asymmetry in densities across the two patches, the mean-trait flow from the

main patch to the sink patch becomes so strong that local adaptation can effectively not occur on687

the sink patch.

Across the range of patch dissimilarities, this model then showcased a range of behaviors

with regards to local adaptation and diversification into multiple species. The fact that we could690

roughly sort these outcomes into three qualitatively different regimes is particularly interesting,

and we could not have come across this behavior without the use of our framework.

As for the unstructured model, the two-patch moment equation ESCs mostly have good693

agreement with the trait-space equations, with some issues around the transition points in the

number of species (see Supplementary S1). One issue that did not arise in the unstructured

model is that very close to the transition from two to four species (xopt
k ≈ ±0.25), the two-species696

community depicted is invasible, but after the invasion, one of the original species is depressed

to extinction, after which the invader assumes the total density, mean, and variance of the extinct

resident, yielding a never-ending cycle of invasions and extinctions. Similarly, the species are also699

branchable, but after an initial divergence in trait space, one of the branching species goes extinct

and the remaining species assumes the distribution of the original branched resident, yielding a

never-ending branching–extinction cycle. For these kind of cycles, we define the ESC to be the702

community to which the cycle returns between branchings or invasions that is in equilibrium

with respect to Eqs. 19, which is the community we depict in Fig. 3A–B for xopt
k ≈ ±0.25. This

cycling phenomenon only occurs in a very small sliver of parameter space.705
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Figure 3: Eco-evolutionarily stable communities for different environmental optima in the two-patch Lotka-Volterra model. (A–

B) For each value of environmental optima xopt
1 and xopt

2 we depict the mean traits (solid colored lines) and one standard deviation

(filled colored areas) for each species in the eco-evolutionarily stable community (ESC) computed assuming species with intraspecific

trait variation (ITV) for that pair of optima. Depicted as black lines are the ESCs for communities computed assuming species without

ITV. Note that without ITV, local adaptation is precluded, and these black lines are the same in panels A and B. The gray area depicts

where the environment yields positive growth rate, i.e., rk(x) ≥ 0, on patch one (panel A), and patch two (panel B). The species in the

communities with ITV are color coded so that the same species is depicted in the same color for both patches for any given value of

xopt
k . (C–F) ESCs for the values of xopt

k indicated by the dotted lines in panels A and B. The gray line depicts the numerical solution of

the trait-space equations (Eqs. 16), vk(x), and the black broken line depicts the numerical solution of the moment equations (Eqs. 20),

ṽk(x) = ∑S
i=1 uikN (x, x̄ik , Vik), where the number of species S was determined through our assembly procedure. The colored areas

depict the trait-density of each species i = 1, ..., S for the moment equations, and the black bars depict the traits and densities of the

ESC without ITV. Parameter values are as in Table 1.

Generalizing the framework708

For the purposes of exposition and to focus on our main questions regarding the tension be-

tween intraspecific trait variation, local adaptation, and diversification into multiple species we

have kept our example models simple. However, several more complications can be handled711

by generalizing the framework. First, more than one trait may affect performance, so tracking a

single scalar trait may not always be sufficient, and in such cases we would need some way of de-

riving the dynamics for a mean-trait vector and a trait variance-covariance matrix. In Appendix714

A and Appendix B we show how the framework can be expanded to include multiple traits in

this way. Second, in our Lotka-Volterra models the rate functions were simple enough that we

could calculate the population-level rates necessary for the moment equations using Gaussian717

integration analytically. This will in general not be possible, and in Appendix A, section Series

solutions and Taylor approximations, we show how to derive Taylor-approximations of arbitrary

order to accommodate such situations. Third, our Lotka-Volterra models do not include any720

dependence on any external variables such as abiotic resources, and in Appendix A, section

Environmental variables, we show how external variables can be included in the framework. To

provide an example that includes all these complications we have in Appendix D briefly explored723

a stage-structured model with one juvenile and one adult stage in two traits that compete for two
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abiotic resources.

We have here focused on fully heritable trait variation, but our framework can be extended726

to include non-heritable environmental variation. While we have not worked this case out to the

same level of generality as we have for fully heritable traits, in Appendix A, section Environmental,

non-heritable trait variation, we provide a sketch for the simplest case of one trait in unstructured729

populations. While it is relatively straight-forward to incorporate the generation of non-heritable

variation into the model, it requires additional moment equations, and the derivation of the

moment equations from the trait-space equations becomes more involved.732

Discussion

In this paper we have presented a general framework for eco-evolutionary community assembly

for class-structured communities that incorporates intraspecific trait variation. We have done so735

by deriving moment equations for the total density, mean trait, and trait variance for each species

in a community, combined with a procedure for determining whether additional species need to

be added to a community in order for it to be closed to further invasion. Through examples, we738

demonstrated the application of the framework in an unstructured and a two-patch-structured

Lotka-Volterra competition model, where we saw how less stabilizing conditions could result in

different combinations of more intraspecific variation, local adaptation, and the addition of more741

species to the assembled eco-evolutionarily stable community (ESC).

Intra- and interspecific trait variation

In recent years, the role of intraspecific vs. interspecific variation in traits has received increasing744

attention in functional and community ecology, with two broad questions at the center. First,

how much of trait variation is intraspecific and how much is interspecific (Albert et al., 2011;

Siefert et al., 2015; Griffiths et al., 2016; Gaudard et al., 2019; Xavier Jordani et al., 2019)? And747

second, how important is intraspecific trait variation (ITV) for higher-level outcomes such as
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species coexistence and ecosystem functioning (Bolnick et al., 2011; Violle et al., 2012; Turcotte

and Levine, 2016; Raffard et al., 2019)?750

Regarding the first question, ITV has in general been found to account for substantial por-

tions of trait variation, especially in plants (Siefert et al., 2015; Westerband et al., 2021). However,

in some study systems of ants (Gaudard et al., 2019) and beetles (Griffiths et al., 2016) ITV was753

found to be negligible, and even among plant studies the preponderance of ITV is highly variable

(Westerband et al., 2021), and patterns of intra- and interspecific variation can be highly idiosyn-

cratic (Costa-Pereira et al., 2018; Umaña and Swenson, 2019). For the insect–plant discrepancy,756

Gaudard et al. (2019) suggested that one explanation could be related to the higher plasticity in

plants that arises as a consequence of plants being sessile. In the context of individual niche spe-

cialization, several factors have been proposed as important for accounting for the level of ITV759

including intra- and interspecific competition, ecological opportunity (the diversity of resources),

and predation (Araújo et al., 2011). While these factors can no doubt play a role in shaping ITV,

they can also, in turn be shaped by ITV. In our unstructured Lotka-Volterra model (Eqs. 10, Fig. 2)762

ecological opportunity can roughly be said to correspond to the environmental width wr which

we take to be fixed, but intra- and interspecific competition both shape and are shaped by intra-

and interspecific trait variation through eco-evolutionary feedbacks, so that neither can be said765

to be the strict cause of the other. In field studies, idiosyncratic patterns of trait variation are

to some extent to be expected due to the myriad factors that can be present in natural systems.

Interestingly, however, even for our simple model with just one parameter varied (Fig. 2A), ITV768

is sometimes, but not always, important for characterizing the trait variation in the community.

When the width of the environment is small, yielding one or two species (wr ≤ 2.3), ITV is small

so the trait means of the species of our model incorporating ITV agree very well with a model771

not incorporating ITV, implying that ITV is not important for characterizing the trait distribution

in the community. For larger environmental widths, however, ITV becomes much more substan-

tial, and the mean trait values, and even the number of species in the community, no longer774

agree with the model without ITV, implying that the role of ITV is crucial for characterizing the
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trait distribution in the community. Given the simplicity of our model, our results thus sug-

gest that whether ITV is important for characterizing communal trait variation could be highly777

system-specific and may resist broad-scale explanation. However, a more complete theoretical

exploration of whether broad patterns in different models can be found that serve as good in-

dicators for the importance of ITV is outside the scope of this paper, and more research will be780

required to determine the extent to which such patterns exist. Our framework would serve as a

good tool for carrying out such explorations.

Scaling up to structured communities, Albert et al. (2011) proposed that in a nested sampling783

design, ITV should saturate as the spatial or ecological scale is increased since at a sufficiently

large scale, species will cover their entire range meaning that interspecific trait variation should

become the more important factor. Although our two-patch Lotka-Volterra model (Eqs. 20, Fig. 3)786

is not set up for one-to-one comparisons with this hypothesis, we observe some related phenom-

ena as the environments on the two patches become increasingly different (Fig. 3). Initially, ITV,

mostly in the form of local adaptation, increases as the patches separate. More interspecific varia-789

tion is then added as more species join the community, but beyond a certain point the patches are

too different to permit local adaptation and interspecific variation dominates. To wit, not much

theoretical attention has been payed to what conditions generically promote intra- vs. interspe-792

cific variation on the regional scale (but see Norberg et al., 2012; Edwards et al., 2018), and a more

systematic exploration of this question would be an interesting application of our framework.

Regarding the second question concerned with how ITV affects higher-level outcomes, species795

coexistence has been proposed both to be negatively and positively related to ITV (Violle et al.,

2012). In two theoretical models of competition with fixed intraspecific variances, Hart et al.

(2016) and Barabás and D’Andrea (2016) found that coexistence is (mostly) hampered by ITV. In798

our framework, both the number of species and ITV are dynamic outcomes, and it is thus not

strictly possible to speak causally about how species coexistence affects ITV or vice versa within

the framework. As we have done, however, it is possible to compare a model that includes ITV801

(our framework) to one that does not (adaptive dynamics), and in this sense it seems unlikely
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that the inclusion of ITV would yield a higher number of coexisting species. The available trait

space must be apportioned, and if it can be effectively covered by fewer species by incorporating804

ITV, the number of coexisting species will be lower.

In a two-patch version of the Hart et al. (2016) model, Uriarte and Menge (2018) found that

ITV could promote regional species coexistence. This contradicts our findings, and in our two-807

patch model, ITV in the form of local adaptation can preclude the coexistence of species by a

single species covering more trait space. A crucial difference between our models is that Uriarte

and Menge (2018) assumed that the trait means and variances were fixed on each patch, whereas810

in our models these are outcomes of the dynamics. As for the unstructured case, it is hard

envisioning a scenario using our model where the inclusion of intraspecific variance would lead

to more coexisting species than the reference model without ITV. A scenario like that of Uriarte813

and Menge (2018) is more likely if trait variation is plastic and driven by the environment as

opposed to heritable. The nature of ITV could thus be an important factor too in determining

whether ITV can promote coexistence, as has also been observed in an apparent-competition816

model (Schreiber et al., 2011).

Ecosystem functioning has also been shown to depend on the trait distributions of commu-

nities (Mouillot et al., 2011; Gross et al., 2017). Our modeling framework opens up the door819

for theoretical explorations of the relationship between trait variation both within and between

species and various ecosystem functions. Similarly to coexistence, ecosystem function and the

trait variation are both outcomes of the system’s dynamics, so that neither is the strict cause of822

the other. However, this enables explorations of what mechanisms and environments create and

sustain either, neither, or both of trait diversity and ecosystem functioning.

Relationship to other theoretical approaches825

Our framework builds on, and connects to, several other strands of eco-evolutionary theory.

Considering a single class and setting all mutations to zero, our framework reduces to the

community-ecology framework of Wirtz and Eckhardt (1996) and Norberg et al. (2001), where828
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the moments of the trait distribution of an ensemble of species is tracked. This approach of-

ten includes an immigration term from a fixed species pool to maintain trait variance in the

community. Such an immigration term could easily be incorporated into our framework by des-831

ignating one of the classes a “species-pool class” and letting the internal rates of this class all

be zero to keep the species pool fixed. Note that our formulation also includes cases where the

species pool too consists of structured populations, so that, for example, juveniles and adults in834

a stage-structured model could immigrate at different rates from the species pool.

Although the assumptions going into the model at the outset are different, the moment equa-

tions derived for our model are also very similar to the equations derived under the assumptions837

of quantitative genetics. Assuming a single class, no mutations, and that phenotypic variation

equals genetic variation (no environmental variation), our equations mirror those of Barabás

et al. (2022), who derived equations for mean traits and trait variance-covariance under the as-840

sumptions of quantitative genetics for multiple traits. These similarities between trait-space ap-

proaches and quantitative genetics have been noted before (e.g., Débarre et al., 2013) and the two

approaches have complementary strengths and weaknesses. Most notably, the assumptions of843

normality are less ad hoc in quantitative genetics, and each species is, as described by a normal

distribution, well defined (Turelli and Barton, 1994; Barton et al., 2017). Similarly, the reproduc-

tive isolation of species, which in our moment equations is an approximation, is in quantitative846

genetics based on the biological species concept. This, however, comes at the cost that diversifi-

cation into multiple peaks cannot be easily incorporated as opposed to our approach here.

Our moment equations also closely resemble those derived in trait-diffusion approaches849

(Merico et al., 2014; Le Gland et al., 2020), where mutations are generated by a diffusion process

in trait space. Merico et al. (2014) derived the moment equations for well-mixed, single-species,

single-trait populations and Le Gland et al. (2020) extended this to multiple traits and spatial852

structure by way of reaction-diffusion equations in continuous space. For mutation kernels with

small variance-covariance matrices without covariances, our mutation convolution integral is

well approximated by such trait-diffusion processes (Kimura, 1965; Débarre et al., 2013), and our855
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assembly framework is easily adapted to this setting, equipping the trait-diffusion approaches

with a way of assembling eco-evolutionarily stable communities of several species.

Finally, our framework also produces similar equations to those in ‘oligomorphic dynam-858

ics’ (Sasaki and Dieckmann, 2011; Débarre et al., 2014; Lion et al., 2022), where a trait-density

distribution is also decomposed into a number of ‘species’ to track their moments. Compared

to oligomorphic dynamics, the major innovation we present here is our invasion-analysis and861

community-assembly framework, but there are also differences in how the moment equations

are derived. First, we assume that mutations are associated with some specific ecological pro-

cess (typically births) whereas in oligomorphic dynamics, mutations are assumed to be an inde-864

pendent process. Second, rather than assuming that each species is reproductively isolated, in

oligomorphic dynamics it is instead assumed that new individuals are allocated to each species

in proportion to each species’ density for given trait. For structured populations, additional as-867

sumptions are required (Lion et al., 2022). These assumptions do however ultimately produce the

same general shapes for the moment equations as we derived here. Finally, rather than assuming

that each species is normally distributed, oligomorphic dynamics assumes a small-variance ap-870

proximation and can derive equations for an arbitrary set of moments under these assumptions.

To get a closed system of moment equations a so-called moment-closure approximation is then

used, where using normal distributions is one such possible closure.873

Our choice of approximating each species’ trait density as a normal distribution at the outset

rather than expanding around the mean of each species for an arbitrary number of moments has

both advantages and disadvantages. The advantages are that our moment equations are more876

stable when variances become large compared to a small-variance expansion, and that we can

more easily integrate mutations into birth processes. The disadvantage is that the flexibility in

shape is more limited. In principle, functions other than normal distributions could be used to879

derive the moment equations. For example, Klauschies et al. (2018) and Cropp and Norbury

(2021) used beta distributions as the approximating distribution to close their moment equa-

tions, and there are also approaches that use more involved methods for making non-normal882
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approximations for the trait-space distributions at equilibrium (Mirrahimi and Gandon, 2020).

Assumptions other than normality are likely possible while still retaining the core features of

our approach, but each such differing assumption would require the re-derivation of nearly all885

moment equations. While a shortcoming, our comparisons between the trait-space equations and

moment equations indicate that as long as normality in the distributions of birthed phenotypes

from a parent phenotype is assumed, then our additional assumption that species’ trait distri-888

butions are normal seem not to affect the accuracy of the moment approximations by any large

degree, as our eco-evolutionarily stable communities assembled by moment equations agreed

very well with the corresponding trait-space equations (Figs. 2D–F, 3C–F). We note that although891

we assume normality in each species, the community trait-density distribution is the sum of

these normals, which makes the community distribution much more flexible, see Fig. 3D for an

example. The primary exception to good accuracy in the moment equations is when the number894

of species is ambiguous. In these instances the trait-space equations would yield solutions that

could not easily be approximated by a sum of normal distributions that were assumed to be

reproductively isolated (see Supplementary S1 for examples).897

While these drawbacks should be kept in mind, we nevertheless believe that our framework

makes substantial progress in eco-evolutionary modeling with intraspecific trait variation. In a

phytoplankton model Peeters and Straile (2018) compared trait-space equations without muta-900

tions to single-species moment equations, and concluded that single-species moment equations

failed to provide any useful information when considering parts of parameter space where the

trait-space equations diverged into multiple species. In a similar model using the trait-diffusion903

approach Le Gland et al. (2020) noted that their trait-space equations sometimes exhibited multi-

modality and speculated on the utility of modeling multiple modes, making the selection of how

many modes to include based on functional groups. While multi-species moment models are not906

new (Sasaki and Dieckmann, 2011; Norberg et al., 2012; Barabás and D’Andrea, 2016), our assem-

bly approach obviates the need for a-priori decisions on how many modes or species to include

by using our assembly process. It also gives an alternate approach for deriving the equations for909
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moment dynamics for general class-structured populations, compared to Lion et al. (2022).

Taken together we believe that our framework of unifying the community-assembly tech-

niques of adaptive dynamics with the moment-equation approach to including intraspecific trait912

variation could be of great use to theoreticians and modelers seeking to take advantage of facets

of both eco-evolutionary modeling frameworks. We also believe that being able to assemble

eco-evolutionarily stable communities that accounts for intraspecific trait variation could help915

address many ecological questions regarding the extent and importance of intra- and interspe-

cific trait variation.
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Online Appendix A: Derivation of moment equations918

In this appendix we will derive the generic moment equations (Eqs. 19 in the main text) from

the generic trait-space equations (Eqs. 14 in the main text). However, we will here treat a more

general case than we do in the main text for which there might be multiple traits under considera-921

tion. We will thus consider a trait vector x where each component of the trait vector x1, x2, . . . , xn

describes some property of the organism such as body mass, the propensity to consume a partic-

ular resource, or anything that can be encoded by a real number. This means that we will have a924

mean-trait vector x̄, and a trait variance-covariance matrix V, where, for example, V22 is the variance

in trait x2, and V12 = V21 is the covariance between x1 and x2. This more general formulation

reduces to the case we treat in the main text when the trait vector x is one dimensional.927

Calculating the time derivatives and general notation

Time derivatives of the moments

Let the trait-density distribution of a community be given by v(x) where x ∈ Rn is a trait vector.930

Let ψ and ω index the trait components of x, and let dots over symbols denote time derivatives.

We now wish to consider the following moments of the trait-density distribution v:

u =
∫

v(x)dx Total density (A.1a)933

x̄ψ =
1
u

∫
xψv(x)dx Mean-trait vector component ψ (A.1b)

Vψω =
1
u

∫
(x− x̄)ψ(x− ψ)ωv(x)dx Variance-covariance component ψω (A.1c)

All integrals are over the entirety of Rn. Calculating the moment time derivatives then yields:936

For the total density u:

u̇ =
d
dt

[∫
v(x)dx

]
=
∫

v̇(x)dx (A.2)

For the mean trait component x̄ψ:939

˙̄xψ =
d
dt

[
1
u

∫
xψv(x)dx

]
= − 1

u2 u̇
∫

xψv(x)dx +
1
u

∫
xψv̇(x)dx = (A.3a)
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= − 1
u

∫
v̇dxx̄ψ +

1
u

∫
xψv̇(x)dx =

1
u

∫
(x− x̄)ψv̇(x)dx (A.3b)

⇐⇒942

u ˙̄xψ =
∫
(x− x̄)ψv̇(x)dx (A.3c)

For the variance-covariance component Vψω:

Vψω =
1
u

∫
(x− x̄)ψ(x− x̄)ωv(x)dx (A.4a)945

⇐⇒

uVψω =
∫
(x− x̄)ψ(x− x̄)ωv(x)dx (A.4b)

=⇒948

uV̇ψω + Vψωu̇ = − ˙̄xψ

∫
(x− x̄)ωv(x)dx− ˙̄xω

∫
(x− x̄)ψv(x)dx

+
∫
(x− x̄)ψ(x− x̄)ω v̇(x)dx (A.4c)

=
∫
(x− x̄)ψ(x− x̄)ω v̇(x)dx (A.4d)951

Together we thus have

u̇ =
∫

v̇(x)dx (A.5a)

u ˙̄xψ =
∫
(x− x̄)ψv̇(x)dx (A.5b)954

uV̇ψω + Vψωu̇ =
∫
(x− x̄)ψ(x− x̄)ω v̇(x)dx (A.5c)

This way of expressing the relationships between the time derivatives of the moments and the

time derivative of the trait distribution makes it easier to derive the moment equations for the957

various models, as we can plug in the right-hand side of any equation in place of v̇ in Eqs. A.5.

A note on notation

The calculations for deriving the moment equations are not difficult in the sense that they require960

any complicated mathematical concepts or techniques. They are however rather complex in terms

of notation and book keeping. To alleviate this problem, we introduce some useful notation.
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First, we frequently employ so-called Einstein summation notation. This means that, unless963

otherwise indicated, repeated indices are summed over, so that for example

AαβBβγ := ∑
β

AαβBβγ . (A.6)

Second, we let indices on scalar quantities denote components of gradients, i.e., if f is a function966

from Rn to R, then

fα =
∂ f (x)
∂xα

, α ∈ {1, 2, . . . , n} (A.7)

Thus, for example, in index notation we would write ∇xg as gα. Combining these two notational969

conventions, we can for example write the matrix–vector product V∇xg as Vψαgα and the matrix–

matrix–matrix product V∇2
xgV as VψαgαβVβω.

We will use Greek letters to indicate trait components. For these indices the Einstein summa-972

tion convention will always apply. We will use Latin indices i and j for species, and k and l for

classes, and finally m for processes. The Einstein summation convention will not apply to these

indices.975

Deriving the moment equations

To make it easier to derive the moment equations from the trait-space equations, we will first set

out to derive some intermediate results.978

First, let the probability-density function of an n-dimensional multivariate normal distribu-

tion be denoted by

N (x, x̄, V) =
1√

(2π)n det(V)
exp

(
−1

2
(x− x̄)TV−1(x− x̄)

)
, (A.8)981

where x is the argument vector, x̄ is the mean vector, and V is the variance-covariance matrix

of the multivariate normal distribution, and T denotes matrix transposition. We can then cal-

culate the first and second derivatives of this normal distribution with respect to its argument984

components:

Nψ =
∂N
∂xψ

= −V−1
ψα (x− x̄)αN (x, x̄, V) (A.9a)
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Nψω =
∂2N

∂xψ∂xω
=
[
V−1

ψα (x− x̄)αV−1
ωβ (x− x̄)β −V−1

ψω

]
N (x, x̄, V) (A.9b)987

Furthermore, if f (y) is the rate of an ecological process for an individual with trait y, let the

population level per capita rate for a population with mean-trait vector x and variance-covariance

matrix W be given by990

f̂ (x, W) =
∫

f (y)N (y, x, W)dy . (A.10)

We can now differentiate the population-level rate f̂ with respect to the mean-trait components:

f̂ψ =
∂ f̂

∂xψ
= W−1

ψα

∫
(y− x)α f (y)N (y, x, W)dy (A.11a)993

f̂ψω =
∂2 f̂

∂xψ∂xω
=
∫ [

W−1
ψα (y− x)αW−1

ωβ (x− y)β −W−1
ψω

]
f (y)N (y, x, W)dy (A.11b)

Using these results we can calculate two integrals that will appear later in our derivation:

∫
(x− x̄)ψ f (x)N (x, x̄, V)dx = VψαV−1

αβ

∫
(x− x̄)β f (x)N (x, x̄, V)dx (A.12a)996

= Vψα f̂α(x̄, V) (A.12b)

and

∫
(x− x̄)ψ(x− x̄)ω f (x)N (x, x̄, V)dx (A.13a)999

= VψαVωβ

∫
V−1

αγ (x− x̄)γV−1
βε (x−ω)ε f (x)N (x, x̄, V)dx (A.13b)

= VψαVωβ

∫
[V−1

αγ (x− x̄)γV−1
βε (x−ω)ε −V−1

αβ + V−1
αβ ] f (x)N (x, x̄, V)dx (A.13c)

= Vψα f̂αβ(x̄, V)Vβω + f̂ (x̄, V)Vψω (A.13d)1002

where we have used that V is symmetric so that Vψω = Vωψ.

Assuming that we have a (multi-)normally distributed trait-density distribution v(x) :=

uN (x, x̄, V) with total density u, mean x̄, and variance-covariance V we can use the above results1005

in turn to calculate three integrals that will appear in the derivation of the moment equations:

∫
f (x)v(x)dx =

∫
f (x)uN (x, x̄, V)dx = f̂ (x̄, V)u (A.14)
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∫
(x− x̄)ψ f (x)v(x)dx =

∫
(x− x̄)ψ f (x)uN (x, x̄, V)dx (A.15a)

= uVψα f̂α(x̄, V) (A.15b)

1011

∫
(x− x̄)ψ(x− x̄)ω f (x)v(x)dx =

∫
(x− x̄)ψ(x− x̄)ω f (x)uN (x, x̄, V)dx (A.16a)

= u
(

Vψα f̂αβ(x̄, V)Vβω + f̂ (x̄, V)Vψω

)
(A.16b)

In the trait-space equations, we also need to evaluate the integrals over the normally dis-1014

tributed mutation kernels. In total, three such integrals will need to be evaluated, the first of

which is:

∫ ∫
f (y)v(y)N (y, x, M)dydx = (A.17a)1017

=
∫

f (y)v(y)
∫
N (y, x, M)dxdy (A.17b)

=
∫

f (y)v(y)dy = {Eq. A.14} = f̂ (x̄, V)u (A.17c)

The second integral is1020

∫
(x− x̄)ψ

∫
f (y)v(y)N (y, x, M)dydx =

∫
f (y)v(y)

∫
(x− x̄)ψN (y, x, M)dxdy (A.18a)

=
∫

f (y)v(y)
∫
[(x− y)ψ + (y− x̄)ψ]N (x, y, M)dxdy (A.18b)

=
∫
(y− x̄)ψ f (y)v(y)dy = {Eqs. A.15} = uVψα f̂α(x̄, V) (A.18c)1023

The third integral is

∫
(x− x̄)ψ(x− x̄)ω

∫
f (y)v(y)N (y, x, M)dydx (A.19a)

=
∫

f (y)v(y)
∫
(x− x̄)ψ(x− x̄)ωN (x, y, M)dxdy (A.19b)1026

=
∫

f (y)v(y)
∫
[(x− y)ψ(x− y)ω + (y− x̄)ψ(x− y)ω (A.19c)

+ (x− y)ψ(y− x̄)ω + (y− x̄)ψ(y− x̄)ω]N (x, y, M)dxdy (A.19d)
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= Mψω

∫
f (y)v(y)dy +

∫
(y− x̄)ψ(y− x̄)ω f (y)v(y)dy (A.19e)1029

= {Eq. A.14 and Eqs. A.16} (A.19f)

= u
(

Mψω f̂ (x̄, V) + Vψα f̂αβ(x̄, V)Vβω + f̂ (x̄, V)Vψω

)
(A.19g)

We will here formulate a more explicit version of the trait-space and moment equations1032

(Eqs. 14 and 19 respectively in the main text). We assume that there are K classes, that vk(x)

is the trait-density distribution in class k, and that for each class pair there are Nkl processes

where l is the source class and k is the destination class. We index each such process by fklm(x, v),1035

m ∈ {1, ..., Nkl}, where v := (v1, v2, ..., vK). For each process we let Mklm be the mutation variance-

covariance matrix associated with that process, which for most processes will be Mklm = 0. By

summing over all processes the trait-space equations are then given by1038

dvk(x)
dt

=
K

∑
l=1

Nkl

∑
m=1

∫
fklm(y)vl(y)N (x, y, Mklm)dy . (A.20)

Comparing with the trait-space equations in the main text (Eq. 14), we here make explicit the

summation over all the processes that we left implicit in the main text to obviate the need for1041

excessive notational clutter. For the purposes of deriving the moment equations however, it is

clearer to leave these summations in explicitly.

We now make the assumptions that the trait-density distribution in each class vk(x) can be1044

decomposed into a sum of component distributions (species)

vk(x) =
S

∑
i=1

vik(x) , (A.21)

that each such component distribution can be approximated with a normal distribution1047

vik(x) ≈ ṽik(x) := uikN (x, x̄ik, Vik) (A.22)

and that each species is reproductively isolated so that each species can be treated separately.

Using the results derived above we can now calculate the moment equations for these trait-space1050

equations.

For u:
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duik

dt
=
∫

v̇ik(x)dx ≈
∫

˙̃vik(x)dx =
K

∑
l=1

Nkl

∑
m=1

∫ ∫
fklm(y)ṽil(y)N (x, y, Mklm)dydx (A.23a)1053

= {Eqs. A.17} =
K

∑
l=1

Nkl

∑
m=1

f̂klm(x̄il , Vil)uil (A.23b)

For x̄:

uik
d x̄ikψ

dt
=
∫
(x− x̄ik)ψv̇ik(x)dx ≈

∫
(x− x̄ik)ψ ˙̃vik(x)dx (A.24a)1056

=
K

∑
l=1

Nkl

∑
m=1

∫
(x− x̄ik)ψ

∫
fklm(y)ṽil(y)N (x, y, Mklm)dydx (A.24b)

=
K

∑
l=1

Nkl

∑
m=1

∫
[(x− x̄il)ψ + (x̄il − x̄ik)ψ]

∫
fklm(y)ṽil(y)N (x, y, Mklm)dydx (A.24c)

= {Eqs. A.17 and Eqs. A.18}1059

=
K

∑
l=1

Nkl

∑
m=1

uil

(
Vψα f̂klmα(x̄il , Vil) + f̂klm(x̄il , Vil)(x̄il − x̄ik)ψ

)
(A.24d)

⇐⇒

d x̄ikψ

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
Vψα f̂klmα(x̄il , Vil) + f̂klm(x̄il , Vil)(x̄il − x̄ik)ψ

)
(A.24e)1062

For V:

uik
dVikψω

dt
+ Vikψω

duik

dt
=
∫
(x− x̄ik)ψ(x− x̄ik)ω v̇ik(x)dx (A.25a)

≈
∫
(x− x̄ik)ψ(x− x̄ik)ω ˙̃vik(x)dx (A.25b)1065

=
K

∑
l=1

Nkl

∑
m=1

∫
(x− x̄ik)ψ(x− x̄ik)ω

∫
fklm(y)ṽil(y)N (x, y, Mklm)dydx (A.25c)

=
K

∑
l=1

Nkl

∑
m=1

∫
[(x− x̄il)ψ(x− x̄il)ω + (x̄il − x̄ik)ψ(x− x̄il)ω

+ (x− x̄il)ψ(x̄il − x̄ik)ω + (x̄il − x̄ik)ψ(x̄il − x̄ik)ω]
∫

fklm(y)ṽil(y)N (x, y, Mklm)dydx

(A.25d)

1068
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= {Eqs. A.17, Eqs. A.18, and Eqs. A.19}

=
K

∑
l=1

Nkl

∑
m=1

uil

[
Mklmψω f̂klm(x̄il , Vil) + Vilψα f̂klmαβ(x̄il , Vil)Vilβω + f̂klm(x̄il , Vil)Vilψω

+ Vilψα f̂klmα(x̄il , Vil)(x̄il − x̄ik)ω + Vilωα f̂klmα(x̄il , Vil)(x̄il − x̄ik)ψ1071

+ f̂klm(x̄il , Vil)(x̄il − x̄ik)ψ(x̄il − x̄ik)ω

]
(A.25e)

⇐⇒

dVikψω

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

[
Mklmψω f̂klm(x̄il , Vil) + Vilψα f̂klmαβ(x̄il , Vil)Vilβω1074

+ f̂klm(x̄il , Vil)(Vilψω −Vikψω)

+ Vilψα f̂klmα(x̄il , Vil)(x̄il − x̄ik)ω + Vilωα f̂klmα(x̄il , Vil)(x̄il − x̄ik)ψ

+ f̂klm(x̄il , Vil)(x̄il − x̄ik)ψ(x̄il − x̄ik)ω

]
(A.25f)1077

The complete moment equations for S species in K classes thus read

duik

dt
=

K

∑
l=1

Nkl

∑
m=1

f̂iklmuil (A.26a)

d x̄ikψ

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
Vilψα f̂iklmα + f̂iklm(x̄il − x̄ik)ψ

)
(A.26b)1080

dVikψω

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

[
Vilψα f̂iklmαβVilβω + f̂iklm(Vilψω −Vikψω) + Mklmψω f̂iklm (A.26c)

+ Vilψα f̂iklmα(x̄il − x̄ik)ω + Vilωα f̂iklmα(x̄il − x̄ik)ψ (A.26d)

+ f̂iklm(x̄il − x̄ik)ψ(x̄il − x̄ik)ω

]
(A.26e)1083

f̂iklm := f̂klm(x̄il , Vil , ṽ) (A.26f)

f̂iklmα :=
∂ f̂klm

∂xα
(x̄il , Vil , ṽ) (A.26g)

f̂iklmαβ :=
∂2 f̂klm

∂xα∂xβ
(x̄il , Vil , ṽ) (A.26h)1086

Here, we have omitted the explicit dependence of the process rates on its arguments for notational

clarity. We have also added the dependence of the process rates f̂klm on the approximate trait-

density distributions ṽ = (ṽ1, . . . , ṽK) where ṽk(x) = ∑S
i=1 uikN (x, x̄ik, Vik). For convenience we1089
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did not include this dependence during the derivation, as their inclusion does not affect the

derivation. We do however make one note with regards to this. When we define the population-

level rate1092

f̂klm(x, W, ṽ) =
∫

fklm(y, ṽ)N (y, x, W)dy (A.27)

it technically describes the population-level per capita rate of a normally distributed population

with mean-trait vector x and variance-covariance matrix W that is negligibly rare in the resident1095

community whose trait-density distribution is given by ṽ across all classes. In other words,

the rare population with mean x and variance-covariance W does not add to the trait-density

distribution ṽ. This is analogous to how invasion fitness for a rare invader is defined in adaptive1098

dynamics (Metz et al., 1992; Geritz et al., 1998). This notation helps us get frequency-dependent

interactions (such as the competition in our Lotka-Volterra model examples) correct when we

differentiate the population-level rates. Note also that while we in the appendices denote the rare1101

invader’s mean trait and variance by x and W for reasons of separating these abstract quantities

of the invader from the realized quantities of an extant resident population, in the main text we

instead use x̄ and V for the rare invader population to emphasize that they are the means and1104

variance respectively.

It can be easier to interpret these equations when not written in index notation, and so we

let ∇x f denote the gradient vector of f with respect to x, and let ∇2
x f denote the Hessian matrix1107

of f with respect to x, and rewrite the equations in the language of vectors and matrices which

yields

duik

dt
=

K

∑
l=1

Nkl

∑
m=1

f̂iklmuil (A.28a)1110

d x̄ikψ

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
Vil∇x f̂iklm + f̂iklm(x̄il − x̄ik)

)
(A.28b)

dVikψω

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

[
Vil∇2

x f̂iklmVil + f̂iklm(Vil −Vik) + Mklm f̂iklm (A.28c)

+ Vil∇x f̂iklm(x̄il − x̄ik)
T + (x̄il − x̄ik)

[
Vil∇x f̂iklm

]T
(A.28d)1113

+ f̂iklm(x̄il − x̄ik)(x̄il − x̄ik)
T
]

(A.28e)
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f̂iklm := f̂klm(x̄il , Vil , ṽ) (A.28f)

∇x f̂iklm := ∇x f̂klm(x̄il , Vil , ṽ) (A.28g)1116

∇2
x f̂iklm := ∇2

x f̂klm(x̄il , Vil , ṽ) (A.28h)

where T denotes vector transpose, and all multiplication is taken to be matrix multiplication.

When the trait is scalar, i.e, x ∈ R, these equations simplify to1119

duik

dt
=

K

∑
l=1

Nkl

∑
m=1

f̂iklmuil (A.29a)

d x̄ik

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
Vil∂x f̂iklm + f̂iklm(x̄il − x̄ik)

)
(A.29b)

dVik

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

[
V2

il ∂
2
x f̂iklm + f̂iklm(Vil −Vik) + Mklm f̂iklm (A.29c)1122

+ 2Vil∂x f̂iklm(x̄il − x̄ik) + f̂iklm(x̄il − x̄ik)
2
]

(A.29d)

f̂klm(x, W, ṽ) =
∫

f (y, ṽ)N (y, x, W)dy (A.29e)

f̂iklm := f̂klm(x̄il , Vil , ṽ) (A.29f)1125

∂x f̂iklm :=
∂ f̂klm

∂x
(x̄il , Vil , ṽ) (A.29g)

∂2
x f̂iklm :=

∂2 f̂klm

∂x2 (x̄il , Vil , ṽ) (A.29h)

Finally, we can describe the double summation over source classes l and processes m implicitly by1128

letting d be the index for destination classes, s be the index for source classes, f be any process to

be summed over, and M be its associated mutation variance, and +
= be the operator that describes

addition to. This then yields1131

duid

dt
+
= f̂ (x̄is, Vis, ṽ)uis , (A.30a)

d x̄id

dt
+
=

uis

uid

[
Vis

∂ f̂
∂x̄

(x̄is, Vis, ṽ) + f̂ (x̄is, Vis, ṽ)(x̄is − x̄id)

]
, (A.30b)

dVid

dt
+
=

uis

uid

[
V2

is
∂2 f̂
∂x̄2 (x̄is, Vis, ṽ) + f̂ (x̄is, Vis, ṽ)(Vis −Vid)1134

+ f̂ (x̄is, Vis, ṽ)(x̄is − x̄id)
2 + 2Vis

∂ f̂
∂x̄

(x̄is, Vis, ṽ)(x̄is − x̄id)
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+ f̂ (x̄is, Vis, ṽ)M
]

, (A.30c)

f̂ (x̄, V, ṽ) =
∫

f (x, ṽ)N (x, x̄, V)dx . (A.30d)1137

These correspond to Eq. 19 in the main text.

Series solutions and Taylor approximations

The population per capita rates1140

f̂ (x, W) =
∫

f (y)N (y, x, W)dy (A.31)

are in most cases not going to be analytically computable. Owen (1980) contains a large list of

Gaussian integrals. Here, we briefly note that for example exponential functions, Gaussian func-1143

tions, and polynomials can be analytically integrated against a Gaussian, whereas, for example,

a Type-II functional response of an organism with trait x ∈ R consuming a resource R where the

affinities depend on the trait x1146

f (x) =
a(x)R

1 + a(x)hR
(A.32)

has, to wit, no analytically closed expression for simple forms for a(x) such as linear or exponen-

tial when the functional response is integrated against the Gaussian.1149

For the cases where the population-rate integrals cannot be evaluated directly, we may Taylor

expand the process rates. To this end let αn denote an ordered set of indices such that

αn := α1α2 · · · αn (A.33)1152

where each αi indexes the trait-components. Thus, for example

fα4 = fα1α2α3α4 (A.34)

denotes the 4-tensor of mixed partial derivatives of order 4 of f . For a vector x in trait space we1155

let

xαn
:= xα1 xα2 · · · xαn (A.35)
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denote the outer product of n copies of the vector. For a matrix W acting on trait space we also1158

let

Wα2n
:= Wα1α2Wα3α4 · · ·Wα2n−1α2n (A.36)

denote the outer product of n copies of the matrices.1161

We can now Taylor-expand

f̂ (x, W) =
∫

f (y)N (y, x, W)dy =
∫ ∞

∑
n=0

fαn(x)
n!

(y− x)αnN (y, x, W)dy (A.37a)

The central moments of a multivariate normal distribution are n-tensors and are given in e.g.,1164

Triantafyllopoulos (2002). However, when contracted against the fully symmetric tensor fαn these

expressions simplify considerably so that

∫
fαn(x)(y− x)αnN (y, x, W)dy =


0 if n is odd

(n− 1)!! fαnWαn
if n is even

(A.38)1167

where “!!” is the double factorial, which is defined by

n!! = n(n− 2)(n− 4) · · · 1 , 0!! = 1 , (−1)!! = 1 (A.39)

For the Taylor expansion we thus have1170

∫ ∞

∑
n=0

fαn(x)
n!

(y− x)αnN (y, x, W)dy =
∞

∑
n=0

n even

fαn(x)
n!

(n− 1)!!Wαn
(A.40a)

=
∞

∑
n=0

fα2n(x)
(2n)!

(2n− 1)!!Wα2n
=

∞

∑
n=0

fα2n(x)
2nn!

Wα2n
(A.40b)

and hence1173

f̂ (x, W) =
∞

∑
n=0

fα2n(x)
2nn!

Wα2n
= f (x) +

1
2

fαβ(x)Wαβ +
1
8

fαβγε(x)WαβWγε + ... (A.41a)

f̂ψ(x, W) =
∞

∑
n=0

fα2nψ(x)
2nn!

Wα2n
= fψ(x) +

1
2

fψαβ(x)Wαβ +
1
8

fψαβγε(x)WαβWγε + ... (A.41b)

f̂ψω(x, W) =
∞

∑
n=0

fα2nψω(x)
2nn!

Wα2n
= fψω(x) +

1
2

fψωαβ(x)Wαβ +
1
8

fψωαβγε(x)WαβWγε + ... (A.41c)1176
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A Taylor expansion of order n then corresponds to truncating to derivatives of f with no higher

order than n, so that e.g., a Taylor-approximation of order three would yield

f̂ (x, W) =
∞

∑
n=0

fα2n(x)
2nn!

Wα2n ≈ f (x) +
1
2

fαβ(x)Wαβ (A.42a)1179

f̂ψ(x, W) =
∞

∑
n=0

fα2nψ(x)
2nn!

Wα2n ≈ fψ(x) +
1
2

fψαβ(x)Wαβ (A.42b)

f̂ψω(x, W) =
∞

∑
n=0

fα2nψω(x)
2nn!

Wα2n ≈ fψω(x) (A.42c)

For a scalar trait, let f (n) denote the nth derivative of f with respect to x. The expressions1182

then simplify to

f̂ (x, W) =
∞

∑
n=0

f (2n)(x)
2nn!

Wn = f (x) +
1
2

f (2)(x)W +
1
8

f (4)(x)W2 + ... (A.43a)

f̂ (1)(x, W) =
∞

∑
n=0

f (2n+1)(x)
2nn!

Wn = f (1)(x) +
1
2

f (3)(x)W +
1
8

f (5)(x)W2 + ... (A.43b)1185

f̂ (2)(x, W) =
∞

∑
n=0

f (2n+2)(x)
2nn!

Wn = f (2)(x) +
1
2

f (4)(x)W +
1
8

f (6)(x)W2 + ... (A.43c)

Variable mutation variance-covariance matrices and mutation bias

For completeness we here presents result of more complicated mutation dynamics where the1188

mutation variance-covariance matrix is allowed to depend on the trait of the parent so that some

phenotypes generate a wider array of offspring than others in trait space, and where mutations

are not symmetric so that there is a bias of mutations in some direction in trait space.1191

First, we let the mutation variance-covariance matrix vary with trait so that M(y) is a positive-

definite matrix for all y. The mutation kernel is then given by N (x, y, M(y)). Note that for each

fixed y, this is just the probability density function of a normal distribution over x.1194

Working through the problem in the same way as we did for constant mutation matrices

(Eqs. A.17–A.18) we can then evaluate the three integrals used to account for mutation, the first

of which is:1197

∫ ∫
f (y)N (y, x̄, V)(y, x, M(y))dydx =

∫
f (y)N (y, x̄, V)

∫
N (y, x, M(y))dxdy (A.44a)
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=
∫

f (y)N (y, x̄, V)dy =
∫

f (x)N (x, x̄, V)dx = f̂ (x̄, V) (A.44b)

The second integral is1200

∫
(x− x̄)ψ

∫
f (y)N (y, x̄, V)(y, x, M(y))dydx =

∫
f (y)N (y, x̄, V)

∫
(x− x̄)ψN (y, x, M(y))dxdy

(A.45a)

=
∫

f (y)N (y, x̄, V)
∫
[(x− y)ψ + (y− x̄)ψ]N (x, y, M(y))dxdy (A.45b)

=
∫
(y− x̄)ψ f (y)N (y, x̄, V)dy =

∫
(x− x̄)ψ f (x)N (x, x̄, V)dx = Vψα f̂α(x̄, V) (A.45c)1203

The third integral is

∫
(x− x̄)ψ(x− x̄)ω

∫
f (y)N (y, x̄, V)(y, x, M(y))dydx (A.46a)

=
∫

f (y)N (y, x̄, V)
∫
(x− x̄)ψ(x− x̄)ωN (x, y, M(y))dxdy (A.46b)1206

=
∫

f (y)N (y, x̄, V)
∫
[(x− y)ψ(x− y)ω + (y− x̄)ψ(x− y)ω (A.46c)

+ (x− y)ψ(y− x̄)ω + (y− x̄)ψ(y− x̄)ω]N (x, y, M(y))dxdy (A.46d)

=
∫

f (y)Mψω(y)N (y, x̄, V)dy +
∫
(y− x̄)ψ(y− x̄)ω f (y)N (y, x̄, M)dy (A.46e)1209

= ̂f Mψω(x̄, V) + Vψα f̂αβ(x̄, V)Vβω + f̂ (x̄, V)Vψω (A.46f)

The mutation term in the moment equations when the mutation variance-covariance matrix is

trait-dependent will thus read1212

( f̂ M)iklmψω =
∫

fklm(x)Mklmψω(x)N (x, x̄il , Vil)dx (A.47)

To second order we have

∫
f (y)Mψω(y)N (y, x̄, V)dy (A.48a)1215

≈ f (x̄)Mψω(x̄) +
1
2

Vαβ

[
f Mψω

]
αβ

(x̄) (A.48b)

= f (x̄)Mψω(x̄) +
1
2

Vαβ

[
fαβ(x̄)Mψω(x̄) + fα(x̄)Mψωβ(x̄) + fβ(x̄)Mψωα(x̄) + f (x̄)Mψωαβ(x̄)

]
(A.48c)
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Apart from the term in the moment equations that add to variance-covariance through mutation,1218

which is now given by Eq. A.47, the rest of the moment equations remain unchanged under the

assumption that the variance-covariance matrix is trait dependent.

We now turn to the case where there is also mutation bias so that a parent with trait y on1221

average produces offspring with trait y + µ(y) with variance-covariance M(y). Mathematically,

this implies that a rate f produces new individuals with trait x at a rate

∫
f (y)v(y)N (y, x− µ(y), M(y))dy (A.49)1224

Once again, we can evaluate the mutation integrals, the first of which yields

∫ ∫
f (y)N (y, x̄, V)(y, x− µ(y), M(y))dydx =

∫
f (y)N (y, x̄, V)

∫
N (x, y + µ(y), M(y))dxdy

(A.50a)

=
∫

f (y)N (y, x̄, V)dy =
∫

f (x)N (x, x̄, V)dx = f̂ (x̄, V) (A.50b)1227

The second mutation integral is

∫
(x− x̄)ψ

∫
f (y)N (y, x̄, V)(y, x− µ(y), M(y))dydx (A.51a)

=
∫

f (y)N (y, x̄, V)
∫
(x− x̄)ψN (x, y + µ(y), M(y))dxdy (A.51b)1230

=
∫

f (y)N (y, x̄, V)
∫
[(x− (y + µ(y)))ψ + (y + µ(y)− x̄)ψ]N (x, y + µ(y), M(y))dxdy (A.51c)

=
∫
[(y− x̄)ψ + µ(y)ψ] f (y)N (y, x̄, V)dy = Vψα f̂α(x̄, V) + f̂ µψ(x̄, V) (A.51d)

where1233

f̂ µψ(x̄, V) =
∫

f (y)µψ(y)N (y, x̄, V)dy (A.52)

For the third mutation integral, let ỹ := y + µ(y). We then get

∫
(x− x̄)ψ(x− x̄)ω

∫
f (y)N (y, x̄, V)(y, x− µ(y), M(y))dydx (A.53a)1236

=
∫

f (y)N (y, x̄, V)
∫
(x− x̄)ψ(x− x̄)ωN (x, ỹ, M(y))dxdy (A.53b)

=
∫

f (y)N (y, x̄, V)
∫
[(x− ỹ)ψ(x− ỹ)ω + (ỹ− x̄)ψ(x− ỹ)ω (A.53c)
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+ (x− ỹ)ψ(ỹ− x̄)ω + (ỹ− x̄)ψ(ỹ− x̄)ω]N (x, ỹ, M(y))dxdy (A.53d)1239

=
∫

f (y)Mψω(y)N (y, x̄, V)dy +
∫
(ỹ− x̄)ψ(ỹ− x̄)ω f (y)N (y, x̄, V)dy (A.53e)

= ̂f Mψω(x̄, V) +
∫
(y− x̄)ψ(y− x̄)ω f (y)N (y, x̄, V)dy (A.53f)

+
∫

µ(y)ψ(y− x̄)ω f (y)N (y, x̄, V)dy +
∫
(y− x̄)ψµ(y)ω f (y)N (y, x̄, V)dy (A.53g)1242

+
∫

µ(y)ψµ(y)ω f (y)N (y, x̄, V)dy (A.53h)

= ̂f Mψω(x̄, V) + Vψα f̂αβ(x̄, V)Vβω + f̂ (x̄, V)Vψω (A.53i)

+ Vψα(µ̂ω f )α(x̄, V) + Vωα(µ̂ψ f )α(x̄, V) + ̂µψµω f (x̄, V) (A.53j)1245

When inserted into the full moment equations where each process fklm has an attached mutation

bias vector µklm(y) for the class-structured community this yields the moment equations

duik

dt
=

K

∑
l=1

Nkl

∑
m=1

f̂iklmuil (A.54a)1248

d x̄ikψ

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
Vilψα f̂iklmα + f̂iklm(x̄il − x̄ik)ψ + f̂ µiklmψ

)
(A.54b)

dVikψω

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
f̂ Miklmψω + Vilψα f̂iklmαβVilβω + f̂iklm(Vilψω −Vikψω) (A.54c)

+ Vilψα( f̂ µiklmω)α + Vilωα( f̂ µiklmψ)α + µ̂µ f iklmψω (A.54d)1251

+ (x̄il − x̄ik)ψ(Vilωα f̂iklmα + f̂ µiklmω) + (x̄il − x̄ik)ω(Vilψα f̂iklmα + f̂ µiklmψ) (A.54e)

+ f̂iklm(x̄il − x̄ik)ψ(x̄il − x̄ik)ω

)
(A.54f)

Here, all functions with subscript iklm are evaluated at x̄il and Vil .1254

In vector–matrix form these equations are written as

duik

dt
=

K

∑
l=1

Nkl

∑
m=1

f̂iklmuil (A.55a)

d x̄ik

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
Vil∇x f̂iklm + f̂iklm(x̄il − x̄ik) + f̂ µiklm

)
(A.55b)1257

dVik

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
f̂ Miklm + Vil∇2

x f̂iklmVil + f̂iklm(Vil −Vik) (A.55c)

+ Vil∇x f̂ µiklm + [Vil∇x f̂ µiklm]
T + µ̂µT f iklm (A.55d)
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+ (x̄il − x̄ik)(Vil∇x f̂iklm + f̂ µiklm)
T + (Vil∇x f̂iklm + f̂ µiklm)(x̄il − x̄ik)

T (A.55e)1260

+ f̂iklm(x̄il − x̄ik)(x̄il − x̄ik)
T
)

(A.55f)

For scalar traits, these simplify somewhat to

duik

dt
=

K

∑
l=1

Nkl

∑
m=1

f̂iklmuil (A.56a)1263

d x̄ik

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
Vil∂x f̂iklm + f̂iklm(x̄il − x̄ik) + f̂ µiklm

)
(A.56b)

dVik

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
f̂ Miklm + V2

il ∂
2
x f̂iklm + f̂iklm(Vil −Vik) (A.56c)

+ 2Vil∂x f̂ µiklm + µ̂2 f iklm (A.56d)1266

+ 2(x̄il − x̄ik)(Vil∂x f̂iklm + f̂ µiklm) (A.56e)

+ f̂iklm(x̄il − x̄ik)
2
)

(A.56f)

Environmental variables1269

In our examples in the main text we have not included non-evolving environmental variables

(but see Appendix D). Such environmental variables include e.g., abiotic resources, toxins, or

natural enemies whose traits can be considered fixed over the time-scale of interest. Here we1272

present a brief account of how these are included in the trait-space and moment equations when

the rate functions of the environmental variables depend linearly on the species’ trait-density

distributions, as would be the case in classical resource-competition theory (Tilman, 1982) and1275

contemporary niche theory (Chase and Leibold, 2003; Koffel et al., 2021).

Environmental variables may or may not follow the same class structure as the ecological com-

munities. For example, in a two-patch model, resources may follow the same class structure as1278

the species and are distributed among the patches, but in our stage-structured model (Appendix

D) the resources are unstructured. Furthermore, each environmental variable might have its own

structure. Thus, let Ejnj be the density of environmental variable j in environmental class nj,1281

with NE total environmental variables and KEj environmental variable classes for environmental
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variable j. We let E denote the vector of all environmental variable densities in all environmental

classes. We note here that it would be equally possible to simply enumerate all environmental1284

variables E1, E2, . . . without loss of generality. However, for the times when the structure for the

species mirrors that of the environmental variables (as in e.g., a patch model where each patch

has, say, a resource and a natural enemy) structuring the environmental variables is useful.1287

Together with the trait-space equations for the ecological communities this yields the equation

system

dvk(x)
dt

=
K

∑
l=1

Nkl

∑
m=1

∫
fklm(y, v, E)vl(y)N (x, y, Mklm)dy (A.57a)1290

dEjnj

dt
= ρjnj(E) +

K

∑
l=1

∫
Ijnj l(E, x)vl(x)dx (A.57b)

Here, ρjnj(E) represent the dynamics of environmental variable j in environmental class nj in the

absence of any species, and Ijnj l(E, y) is the impact of a an individual in class l with trait y on1293

environmental variable j in environmental class nj.

As before, we now make the assumption that the trait-density distribution vl(x) can be ap-

proximated by a sum of normal distributions:1296

vl(x) ≈ ṽl(x) =
S

∑
i=1

uilN (x, x̄il , Vil) (A.58)

and, similarly to how we derived the moment equations, introduce the population-level per

capita impact from a population with mean trait x̄il and variance-covariance Vil :1299

Îijnj l :=
∫

Ijnj l(E, x)N (x, x̄il , Vil)dx (A.59)

If necessary, this can then be Taylor-expanded to arbitrary order. In particular, to second order

this yields:1302

Îijnj l ≈ Ijnj l(E, x̄il) +
1
2
∇2

x Ijnj l(E, x̄il) : Vil (A.60)

Thus, the moment equations including environmental variables read

duik

dt
=

K

∑
l=1

Nkl

∑
m=1

f̂iklmuil (A.61a)1305

61



d x̄ik

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
Vil∇x f̂iklm + f̂iklm(x̄il − x̄ik)

)
(A.61b)

dVik

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
Vil∇2

x f̂iklmVil + f̂iklm (Vil −Vik) + f̂iklm Mklm

+ f̂iklm(x̄il − x̄ik)(x̄il − x̄ik)
T (A.61c)1308

+ Vil∇x f̂iklm(x̄il − x̄ik)
T + (x̄il − x̄ik)

[
Vil∇x f̂iklm

]T
)

dEjnj

dt
= ρjnj +

S

∑
i=1

K

∑
l=1

Îjnjiluil (A.61d)

Here, the arguments of all rate functions have been suppressed for notational clarity, and func-1311

tions are evaluated at x̄il , Vil , and E.

Environmental, non-heritable trait variation

We have throughout this work assumed that all trait variation is heritable, but our framework1314

can be extended to include non-heritable environmental variation. While we have not worked

out how to incorporate environmental variation to the same detail and generality as for the case

without it, below we present a sketch of one way of incorporating environmental variation for1317

the simplest case of a single trait in an unstructured community, and derive moment equations

for this case.

To derive equations that include environmental variation, we must consider the joint genotype–1320

phenotype distribution v(x, ξ), where x is a genotype value and ξ is a phenotype value. The

distribution v(x, ξ) thus describes how many individuals there are with genotype value x and

phenotype value ξ, or, perhaps more intuitively, for any fixed x, v(x, ξ) gives the distribution of1323

phenotype values for the genotype value x. Furthermore, we will define

vG(x) :=
∫ ∞

−∞
v(x, ξ)dξ , (A.62a)

vP(ξ) :=
∫ ∞

−∞
v(x, ξ)dx , (A.62b)1326

to be the distributions of genotypes and phenotypes in the community respectively.
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Next, we must make assumptions regarding how environmental variation is generated in the

community. We will do this in a similar manner to how we incorporated mutations into our1329

trait-space equations. We will assume that the per capita birth rate is given by b(ξ, vP) and thus

depends on the phenotype value of the individual and the distribution of phenotype values in

the community, vP(ξ). Thus, the total rate at which parents with genotype y birth offspring is1332 ∫ ∞

−∞
b(η, vP)v(y, η)dη , (A.63)

where we have integrated over all phenotypes η for the given genotype y. Assuming once again

that each parent with genotype y gives birth to a normally-distributed clutch of offspring due to1335

mutations, the distribution of birthed genotypes in the community can then be calculated to be

B(x) =
∫ ∞

−∞

∫ ∞

−∞
b(η, vP)v(y, η)dηN (x, y, M)dy . (A.64)

Finally, we will assume that there is some fixed amount of normal environmental variation Eb1338

assigned at birth around each genotype value. This means that new offspring will be produced

at a rate for the joint distribution given by

B(x)N (ξ, x, Eb) . (A.65)1341

Assuming that mortality rates as well as birth rates depend only on individuals’ phenotype

values and the phenotype distribution in the community we can thus write down how the joint

genotype–phenotype distribution will change over time:1344

dv(x, ξ)

dt
=
∫ ∞

−∞

∫ ∞

−∞
b(η, vP)v(y, η)dηN (x, y, M)dyN (ξ, x, Eb)−m(ξ, vP)v(x, ξ) . (A.66)

This is the trait-space equation for the case where environmental variation is included.

Moment equations with environmental variation1347

Just as we did without environmental variation, we will assume that the joint genotype–phenotype

distribution v(x, ξ) can be broken up into S ‘species’, or peaks, so that

v(x, ξ) =
S

∑
i=1

vi(x, ξ) (A.67)1350
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and we will then approximate each peak by

ṽi(x, ξ) := uiN (x, x̄i, Gi)N (ξ, x, Ei) ≈ vi(x, ξ) , (A.68)

where ui is the total density of individuals in species i, x̄i is the mean genotype of species i, Gi1353

is the genetic variance in species i, and Ei is the environmental variance in species i. In words,

each species is assumed to have a normal distribution of genotype values, and to have a normal

distribution of phenotype values around each genotype value. We write1356

ṽ(x, ξ) :=
S

∑
i=1

ṽi(x, ξ) ≈ v(x, ξ) (A.69)

for the approximated trait-density distribution. The distribution of phenotype values in each

species is given by1359

ṽPi(ξ) =
∫ ∞

−∞
ṽi(x, ξ)dx =

∫ ∞

−∞
uiN (x, x̄i, Gi)N (ξ, x, Ei)dx = uiN (ξ, x̄, Gi + Ei) (A.70)

and we thus let Vi := Gi + Ei be the phenotypic trait variance in species i. Note that under these

assumptions, the mean phenotype in species i, ξ̄i, is equal to the mean genotype in species i, x̄i,1362

and so we shall only need to track the mean genotype x̄i for each species, and can refer to x̄i as

simply the “mean trait” in species i, as we did for the case with no environmental variation.

Like for the case without environmental variation we need to define population-level rates1365

for a normally-distributed population with mean trait x̄ and phenotypic variance V, which are

given by

b̂(x̄, V, ṽP) =
∫ ∞

−∞
b(ξ, ṽP)N (ξ, x̄, V)dξ , (A.71a)1368

m̂(x̄, V, ṽP) =
∫ ∞

−∞
m(ξ, ṽP)N (ξ, x̄, V)dξ . (A.71b)

Given this, we can derive (see subsection below) the moment equations for the total densities ui,

mean traits x̄i, genetic variance Gi, and environmental variance Ei to be1371

dui

dt
=
[
b̂(x̄i, Vi, ṽP)− m̂(x̄i, Vi, ṽP)

]
ui , (A.72a)

d x̄i

dt
= Gi

[
∂b̂
∂x̄

(x̄i, Vi, ṽP)−
∂m̂
∂x̄

(x̄i, Vi, ṽP)

]
, (A.72b)
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dGi

dt
= G2

i

[
∂2b̂
∂x̄2 (x̄i, Vi, ṽP)−

∂2m̂
∂x̄2 (x̄i, Vi, ṽP)

]
+ b̂(x̄i, Vi, ṽP)M , (A.72c)1374

dEi

dt
= b̂(x̄i, Vi, ṽP) (Eb − Ei)−

(
V2

i − G2
i
) ∂2m̂

∂x̄2 (x̄i, Vi, ṽP) , (A.72d)

Vi = Gi + Ei . (A.72e)

The first three equations for ui, x̄i, and Gi closely mirror those we derived without environ-1377

mental variation, but the population-level birth and mortality rates and their derivatives must

be evaluated using the total phenotypic variance Vi. When Ei = 0, Vi = Gi and we have com-

plete agreement with our equations that do not incorporate environmental variation as expected.1380

More notably, under our assumption of constant environmental variation generated at birth Eb,

we must take the standing environmental variance Ei for each species to be a dynamic variable

that changes over time in response to births and deaths. Roughly speaking, the first term of1383

Eq. A.72d describes how births change the standing environmental variation Ei to become closer

to the amount generated at birth, Eb. The second term of Eq. A.72d describes the effects of trait-

dependent mortality on the standing environmental variation. If mortality is trait independent1386

so that ∂2m̂/∂x̄2 = 0, then the standing environmental variation will only be driven by the birth

process, and Ei will settle onto becoming equal to Eb for all species, and once Ei = Eb, it will

remain so regardless of how the other state variables may change over time. If, however, there is1389

stabilizing selection due to trait dependence of the mortality term so that −∂2m̂/∂x̄2 < 0, then

this will have the effect of reducing the standing environmental variation over time, and in equi-

librium there will be a balance between the environmental variation generated through births1392

and the reduction of environmental variation due to stabilizing mortality selection.

While outside the scope of this paper, using the same basic idea one could work out the

moment equations for class-structured populations with multiple traits including environmental1395

variation, and invasion and branching criteria could be worked out in analogous ways to how

we did so for the case without environmental variation.
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Deriving the moment equations when including environmental variation1398

Before we derive the expressions for the rates of change for the moments, we must compute

some intermediary results that will be useful in computing the various integrals involved when

calculating the moment equations.1401

First, let f ∈ {b, m} be either the function describing the birth rate or the mortality rate. We

then define

f̂ (x̄, G, E, vP) =
∫ ∞

−∞

∫ ∞

−∞
f (ξ, vP)N (x, x̄, G)N (ξ, x, E)dξdx , (A.73a)1404

f̂ (x̄, V, vP) =
∫ ∞

−∞

∫ ∞

−∞
f (ξ, vP)N (ξ, x̄, V)dξ , (A.73b)

and note that when V = G + E these expressions are equal. For the first derivative of f̂ we

calculate1407 ∫ ∞

−∞

∫ ∞

−∞
(x− x̄) f (ξ, vP)N (x, x̄, G)N (ξ, x, E)dξdx (A.74a)

= G
∫ ∞

−∞
f (ξ, vP)

ξ − x̄
V
N (ξ, x̄, V)dξ = G

∂ f̂
∂x̄

(x̄, V, vP) . (A.74b)

For the second derivatives of f̂ we may similarly calculate1410 ∫ ∞

−∞

∫ ∞

−∞
(x− x̄)2 f (ξ, vP)N (x, x̄, G)N (ξ, x, E)dξdx = G2 ∂2 f̂

∂x̄2 (x̄, V, vP) + G f̂ (x̄, V, ṽP) , (A.75a)∫ ∞

−∞

∫ ∞

−∞
(ξ − x̄)2 f (ξ, vP)N (x, x̄, G)N (ξ, x, E)dξdx = V2 ∂2 f̂

∂x̄2 (x̄, V, vP) + V f̂ (x̄, V, ṽP) . (A.75b)

Under the assumption that the mean genotype x̄i equals the mean phenotype ξ̄i (or simply, the

mean trait) the moments are given by

ui =
∫ ∞

−∞

∫ ∞

−∞
vi(x, ξ)dxdξ , (A.76a)

x̄i =
1
ui

∫ ∞

−∞

∫ ∞

−∞
xvi(x, ξ)dxdξ , (A.76b)

Gi =
1
ui

∫ ∞

−∞

∫ ∞

−∞
(x− x̄i)

2vi(x, ξ)dxdξ , (A.76c)

Vi =
1
ui

∫ ∞

−∞

∫ ∞

−∞
(ξ − x̄i)

2vi(x, ξ)dxdξ , (A.76d)

Ei = Vi − Gi =
1
ui

∫ ∞

−∞

∫ ∞

−∞

[
(ξ − x̄i)

2 − (x− x̄i)
2] vi(x, ξ)dxdξ (A.76e)

66



=
1
ui

∫ ∞

−∞

∫ ∞

−∞

[
2(ξ − x)(x− x̄i) + (ξ − x)2] vi(x, ξ)dxdξ . (A.76f)

Now, assuming our normal approximations so that1413

ṽi(x, ξ) := uiN (x, x̄i, Gi)N (ξ, x, Ei) ≈ vi(x, ξ) , (A.77a)

ṽ(x, ξ) :=
S

∑
i=1

ṽi(x, ξ) ≈ v(x, ξ) , (A.77b)

ṽP(ξ) :=
∫ ∞

−∞
ṽ(x, ξ)dx , (A.77c)1416

we can derive the moment equations. Below, we calculate in turn the moment equations for the

total density ui, the mean trait x̄i, the genetic variance Gi, and the environmental variance Ei for

each species i.1419

Total density, ui:

dui

dt
=
∫ ∞

−∞

∫ ∞

−∞

dvi(x, ξ)

dt
dξdx ≈

∫ ∞

−∞

∫ ∞

−∞

dṽi(x, ξ)

dt
dξdx (A.78a)

=
∫ ∞

−∞

∫ ∞

−∞

[ ∫ ∞

−∞

∫ ∞

−∞
b(η, ṽP)ṽi(y, η)dηN (x, y, M)dyN (ξ, x, Eb)1422

−m(ξ, ṽP)ṽi(x, ξ)

]
dξdx = (A.78b)

{integrate in order ξ → x → y in birth term}

=
[
b̂(x̄i, Vi, ṽP)− m̂(x̄i, Vi, ṽP)

]
ui (A.78c)1425

Mean trait, x̄i:

d
dt

(ui x̄i) = ui
d x̄i

dt
+ x̄i

dui

dt
=
∫ ∞

−∞

∫ ∞

−∞
x

dvi(x, ξ)

dt
dξdx (A.79a)

=
∫ ∞

−∞

∫ ∞

−∞
(x− x̄i)

dvi(x, ξ)

dt
dξdx + x̄i

dui

dt
(A.79b)1428

and we thus get

u
d x̄i

dt
=
∫ ∞

−∞

∫ ∞

−∞
(x− x̄i)

dvi(x, ξ)

dt
dξdx ≈

∫ ∞

−∞

∫ ∞

−∞
(x− x̄i)

dṽi(x, ξ)

dt
dξdx (A.80a)

=
∫ ∞

−∞

∫ ∞

−∞
(x− x̄i)

[ ∫ ∞

−∞

∫ ∞

−∞
b(η, ṽP)ṽi(y, η)dηN (x, y, M)dyN (ξ, x, Eb)1431

−m(ξ, ṽP)ṽi(x, ξ)

]
dξdx = (A.80b)
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{integrate in order ξ → x in birth term}

=
∫ ∞

−∞

∫ ∞

−∞
(y− x̄i)b(η, ṽP)ṽi(y, η)dηdy−

∫ ∞

−∞

∫ ∞

−∞
(x− x̄i)m(ξ, ṽP)ṽi(x, η)dξdx (A.80c)1434

{Eqs. A.74}

= uiGi
∂b̂
∂x̄

(x̄i, Vi, ṽP)− uiGi
∂m̂
∂x̄

(x̄i, Vi, ṽP) (A.80d)

⇐⇒1437

d x̄i

dt
= Gi

[
∂b̂
∂x̄

(x̄i, Vi, ṽP)−
∂m̂
∂x̄

(x̄i, Vi, ṽP)

]
(A.80e)

Genetic variance, Gi:

d
dt

(uiGi) = ui
dGi

dt
+ Gi

dui

dt
=

d
dt

∫ ∞

−∞

∫ ∞

−∞
(x− x̄i)

2vi(x, ξ)dξdx (A.81a)1440

≈ d
dt

∫ ∞

−∞

∫ ∞

−∞
(x− x̄i)

2ṽi(x, ξ)dξdx (A.81b)

=
d x̄i

dt

∫ ∞

−∞

∫ ∞

−∞
2(x− x̄i)ṽi(x, ξ)dξdx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+
∫ ∞

−∞

∫ ∞

−∞
(x− x̄i)

2 dṽi

dt
dξdx (A.81c)

=
∫ ∞

−∞

∫ ∞

−∞
(x− x̄i)

2
[ ∫ ∞

−∞

∫ ∞

−∞
b(η, ṽP)ṽi(y, η)dηN (x, y, M)dyN (ξ, x, Eb)1443

−m(ξ, ṽP)ṽi(x, ξ)

]
dξdx = (A.81d)

{integrate in order ξ → x in birth term}

=
∫ ∞

−∞

∫ ∞

−∞
b(η, ṽP)ṽi(y, η)

[
M + (y− x̄i)

2]dηdy1446

−
∫ ∞

−∞

∫ ∞

−∞
m(ξ, ṽP)ṽi(x, ξ)(x− x̄i)

2dξdx (A.81e)

{Eq. A.75}

= ui

[
b̂(x̄i, Vi, ṽP)M + G2

i
∂2b̂
∂x̄2 (x̄i, Vi, ṽP) + Gi b̂(x̄i, Vi, ṽP)1449

− G2
i

∂2m̂
∂x̄2 (x̄i, Vi, ṽP)− Gim̂(x̄i, Vi, ṽP)

]
(A.81f)

⇐⇒

dGi

dt
= G2

i

[
∂2b̂
∂x̄2 (x̄i, Vi, ṽP)−

∂2m̂
∂x̄2 (x̄i, Vi, ṽP)

]
+ b̂(x̄i, Vi, ṽP)M (A.81g)1452
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Environmental variance, Ei:

d
dt

(uiEi) = ui
dEi

dt
+ Ei

dui

dt
(A.82a)

=
d
dt

∫ ∞

−∞

∫ ∞

−∞

[
2(ξ − x)(x− x̄i) + (ξ − x)2] vi(x, ξ)dxdξ (A.82b)1455

≈ d
dt

∫ ∞

−∞

∫ ∞

−∞

[
2(ξ − x)(x− x̄i) + (ξ − x)2] ṽi(x, ξ)dxdξ (A.82c)

= −d x̄i

dt

∫ ∞

−∞

∫ ∞

−∞
2(ξ − x)ṽi(x, ξ)dxdξ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+
∫ ∞

−∞

∫ ∞

−∞

[
2(ξ − x)(x− x̄i) + (ξ − x)2] dṽi(x, ξ)

dt
dxdξ (A.82d)1458

=
∫ ∞

−∞

∫ ∞

−∞

[
2(ξ − x)(x− x̄i) + (ξ − x)2] ∫ ∞

−∞

∫ ∞

−∞
b(η, ṽP)ṽi(y, η)dηN (x, y, M)dyN (ξ, x, Eb)dξdx

−
∫ ∞

−∞

∫ ∞

−∞

[
(ξ − x̄i)

2 − (x− x̄i)
2]m(ξ, ṽP)ṽi(x, ξ)dξdx (A.82e)

{integrate in order ξ → x in birth term, use Eqs. A.75 in mortality term}1461

= Eb

∫ ∞

−∞

∫ ∞

−∞
b(η, ṽP)ṽi(y, η)dηdy

− ui

[
V2

i
∂2m̂
∂x̄2 (x̄i, Vi, ṽP) + Vim̂(x̄i, Vi, ṽP)− G2

i
∂2m̂
∂x̄2 (x̄i, Vi, ṽP)− Gim̂(x̄i, Vi, ṽP)

]
(A.82f)

= uiEbb̂(x̄i, Vi, ṽP)− ui(V2
i − G2

i )
∂2m̂
∂x̄2 (x̄i, Vi, ṽP)− uiEim̂(x̄i, Vi, ṽP) (A.82g)1464

⇐⇒

dEi

dt
= b̂(x̄i, Vi, ṽP)(Eb − Ei)− (V2

i − G2
i )

∂2m̂
∂x̄2 (x̄i, Vi, ṽP) (A.82h)

Together, these are the moment equations (Eqs. A.72) when environmental variance is in-1467

cluded.
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Online Appendix B: Evolutionary branching and invasion analysis

In this appendix we will derive ways of examining whether a community of species at eco-1470

evolutionary equilibrium is closed to invasion by further species. We refer to these methods

as heuristics since following these procedures cannot guarantee a complete closure to further

invasions, and because the methodology is somewhat ad hoc. Nevertheless, in the examples we1473

have tested (see the main text) these methods have so far proven to be highly accurate in the

sense that they almost always produce communities with the same number of species for the

moment equations as the trait-space equations produce peaks in eco-evolutionary equilibrium.1476

The exceptions, as shown for the two-patch example in the main text, primarily happen when

the number of species is ambiguous (a distribution with several peaks, but where the peaks are

not well separated), for narrow ranges of parameters near bifurcation points.1479

We shall follow the general ideas of adaptive dynamics (Metz et al., 1992; Dieckmann and

Law, 1996; Geritz et al., 1998; Dercole and Rinaldi, 2008; Brännström et al., 2013) and work out

two different ways of investigating when bifurcation into more species can take place. The first1482

condition is local in trait space and known as an evolutionary branching where a species splits

into two new species that subsequently diverge in trait space. It is easier to calculate than the

second condition, which treats global invasion analysis where the invader does not necessarily1485

have a trait that is close to any resident species. The first condition implies the second, but not

necessarily vice versa.

Evolutionary branchings1488

We shall here work out a criterion for when a species characterized by the moment equations can

be split into two new species locally in trait space in such a way that they subsequently diverge

in their traits.1491

Consider a community of S species in K classes being in a convergence-stable eco-evolutionary
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equilibrium so that

0 =
duik

dt
=

K

∑
l=1

Nkl

∑
m=1

f̂iklmuil (B.1a)1494

0 =
d x̄ik

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
Vil∇x f̂iklm + f̂iklm(x̄il − x̄ik)

)
(B.1b)

0 =
dVik

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
Vil∇2

x f̂iklmVil + f̂iklm Mklm+ (B.1c)

+ Vil∇x f̂iklm(x̄il − x̄ik)
T + (x̄il − x̄ik)

[
Vil∇x f̂iklm

]T
+ (B.1d)1497

+ f̂iklm

[
Vil −Vik + (x̄il − x̄ik)(x̄il − x̄ik)

T
] )

(B.1e)

for all i ∈ {1, 2, . . . , S} and k ∈ {1, 2, . . . , K}.

To test whether a given species i within this community can undergo an evolutionary branch-1500

ing we first split this species into two new species i1 and i2 with densities, mean-trait vectors,

and variance-covariances given by

ui1k = ui2k =
uik

2
(B.2a)1503

x̄i1k = x̄i2k = x̄ik (B.2b)

Vi1k = Vi2k = Vik (B.2c)

We then organize all the state variables, u, x̄, and V into a vector w, so that the entries of w are1506

the total densities, the mean trait components and the variance-covariance components for all

species and classes in the split system. We let F(w) be the function given by the right-hand side

of Eq. B.1 and linearize around the equilibrium w∗,1509

0 =
dw
dt
≈ F(w∗) + JF(w∗)(w− w∗) (B.3)

where JF(w∗) is the Jacobian matrix of F evaluated at w∗. Normally, in dynamical systems theory,

we would say that the community with the split species is stable if the dominant eigenvalue1512

(eigenvalue with largest real part) of the Jacobian matrix has a negative real part. However,

here, due to the splitting, there will always be a neutral direction corresponding to shifting mass

between species i1 and i2, so there will always exist a zero eigenvalue of the Jacobian. Thus, if the1515
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dominant eigenvalue is zero there is no branching. However, if there exists an eigenvalue with

positive real part this indicates that the split-species equilibrium is unstable and that a branching

in species i will take place.1518

Figure B.1 shows an evolutionary branching for the two-patch Lotka-Volterra model (Eqs. 20,

Fig. 3, main text). The initial species evolves to an eco-evolutionary equilibrium with substantial

variance and significant local adaptation between the two patches. There, we split the species1521

and determine the dominant eigenvalue λd as described above. For this example, the dominant

eigenvalue is positive showing that the one-species equilibrium is unstable to the addition of a

species. Let φ be the eigenvector associated with the dominant eigenvalue λd. The components1524

of the eigenvector are

Patch 1 Patch 2

uφ
11 = 0.4468 uφ

12 = −0.4468 (B.4a)1527

uφ
21 = −0.4468 uφ

22 = 0.4468 (B.4b)

x̄φ
11 = −0.2021 x̄φ

12 = −0.2021 (B.4c)

x̄φ
21 = 0.2021 x̄φ

22 = 0.2021 (B.4d)1530

Vφ
11 = −0.09774 Vφ

12 = 0.09774 (B.4e)

Vφ
21 = 0.09774 Vφ

22 = −0.09774 (B.4f)

In other words, the unstable direction corresponds to one species becoming relatively more abun-1533

dant on patch 1 and with a lower trait, and one species becoming relatively more abundant on

patch 2 with a higher trait. We construct the new two-species system after the branching by

letting1536

wnew = w∗ + αφ (B.5)

where α is some small number, for this example α = 0.05, then solve for the S + 1-species

eco-evolutionary equilibrium.1539
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Figure B.1: Illustration of branching procedure for the two-patch Lotka-Volterra model (Eqs. 20, Fig. 3, main text). The panels

depicts the densities (A–B) and mean traits (C–D) in the two-patch model on both patches where the left two panels depict patch 1

and the right two panels depict patch 2. Panels (C–D) also depict one standard deviation around the mean as filled areas. The initial

species evolves to an eco-evolutionary equilibrium after which a branching takes place, the species is split, and the two new species

once again evolve to an eco-evolutionary equilibrium. To illustrate the branching we have rescaled time non-uniformly to ensure

the interesting aspects of the branching are clearly visible. Parameter values: xopt
1 = −0.5, xopt

2 = 0.5, Vr = 1.0, r0 = 1.0, Vc = 1.0,

d = 0.05, and M = 10−4.



Global invasion dynamics

Local branching in trait space will not always be sufficient to ensure that community is globally

closed to further invasions. Here, we will work out a criterion for when an additional species with1542

an arbitrary trait can be added to the community in such a way that this added species grows

from being initially rare. This corresponds to local-but-not-global ESSs in adaptive dynamics

(Geritz et al. 1999; Klausmeier et al. 2020) .1545

Let a discrete structured community of S species in K classes be in eco-evolutionary equilib-

rium so that

0 =
duik

dt
=

K

∑
l=1

Nkl

∑
m=1

f̂iklmuil (B.6a)1548

0 =
d x̄ik

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
Vil∇x f̂iklm + f̂iklm(x̄il − x̄ik)

)
(B.6b)

0 =
dVik

dt
=

K

∑
l=1

Nkl

∑
m=1

uil

uik

(
Vil∇2

x f̂iklmVil + f̂iklm Mklm+ (B.6c)

+ Vil∇x f̂iklm(x̄il − x̄ik)
T + (x̄il − x̄ik)

[
Vil∇x f̂iklm

]T
+ (B.6d)1551

+ f̂iklm

[
Vil −Vik + (x̄il − x̄ik)(x̄il − x̄ik)

T
] )

(B.6e)

for all i ∈ {1, 2, . . . , S} and k ∈ {1, 2, . . . , K}. Denote the trait-density distributions of these

resident populations in equilibrium by1554

ṽres
k (x) =

S

∑
i=1

uikN (x, x̄ik, Vik) (B.7)

and let ṽres = (ṽres
1 , ..., ṽres

K ) be the vector of all resident trait-density distributions.

We would now like to devise a procedure to determine whether the resident community1557

is closed to invasions. In analogy with adaptive dynamics (Metz et al., 1992; Dieckmann and

Law, 1996; Geritz et al., 1998; Dercole and Rinaldi, 2008; Brännström et al., 2013) we will let a

very rare invader enter this community, and try to determine whether this invader can grow1560

in the environment set by the residents while still rare. However, we also need to account for

the internal dynamics of the invader, i.e., its mean traits and variance-covariances across classes.
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Although the invader will be assumed to be so rare that it does not effect its own dynamics or any1563

of the residents, in the case of structured populations, we must still keep track of its distribution

across classes to calculate the relative-density weight term in the mean trait and trait variance

equations. To this end let the class-frequency of the invader in class k be given by1566

pinv
k :=

uinv
k

∑K
l=1 uinv

l

, (B.8)

where ∑K
k=1 pinv

k ≡ 1. We can then calculate

dpinv
k

dt
=

d
dt

(
uinv

k

∑K
l=1 uinv

l

)
=

K

∑
l=1

Nkl

∑
m=1

f̂ inv
klm pinv

l − pinv
k

K

∑
j=1

K

∑
l=1

Njl

∑
m=1

f̂ inv
jlm pinv

l . (B.9)1569

We note that the mean-trait vector and variance-covariance matrix equations in the moment

equations depend on the densities only through their ratios, and by construction we have that

pinv
l

pinv
k
≡

uinv
l

uinv
k

. (B.10)1572

Let x̄inv
k and Vinv

k denote the mean-trait vector and variance-covariance matrix respectively of the

rare invader in class k, and let f̂ inv
klm := f̂klm(x̄inv

l , Vinv
l , ṽres). Note that because we assume that

the invader is very rare, the per capita rates of the invader do not depend on the trait-density1575

distribution of the invader itself. Similarly, we assume that the invader’s rarity is such that it will

not affect the residents, and ṽres will be constant.

We can then formulate the invader equations as1578

dpinv
k

dt
=

K

∑
l=1

Nkl

∑
m=1

f̂ inv
klm pinv

l − pinv
k

K

∑
j=1

K

∑
l=1

Njl

∑
m=1

f̂ inv
jlm pinv

l , (B.11a)

d x̄inv
k

dt
=

K

∑
l=1

Nkl

∑
m=1

pinv
l

pinv
k

(
Vinv

l ∇x f̂ inv
klm + f̂ inv

klm(x̄inv
l − x̄inv

k )
)

(B.11b)

dVinv
k

dt
=

K

∑
l=1

Nkl

∑
m=1

pinv
l

pinv
k

(
Vinv

l ∇2
x f̂ inv

klmVinv
l + f̂ inv

klm Mklm+1581

+ Vinv
l ∇x f̂ inv

klm(x̄inv
l − x̄inv

k )T + (x̄inv
l − x̄inv

k )
[
Vinv

l ∇x f̂ inv
klm

]T
+

+ f̂ inv
klm

[
Vinv

l −Vinv
k + (x̄inv

l − x̄inv
k )(x̄inv

l − x̄inv
k )T

] )
(B.11c)
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Under equilibrium dynamics, an invader will eventually assume an equilibrium distribution, but1584

the nonlinearity of the equations means that there could potentially exist several such equilibria.

Assume that the invader equations have N total equilibria, and denote each such equilibrium by

pinv∗n
k , x̄inv∗n

k , Vinv∗n
k for the class frequencies, mean trait vectors, and variance-covariance matrices1587

of the invaders for equilibrium n = 1, ..., N and class k = 1, ..., K.

Now, let the K× K matrix F̂inv∗n with entries F̂inv∗n
kl be defined by

F̂inv∗n
kl =

Nkl

∑
m=1

f̂ inv∗n
klm =

Nkl

∑
m=1

f̂klm(x̄inv∗n
l , Vinv∗n

l , ṽres) (B.12)1590

and let the vector pinv∗n := (pinv∗n
1 , pinv∗n

2 , ..., pinv∗n
K ). Then, from Eq. B.11a, we have in equilibrium

that

F̂inv∗npinv∗n =

(
K

∑
j=1

K

∑
l=1

Njl

∑
m=1

f̂ inv∗n
jlm pinv∗n

l

)
pinv∗n . (B.13)1593

From this expression we see that pinv∗n is an eigenvector of F̂inv∗n, and we can see that the

eigenvalue is

λn =
K

∑
j=1

K

∑
l=1

Njl

∑
m=1

f̂ inv∗n
jlm pinv∗n

l . (B.14)1596

If we now turn to the density dynamics of the invader we have that if the initial densities of the

invader, uinv∗n
0 , are proportional to an equilibrium class-frequency distribution, uinv∗n

0 = c0pinv∗n,

then1599

duinv∗n
k
dt

=
K

∑
l=1

Nkl

∑
m=1

f̂ inv∗n
klm uinv∗n

l ⇐⇒ duinv∗n

dt
= F̂inv∗nuinv∗n =⇒ uinv∗n(t) = c0eλntpinv∗n . (B.15)

In other words, λn is the long-term exponential growth rate of the invader while still rare for

equilibrium n. This means that λn is the invasion fitness of invader equilibrium n. Thus, if1602

λn > 0, the invader can successfully invade the community of residents, and if λn ≤ 0 then the

invasion will not succeed.

In principle, this then gives us a way of determining whether a resident community is in-1605

vasible. For a given resident community, we find all the equilibria of the invader equations

(Eqs. B.11), and then use Eq. B.14 to calculate the invasion fitness of each such equilibrium. If

any positive invasion fitness is found, the community is invasible, and if no positive invasion1608
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fitness equilibria are found, the community is not invasible. In practice, however, proving that

one has found all the equilibria of the invader equations will in general not be feasible. Thus,

we need some heuristic that is easy to carry out and can still find the relevant equilibria most of1611

the time. To this end, we start by computing the adaptive-dynamics fitness landscape, where we

consider the invaders to have no variance and fixed mean-trait vectors with no local adaptation

so that Vinv
k = 0 for all k and x̄k = x̄AD for all k. Then, we can immediately calculate the growth1614

rate of this zero-variance invader as the dominant eigenvalue of the matrix FAD, with entries

given by

FAD
kl =

K

∑
l=1

Nkl

∑
m=1

fklm(x̄AD, ṽres) . (B.16)1617

See Caswell (2001) for details on invasion analysis in structured populations in the adaptive-

dynamics framework. We can then calculate this adaptive-dynamics invasion fitness for a range

of trait vectors x̄AD in some region of trait space that is pertinent to the problem at hand. We1620

then find all mean-trait vectors that yield local maxima in the AD-fitness landscape. Let these be

denoted by x̄AD,max,q for the q:th such local maximum. Finally, we use these mean-trait vectors as

initial conditions for the invader equations (Eqs. B.11) by setting1623

pinv,q
t=0 = pAD,max,q (B.17a)

x̄inv,q
k,t=0 = x̄AD,max,q for all k (B.17b)

Vinv,q
k,t=0 = 0 for all k (B.17c)1626

where pAD,max,q is the normalized eigenvector associated with dominant eigenvalue of the matrix

with entries at k, l given by
K

∑
l=1

Nkl

∑
m=1

fklm(x̄AD,max,q, ṽres) . (B.18)1629

For each such initial condition we then solve the invader equations to equilibrium and compute

that equilibrium’s invasion fitness as described above. While not guaranteed to find every in-

vader equilibrium, this method tends to work well in practice for finding the relevant equilibria1632

as the zero-variance populations serve as good first approximations to where positive invasion

fitness might be available.
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Online Appendix C: Additional details of the Lotka-Volterra1635

competition models

In this appendix we provide some additional details of the two example models of Lotka-Volterra

competition we use in the main text.1638

The unstructured Lotka-Volterra model

The trait-space equations of the model are given by

dv(x)
dt

=
∫

b(y)v(y)N (x, y, M)dy− µ(x)v(x)− a(x, v)v(x) , (C.1a)1641

b(x) = r0 , µ(x) =
(x− xopt)2

Vr
, (C.1b)

r(x) := b(x)− µ(x) = r0 −
(x− xopt)2

Vr
, (C.1c)

a(x, v) =
∫

α(y, x)v(y)dy , α(y, x) = exp
(
− (y− x)2

2Vc

)
. (C.1d)1644

Here, r(x) describes the intrinsic density-independent per capita net growth rate due to the

environment. The strength of competition between two individuals with traits x and y is given

by α(y, x), which means that the total per capita mortality experienced by an individual with1647

trait x given the total trait-density distribution of the community is a(x, v). For the unstructured

model, the value of xopt can be set to be zero without loss of generality as we do in the main text.

We include it here to more easily generalize to the two-patch model.1650

Using our general method, we can plug in these rates to get the moment equations for this

system:

dui

dt
= (r̂(x̄i, Vi)− â(x̄i, Vi, ṽ)) ui (C.2a)1653

d x̄i

dt
= Vi

(
∂r̂
∂x

(x̄i, Vi)−
∂â
∂x

(x̄i, Vi, ṽ)
)

(C.2b)

dVi

dt
= V2

i

(
∂2r̂
∂x2 (x̄i, Vi)−

∂2 â
∂x2 (x̄i, Vi, ṽ)

)
+ b̂(x̄i, Vi)M (C.2c)
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From this, we see that we need to compute the population-level rates1656

r̂(x, W) =
∫

r(y)N (y, x, W)dy (C.3a)

â(x, W, ṽ) =
∫

a(y, ṽ)N (y, x, W)dy (C.3b)

b̂(x, W) =
∫

b(y)N (y, x, W)dy (C.3c)1659

The notation
∂r̂
∂x

(x̄i, Vi) (C.4)

means that we take the derivative of the function r̂(x, W) with respect to x and evaluate the1662

resulting function at x = x̄i and W = Vi.

Here, we compute the population-level rates in turn. First, the population-level rate for r can

be computed as1665

r̂(x, W) =
∫

r(y)N (y, x, W)dy =
∫ (

r0 −
(y− xopt)2

Vr

)
N (y, x, W)dy (C.5a)

=
∫ (

r0 −
(y− x)2 + 2(y− x)(x− xopt) + (x− xopt)2

Vr

)
N (y, x, W)dy (C.5b)

= r0 −
(x− xopt)2 + W

Vr
(C.5c)1668

Next, we can compute the population-level rate for a. To do this, we first rewrite the competition

kernel α as

α(x, y) = exp
(
− (x− y)2

2Vc

)
=
√

2πVcN (x, y, Vc) (C.6)1671

By a well known result we know that

∫
N (x, a, A)N (x, b, B)dx = N (a, b, A + B) (C.7)

which we can now use to calculate population-level competition. We use that the trait-density1674

distribution ṽ(x) is a sum of normals ṽ(x) like

ṽ(x) =
S

∑
j=1

ujN (x, x̄j, Vj) . (C.8)

79



We can now compute the rate â(x, W, ṽ):1677

â(x, W, ṽ) =
∫

a(y, ṽ)N (y, x, W)dy =
∫ ∫

α(z, y)ṽ(z)dzN (y, x, W)dy (C.9a)

=
∫ ∫ √

2πVcN (z, y, Vc)
S

∑
j=1

ujN (z, x̄j, Vj)dzN (y, x, W)dy (C.9b)

=
√

2πVc

S

∑
j=1

uj

∫
N (y, x̄j, Vj + Vc)N (y, x, W)dy (C.9c)1680

=
√

2πVc

S

∑
j=1

ujN (x, x̄j, Vj + Vc + W) (C.9d)

Finally, we need to compute the population-level birth rate b̂, which is given by

b̂(x, W) =
∫

b(y)N (y, x, W)dy =
∫

r0N (y, x, W)dy = r0 . (C.10)

Inserting the expressions for the population-level rates and their derivatives yields the equa-

tions for the unstructured Lotka-Volterra model shown in the main text (Eq. 10).1683

Adaptive-dynamics version of the unstructured Lotka-Volterra model

Under the assumptions of adaptive dynamics, each species i is characterized by its density ui and

its trait value x̄i, which is assumed to be the same for all individuals within a species. We can1686

then get the rate functions for the density-dynamics for the adaptive-dynamics case by letting

the trait-density distribution of each species be given by

vAD
i (x) = uiδ(x− x̄i) , (C.11)1689

where δ is the Dirac delta distribution. The total distribution will thus be given by summing over

all S species,

vAD =
S

∑
i=1

uiδ(x− x̄i) (C.12)1692

Now, letting f̂ AD(x) denote the population-level growth rate of a rare population with trait

x, we have

f̂ AD(x, vAD) =
∫ ∞

−∞
f (y, vAD)δ(y− x)dy (C.13)1695
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We thus have that the environmental rate for the adaptive-dynamics case are given by

r̂AD(x) =
∫ ∞

−∞

(
r0 −

(y− xopt)2

Vr

)
δ(y− x)dy = r0 −

(x− xopt)2

Vr
(C.14)

by the properties of the Dirac delta distribution. The competition can be computed as1698

âAD(x, vAD) =
∫ ∞

−∞
a(y, vAD)δ(y− x)dy =

∫ ∞

−∞

∫ ∞

−∞
α(z, y)vAD(z)dzδ(y− x)dy

=
√

2πVc

S

∑
j=1

uj

∫ ∞

−∞

∫ ∞

−∞
N (y, z, Vc)δ(z− x̄j)dzδ(y− x)dy

=
√

2πVc

S

∑
j=1

uj

∫ ∞

−∞
N (y, x̄j, Vc)δ(y− x)dy =

√
2πVc

S

∑
j=1

ujN (x, x̄j, Vc) (C.15a)1701

This yields the density dynamics

dui

dt
=
[
r̂AD(x̄i)− âAD(x̄i, vAD)

]
ui =

[
r0 −

x̄2
i

Vr
−
√

2πVc

S

∑
j=1

ujN (x̄i, x̄j, Vc)

]
ui (C.16)

Under the assumptions of adaptive dynamics, mutations are rare and of small phenotypic effect.1704

Under these assumptions one can derive the canonical equations of adaptive dynamics, which

describes how the mean traits of the species will change over time (Dieckmann and Law, 1996;

Champagnat, 2003). However, since we are primarily interested in the eco-evolutionary equi-1707

librium, we can here use a simplified version where we introduce a parameter εevo which is a

small number that characterizes the separation in time scale between ecological and evolutionary

dynamics. Doing so yields the complete adaptive-dynamics equations1710

dui

dt
=
[
r̂AD(x̄i)− âAD(x̄i, vAD)

]
ui =

[
r0 −

x̄2
i

Vr
−
√

2πVc

S

∑
j=1

ujN (x̄i, x̄j, Vc)

]
ui (C.17a)

d x̄i

dt
= εevo

[
∂r̂AD

∂x
(x̄i)−

∂âAD

∂x
(x̄i, vAD)

]
= εevo

[
−2x̄i

Vr
+
√

2πVc

S

∑
j=1

uj
x̄i − x̄j

Vc
N (x̄i, x̄j, Vc)

]
(C.17b)

In the adaptive dynamics context, the methods for performing evolutionary-branching and in-1713

vasion analysis are well established (Metz et al., 1992; Geritz et al., 1998; Edwards et al., 2018;

Klausmeier et al., 2020), and we assemble the community one species at a time until the commu-

nity is uninvasible or use continuation to make bifurcation diagrams.1716
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The two-patch Lotka-Volterra model

For the two-patch model we consider two spatial patches with trait-density distributions v1(x)

and v2(x), with trait-space equations given by1719

dv1(x)
dt

=
∫

b1(y)v1(y)N (y, x, M)dy− µ1(x)v1(x)− a(x, v1)v1(x)− dv1(x) + dv2(x) , (C.18a)

dv2(x)
dt

=
∫

b2(y)v2(y)N (y, x, M)dy− µ2(x)v2(x)− a(x, v2)v2(x) + dv1(x)− dv2(x) , (C.18b)

bk(x) = r0 , µk(x) =
(x− xopt

k )2

Vr
, (C.18c)1722

rk(x) := bk(x)− µk(x) = r0 −
(x− xopt

k )2

Vr
, (C.18d)

a(x, vk) =
∫

α(y, x)vk(y)dy , α(y, x) = exp
(
− (y− x)2

2Vc

)
. (C.18e)

The two-patch model generalizes the unstructured model in that locally on each patch the same1725

dynamics as in the unstructured model takes place, albeit with possibly different trait optima

xopt
1 and xopt

2 . The patches are then connected by a symmetric and constant rate of dispersal d.

We can then get the moment equations for this model by plugging in the rates into our generic1728

moment equations which yields

dui1

dt
= [r̂1(x̄i1, Vi1)− â(x̄i1, Vi1, ṽ1)] ui1 − dui1 + dui2 , (C.19a)

d x̄i1

dt
= Vi1

[
∂r̂1

∂x
(x̄i1, Vi1)−

∂â
∂x

(x̄i1, Vi1, ṽ1)

]
+

ui2

ui1
d(x̄i2 − x̄i1) , (C.19b)1731

dVi1

dt
= V2

i1

[
∂2r̂1

∂x2 (x̄i1, Vi1)−
∂2 â
∂x2 (x̄i1, Vi1, ṽ1)

]
+

ui2

ui1
d(Vi2 −Vi1) +

ui2

ui1
d(x̄i2 − x̄i1)

2

+ b̂1(x̄i1, Vi1)M , (C.19c)

dui2

dt
= [r̂2(x̄i2, Vi2)− â(x̄i2, Vi2, ṽ2)] ui2 + dui1 − dui2 , (C.19d)1734

d x̄i2

dt
= Vi2

[
∂r̂2

∂x
(x̄i2, Vi2)−

∂â
∂x

(x̄i2, Vi2, ṽ2)

]
+

ui1

ui2
d(x̄i1 − x̄i2) , (C.19e)

dVi2

dt
= V2

i2

[
∂2r̂2

∂x2 (x̄i2, Vi2)−
∂2 â
∂x2 (x̄i2, Vi2, ṽ2)

]
+

ui1

ui2
d(Vi1 −Vi2) +

ui1

ui2
d(x̄i1 − x̄i2)

2

+ b̂2(x̄i2, Vi2)M . (C.19f)1737

82



Inserting the expressions for the population-level rates yields the equations in the main text

(Eqs. 10).

Adaptive-dynamics version of the two-patch Lotka-Volterra model1740

For the two-patch adaptive-dynamics model, we proceed in the same way as for the unstructured

adaptive-dynamics model. We let uik be the density of species i on patch k and let x̄i be the trait

value of species i. Note that in adaptive dynamics, since all individuals within a species are1743

assumed to be identical the trait value for a species will be the same on both patches. We let the

trait-density distribution vAD
k (x) on patch k be given by

vAD
k (x) =

S

∑
i=1

uikδ(x− x̄i) . (C.20)1746

The expression for the selection gradient needs to take the spatial dynamics into account (see

Wickman et al., 2017), and so the equations describing the density and trait dynamics are given

by1749

dui1

dt
=
[
r̂AD

1 (x̄i)− âAD(x̄i, vAD
1 )

]
ui1 − dui1 + dui2 (C.21a)

dui2

dt
=
[
r̂AD

2 (x̄i)− âAD(x̄i, vAD
2 )

]
ui2 + dui1 − dui2 (C.21b)

d x̄i

dt
= εevo 1

u2
i1 + u2

i2

[
u2

i1

(
∂r̂AD

1
∂x

(x̄i)−
∂âAD

∂x
(x̄i, vAD

1 )

)
+ u2

i2

(
∂r̂AD

2
∂x

(x̄i)−
∂âAD

∂x
(x̄i, vAD

2 )

)]
(C.21c)

1752

The community assembly then proceeds by solving the equations to equilibrium and checking

for evolutionary branchings and invasions, see Wickman et al. (2017).
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Online Appendix D: A stage-structured resource-competition model1755

To further illustrate the application and utility of our methods, we present here an additional

example of eco-evolutionary community assembly taking intraspecific variation into account.

The Lotka-Volterra two-patch model we used to illustrate the generic equations in the main text1758

was deliberately simple. First, it involved only a single trait. Second, the transition between

classes (dispersal) was constant, and did not depend on traits. Third, the rate functions were

simple enough for us to calculate the population-level rates analytically, and fourth, the model1761

had no dependence on any external variables. However, such simplifications cannot always

be made. To demonstrate such a case, we here adapt a model by De Roos et al. (2007) of a

population subdivided into two stages, juveniles with trait-density distribution vJ and adults1764

with trait-density distribution vA, competing for two resources R1 and R2. Both the maturation

rate and the birth rate depend on how much resources the two stages acquire, as well as the traits

associated with resource acquisition.1767

The trait-space equations read

dvJ(x, t)
dt

=
∫

rA(y)vA(y)N (x, y, M)dy + (rJ(x)− µJ(x))vJ(x)− γ(x)vJ(x) , (D.1a)

dvA(x, t)
dt

= γ(x)vJ(x)− µA(x)vA(x) , (D.1b)1770

dR1(t)
dt

= ρ1(K1 − R1)−
∫

rJ1(y)vJ(y)dy−
∫

rA1(y)vA(y)dy , (D.1c)

dR2(t)
dt

= ρ2(K2 − R2)−
∫

rJ2(y)vJ(y)dy−
∫

rA2(y)vA(y)dy , (D.1d)

where the rate functions are given by1773

rI(x) = qI
aI1(x)R1 + aI2(x)R2

1 + aI1(x)R1 + aI2(x)R2
, (D.2a)

rI j(x) = qI
aI j(x)Rj

1 + aI1(x)R1 + aI2(x)R2
I ∈ {J, A} , j ∈ {1, 2} , (D.2b)

γ =
rJ(x)− µJ(x)

1− z1−µJ(x)/rJ(x)
, (D.2c)1776

aJ1(x) =
(

ex

1 + ex

)αJ

, aJ2 =

(
1− ex

1 + ex

)αJ

, (D.2d)
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aA1(x) =
(

ex

1 + ex

)αA

, aA2 =

(
1− ex

1 + ex

)αA

, (D.2e)

Here, the distributions vJ(x) and vA(x) characterize the distributions of biomass density in trait1779

space for juveniles and adults respectively. Both adults and juveniles consume the substitutable

resources R1 and R2 with a type-II functional response at rates rI j for I = A, J, and j = 1, 2.

The adults use all of their intake of resources R1 and R2 to give birth to juveniles at a per1782

capita rate of rA = rA1 + rA2, and suffer a mortality at a per capita rate of µA. Juveniles grow at

a per capita rate rJ = rJ1 + rJ2, suffer a mortality rate of µJ , and transition into adults at a rate

γ that depends both on juvenile growth and mortality (De Roos et al., 2007). In the absence of1785

consumers, the resources are renewed chemostatically at rates ρj up to maximal supplies of Kj

for resource j.

We let the trait vector x = (x1, x2) ∈ R2. The first trait x1 parameterizes trade-offs in resource1788

affinities, so that juveniles experience a trade-off between their affinities aJ1 and aJ2 for R1 and

R2 respectively, and adults experience a trade-off between their affinities aA1 and aA2. While

the same trait component x1 parameterizes the trade off in resource affinity for both juveniles1791

and adults, we let the shapes differ so that the juveniles experience a specialist-favoring trade-

off while adults experience a generalist-favoring trade-off (Fig. D.1A). Such differences could

come about as foraging behavior changes between life stages. The second trait x2 parameterizes1794

a trade-off between juvenile mortality µJ and adult mortality µA (Fig. D.1B). Such trade-offs

between juvenile and adult mortality could come about through, e.g., parental investment or risk

taking on behalf of juveniles.1797
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Figure D.1: Trade-offs in the stage-structured model. (A) Trade-offs in resource affinities aJ1 and aJ2 for juveniles (solid line) and

aA1 and aA2 for adults (dashed line). Juveniles experience a specialist-favoring trade-off, and adults experience a generalist-favoring

trade-off. (B) Trade-off between juvenile and adult mortality. The trade-off between the mortalities is generalist-favoring.

Following our general procedure, to get our moment equations we now assume that the1800

solutions to Eqs. D.1a–b are composed of a set of S normally distributed discrete peaks for both

juveniles and adults, and approximate the solutions by

vJ(x, t) ≈ ṽJ(x, t) =
S

∑
i=1

uJi(t)N (x, x̄Ji(t), VJi(t)) , (D.3a)1803

vA(x, t) ≈ ṽA(x, t) =
S

∑
i=1

uAi(t)N (x, x̄Ai(t), VAi(t)) . (D.3b)

This means that each species i = 1, 2, . . . , S is represented by six variables: the total densities of

juveniles, uJi, and adults, uAi; the mean trait vector for juveniles, x̄Ji, and adults ,x̄Ai; and the1806

trait variance-covariance matrices for juveniles, VJi, and adults, VAi. To be able to write down our

moment equations we must first deal with the population-level rate functions. For this example

it is not possible to analytically calculate the population-level rates given by, for example,1809

γ̂(x, W) =
∫

γ(y)N (y, x, W)dy (D.4)

Instead, we Taylor-approximate the various rates to third order using the expressions derived in
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Appendix A, section Series solutions and Taylor approximations, so that our various population-level1812

rates and their derivatives will be given by

f̂ (x, W) ≈ f (x) +
1
2
∇2

x f (x) : W , (D.5a)

∇x f̂ (x, W) ≈ ∇x f (x) +∇x

(
1
2
∇2

x f (x) : W
)

, (D.5b)1815

∇2
x f̂ (x, W) ≈ ∇2

x f (x) . (D.5c)

Here, “:” denotes the double-dot product, which for two square N × N matrices A and B with

entries Aij and Bij is given by A : B = ∑N
i=1 ∑N

j=1 AijBij. To make the moment equations more1818

readable we will also omit the arguments of the rate functions below, and so we shall write for

example

γ̂i := γ̂(x̄Ji, VJi) +
1
2
∇2

xγ(x̄Ji) : VJi , (D.6a)1821

∇xγ̂i := ∇xγ(x̄Ji) +

[
∇x

(
1
2
∇2

xγ(x) : VJi

)]
x=x̄Ji

, (D.6b)

∇2
xγ̂i := ∇2

xγ(x̄Ji) , (D.6c)

r̂Ai := rA(x̄Ai) +
1
2
∇2

xrA(x̄Ai) : VAi (D.6d)1824

∇x r̂Ai := ∇xrA(x̄Ai) +

[
∇x

(
1
2
∇2

xrA(x) : VAi

)]
x=x̄Ai

, (D.6e)

∇2
x r̂Ai := ∇2

xrA(x̄Ai) , (D.6f)

and so on.1827

We can now derive the moment equations for the stage-structured model by plugging in the

expressions for the trait-space equations for this model into our generic equations (Eq. A.28,

Appendix A) yielding1830

duJi

dt
= ĝJiuJi − γ̂iuJi + r̂AiuAi , (D.7a)

d x̄Ji

dt
= VJi(∇x ĝJi −∇xγ̂i) +

uAi

uJi
(VAi∇x r̂Ai + r̂Ai(x̄Ai − x̄Ji)) , (D.7b)

dVJi

dt
= VJi(∇2

x ĝJi −∇2
xγ̂i)VJi1833
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+
uAi

uJi

(
VAi∇2

x r̂AiVAi + r̂Ai (VAi −VJi) + r̂Ai M

+ r̂Ai(x̄Ai − x̄Ji)(x̄Ai − x̄Ji)
T

+ VAi∇x r̂Ai(x̄Ai − x̄Ji)
T + (x̄Ai − x̄Ji)(VAi∇x r̂Ai)

T
)

, (D.7c)1836

duAi

dt
= γ̂iuJi − µ̂AiuAi , (D.7d)

d x̄Ai

dt
=

uJi

uAi
(VJi∇xγ̂i + γ̂i(x̄Ji − x̄Ai))−VAi∇xµ̂Ai , (D.7e)

dVAi

dt
=

uJi

uAi

(
VJi∇2

xγ̂iVJi + γ̂i(VJi −VAi)1839

+ γ̂i(x̄Ji − x̄Ai)(x̄Ji − x̄Ai)
T

+ VJi∇xγ̂i(x̄Ji − x̄Ai)
T + (x̄Ji − x̄Ai)(VJi∇xγ̂i)

T
)

−VA∇2
xµ̂AiVA , (D.7f)1842

dR1

dt
= ρ1(K1 − R1)−

S

∑
i=1

r̂Ji1uJi −
S

∑
i=1

r̂Ai1uAi , (D.7g)

dR2

dt
= ρ2(K2 − R2)−

S

∑
i=1

r̂Ji2uJi −
S

∑
i=1

r̂Ai2uAi . (D.7h)

Here, we let gJi be the net per capita growth of juveniles, i.e., gJi = rJi − µJi. While somewhat1845

involved, the various terms admit to ecological interpretation, and can be understood in the

following way.

The terms of Eq. D.7a describe in turn: net growth in mass of juveniles, the removal of1848

juveniles that transition into adults, and the addition of mass due to birth by adults.

The changes to the mean trait vector of the juveniles x̄Ji (Eq. D.7b) are divided into two terms.

The first, with a matrix factor VJi, describes how directional selection on the juvenile processes1851

of net growth and transition to adulthood moves the mean trait of the juveniles. This is because

juveniles with certain traits will have higher net growth than others, and this will push the

mean trait of juveniles in the direction of the gradient ∇x ĝi. Conversely, some juveniles with1854

certain traits will mature into adulthood more quickly than others, which removes them from

the juveniles and thus moves the mean trait in the opposite direction of the gradient ∇xγ̂i. The
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strength of both these effects depends on the how much variation VJi there is for a given species i.1857

The second term, with a scalar factor uAi/uJi describes the influence of births from the adults on

the mean trait of the juveniles. This is, in turn, composed of two terms. The first term, VAi∇x r̂Ai,

describes how directional selection in the birth rate of juveniles by adults contributes towards1860

change of juvenile mean traits. This effect comes about since adults with different traits give

birth at different rates, and more offspring will be produced along the direction of the gradient

∇x r̂Ai. This effect is stronger if the variation among the adults VAi is larger. The second term,1863

r̂Ai(x̄Ai − x̄Ji), describes how the juvenile mean trait is pushed in the direction of the adult mean

trait, homogenizing juvenile and adult mean traits. This is due to the fact that adults of species

i will on average give birth to juveniles with trait x̄iA, and so, if there is a difference between1866

juvenile and adult mean trait, the juvenile trait will become more similar to the adult mean trait

over time. The overall factor uAi/uJi comes about through the fact that how much effect birth

of juveniles by adults has on the juvenile mean trait depends on the mass ratio between the two1869

stages. If there are few adults compared to juveniles, then the birth of new juveniles will have

little effect on the mean trait of all the juveniles.

Equation D.7c describes the changes to the variance-covariance matrix of the juveniles over1872

time. The first term, VJi(∇2
xgJi −∇2

xγi)VJi, describes the effects of stabilizing or disruptive se-

lection of the net growth and transitions. Thus, for example, if the curvature of the net growth

function, ∇2
xgJi, is negative around a mean trait component, this will reduce the variance of that1875

trait component over time. There are then several terms with a factor uAi/uJi. The first term,

VAi∇2
xrAiVAi, reflects the effects of stabilizing or disruptive selection in the birth rates. The sec-

ond term, r̂Ai(VAi −VJi), describes the homogenization of variance-covariance matrices between1878

the stages, so that this term changes the juvenile variance-covariance to be more similar to that of

the adults over time. The third term, r̂Ai M, describes the increase to juvenile trait variances due

to mutations. Next, the term r̂Ai(x̄Ai− x̄Ji)(x̄Ai− x̄Ji)
T describes how variances are increased, and1881

covariances changed over time due to differences in means between the juveniles and adults. This

reflects that if the means of the adults are away from the means of the juveniles, then birthed
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juveniles will be away from the mean of the extant juveniles, and thus increase variance. The1884

next two terms, VAi∇xrAi(x̄Ai − x̄Ji)
T + (x̄Ai − x̄Ji)(VAi∇xrAi)

T, which are the transposes of one

another, take into account the interaction of distance between the means of the stages and effects

of directional selection in the birth rates.1887

The terms in the equations for the adults are mostly analogous to those for the juveniles, with

the difference that the maturation function γ now plays the role that the birth rate function rA

did for the juveniles, as this is the function that determines the rate of transition from the juvenile1890

to the adult stage. Additionally, as we can see in the trait-space equations (Eqs. D.1), we assume

that a juvenile with trait x matures into an adult with the same trait x, and thus no mutation term

enters into the equations for adult variance-covariance. Finally, we approximate the integrals in1893

trait space in the resource equations (Eqs. D.1c–d) in the same way as we do for the other rates

by Taylor-expanding to third order.

Using these equations we let the population go through our evolutionary assembly process1896

(Fig. D.2A). The traits x1 and x2 parameterize the trade-offs in resource affinities and mortal-

ities respectively. However, as the traits that actually matter for the ecology are the affini-

ties and mortalities themselves, we depict this assembly process in the derived trait space of1899

(aI1 − aI2) × (µJ − µA) for I = J, A to get a better understanding of how the expressed traits

that impact the ecology change. The final community of one moderate R1 specialist and one

moderate R2 specialist comes about through the conflicting trade-offs for juveniles and adults.1902

The specialist-favoring trade-off in resource affinity for the juveniles engenders selective pressure

towards specialization into two species, but the generalist-favoring trade-off for the adults will

eventually counter balance this disruptive force, and the community will settle on substantial,1905

but not complete, specialization for both species. The differences between juveniles and adults

in their resource affinities seen in Fig. D.2A stem mostly from their their different trade-offs; the

mean traits x̄J and x̄A differ little within the same species. The distributions in x1 × x2 space1908

can be seen in Fig. D.3, where we also compare the numerical moment solutions for the eco-

evolutionarily stable two-species community to numerical solutions of the trait-space equations.
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Solving the trait-space equations Eq. D.1 for this system with these given parameters would1911

require an unfeasible numerical resolution in trait space. However, since the mutation variance-

covariance matrix is very small, without covariance, and with the same variances, we can ap-

proximate the birth/mutation integral with a diffusion term in the following way (Kimura, 1965;1914

Débarre et al., 2013):

∫
rA(y)vA(y)N (x, y, M)dy ≈ rA(x)vA(x) +

M11

2
∆x(rA(x)vA(x)) , (D.8)

where ∆x = ∂2

∂x2
1
+ ∂2

∂x2
2

is the Laplacian in trait space. We discretize two-dimensional trait space1917

into an equispaced grid of 256× 256 points with x1, x2 ∈ [−4, 4], and approximate the Laplacian

with a central-difference approximation. We then used the DifferentialEquations.jl library

(Rackauckas and Nie 2017) in Julia (Bezanson et al. 2017) to solve the semi-discretized ordinary1920

differential equations to equilibrium. Both trait-space equations and moment equations were

solved to equilibrium.
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Figure D.2: Community assembly in the stage-structured example. (A) Depiction of the assembly process and final eco-evolutionary

equilibrium in the derived trait space (aI1 − aI2)× (µJ − µA) for I = J, A. The eco-evolutionary process is started towards the top-

right corner, where the evolutionary paths of the mean derived traits aI1 − aI2 and µJ − µA are depicted as a solid blue line for

juveniles and broken blue line for adults. The 95% transformed confidence ellipse for the juveniles is depicted at each time-point

around the means in lighter color. The evolutionary process continues until the system reaches a one-species equilibrium. The

95% transformed confidence ellipses are shown as a solid blue ellipse (juvenile) and dashed blue ellipse (adult). This one-species

equilibrium is subsequently invaded by two specialist species, and the final two-species equilibrium is depicted in orange and green.

(B) Evolution and assembly of juvenile mean traits over time. Trait 1 (solid line) governs the resource-affinity trade-off and trait

2 (dotted line) governs the juvenile–adult mortality trade-off. The process starts with one species reaching an eco-evolutionary

equilibrium, but is invaded by species two (orange) at (i). The two-species community subsequently reaches an eco-evolutionary

equilibrium, which is in turn invaded by a third species (green) at (ii). With two specialists to compete with, the generalist species

(blue) cannot persist and goes extinct at (iii). The new two-species community then evolves to a new equilibrium which is stable to

further invasion, and the assembly process is complete. Time has been rescaled non-uniformly to illustrate the process.
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Figure D.3: Comparison of trait-space equations and moment equations for the stage-structured model. Top row shows contour

lines for the trait-space and moment equation solutions at eco-evolutionary equilibrium. The contour lines are very nearly on top

of each other. The bottom four panels show slices in the x1 and x2 directions, where both slices are made across the global density

maximum of the trait-space solution. The curves are very nearly on top of each other.
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Symbol Description Value

ρ1 Resource 1 renewal rate 1.0

ρ2 Resource 2 renewal rate 1.0

K1 Resource 1 supply 1.0

K2 Resource 2 supply 1.0

qJ Juvenile conversion efficiency 1.0

qA Adult conversion efficiency 1.0

z Juvenile to adult size ratio 0.3

µ0J Juvenile base mortality 0.1

µ0A Adult base mortality 0.1

αJ Juvenile resource trade-off shape parameter 1.3

αA Adult resource trade-off shape parameter 0.7

αµ Juvenile–adult mortality trade-off shape parameter 1.5

M Mutation variance-covariance matrix 10−5

1.0 0.0

0.0 1.0


Table D.1: Parameter values used for numerical solutions of the stage-structured example.
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I. M. Pérez-Ramos, V. D. Pillar, H. C. Prentice, S. Richardson, T. Sasaki, B. S. Schamp, C. Schöb,2064
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