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Trait-Based Ecological and Eco-Evolutionary Theory 
Christopher A. Klausmeier, Colin T. Kremer, Thomas Koffel 
 
1. Overview of Trait-Based Ecology and Evolution 
1.1. Why trait-based ecology? 

Ecological systems are complex, consisting of a diversity of organisms whose growth, 
reproduction, and interactions are often nonlinear. Furthermore, these processes occur over 
multiple scales of organization and in environments that are heterogeneous in space and time. 
Theoretical ecologists have long pursued ways to simplify this complexity by identifying, 
describing, and exploring the essential features that drive ecological processes and patterns 
(Levin 1992). One such approach, trait-based ecology, offers a potent way of studying the 
theoretical underpinnings of diversity, while balancing reductionism and reality. This emerging 
paradigm unites new and old ideas behind a common focus: that by reducing our 
representation of individuals, populations, or species to their most essential characteristics — 
functional traits — we can better understand ecological systems.  

Trait-based approaches cut across organization scales from the behavioral and 
physiological up to the population, community, and ecosystem levels, making it possible to 
study a range of fundamental questions. For example, the performance of a population of 
individuals within a given ecological setting might be revealed by considering the traits of an 
average individual, such as its life history, behavior, and physiology. Similarly, the distribution of 
an entire species across a range of environments might be understood by considering its mean 
trait values, across individuals and populations (although trait variation also matters; Violle et 
al. 2012, Enquist et al. 2015). Traits can also be used to characterize a range of interactions 
between species, yielding insights into coexistence, trophic interactions, and ultimately the 
diversity and composition of entire communities. In turn, representing whole communities 
using features of their collective trait distributions, rather than focusing in detail on the identity 
of their constituent species, can reveal general patterns of succession (e.g. Terseleer et al. 
2014) and the influence of climate (e.g. Wieczynski et al. 2018). Critical properties of 
ecosystems (productivity, stability, etc.) may also be related to the traits (or functions) of the 
communities they support (e.g. Díaz and Cabido 2001, Roscher et al. 2012, Polley et al. 2013). 
Finally, trait-based approaches have the potential to integrate ecological and evolutionary 
perspectives, due to their common focus on functional traits (or phenotypes) and measures of 
fitness. This makes it possible to consider both the ecological consequences of evolutionary 
trait change and the capacity of ecological forces to impose selection and drive evolution. 

Trait-based approaches are valuable to ecological theory, offering both qualitative and 
quantitative insights. Qualitatively, trait-based studies can uncover the mechanisms that drive 
ecological processes, informing the structure of the equations used to develop a model or 
theory. Quantitatively, these studies also provide the parameters of equations by measuring 
rates, efficiencies, and other key traits. Consequently, trait-based theories are often inherently 
mechanistic, due to their focus on function; this contrasts with other theoretical techniques for 
modeling diverse communities such as constructing random community matrices or interaction 
networks (May 2001, Allesina and Tang 2012, Barbier et al. 2018). To avoid biologically non-
sensical results, many ecological theories invoke one or more tradeoffs (Kneitel and Chase 
2004). Often these tradeoffs represent reasonable assumptions, which may nevertheless lack a 
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strong empirical foundation. Trait-based studies have the potential to provide new and 
quantitative insights into the tradeoffs that constrain the strategies used when competing for 
resources, avoiding predation, timing reproduction, etc. (Edwards et al. 2011). Furthermore, in 
an era where ecologists are increasingly challenged to quantitatively predict how species, 
communities, and ecosystems will respond to environmental change, a focus on species traits is 
essential. Trait-based approaches are being used to anticipate shifts in species distributions, 
community composition, and ecosystem function driven by environmental change (Suding et al. 
2008, Thomas et al. 2012). They can also be used to predict which species are likely to become 
harmful invaders outside their native ranges (Van Kleunen et al. 2010, Drenovsky et al. 2012), 
and to identify alternative targets for conservation, such as focusing on the preservation of 
functional biodiversity. Collectively, these examples give an indication of the value of trait-
based approaches both for advancing basic theory as well as testing and applying theory in real 
ecological systems. 

 
1.2. What are traits? 
 Traits can be defined as measurable properties of individual organisms; we are 
particularly interested in functional traits, those that affect performance and ultimately fitness 
(McGill et al. 2006, Violle et al. 2007). There are many different kinds of traits, reflecting the 
chemical composition, physiology, morphology, genetics, and behavior of organisms. Traits 
determine how a given individual functions within its environment (e.g. its capacity to tolerate 
temperature or toxins) as well as how it interacts with other individuals or species (e.g. its 
ability to compete for resources or escape from predators). Traits may characterize how an 
organism is affected by its environment (often called ‘response’ traits), how it influences its 
environment (‘effect’ traits), or both (Díaz and Cabido 2001; Lavorel and Garnier 2002; Violle et 
al. 2007). Mathematically, traits can be characterized as discrete, categorical, continuous, or 
even function-valued (Gomulkiewicz et al. 2018). 

Numerous reviews have identified the functional traits most relevant to different groups 
of organisms (e.g. phytoplankton, Litchman and Klausmeier 2008; zooplankton, Litchman et al. 
2013; plants, Westoby et al. 2002, Reich et al. 2003; insects, Poff et al. 2006), while considering 
relationships among traits, and how traits inform our understanding of ecology. Some of these 
studies categorize traits according to their type (life history, behavioral, physiological, 
morphological) and ecological function (reproduction, resource acquisition, predator 
avoidance). Given the vast number of possible traits, it is often useful to organize them into 
hierarchies, recognizing that the value of ‘high level’ traits is determined by combinations of a 
large number of lower level traits. For example, while size might strongly influence an 
individual’s fitness, size itself is the product of other traits, ranging from how an individual 
develops and forages, to the level of individual genes. Establishing the relationships between 
traits across such hierarchies, including eventually bridging the genotype/phenotype gap, 
remains an active and important area of research. 
 
1.3. Historical survey of trait-based theories 

The foundations of trait-based ecology long predate its emergence as an identifiable 
paradigm. Even the very earliest attempts to use mathematics to describe and study ecological 
processes invoked relationships that depended on parameters representing the traits of 
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populations and species. For example, logistic growth (Verhulst 1845) depends on a 
population’s intrinsic growth rate and strength of intraspecific competition, and predatory-prey 
dynamics (Lotka 1920, Volterra 1926) are governed by traits including the growth rate of the 
prey, and the attack rate, conversion efficiency, and mortality rate of the predator. 
Corresponding efforts to parameterize such models engaged empiricists in quantifying these, 
and many other traits across different species and under different conditions. However, these 
early approaches focused on population dynamics, using traits as parameters but not state 
variables themselves. 

These traditional ecological models lay a solid foundation for trait-based approaches, by 
linking model parameters with the traits of organisms. Trait-based approaches take this one 
step further, by focusing on traits as key model outputs rather than just inputs. That is, traits 
are not fixed parameters but dynamic variables subject to change, typically by some adaptive 
processes. This opens up a whole new range of questions that can be addressed. 

Optimization theory was one of the first trait-based theories in ecology and evolution 
(Parker and Maynard Smith 1990), with many notable, broad fields of application. Life history 
theory addresses questions such as optimal clutch size and the timing of life history events, 
assuming trade-offs between demographic traits such as survival, growth and reproduction 
(Stearns 1992, Roff 2002). r/K selection is an example linking suites of traits to the environment 
(MacArthur and Wilson 1967). Optimal foraging theory is another a well-developed field 
(Stephens and Krebs 1986), where traits are the effort spent foraging on different resources. 
These traits are typically assumed to be optimized on a rapid, behavioral timescale. Classic 
results include the marginal value theorem for patch use (Charnov 1976), the zero-one rule for 
substitutable resources (Emlen 1966), and the µ/f rule for balancing foraging gains and predator 
risk (Gilliam and Fraser 1987). Eco-physiology addresses resource allocation to different 
physiological systems (e.g., Bazzaz and Grace 1997; Klausmeier et al. 2004). 

Although optimization theory is a central organizing theory in many areas of ecology 
and evolution, it has been criticized on various grounds (summarized in Maynard Smith 1978). 
One limitation of optimality approaches is that they assume that the payoff depends only on 
the strategy played by an individual. However, for ecological interactions that occur within and 
between species, the payoff of a strategy often depends on what strategy other individuals are 
playing. Game theory was designed to investigate such situations, originally in economics (Von 
Neumann and Morgenstern 1944, Nash 1951) and later imported to biology (Maynard Smith 
and Price 1973) where it became a standard approach to studying animal behavior (Maynard 
Smith 1982). The concept of an optimum strategy is replaced by the evolutionarily stable 
strategy (ESS), a strategy that cannot be improved on once it is adopted by an entire 
population. Many applications of game theory in behavioral ecology consider a discrete set of 
strategies, so the payoffs can be assembled in a matrix, but continuous strategy spaces are also 
possible. 

Another body of trait-based theory, concerning competition for a spectrum of 
substitutable resources, dominated community ecology theory in the 1970s. Species differ in 
their resource utilization curves, which are related to a trait such as body or beak size, averaged 
at the species level. This underlying mechanistic model is then translated into a Lotka-Volterra 
competition model, where a species’ carrying capacity depends on its trait and the competition 
coefficients depend on the difference in species’ traits. MacArthur and Levins (1967) first used 
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such a model to examine limiting similarity: how similar two resident species must be to 
prevent an intermediate species from invading. This approach was soon extended to a large 
number of species evenly spaced along the trait axis. Roughgarden (1972, 1979) showed that an 
unlimited number of species can coexist in an idealized deterministic setting, but May and 
MacArthur (1972) found a limit to diversity in randomly varying environments. This result was 
criticized on mathematical (Turelli 1978) and ecological grounds (Abrams 1983), and the theory 
of limiting similarity fell out of fashion by the 1980s. Despite this history, these one-dimensional 
Lotka-Volterra models are still widely used in trait-based eco-evolutionary modeling. We now 
know much more about the conditions that lead to continuous species packing versus a 
discrete number of coexisting species (Barabás et al. 2012). 

One reaction to the disenchantment with this niche-based Lotka-Volterra theory was a 
shift to more mechanistic models of competition that explicitly include the resources for which 
species compete (Tilman 1982), although, the niche-based Lotka-Volterra was originally 
formulated as an explicit resource-consumer model (MacArthur 1970, Chesson 1990). Extended 
to include apparent competition through shared predators and stressors, this contemporary 
niche theory employs a graphical approach to determine community structure based on zero 
net growth isoclines (ZNGIs), which summarize the response of organisms to the environment, 
and impact vectors, which summarize the effect of organisms on the environment (Chase and 
Leibold 2003). Because these models are more mechanistic, the species parameters have direct 
ecological meaning, so can be considered traits. A common form of trait-based analysis of these 
models involves depicting a large number of species’ ZNGIs and impact vectors, which can be 
used to determine community structure along environmental gradients (Tilman 1982, Chase 
and Leibold 2003). Recently we have extended this approach using ZNGI and impact vector 
envelopes to consider a continuum of strategies (Koffel et al. 2016). However, these graphical 
approaches restrict the number of limiting factors to two or three, capping the diversity that 
can emerge. 

In the late 1980s and 1990s, two independent groups — one American (Brown and 
Vincent 1987), one European (Metz et al. 1996) — proposed a trait-based theoretical 
framework that allows for the emergence of community structure, termed adaptive dynamics 
(Geritz et al. 1998). These approaches combine ideas from evolutionary game theory and 
community ecology. In particular, they show how game theory’s payoff can be identified with 
Darwinian fitness, which is described as the per capita population growth rate in a community 
ecological model. This general formulation provided analytical tools that could be applied to 
arbitrary ecological interactions (i.e. not restricted to Lotka-Volterra models), which led to a 
flood of applications (see section 2.3). The original formulation of adaptive dynamics makes a 
number of restrictive assumptions, such as a separation of time scales between ecology and 
evolution, small mutations, and asexual populations; however, it can be seen as a particular 
case within a constellation of closely related theoretical frameworks (Abrams 2001; section 3). 

One other framework from the 1980s and 1990s worth mentioning is that of community 
assembly theory. In this purely ecological framework, species from a finite or infinite regional 
species pool are repeatedly introduced to a local community (Post and Pimm 1983, Rummel 
and Roughgarden 1985, Law and Morton 1993, Morton and Law 1997). Upon successful 
invasion, the new state of the community is computed and another random species is 
introduced from the regional species pool. Three outcomes are possible: the community is 
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uninvasible, a recurrent assembly cycle occurs, or community assembly continues indefinitely 
along different trajectories (Morton and Law 1997). Furthermore, alternative outcomes are 
possible for a given set of parameters (Law and Morton 1993). Although any model of species 
interactions could be used, Lotka-Volterra models are typical; many applications employ trait-
based models of competition (Rummel and Roughgarden 1985) or food web assembly (Morton 
and Law 1997) to define species interactions. The community assembly framework shares many 
similarities with adaptive dynamics — trait-based formulations of interactions, use of invasion 
criteria, separation of time scales between invasions, and uninvasible states as a long-term 
outcome — but these literatures have remained largely separate. 

 
1.4. Overview of rest of chapter 

Clearly, there is a rich history of trait-based theoretical approaches in ecology and 
evolution. In the rest of this chapter, we describe how trait-based models are set up and 
analyzed from the perspective of adaptive dynamics, and survey applications (section 2). Next, 
we discuss other trait-based modeling frameworks and the connections between them (section 
3). We then consider the extension of these frameworks to multiple traits and spatial and 
temporal heterogeneity (section 4). Finally, we conclude in section 5 by considering directions 
for future research. 
 
2. Trait-Based Theory - Basic Ideas 

In this section we outline the basic principles of trait-based theory, considering both 
density-independent and density-dependent models, feedbacks between ecological / 
environmental conditions and trait values, and how optimization and evolutionary approaches 
offer insights into the dynamics and equilibria of such models. Finally, we conclude by 
describing a range of phenomena uncovered by applying trait-based theory.  

Before we start, some words about terminology. With their focus on functional traits, 
trait-based approaches are, by design, phenotypic approaches. The hierarchical level at which 
trait variation occurs — within-individual plasticity, within-species genetic variation, or 
between-species differentiation — is a secondary concern and often ignored. While this is a 
strength of the approach because it can allow greater generality, it can lead to confusing use of 
terminology. Here, we will use the term strategy to refer to the trait values of an individual, or 
of a population or species when intraspecific trait variation is negligible. For frameworks that 
are explicitly ecological, we refer to different species as such, but for more general frameworks 
we use the term populations. 
 
2.1. Density-independent models with traits and optimization theory 

Exponential growth has been called the first law of population dynamics (Turchin 2001, 
Pásztor et al. 2016). Such density-independent models form the basis of the simplest approach 
to trait-based modeling — optimization theory — and are fundamental to understanding more 
realistic density-dependent models. We begin with the simplest case of an unstructured 
population ! in a constant environment in continuous time, with population density "#  and 
growth rate $#: 

%&'

%(
= $#"#       (1) 
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The solution of this equation is "#(+) = "#(0).
/'(, which approaches zero if $# < 0 and grows 

to infinity if $# > 0 (assuming no dispersal limitation, that is "#(0) > 0). Equilibrium is possible 
only when $# = 0, which is infinitely unlikely in the absence of any density-dependent stabilizing 
mechanism. 

Simple as exponential growth may be, we can begin to get ecological insights by 
considering how a population’s growth rate $#(2⃗#; 56⃗ ) depends on its traits 2⃗#  and the 
environment 56⃗  (Geritz et al. 1998). In general, the environment is a multidimensional vector 
that represents all of the abiotic and biotic factors that affect a population’s growth rate, such 
as resource levels, temperature, and the density of directly interacting species (assumed to be 
constant in the density-independent case). How $#  depends on traits and the environment is the 
domain of functional and physiological ecology and is a key element in developing mechanistic 
trait-based models, including species distribution models (Kearney and Porter 2009). 

The critical values of the traits and environmental factors where $#72⃗#; 56⃗ 8 = 0 separate 
population growth from extinction (Maguire 1973). This can be easily visualized in two 
dimensions (e.g., two environmental variables, two traits, or one of each), which we call Zero 
Invasion Plots or ZIPs (Fig. 1). Fig. 1A illustrates the classical case of a population with fixed trait 
values that requires two essential resources, such as nitrogen and phosphorus for plants, so 
that 56⃗ = (9:, 9<). Both resources are required for growth, which leads to the L-shaped Zero 
Net Growth Isocline or ZNGI (Tilman 1982). Fig. 1B shows a hypothetical situation for a fixed 
environment where positive growth occurs for a range of values of each trait. This region also 
depends on an interaction between these traits (such that the viable range of trait 1 depends 
on the value of trait 2 and vice versa). Fig. 1C shows the interaction between a single trait and 
one environmental factor. A horizontal slice through this figure determines the fundamental 
niche of a population with particular trait values. A vertical slice determines what we call the 
fundamental community for a particular environment: species with trait values outside the 
fundamental community cannot persist even in isolation, so would not be expected to occur 
absent facilitation. 
 

 
Figure 1. Zero Invasion Plots. A) Two environmental factors (a ZNGI). B) Two traits. C) One 
environmental factor and one trait.  Gray shading denotes positive fitness. 
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Now, consider multiple populations, which could represent different species (or, 
alternatively, different strategies within a species) inhabiting the same environment, governed 
by eq. (1), and growing (i.e., $# > 0). Although these populations do not interact and each has 
the potential to grow to infinity due to the lack of density dependence, we can still determine 
the outcome of “competition” among these populations by considering the relative abundance 
of each population, =# = >#/∑ >AA . Using the quotient rule, we find the dynamics of =#  to be 

%B'

%(
= =#7$# − ∑ $A=AA 8 = =#($# − $̅),     (2) 

where $̅ is the abundance-weighted average growth rate. This is known as the replicator 
equation (Hofbauer and Sigmund 1998). As can be seen from the second form of eq. (2), a 
population ! with an above-average growth rate ($# > $̅) increases in relative abundance and 
one with a below-average growth rate decreases. Thus, in the long term, the population with 
the highest growth rate will dominate the community (=# → 1), while the relative abundance of 
all others will decline to zero. This justifies the use of the word fitness as a synonym for the per 
capita growth rate, $#. If multiple populations have equal fitness, we say they are neutral 
because their relative abundance is fixed only by initial conditions. 

Instead of a finite number of populations, we now consider a continuum of populations, 
ordered by their strategy 2, which also determines their fitness, $(2). Generalizing the results 
from the replicator equation (2), we know that the population with the strategy conveying the 
greatest fitness will dominate the community in the long term. We can use elementary calculus 
to find the optimal strategy, 2∗, which maximizes fitness given $(2). If 2 is one-dimensional, we 
find the maximum by setting the fitness gradient, %/

%H
 , equal to zero and solving for 2. To be a 

local maximum, we require the second derivative of fitness to be negative, %
I/

%HI
< 0 (Fig. 2A). 

Since there can be multiple local maxima, we have to compare the fitness of all local optima as 
well as at the ends of the trait space to find the global optimum 2∗ (Fig. 2B-C). 

 
Figure 2. Finding local and global maxima on fitness landscapes. A) A single, global optimum. B) Two 
local optima separated by a fitness minimum. C) A boundary optimum. 
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population growth rate r can be optimized while accounting for all the biological processes 
contributing to a population’s success, such as individual growth, survival, and reproduction. 
 
2.2. Density-dependent models with traits 
2.2.1. Density dependence and limiting factors 

It has long been recognized that at least some per capita vital rates must depend on 
population density for populations to not to grow to infinity (Turchin 2001). While this density 
dependence is often modeled as a direct effect of density on per capita growth rate, as in the 
logistic equation, it is often useful to explicitly consider the limiting factors such as resources or 
predators that mediate density dependence (Chase and Leibold 2003, Meszéna et al. 2006). 
One important consequence of this environmental feedback loop is the competitive exclusion 
principle: no more species can coexist at equilibrium than there are shared limiting factors 
(Levin 1970). This sets an upper limit on the diversity that can be maintained in a community, a 
limit that remains valid in trait-based models. 

In particular, when there is only one limiting factor, such as a resource 9, stable 
coexistence is impossible and a single population will outcompete all others. The break-even 
resource level 9∗	of a population !, where its net growth K# = 0, is a simple metric that 
identifies the best competitor: the population with the lowest 9∗ will exclude all others. This is 
known as the 9∗-rule (Tilman 1982). Thus 9∗ combines various physiological parameters into a 
single metric of competitive ability. In a trait-based setting, the 9∗-rule provides a 
“pessimization” principle analogous to the optimization principles applied to fitness above 
(Metz et al. 2008). When 9∗ is expressed as a function of traits, calculus can again be used to 
minimize 9∗ and identify the optimal trait values for a given environment (Klausmeier et al. 
2004). 

If species interacted only through a single limiting factor, ecological communities would 
be much easier to understand, yet lack diversity, rendering them far less interesting. Luckily this 
is not the case. When there is more than one limiting factor and populations have differential 
responses and effects on those factors, then stable coexistence becomes a theoretical 
possibility. The prototypical species-based competition model is the Lotka-Volterra model, 
which can be written as 

L

%&M

%(
= ($: − N::": − O:<"<)": = K:":

%&I

%(
= ($< − N<:": − O<<"<)"< = K<"<

      (3) 

where $#  are maximum growth rates and N##  and N#A  are intra- and interspecific competition 
coefficients, respectively. The five possible outcomes of competition are: i) species 1 
outcompetes 2, ii) species 2 outcompetes 1, iii) species 1 and 2 coexist, iv) either species 1 or 2 
excludes the other depending on initial conditions (founder control), or v) neutral coexistence. 
Note that in eq. (3), we have introduced K#  to represent the per capita growth rate (fitness) of a 
population, which now combines the maximum exponential growth rate, $, with density 
dependence. 
 
2.2.2. Invasion analysis 

Invasion analysis is a powerful approach to understanding coexistence between two 
populations (Chesson 2000). The idea is to ask whether each population (termed the invader) 
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can invade a monoculture of the other (termed the resident) at its equilibrium or other long-
term attractor. The invader is assumed to be sufficiently rare that it has no effect on its own per 
capita growth rate or the resident’s. This results in density-independent growth of the invader, 
which is characterized by its invasion fitness, KPQR(5STU). Here the resident at its attractor 
determines the environment, 5STU, experienced by the invader (consisting of limiting factors, 
possibly including its own density). Negative invasion fitness means that the invasion fails, while 
positive invasion fitness means that it succeeds. If one population has positive invasion fitness 
but the other has negative, then the first excludes the second (Lotka-Volterra cases i-ii); if both 
populations have negative invasion fitness, there is founder control (Lotka-Volterra case iv). 
Finally, if each population has a positive invasion fitness (i.e. they are mutually able to invade), 
then we say that the two populations stably coexist (as in Lotka-Volterra case iii). However, 
because invasion fitness focuses on the boundaries of the phase space, it does not give us any 
information on the nature of coexistence in this mutual invasibility case. 

The main advantage of invasion analysis is that it is easier to calculate invasion rates 
than to solve for the coexistence attractor and determine its stability. However, invasion 
analysis has a few potential shortcomings. First, if there are multiple coexistence equilibria, 
then the lack of mutual invasibility does not imply that coexistence is impossible (Namba and 
Takahashi 1993, Priklopil 2012). However, it can be argued that such locally stable coexistence 
would be vulnerable to stochastic events and that mutual invasibility is more relevant to natural 
systems. Second, when the resident has multiple attractors, a positive invasion rate does not 
necessarily imply that the invader persists. Instead the invader can shift the resident from one 
of its attractors to the other, which then repels the invader, termed the “resident strikes back” 
scenario (Mylius and Diekmann 2001). Third, it is unclear how to extend invasion analysis to 
more than two species (Saavedra et al. 2017). Nonetheless, invasion analysis remains a key tool 
for understanding competition and forms the basis of many trait-based eco-evolutionary 
modeling approaches (see below). 
 
2.2.3. How to set up density-dependent trait-based models 

Having discussed species-based density-dependent models above, let us now describe 
how to set up a trait-based model in four easy steps, focusing on non-structured populations 
for simplicity. First, start with a mechanistic species-based model and identify groups of 
populations that are functionally similar, which we call guilds. Populations within a guild share 
the same fitness function, which will depend on the same trait(s), but specific trait values may 
differ between populations. If two populations do have identical trait values, or strategies, they 
will be selectively neutral (e.g. Lotka-Volterra case v). As an example, one might model 
predators and prey as two separate guilds (although this decision is part of the art of modeling). 
Let V be the number of guilds. 

Second, generalize the model to encompass WX  populations in guild Y, indexed by 
subscripts. For example, let "X,#  be the density of the population with the !th strategy in guild Y. 
Any terms that represent interactions between populations or between populations and 
environmental factors should be replaced by a sum over populations, making no distinction 
between intra- and inter-specific interactions. 

Third, make some model parameters functions of traits (this is the identity function if 
those parameters are directly considered traits). Together, the model then consists of a set of 
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differential equations of the form %&Z,'
%(

= KX72X,#; 56⃗ ("66⃗ , 2⃗)8"X,#, one for each population in 
each guild. Note that the fitness function KX  of a particular guild now depends on the strategy 
of the focal population, 2V,#, as well as environmental factors 56⃗ . These in turn depend on the 
strategies and densities of the rest of the community. Specifically, 2⃗ = (2⃗:, 2⃗<, … , 2⃗V)	and 2⃗X =
(2X,:, 2X,<, … , 2X,WZ

) describe the set of all traits across guilds, and across 
populations/strategies within a guild, respectively. Densities are described similarly as "66⃗ =
("66⃗ :, "66⃗ <, … , "66⃗ V) and "66⃗ X = ("X,:, "X,<, … , "X,WZ

). See Boxes 1 and 2 for examples of how to set 
up trait-based models. 

The final step in setting up a trait-based model is to define a source of trait variation. 
This choice largely distinguishes various trait-based modeling frameworks, which we compare 
in section 3. For pedagogical reasons, we will describe adaptive dynamics (which assumes 
variation arises from small, infrequent mutations) and adaptive statics (adaptive dynamics at 
equilibrium, without the assumption of small mutations) below; however, different trait-based 
approaches often give similar results (see section 3). 

It is important to keep in mind that there is usually no unique way of deriving a trait-
based model from a species-based one. All of the four steps above (identifying guilds, 
generalizing to multiple populations, making parameters functions of traits, and defining a 
source of variation) are ultimately determined by the ecological mechanisms identified as 
relevant by the modeler in that particular context. For example, a trait-based model designed 
to study the evolution of cannibalism would look different from the competition model derived 
in Box 1, even if both arose from the same single-population model. Similarly, trait-based 
models studying the emergence of food webs might lump prey and predators into a single 
guild, unlike Box 2. 
 
Box 1: Trait-Based Lotka-Volterra Competition 

A classic example of a trait-based model arises from the Lotka-Volterra competition 
model. In it, there is a single guild of competitors and no explicit environmental factors aside 
from the abundance of competitors. Start with the single-population logistic equation 

\"

\+
= ($ − N")" 

To make it into a trait-based model, we add subscripts for each population !, sum interactions 
over strategies ] = 1,… ,W, and make model parameters $ = $(2#) and N = N(2#, 2A) functions 
of the focal population’s trait 2#  and the interacting population’s trait 2A. Together, these 
changes result in: 

\"#

\+
= ^$(2#) −_N(2#, 2A)"A

W

A`:

a"# = K72#; 2⃗, "66⃗ 8"#  

For simplicity, we drop the guild subscript and the explicit consideration of the environment 56⃗  
from the general formulation in section 2.2.3. It is commonly assumed that the maximum 
growth rate $ is a unimodal function of 2 and that N, the strength of competition (competition 
kernel), declines to zero as a function of the difference in the strategies of the focal and 
interacting populations. Two functions that satisfy these assumptions are the quadratic $(2) =
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1 − 2< and the Gaussian N72#, 2A8 = exp	 e−72# − 2A8
<
/f<g, where f controls the width of 

competition kernel (Fig. 3). 
Motivated by the seminal work of MacArthur and Levins (1967), trait-based Lotka-

Volterra models have been used to investigate the conditions under which such models lead to 
the coexistence of finitely many species with distinct trait values or a continuum of species 
(Barabás et al. 2012). 

 
Box 2: Trait-Based Predator-Prey Interactions 

As a more complicated example of how to set up a trait-based model, consider 
predator-prey interactions. We begin with a classic predator-prey model, the Rosenzweig-
MacArthur model (Rosenzweig and MacArthur 1963), where a prey with abundance " is 
consumed by a predator with abundance h: 

\"

\+
= ($ − 	N")" −

O"

1 + ℎO"
h 

\h

\+
=

.O"

1 + ℎO"
h −kh 

The prey grows at an intrinsic rate $ and self-regulates through a competition coefficient N. The 
predator consumes the prey through a type II functional response with attack rate O	and 
handling time ℎ, and converts prey abundance into predator abundance with efficiency .. 
Finally, k sets the mortality rate of the predator. 

To convert the above model into a trait-based model, we first need to identify the guilds 
at play. A natural choice here consists of introducing two guilds: the prey guild and the predator 
guild. Their abundances, generalized to multiple populations, are respectively denoted "#  with 
! = 1,… ,W& and h#, with ! = 1,… ,Wl. Let the fitness function of the prey and the predator 
depend on traits 2 and m, respectively. We can then write: 

\"#

\+
= ^$(2#) −_N(2#, 2A)"A

Wn

A`:

−_
O72#, mA8

1 + ∑ ℎ72o, mA8O72o, mA8"o
Wn
o`:

hA

Wp

A`:

a"#

= 	K&72#; 2⃗, m⃗, "66⃗ , h6⃗ 8"#  

\hA

\+
= ^_

.(2#, mA)O(2#, mA)"#

1 + ∑ ℎ(2o, mA)O(2o, mA)"o
Wn
o`:

Wn

#`:

− k(mA)ahA = Kl7mA; 2⃗, m⃗, "66⃗ , h6⃗ 8hA  

As in the Lotka-Volterra competition model in Box 1, prey growth rate $(2#) depends on the 
focal population’s trait value and density-dependence N72#, 2A8 depends on the trait values of 
the focal and interacting prey populations. The predator’s attack rate O(2#, mA), handling time 
ℎ(2o, mA), and conversion efficiency .(2#, mA) all depend on the trait values of the predator and 
prey involved. Note that there are multiple interactions in this model that have been replaced 
by summations. The first summation in the prey equation adds up competition between prey 
populations; the second summation adds up predation by different predator populations; and 
the third summation in the denominator of the functional response adds up time predator j 
spends handling different prey. Finally, the outer summation in the predator equation adds up 
energetic gain from different prey populations. 
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2.2.4. Invasion analysis of trait-based models 

Having defined a trait-based model, how can we analyze it? For simplicity, we will 
consider a single guild with a single trait here. Begin with a monomorphic resident population 
with strategy 2: and find its ecological attractor (assumed here to be an equilibrium for 
simplicity) and the corresponding environment 5q(2:), such that K72:; 5q(2:)8 = 0. Now 
consider the fate of a rare population with a different strategy 2r by calculating its invasion 
fitness when invading the resident, K72r; 5q(2:)8. As described above, invasion succeeds if 
K72r; 5q(2:)8 > 0 and fails if K72r; 5q(2:)8 < 0. If the new strategy is quite similar to the 
existing one, then successful invasion implies replacement of the previous resident (Geritz et al. 
2002), except at special points described below. This process is then repeated to generate a 
“trait substitution process”. The fitness gradient, sK/s2r|Hu`HM, measures directional selection 
on a resident, given its strategy: if sK/s2r > 0 then the trait evolves towards larger values (Fig. 
3A) and if sK/s2r < 0 then it evolves towards smaller values (Fig. 3B). We will call a trait value 
or strategy 2v: where directional selection disappears (sK/s2r = 0) an evolutionary equilibrium, 
also known as a singular strategy (Geritz et al. 1998). 

An evolutionary equilibrium is called a (global) evolutionarily stable strategy (ESS) if no 
other strategy can invade it. As in optimization models, an evolutionary equilibrium can be 
either a fitness maximum, and hence at least locally evolutionarily stable, if s<K/s2r<|Hu`HM < 0 
(Fig. 3C), or a fitness minimum, if s<K/s2r<|Hu`HM > 0 (Fig. 3D). This quantity s<K/s2r<, the 
second derivative of invasion fitness with respect to the trait of the invader, measures the 
strength of stabilizing or disruptive selection (Fig. 3C vs. 3D). An ESS represents an endpoint of 
evolution or community assembly. Note that if new strategies are restricted to be similar to 
existing ones (e.g. due to small mutations), local evolutionary stability is sufficient to prevent 
further trait change. However, if large mutations or immigration of different species occur, 
global evolutionary stability is required (Fig. 3C vs. Fig. 3E). 

A second form of stability — convergence stability — controls whether directional 
selection leads towards or away from an evolutionary equilibrium (Eshel 1983, Geritz et al. 
1998). An evolutionary equilibrium is convergence stable when s<K/s2:< > s<K/s2r

<. Any 
combination of these two stability conditions (evolutionary and convergence stability) is 
possible. An evolutionary equilibrium that is both convergence and evolutionary stable (i.e. a 
fitness maximum) is called a convergence stable strategy (CSS), which behaves as we would 
naively expect an optimum to behave. While fitness minima play a minor role in optimization 
models, serving only as boundaries between the basins of attraction of alternative optima (Fig. 
2B), they can play a central role in density-dependent models. The most interesting case where 
the two conditions differ is an evolutionary equilibrium that is convergence stable but not 
evolutionary stable, which is called a branching point (Geritz et al. 1998) for reasons discussed 
below. 
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Figure 3. Invasion fitness landscapes.  Positive invasion fitness is denoted by gray shading. A-B) 
Directional selection. C) An evolutionarily stable strategy (fitness maximum). D) A branching point 
(fitness minimum). E) A local-but-not-global ESS. F) A two-species evolutionarily stable community. 
 

Geritz et al. (1998) gives a complete eight-fold classification of the types of stability of 
monomorphic evolutionary equilibria, both in terms of these second derivatives of invasion 
fitness and also graphically using pairwise invasion plots (PIPs). Whether the invasion of a 
resident with strategy 2: by an invader with strategy 2r is successful or not depends only on 
the sign of K72r; 5q(2:)8 or K(2r; 2:) for short. A PIP plots sign[K(2r; 2:)] as a function of the 
strategy of the resident and the invader (Fig. 4). Graphically, convergence stability can be seen 
along the main diagonal, whereas evolutionary stability is assessed with a vertical line test 
through the evolutionary equilibrium. 

A) Directional Selection B) Directional Selection

C) Evolutionarily Stable Strategy (ESS) D) Branching Point

E) Local-but-not-global ESS F) Two-Species Evolutionarily Stable
Community (ESC)
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Figure 4. The eight-fold classification of pairwise invasibility plots (PIPs), after Geritz et al. (1998). A, G-
H) Non-convergence stable repellors. B) An evolutionary branching point is convergence stable but not 
evolutionarily stable. C-E) Continuous stable strategies (CSSs) are both convergence and evolutionarily 
stable. F) The Garden of Eden is evolutionarily stable but not convergence stable. 
 

A mutual invasiblity plot (MIP) illustrates the pairs of strategies 2: and 2< that can stably 
coexist, i.e. K(2<; 2:) > 0 and K(2:; 2<) > 0. It is constructed by superimposing a PIP on its 
reflection around the 1-1 line, exchanging the role of resident and invader (Fig. 5). In general, 
the region of stable coexistence through mutual invasibility (if one exists) does not touch the 1-
1 line, other than at points corresponding to one-strategy evolutionary equilibria. This implies 
that, in general, similar species cannot coexist, representing an ecological limit to similarity. 
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Figure 5. A mutual invasibility plot (MIP) shows pairs of strategies than can stably coexist. It is made by 
exchanging the roles of resident and invader by flipping a PIP on itself.  After Geritz et al. (1998). 
 

One important exception occurs near branching points, where coexistence of similar 
strategies is guaranteed. This means that a strategy that successfully invades a resident at a 
branching point does not exclude it, but coexists with it. These coexisting strategies then 
experience opposing directional selection and diverge, justifying the name “branching point”. 
The final outcome may be a pair of strategies that prevent invasion (Fig. 3F), or the 
development of further branching points leading to a more diverse set of strategies, or other 
outcomes (see section 2.2.6). A set of strategies (or species) that is both globally uninvasible 
and convergence stable is described as evolutionarily stable community (ESC); Fig. 3F illustrates 
a two-species ESC (Edwards et al. 2018; Kremer and Klausmeier 2017). This scenario assumes 
no recombination between the two diverging lineages, which may not be valid in sexual species 
(Waxman and Gavrilets 2005). In general, however, the existence of a branching point indicates 
that more than one ecological strategy is required to render a community uninvasible. 

One important caveat about the above discussion of the stability of evolutionary 
equilibria is that all of the conditions based on derivatives are strictly local criteria. Just as a 
local optimum may not be a global optimum (Fig. 2B), a local ESS where s<K/s2r< < 0 may be 
invasible by a strategy that is sufficiently different than a resident (Fig. 3E). In this case, 
assumptions about the source of new phenotypes matters: under the assumption of small 
mutations (in adaptive dynamics) or standing genetic variation (in quantitative genetics, see 
section 3), a local-but-not-global ESS would represent a stable equilibrium, whereas larger 
mutations or immigration of different species from a regional species pool would allow the 
community to escape such an equilibrium.  
 
2.2.5. Trait-based predictions across environmental gradients 

The preceding section offered a detailed description of how to determine the 
outcome(s) of community assembly/evolution within a community, focusing on particular 
trait(s), while other model parameters remained fixed. An important application of trait-based 
approaches is to examine how these outcomes change as these external parameters vary. This 
can be used to determine how community structure — the diversity and abundance of species 
present and the value and similarity of their traits — varies with changes in model parameters, 
including along environmental gradients, a central goal of community ecology. 
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Other general insights emerge, including revealing how an W-species ESC may lose its 
evolutionary stability as an environmental parameter varies. Intuitively, one might expect that a 
member of the ESC loses stability as a branching point emerges; however, except when the 
model has a particular symmetry, the first bifurcation is a loss of global evolutionary stability, 
resulting in a local-but-not-global ESS (Fig 3E; Geritz et al. 1999). At the same parameter value 
where the ESC first loses its global evolutionary stability an (W + 1)-species ESC is created, 
with the new strategy at zero population density (Fig. 6). Thus, the system is discontinuous in 
traits but continuous in population density at these evolutionary transcritical bifurcation points. 
Alternatively, an W-species ESC may collapse into an (W − 1)-species ESC as the density of one 
of its members declines to zero. This is a developing area of adaptive dynamics/trait-based 
theory, sometimes described as the ‘bifurcation theory of adaptive dynamics’. 

An efficient way to compute bifurcation diagrams of evolutionary equilibria is as follows 
(Kremer and Klausmeier 2017). At an initial bifurcation parameter value y, find a (preferably 
W = 1 species) ESC by simultaneously solving for the abundance "z#  and trait value 2v#  of each 
population ! such that K(2v#; 2⃗) = 0 and sK s2r⁄ (2v#; 2⃗) = 0. There are two equations and two 
unknowns per population, which can be solved numerically using Newton’s method. Then vary 
the bifurcation parameter value y by a small amount |y and solve for the updated evolutionary 
equilibrium, extrapolating the previous solution(s) as an initial guess. At each value of the 
parameter y, 1) assess global evolutionary stability by checking that maxK(2r; 2⃗)	 < 0 and 2) 
verify that no species has gone extinct ("z# > 0 for all !). These conditions correspond to passing 
through an evolutionary transcritical bifurcation point either forward (adding a strategy) or in 
reverse (removing a strategy). Also, 3) check convergence stability using the Jacobian matrix. If 
the evolutionary equilibrium is still a convergence stable global ESC with no strategy extinct, 
continue varying y. Otherwise, stop (refining with a smaller step size |y if necessary). To find 
the exact bifurcation point, augment the system with the nascent strategy’s eco-evolutionary 
equations K(2vW�:) = 0 and sK s2r⁄ (2vW�:; 2⃗) = 0 and two additional unknowns, the trait 
value of the nascent strategy 2vW�: and the parameter value where the bifurcation occurs y∗. 
As a new (W + 1)-species ESC is created at this point with "zW�: = 0, this solution provides a 
natural starting point to be continued as above. The resulting evolutionary bifurcation diagrams 
summarize predictions of how the evolutionarily stable community structure (trait values, 
diversity, and population densities) varies with changes in a model parameter, such as along an 
environmental gradient (e.g. Kremer and Klausmeier 2017). 
 
Figure 6. (over) A bifurcation diagram showing an evolutionary transcritical bifurcation. A) Equilibrium 
traits and B) population sizes as a function of an environmental parameter z.  C-E) display PIPs occuring 
C) before, D) at, and E) beyond the bifurcation point z*.  The solid lines on the PIPs represent local 
maxima of the fitness landscape and the dashed lines represent local minima.  F-I) show corresponding 
fitness landscapes at the F-H) one-species and I) two-species evolutionary equilibria. 
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2.2.6. More complex possible outcomes 
Within a given environment, stable evolutionary equilibria are not the only possible 

outcome of eco-evolutionary models used to study trait-based theory. In this section we 
provide a non-exhaustive summary of a growing set of dynamical phenomena that have been 
discovered and which may provide important insights into various ecological systems. 

Limit cycles. Similar to their purely ecological counterparts, eco-evolutionary systems 
can converge towards limit cycles where species’ abundances and traits both fluctuate over 
time. A classic example of these evolutionary cycles happens in the context of predator-prey co-
evolution models (Dieckmann et al. 1995, Cortez and Weitz 2014). 

Evolutionary suicide. The pessimization principle mentioned earlier illustrates another 
classic emergent phenomenon of eco-evolutionary models, known more generally as the 
“Tragedy of the commons” (Hardin 1968). In section 2.2.4 we described how invasion analysis is 
used to understand the repeated invasion and replacement of resident populations by invaders 
with different trait values. This sequence of replacements is determined solely by the fitness of 
new invaders when rare; nothing ensures that a new invader behaves “optimally” when it has 
completely replaced the former resident. For example, there is no reason in general for the 
equilibrium population density of successive invaders to increase. In fact, quite the opposite 
can happen: evolution can drive a population extinct, either through a continuous decrease in 
density (Diekmann 2002, Boudsocq et al. 2010) or through a catastrophic tipping point in the 
presence of an Allee-effect at low densities (Ferrière 2000). These phenomena are considered 
examples of “evolutionary suicide” or “evolutionary traps”. 

Branching-extinction evolutionary cycles. Another interesting phenomenon happens 
when one of the two populations generated by a branching point goes extinct through 
evolutionary suicide (Dercole 2003). If the surviving population remains in the basin of 
attraction of the original branching point, it will be driven back towards the branching point and 
diversify, again setting one population up to experience evolutionary suicide. The succession of 
these branching and extinction events lead to a stable eco-evolutionary limit cycle. 

Alternative evolutionarily stable states. Finally, as in purely ecological models, 
alternative stable states can occur in eco-evolutionary models in the form of alternative ESSs 
and ESCs (Kisdi and Geritz 1999; Kremer and Klausmeier 2017). Such eco-evolutionary priority 
effects mean that the initial trait values of evolving population(s) will influence which ESS/ESC is 
reached at equilibrium. This once again illustrates that “optimality” in density-dependent trait-
based models is a subtle concept, as density-independent models generally only possess one 
global optimum. 
 
2.3. Applications 

Section 2.2.3 presented a general approach for implementing a trait-based approach 
using virtually any mechanistic model of community dynamics. It is not surprising then that 
trait-based approaches have been applied to a broad range of systems in ecology and 
evolution, to study questions from what determines organism’s adaptations to what drives 
large-scale ecosystem functions. Here we give but a sampling of this extensive literature. Many 
of the following examples use techniques similar to those described above; others use related 
methods (see section 3). 
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This broad spectrum of applications includes a wide range of different types of 
ecological interactions. In the context of consumer-resource interactions, trait-based models 
have shown how different resource types influence consumer diversification (Schreiber and 
Tobiason 2003), as well as revealing optimal allocation strategies for taking up different 
resources (Abrams 1987) and the effects of resource uptake plasticity (Bonachela et al. 2011). 
When applied to predator-prey interactions, trait-based approaches have shown how evolution 
can strongly alter predator-prey cycles (Cortez and Weitz 2014) or even engender them 
(Abrams and Matsuda 1997), and have helped us understand what drives the evolution of prey 
defenses (Yoshida et al. 2003, Koffel et al. 2018a). Trait-based models of host-pathogen 
systems have shown how within-host competition between pathogens is at the origin of their 
virulence (Van Baalen and Sabelis 1995, Alizon et al. 2013) and how spatial structure can lead 
hosts to evolve altruistic defense strategies, such as suicide upon infection (Débarre et al. 
2012). A diversity of other trophic situations has been investigated, including mixotrophy 
(Andersen et al. 2015), cannibalism (Dercole and Rinaldi 2002, Hin and de Roos 2019), and 
intra-guild predation (Patel and Schreiber 2015), the latter two giving rise to a rich set of eco-
evolutionary phenomena such as eco-evolutionary cycles and evolutionary suicide. Trait-based 
approaches have also been applied to positive interactions, e.g. to investigate the emergence 
and maintenance of facilitation in arid ecosystems (Kéfi et al. 2008), the role of facilitation in 
primary succession (Koffel et al. 2018b), and the impact of exploiters on the evolution of 
mutualism (Jones et al. 2009). 

Trait-based approaches have made it possible to study the evolution of life-history traits 
in a diversity of organisms and ecological situations, including the size at maturation of 
exploited fish stocks (de Roos et al. 2006), the seed size and germination strategies of terrestrial 
plants (Geritz et al. 1999, Mathias and Kisdi 2002, Levin and Muller-Landau 2000), the foraging 
behavior of herbivorous arthropods (Egas et al. 2005), and the size and trophic strategies of 
unicellular planktonic organisms (Chakraborty et al. 2017). 

Trait-based approaches have also been used to understand the emergence of 
community structure. System-specific models have been applied to shade-tolerant trees 
competing for light in forests subject to disturbances (Falster et al. 2017), phytoplankton-
zooplankton systems along nutrient gradients (Sauterey et al. 2017), global distributions of 
phytoplankton (Follows et al. 2007), and size-structured fish communities (Hartvig et al. 2011). 
A variety of size-structured food web models have been developed to understand emergent 
properties such as connectance, omnivory and trophic structure (Loeuille and Loreau 2005, 
Fuchs and Franks 2010, Banas 2011). 

When implemented in ecosystem models with an explicit abiotic environment, trait-
based approaches have shed a light on how organismal adaptations affect ecosystem 
processes. Examples include understanding selection patterns on nitrogen-fixing plants and 
their consequences for N-limitation in ecosystems (Menge et al. 2008, Lu and Hedin 2019), the 
evolution of plant litter decomposability (Boudsocq et al. 2011, Allison 2012, Barot et al. 2016, 
Arnoldi et al. 2019), and the determinants of phytoplankton stoichiometry and their effect on 
oceanic N:P ratios (Lenton and Klausmeier 2007). 
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3. Other Trait-Based Frameworks 
As noted in section 2, a plethora of trait-based modeling frameworks have been 

developed over the years (Abrams 2001, Abrams 2005, Fussmann et al. 2007), which we 
summarize in Table 1. Some of these frameworks are purely ecological, assuming fixed trait 
values. Others are purely behavioral/evolutionary, neglecting population dynamics. Finally, 
many combine ecological and evolutionary dynamics in various ways. These frameworks differ 
in a number of ways: 

• the level of biological organization at which traits vary: within individuals 
(plasticity, including behavior and physiological acclimation), within species (genetic and 
non-genetic trait variation), or between species 
• the heritability of trait variation 
• the degree to which biological details are aggregated (do models track 
population sizes, trait means, and possibly trait variance/covariances, or entire 
phenotypic distributions?) (Fig. 7) 
• the relative timescales of different processes, and 
• the source of new phenotypes (mutation or immigration, occasional or 
continuous) 

Despite their differences, these different frameworks are all based on trait-dependent growth 
functions K and many can be connected mathematically as limiting cases (Abrams 2001, Lion 
2018). 

 
Figure 7. Three trait-based modeling frameworks aggregate biological details to different degrees. A) 
Species sorting. B) Ecological moment methods. C) Adaptive dynamics. 
 
They also can reach similar conclusions about long-term outcome of community assembly / 
evolution. When there is a global convergence and evolutionarily stable community, these 
approaches often tend to similar outcomes. For example, Figure 8 shows the outcome of the 
Lotka-Volterra competition model (Box 1) simulated using five different trait-based theoretical 
frameworks. The ecological quantitative genetics framework initialized with four similar species 
leads to the four-species ESC predicted by adaptive statics (Fig. 8A). After a large but finite time, 
species sorting leads to four distinct clusters of species, which are symmetrical (when initial 
strategies are regularly spaced, Fig. 8B) and irregular (when strategies are randomly spaced, Fig. 
8C). Community assembly (Fig. 8D) and adaptive dynamics (Fig. 8E) also lead to four clusters of
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 Modeling 
Framework 

Population 
Size (N) 

Trait Value 
(x) 

Trait Variance 
(V) 

Number of 
NxV Sets 

Source of New 
Phenotypes References 

Ec
ol

og
ica

l 

Traditional 
Community Models 

dynamic fixed zero one-few none Verhulst 1845, Lotka 1920, Volterra 1926 

Species Sorting dynamic fixed zero many none Chase and Leibold 2003, Follows et al. 2007, 
Bruggeman and Kooijman 2007 

Community 
Assembly 

equilibrated fixed zero dynamic occasion immigration Post and Pimm 1983, Rummel and 
Roughgarden 1985, Law and Morton 1993, 
Morton and Law 1997 

Moment Methods dynamic dynamic dynamic one none or continuous 
immigration 

Wirtz and Eckhardt 1996, Norberg et al. 2001, 
Savage et al. 2007 

Intraspecific 
Variability Theory 

dynamic fixed fixed one-few standing phenotypic 
variation 

Hart et al. 2016 

Ev
ol

ut
io

na
ry

 Classical Quantitative 
Genetics 

N/A dynamic fixed or 
variable 

one standing genetic variation 
or continuous mutation 

Lande 1976 

Optimization Theory N/A equilibrated zero one plasticity Stephens and Krebs 1986, Stearns 1992, Roff 
2002 

Ec
o -

Ev
ol

ut
io

na
ry

 

Trait Diffusion 
Models 

dynamic fixed zero infinite continuous mutation  Levin and Segel 1985, Lehman and Tilman 
1997, Merico et al. 2014 

Ecological 
Quantitative 
Genetics 

dynamic dynamic fixed few standing genetic variation Abrams 2005 

Growth Rate 
Optimization Theory 

dynamic equilibrated zero any plasticity Smith et al. 2011 

Adaptive Dynamics equilibrated dynamic zero dynamic occasional mutation Geritz et al. 1998 
Adaptive Statics equilibrated equilibrated zero dynamic everything-is-everywhere Brown and Vincent 1987, Kremer and 

Klausmeier 2017, Section 2 of this chapter 
Oligomorphic 
Dynamics 

dynamic dynamic dynamic any continuous mutation Sasaki and Dieckmann 2011 

Drift Equation equilibrated dynamic dynamic any none or continuous 
mutation 

Gorban 2007 

Table 1. Comparison of trait-based modeling frameworks. 
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Figure 8. The dynamics and long-term outcome of five different modeling frameworks applied to the 
same trait-based Lotka-Volterra model with a four-species ESC. A) Ecological quantitative genetics. B) 
Species sorting, with a uniform distribution of species. C) Species sorting, with a random distribution of 
species. D) Community assembly from a continuous species pool. E) Adaptive dynamics with small 
mutations. 
 
species, each containing one or two very similar species, although the transient dynamics vary 
considerably. 

To understand why these distinct frameworks can lead to similar outcomes, consider 
the oligomorphic dynamics framework (Sasaki and Dieckmann 2011), which tracks the first 
three moments for a finite number of phenotypic clusters. The “zeroth” moment is the size of 
population i, !" = ∫%"('))'; the first moment is its mean trait, '̅" = ∫ ' ∙ %"('))' /!"; and the 
second moment is its trait variance, -" = ∫(' − '̅")/%"('))'/!". In the absence of immigration 
and mutation, the dynamics of each population are given by 
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The moment equations in (4) are closed by assuming a particular phenotypic distribution, 
usually normal (Norberg et al. 2001). Assuming small trait variance, each extant species at 
equilibrium is characterized by 4('̅") = 0 (from eq. 4a) and 8:8; = 0 (from eq. 4b) — the same 
conditions defining an evolutionary equilibrium in adaptive dynamics (see section 2). The 
condition for convergence stability matches the linear stability of eq. 4b. Finally, eq. 4c shows 
that trait variance -" → 0 if A/4/A'/ < 0 — exactly the same condition as for evolutionary 
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stability (Taylor and Day 1997). Therefore, it is not surprising that these different frameworks 
give similar results at equilibrium. 

When do we expect these other frameworks to give significantly different results from 
the adaptive statics approach we describe in section 2? We are not aware of precise 
statements, but here are some suggestions based on intuition and experience: 

• In the case of a local-but-not-global ESS (Fig. 3E), the stochastic trait-substitution 
process of adaptive dynamics will not find a global ESC, whereas a model that allows 
large mutations or immigration will not get stuck. 
• If ecological quantitative genetics or oligomorphic dynamics models are not 
initialized with a sufficient number of species, they will not find a global ESC. Instead, 
they will get stuck at a branching point. Furthermore, early trait convergence can reduce 
the number of distinct species in these simulations, leading to groups of neutral species 
clustered on a fitness maximum (Edwards et al. 2018). 
• If there is no global ESC, then the details of how new strategies arise will be 
important in determining the non-equilibrium dynamics. 
• Increasing immigration or mutation rates (in methods that allow this) will 
increase the trait variance and eventually affect population size (the “demographic 
load”; e.g. Ronce and Kirkpatrick 2001) and the number and mean traits of phenotypic 
clusters. 
Frameworks with dynamic trait variances such as ecological moment methods and 

oligomorphic dynamics may fail at branching points, where A/4/A'C/ > 0, because the 
disruptive selection will cause the trait variance to diverge. Ecological moment methods are 
especially susceptible to this problem because they attempt to represent an entire community 
with only three pieces of information: total population size, mean trait, and trait variance. Thus, 
they are not well-suited to situations where there is a multi-species ESC. 

These different frameworks make different simplifying assumptions, so no single 
approach is best for all purposes. Questions that directly concern the source of new phenotypes 
obviously require a framework that includes those processes. Trait continuum models make the 
fewest simplifications, but are the most computationally intensive of the listed approaches, 
intractably so for more than two traits. Models that aggregate these details in order to follow a 
small number of variables are required. Ecological moment methods are particularly compact, 
and each moment embodies a major ecological perspective — total population (ecosystem), 
mean trait (functional), and trait variance (diversity). However, as described above, they fail at 
branching points where the variance diverges. 

In contrast, the adaptive statics approach presented in Section 2 allows for a dynamic 
number of species. It makes the simplest assumption about the source of new phenotypes 
(“everything is everywhere”; Baas Becking 1934, De Wit and Bouvier 2006) and is 
computationally efficient, making it an elegant approach focused on the ecological mechanisms 
underlying community structure in the absence of mutation or dispersal limitation. However, as 
an equilibrium approach, it is unable to deal with trait dynamics on any time scale. 

Adaptive dynamics takes a long-term perspective to address the evolutionary origins of 
diversity. However, given its assumption of asexual reproduction, new phenotypes form 
populations that are demographically independent of their progenitors. This can seem 
simplistic from a purely evolutionary biology standpoint, as it neglects the genetic, sexual, 
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behavioral, and spatial constraints that can prevent reproductive isolation and assortative 
mating from occurring, and has been the source of ongoing debate (Doebeli et al. 2005, 
Gavrilets 2005). 

Questions about short-term adaptive responses to environmental perturbations require 
a framework with trait variances such as ecological quantitative genetics or oligomorphic 
dynamics. For such questions, we recommend the ecological quantitative genetics approach, 
which allows species evolution to occur within a community context (e.g. McPeek 2017). 
Evolution that happens on an ecological time scale can prevent a population whose density is 
slowly decreasing from going extinct, a phenomenon called “evolutionary rescue” 
(Gomulkiewicz and Holt 1995). It can also allow persistence in a continuously changing 
environment if the rate of environmental change is slow enough (Lynch and Lande 1993), 
although possibly with a tipping point (Osmond and Klausmeier 2018). 

Because trait-based approaches can be applied to questions across ecology and 
evolutionary biology, we need a diverse set of theoretical frameworks. Understanding the 
relationships among these frameworks (Table 1) as well as their strengths and weaknesses is 
required to choose the best approach for a given question. Devising new ways to reduce the 
complexity of ecological communities in our models will remain a valuable pursuit. 
 
4. Extensions/Complications 

The trait-based frameworks we have examined so far were discussed in the simple 
ecological setting of spatial and temporal homogeneity. Real ecosystems are spatially extended 
and subject to both externally driven and internally generated temporal fluctuations, and this 
spatial and temporal heterogeneity is known to be an important determinant of population 
dynamics and community structure. Furthermore, we have focused on the dynamics of single 
traits, another vast oversimplification. In this section, we discuss how trait-based theoretical 
frameworks can be made more realistic, and relevant to more systems, by incorporating 
temporal and spatial heterogeneity and multiple traits. 
 
4.1. Traits in time 

The invasion analysis presented in section 2 assumes that a rare, invading population 
experiences constant conditions (including resident densities and environmental factors). 
However, these conditions may vary due to externally driven forcing (stochastic or 
deterministic) or internally generated cycles or chaos. Adaptive dynamics studies of temporally 
variable systems require calculating an appropriate average invasion rate 4̅EFG, based on the 
type of variability present within a system and whether there is population structure (Metz et 

al. 1992). Once the value of 4̅EFG has been calculated, all the machinery of adaptive dynamics 
can be used exactly as presented in section 2: calculating (time-averaged) fitness gradients, 
locating evolutionary equilibria, and determining their convergence and evolutionary stability. 

Unstructured populations. In the case of an unstructured population experiencing 
periodic forcing, we can simply average the instantaneous invasion rate, 4EFG('EFG; IJ⃗ (L)), over 
a period: 

 4̅EFG =
7
M ∫ 4EFG N'EFG; IJ⃗ (L)O )L

M
C       (5) 
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(Smith and Waltman 1995). It is straightforward to calculate 4̅EFG when cycles arise from 
external forcing with known period τ, but potentially harder when cycles are endogenously 
generated, as the precise value of P must be determined numerically and may depend on the 
trait values of resident species. If the environment varies stochastically or chaotically, then the 
definition of invasion fitness is the limit of eq. (5) as L → ∞. In practice, it is usually not possible 
to calculate this infinite integral to find the exact invasion rate, so an approximation can be 
obtained by simply averaging 4EFG over a long interval of time. Note that, because the integral 
in eq. (5) is linear, the gradient of average fitness needed for adaptive dynamics studies, 
A4̅EFG/A'C, is equivalent to the average of the gradient of instantaneous fitness 

8:RSTU
8;V

= 7
M ∫

8:STU
8;V

)LM
C        (6) 

which may be easier to calculate numerically (Kremer and Klausmeier 2017). 
Structured populations. As described in section 2, in a constant environment invasion 

fitness is given as the dominant eigenvalue of the transition matrix. Intuition might suggest 
that, in fluctuating environments, invasion rate could be calculated by simply averaging the 
dominant eigenvalue of the transition matrix over a period in a periodic system (or over a long 
interval of time in an aperiodic system). However, that turns out to be incorrect. Instead, 
obtaining invasion rates requires calculating the dominant Floquet exponent (periodic systems; 
Klausmeier 2008) or more generally, the dominant Lyapunov exponents (aperiodic systems; 
Metz et al. 1992). In both cases, this must usually be done numerically. 

As a final technical note, the definitions of invasion fitness given above are based on the 
adaptive dynamics framework, and specifically its separation of time scales. When other trait-
based modeling frameworks are employed (section 3), other approaches are required. For 
example, in the ecological quantitative genetics approach, the average trait(s) of a population 
change in response to instantaneous fitness gradients, which depend in turn on the current 
environment. As genetic variance approaches zero, trait change slows, and quantitative 
genetics results converge on those of adaptive dynamics. However, with larger genetic 
variances, rapid evolution is possible and complex interactions with ecological dynamics may 
arise (Hairston et al. 2005). 

Recently we used trait-based models to examine the evolutionary stability of species 
coexistence in variable environments. We used the adaptive statics framework to investigate 
two fluctuation-dependent coexistence mechanisms (sensu Chesson 2000): relative nonlinearity 
and the storage effect. We found that relative nonlinearity can easily support an ESC of two 
species (a fast grower and superior competitor), but higher diversity was improbable (Kremer 
and Klausmeier 2013). The storage effect is a potentially more powerful coexistence 
mechanism. When the environment alternates periodically between two states and the period 
of forcing is large, two species can coexist as an ESC under a wide range of conditions (Miller 
and Klausmeier 2017). When the environment varies continuously, more species can coexist, 
with a limit to similarity resulting in species with evenly spaced trait values (Kremer and 
Klausmeier 2017). We also found more baroque outcomes, such as alternative evolutionary 
attractors (Miller and Klausmeier 2017, Kremer and Klausmeier 2017). When using the 
quantitative genetics framework, we found that evolutionarily stable coexistence was robust to 
a small amount of trait variance, but that larger trait variance allowed rapid evolution leading 
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to complex dynamics and species convergence, ultimately undermining species coexistence 
(Kremer and Klausmeier 2013). 
 

4.2 Traits in space 

The theoretical framework as described in section 2 implicitly assumes that populations, 
communities, and ecosystems do not vary in space, or that dispersal between locations is 
negligible so that spatial patterns can be derived directly from bifurcation diagrams (section 
2.2.5). These assumptions simplify the analysis of trait-based theory when they can be 
empirically justified for particular organisms, scales, or questions (e.g., in well-mixed planktonic 
systems). However, accounting for space may be essential when: 1) interactions between 
organisms (and populations) are spatially structured (e.g. competition among terrestrial plants), 
2) the trait(s) of interest are directly related to the movement of individuals, or 3) important 
environmental factors vary in space, such that populations in different locations experience 
different selective pressures, and dispersal is not negligible. How ecological processes vary in 
space is the focus of metapopulation, metacommunity, and metaecosystem theories, all of 
which can be all be integrated with trait-based approaches. 

In the adaptive dynamics framework, accounting for space simply consists of adding 
additional structure to populations. Rather than considering a single, unstructured population, 
we instead examine a collection of multiple subpopulations (whose dynamics are driven by 
local processes), that are coupled together by the exchange of individuals through dispersal. 
When the subpopulations are discrete, well-separated entities, we call them “patches” and 
their collective population dynamics can be modelled using matrices similar to Leslie matrices 

01JJ⃗ 2
03 = WX N'"; IY'⃗, !JJ⃗ [O + \('")]!JJ⃗ "     (7) 

where !JJ⃗ "  is a vector of the abundances of population i in different patches, X is a diagonal 
matrix governing within-patch dynamics and \ is a matrix encoding dispersal among patches. In 
principle, both local processes and dispersal may depend on trait '. Alternatively, it is 
sometimes more appropriate to model populations as continuously distributed through space 
(Troost et al. 2005). In this approach, population dynamics can be modeled using systems of 
partial differential equations called reaction-diffusion systems, which take the form 

812
83 = 4 W^, '"; I N'⃗(^), !JJ⃗ (^)O]!" + )('")

8912
8_9   (8) 

where ^ denotes the spatial dimension, 4 determines the local dynamics, and the last term 
allows dispersal (Okubo and Levin 2001). Other approaches vary in their level of detail, from 
explicitly accounting for the discrete nature of individuals to treating entire populations as 
either present or absent (e.g. patch occupancy models and cellular automata, see Levins 1969, 
Durrett and Levin 1998, Klausmeier and Tilman 2002). 

Whatever the approach, the fitness of an invading strategy is always given by the 
dominant eigenvalue of the matrix (X + \) or the linear operator 4 + )	A//A^/, which is its 
asymptotic population growth rate once a stable spatial structure across all subpopulations is 
reached (Metz et al. 1992, Troost et al. 2005, Van Baalen and Rand, 1998). In the case of 
reaction-diffusion equations, the linear operator usually needs to be approximated by a matrix. 
The fitness gradient can be calculated numerically using a finite difference approximation or it 
can be computed directly using techniques from sensitivity analysis (Caswell 2001), providing 
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additional conceptual insight: under some conditions, the fitness gradient of the population as 
a whole can be shown to be equal to a weighted average of the local selection gradients, where 
the weights are the squared abundances of the corresponding subpopulations (Wickman et al. 
2017). 

Moving from the adaptive dynamics framework to the ecological quantitative genetics 
framework requires a separate equation for trait dynamics (Kirkpatrick and Barton 1997, Case 
and Taper 2000, Ronce and Kirkpatrick 2001, Norberg et al. 2012). In the reaction-diffusion 
setting, this takes the form 

8;2
83 = - 8:
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where the first term captures local directional selection and the second term incorporates gene 
flow (the second term of which accounts for asymmetric gene flow due to gradients in 
population density). This powerful framework allows for the investigation of local adaptation, 
since the trait values of a population depend explicitly on space ^. 

Applications of spatially-explicit trait-based theory span a diverse set of systems, from 
bacterial biofilms (Nadell et al. 2016), to social vertebrates and insects (Lehmann et al. 2008), 
terrestrial plants (Kéfi et al. 2018), pathogens (Débarre et al. 2012), and plankton in poorly 
mixed water columns (Troost et al. 2005, Wickman et al. 2018). It has provided a number of 
important insights into the evolution of species ranges (Kirkpatrick and Barton 1997, Case and 
Taper 2000), the response of communities to environmental change (Norberg et al. 2012), the 
maintenance of species diversity in heterogeneous environments (Wickman et al. 2018), and 
the global distributions of plankton (Follows et al. 2007). 

The evolution of dispersal itself is an extensively studied topic. It has long been 
recognized that spatial variation alone is not sufficient to favor the evolution of dispersal 
(Hastings 1983, Dockery et al. 1998, Parvinen 1999, Wickman et al. 2017). Only the continuous 
availability of underexploited patches, either at the edge of an invading population, or 
maintained by regular disturbance or demographic stochasticity, can turn dispersal into an 
advantageous trait (Ronce 2007). More subtly, dispersal can evolve as an altruistic behavior 
(e.g. when it reduces competition among an organism’s kin, despite offering no direct benefits).  

More generally, spatially-explicit approaches have been essential to the understanding 
of the evolution of cooperation and a variety of other altruistic traits (Lion and Van Baalen 
2008, Lehmann et al. 2008). In completely homogenous systems, altruism is selected against 
due to the “Tragedy of the commons” (Hardin 1968). Conversely, spatial structure and local 
dispersal can create “viscous populations” where related individuals tend to cluster in space, 
favoring the evolution of altruism (Lion and Van Baalen 2008). 
 

4.3 Multiple traits 

The theory on evolutionary equilibria and their stability presented in section 2 focused 
on systems with a single trait. In the real world, an organism can be characterized by a myriad 
of traits that are all simultaneously under selection. Even though trade-offs can constrain the 
space of possible trait combinations, any given population’s strategy is often determined by its 
specific values of multiple traits. For this reason, a general trait-based theory that applies to 
multidimensional traits is necessary. 
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In practice, setting up a trait-based model with multidimensional traits follows the same 
recipe laid out in section 2.2.3, except that '⃗e,"  is now a vector whose coordinates are the 
collection of traits defining the fth strategy in guild X. Invasion fitness 4Y'⃗C; Ig('⃗7)[ of a mutant 
'⃗C follows, with the fitness gradient now being a true vector. Evolutionary equilibria are 
characterized by the trait vectors '⃗C that cancel out the components of the fitness gradient. 
Because of fitness interactions between traits — selection on one trait usually depends on 
other traits — finding a multidimensional evolutionary equilibrium implies solving a system of 
coupled equations. This also applies if the multiple traits belong to separate guilds, such as co-
evolving predator-prey systems, as it comes to no surprise that the optimal trait for a prey will 
depend on the trait of the predator, and vice-versa. Finally, assessing whether these 
evolutionary equilibria are evolutionarily stable relies on extending the optimality theory tools 
presented in section 2.2.4 to multidimensional space, which is done in practice by checking if 
the Hessian matrix of the invasion fitness is negative definite for unbounded traits. If the trait 
space is bounded, constrained optimization has to be used instead. 

There is another complication, specific to the multi-dimensional nature of this problem, 
that involves the idea of convergence stability defined in section 2.2.4. This problem has been 
well-explored in the adaptive dynamics context (Leimar 2009; see also Débarre et al. 2014 for a 
similar approach in ecological quantitative genetics). This complication is subtle, as 
convergence stability depends on the nature and characteristics of trait variation. In an 
evolutionary context, genetic variation is usually constrained through correlations — formally 
encoded in the genetic variance-covariance matrix, also known as the X-matrix of quantitative 
genetics (Lande 1979) — such that selection on one trait can lead to evolution of another trait, 
even when the latter is not under selection. Due to these correlations, convergence stability 
cannot always be solely assessed using the Jacobian of the fitness gradient (the “selection” 
part), but can also depend on the exact nature of genetic correlations (the “variation” part). To 
formalize this issue, Leimar (2009) distinguishes between two notions of convergence stability. 
The first, “absolute convergence stability”, imposes very restrictive conditions on the Jacobian 
of the fitness gradient under which an evolutionary equilibrium will be locally convergence 
stable under any conceivable adaptive path and X-matrix. The second, “strong convergence 
stability”, places a weaker condition on the Jacobian under which an evolutionary equilibrium 
will be locally convergence stable under the most probable evolutionary trajectory. This second 
definition of convergence stability is weaker than the first one: if an evolutionary equilibrium is 
only strong convergence stable, one could find some very particular series of mutations 
allowing escape from this equilibrium (Leimar 2009). 

Applications of trait-based theories that involve multiple traits are diverse. Two-
dimensional trait spaces, resulting in practice from a three-way trade-off between three traits, 
are a natural starting point. They have been influential in ecology (Grime 1974) and are 
associated with counterintuitive outcomes, such as the possibility of positive correlations 
between two traits when the last one is not controlled for (Van Noordwijk and de Jong 1986). A 
recent example in plants involves the study of optimal allocation between resource competition 
and the tolerance of and resistance to herbivory — with the latter two traits corresponding to 
“defense” (Koffel et al. 2018a). We showed that investment in defense is expected to increase 
along a resource gradient, but that increase in partial resistance, mixed tolerance and 
resistance, or coexistence of a completely resistant and a tolerant strategy were all possible 
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outcomes, depending on the shape of the allocation trade-off that constrains the three traits. In 
another two-dimensional example, Falster et al. (2017) showed how a model of plants differing 
in leaf mass per unit leaf area and height at maturation in a complex forest ecosystem can 
generate a very diverse community, including a diverse set of shade-tolerant species. In the 
context of macro evolutionary dynamics, accounting for multiple phenotypic dimensions has 
been shown to have a strong influence on the structure of the emerging food webs (Allhoff et 

al. 2015). Using a general model of asymmetric competition, Doebeli and Ispolatov (2017) 
showed that the diversity of strategies that coexist at the end of the diversification process 
scales exponentially with the number of traits considered. 

Despite these applications, most trait-based models focus on a single trait or a pair of 
traits linked by a hard trade-off (effectively one trait). One barrier to multi-trait models is 
coming up with a manageable way to define the shape of multi-dimensional trade-offs. A 
possibility is to base them on a common energetic or material currency, so that total allocation 
to different traits is constant, while functions with flexible shapes encode whether investment 
in a specific trait has diminishing or accelerating returns (Koffel et al. 2018a). Further 
investigation of multiple traits — how they affect convergence stability, how to efficiently find 
eco-evolutionary equilibria, and how to encode multi-dimensional trade-offs — remains an 
important area for future theoretical development. 
 
5. Frontiers of Trait-Based Modeling 
5.1 Comparisons with empirical systems 

One of trait-based theory’s advantages, as discussed above, is its ability to make 
quantitative predictions about the diversity and distribution of trait values likely to occur within 
populations and communities, and how these distributions might change across environmental 
gradients (sections 2.2.5). In principle, this should provide increased opportunities to test 
theoretical predictions and models using experimental and observational data. A handful of 
examples exist, spanning a range of traits, systems, and ecological dynamics. Regarding 
individual populations and communities in particular environments, examples include studies of 
the size-dependent flowering strategies of plants (Childs et al. 2003; Rees et al. 2006; Metcalf et 

al. 2008), the reproductive strategies of female Soay sheep (Childs et al. 2011), and the height 
and distribution of foliage in herbs and trees (Givnish 1982, King 1990). Considering population 
and community dynamics through time, successful examples include studies of the predatory-
prey cycles exhibited in a rotifer/algae system (Yoshida et al. 2003), and seasonal patterns in 
aquatic food webs (Boit et al. 2012; Curtsdotter et al. 2019). Across environmental gradients, 
predictions of trait-based theory have been tested by examining variation in forest productivity 
along elevational gradients (Enquist et al. 2017; Fyallas et al. 2017), plant allocation to foliage, 
wood, and fine roots across nitrogen gradients (Dybzinski et al. 2011), and global relationships 
between the optimal temperature of phytoplankton species and the mean annual 
temperatures they experience (Thomas et al. 2012). These examples are exciting and highlight 
the power of trait-based approaches to bridge gaps between the theoretical and empirical 
world.  

However, compared to the extensive (and growing) body of literature focused on theory 
alone, these empirical tests are few in number. In part, this may reflect challenges posed by the 
limited availability of high-quality trait data across multiple individuals, species, and 
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environments over time (e.g. Kremer et al. 2016). Excitingly, portions of this constraint are 
being alleviated through a variety of massive community-wide efforts to compile and publish 
trait data, especially for terrestrial plants (e.g. TRY database; Kattge et al. 2011). We think, 
however, that it is more likely that the shortage of examples simply reflects the fact that few 
teams have attempted to bring together trait-based theory with empirical observations. We 
hope that the introduction to trait-based theory presented in this chapter will help lower the 
barriers associated with this challenge, while convincing readers of the value of this opportunity 
to tighten theoretical-empirical linkages and to advance the field of ecology. 
 

5.2 Linking trait- and species-based approaches 
In this chapter we have focused on purely trait-based approaches, where a species’ 

performance is defined solely by its traits. This is an effective way to reduce model complexity 
when the number of relevant traits is less than the number of species. However, achieving this 
reduction requires knowing the identity (and values) of the relevant traits and how best to 
incorporate them into process-based models, both of which represent significant challenges. 
When more species are introduced into trait-based models (such as ecological quantitative 
genetics models) than can persist in an evolutionarily stable community (ESC), distinct species 
may converge on an adaptive peak to become selectively neutral (terHorst et al. 2010, Edwards 
et al. 2018). This may represent a phenomenon that happens in the real world (McPeek 2017, 
Edwards et al. 2018), but it is also potentially symptomatic of situations where trait-based 
models are missing important functional variation among species. Are there hybrid approaches 
that would allow us to combine trait-based models with species-based models that account for 
species-specific differences?  

One possibility, inspired by Chesson’s modern coexistence theory (Chesson 2000), 
would be to consider introducing species-specific terms that either affect “fitness differences” 
or are (de-)stabilizing. To allow for fitness differences, we would simply add a species-specific 
term h"  to a species’ growth rate so that  

012
03 = Y4('"; IY'⃗, !JJ⃗ [) + h"[!"       (10) 

Theoretically, these fitness-difference terms would simply promote dominance by species with 
higher h"  values. The real value of this formulation would be in parameterizing the trait-
dependent population dynamics of actual species, where species differences that cannot be 
attributed to the traits considered would be captured by this species-dependent “error term”. 

If these species-specific effects are instead (de-)stabilizing, the theoretical implications 
are more interesting and require more intricate model modifications. For example, these terms 
could represent species-specific sources of negative density-dependence, such as intraspecific 
competition for mates or specialized natural enemies (Scheffer et al. 2007), or positive density-
dependence such as Allee effects (Noest 1997). Negative density-dependence inhibits resident 
species more than invaders (who are naturally at low density), stabilizing coexistence of slightly 
inferior and neutral species. In contrast, positive density-dependence inhibits rare invaders 
compared to established residents, leading to more cases of founder control (section 2, Lotka-
Volterra case iv). A systematic exploration of these effects, as well as broader efforts to 
integrate trait- and species-based approaches, would be valuable. 
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5.3 Using trait-based theory to improve Earth Systems Models 

One frontier where trait-based theory is poised to make important contributions 
involves earth systems modeling. Earth Systems Models (or ESMs) are spatially explicit models 
of the dynamic physical and chemical interactions of the earth’s land, ocean, and atmosphere 
(Heavens et al. 2013). They are used to study the past development of our planet’s climate and 
the operation of global biogeochemical cycles. ESMs are also powerful tools for projecting 
future environmental and ecological conditions under different anthropogenic climate change 
scenarios, including shifting species ranges and altered ecosystem function (Heavens et al. 
2013). While ESMs contain sophisticated descriptions of physical and chemical processes, 
biological processes (including ecology and evolution) are treated more coarsely, or are absent 
entirely. Historical factors, critical uncertainties (including the absence of a widely-accepted, 
general model of ecology), data shortages (needed to parameterize and validate biological sub-
models), and computational demands (ESMs are already computationally intensive) all 
contribute to limit the level of biological detail in ESMs. These constraints are problematic, as 
ecological and evolutionary processes can significantly affect physical and chemical properties, 
driving feedbacks that regulate the global carbon cycle. Consequently, making more accurate 
projections of future environmental conditions from regional to global scales depends in no 
small part on developing more realistic representations of ecology within ESMs. Fundamentally, 
this is a question of how to model variation in traits (and hence, ecosystem function) through 
time and space at a global scale. Trait-based approaches offer promising ways to enhance the 
flexibility and biological diversity of biogeochemical models (Litchman et al. 2015) and ESMs 
without adding large computational demands. 

Currently, the terrestrial and marine components of ESMs typically aggregate earth’s 
vast functional diversity of individuals and species into somewhere between two and a dozen 
functional groups or functional types. All members of a single group are assumed to have fixed, 
identical traits or functions, intended to represent an average individual. Turnover in traits 
across environments only occurs through changes in the relative abundances of groups, driven 
by underlying environmental gradients and/or interactions between groups, such as 
competition or predation. For example, marine systems often contain basic N-P-Z models 
(where mineral nutrients, N, support a single, generic phytoplankton, P, that is in turn 
consumed by a generic zooplankton, Z) (e.g. Fasham et al. 1990). Extensions of this basic 
structure expand the diversity of plankton functional types considered, based on factors 
including size (e.g. Le Quéré et al. 2005; Stock et al. 2014). Similarly, terrestrial models, termed 
Dynamic Global Vegetation Models (DGVMs) tend to focus on the dynamics of a handful of 
plant functional types representing trees and herbaceous species. Predetermined bioclimatic 
envelopes control the distribution of each functional group, while environmental (and in some 
cases, competitive) factors control the relative abundance of each group within a given location 
(Foley et al. 2000; Sitch et al. 2003). Critiques of these approaches include: (i) the fact that fixed 
trait values significantly under-represent the functional variation within and across 
communities, and (ii) interactions between functional groups are over-simplified have been 
raised in both terrestrial and marine systems (e.g. Van Bodegom et al. 2011; Reichstein et al. 
2014; Litchman et al. 2015). Furthermore, there are concerns in terrestrial systems that 
population demographics and community succession following disturbance are poorly resolved 
(Fisher et al. 2017), and that fixed bioclimatic constraints of functional groups may severely 
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hamper the ability of DGVMs to predict the effects of climate change, as new, no-analog 
environments and communities emerge (Van Bodegom et al. 2011). 

Trait-based approaches offer promising ways to address these shortcomings, in both 
marine and terrestrial systems. Efforts to build the next generation of more realistic ecosystem 
models fall into several groups. This includes adding flexibility to functional groups by replacing 
fixed trait values with trait-environment relationships that are either empirically parameterized 
(terrestrial, Zaehle and Friend 2010; Van Bodegom et al. 2011; Verheijen et al. 2015; 
temperature dependence in marine models, e.g. Stock et al. 2014) or that emerge from various 
optimality assumptions (terrestrial, Xu et al. 2012; Meir et al. 2015; marine, Smith et al. 2016). 
In marine systems, both moment methods (Terseleer et al. 2014) and species sorting 
(Bruggeman and Kooijman 2007; Follows et al. 2007; Ward et al. 2012) have been investigated. 
Others have adopted a detailed individual- or agent-based approach, where traits vary across 
individuals, determining their survival, growth, and reproduction, and hence the transmission 
of their traits to successive generations (terrestrial, Scheiter et al. 2013; Sakschewski et al. 
2015; marine, Clark et al. 2011, 2013). This approach allows for trait variation within 
communities, as well as emergent patterns of trait variation across environments and 
adaptation to ongoing environmental change, but comes at substantial computation costs. 
While the goal of these diverse studies is the eventual development of the next generation of 
more biologically realistic ESMs, few if any have yet been applied at the full scale of an ESM, but 
rather focus on regional examples. Sorting out which of these approaches, all variously focused 
on traits, provides the most useful balance between flexibility, feasibility, and reality at 
different scales and in diverse systems, awaits further research.  
 

5.4 Final thoughts 

As we have seen, trait-based approaches have a long history in ecology and evolution 
(section 1), extending well before the emergence of trait-based ecology as an identifiable and 
important paradigm. In recent decades, theoretical frameworks such as adaptive dynamics 
(section 2) have used evolutionary concepts to provide tools for understanding a diverse set of 
ecological interactions and systems (section 2.3). An expanding range of trait-based modeling 
frameworks (section 3), tailored to different situations, may superficially appear quite different, 
but are in fact they closely related (table 1). Trait-based theory can incorporate complicating 
factors such as temporal and spatial heterogeneity and multiple traits (section 4). Future 
developments of trait-based modeling approaches show great promise in advancing both our 
theoretical and empirical understanding of ecology, from community structure to global 
ecosystem dynamics (section 5). 
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Glossary of terms 

adaptive dynamics: a trait-based theoretical framework that allows for the emergence of 
community structure, assuming infrequent, small mutations of existing strategies 

branching point: an evolutionary equilibrium that is convergence stable but not evolutionary 
stable 

competitive exclusion principle: no more species can coexist at equilibrium than there are 
shared limiting factors (Levin 1970)  

contemporary niche theory: a theoretical framework that employs a graphical approach to 
determine community structure based on zero net growth isoclines (ZNGIs), which summarize 
the response of organisms to their environment, and impact vectors, which summarize the 
effect of organisms on their environment (Chase and Leibold 2003) 

convergence stable strategy (CSS): an evolutionary equilibrium that is both convergence and 
evolutionary stable 

convergence stability: when directional selection pushes a strategy toward an evolutionary 
equilibrium 

directional selection: when there is a non-zero fitness gradient 

evolutionary equilibrium: a trait value or set of trait values where there is no directional 
selection; also known as a singular strategy 

evolutionarily stable community (ESC): an evolutionary equilibrium (usually of >1 species) that is 
globally evolutionarily stable and convergence stable 

evolutionarily stable strategy (ESS): an evolutionary equilibrium that is evolutionary stable, 
either locally (cannot be invaded by nearby strategies) or globally (cannot be invaded by any 
other strategy). 

evolutionary transcritical bifurcation: a bifurcation where an evolutionary equilibrium loses its 
global evolutionary stability 

fitness: a synonym for the per capita growth rate, 4"; see also invasion fitness 

fitness gradient: the change in fitness with respect to change in a trait value,	A4/A'C|;V=;j; it 
summarizes the directional selection a strategy experiences 

founder control: an outcome of competition where whichever species reaches equilibrium first 
excludes the other 
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guilds: groups of species that are functionally similar in a community, which share a fitness 
function such that species with identical trait values are neutral 

invader: a population that is rare, attempting to establish among a resident community; grows 
or declines exponentially 

invasion analysis: a popular approach to understanding coexistence between two populations, 
based on whether each population can invade monoculture of the other on its ecological 
attractor 

invasion fitness: fitness of a population when it is rare in an environment set by any resident 
population(s) 

life history theory: predicts how organisms should optimize their allocation to growth, survival, 
and reproduction  

limiting similarity: limits on how similar the trait values of species can be and yet allow them to 
coexist 

mutual invasiblity plot (MIP): illustrates the pairs of strategies '7 and '/ that can stably coexist 

neutral: populations with identical fitness 

optimal foraging theory: predicts how organisms should optimize foraging for different 
resources 

optimization theory: a framework that assumes that organisms will maximize their fitness, or a 
fitness proxy 

pairwise invasion plots (PIPs): used in adaptive dynamics to classify one-species evolutionary 
equilibria, these plot the sign	of 4('C; '7) as a function of the traits of a resident and an invader 
population 

resident: a population that is not an invader, i.e., which has reached its ecological attractor 

stabilizing/disruptive selection: selection that respectively disfavors (or favors) trait values that 
are more extreme than the focal strategy’s, causing trait variance to decrease (or increase) 

stable coexistence: two populations with a positive invasion fitness 

structured populations: populations that cannot be described by a single variable, including 
those with e.g. sex-, age-, stage-, or size-structured 

strategy: the trait values of a population (or species, in some cases) 
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trade-offs: relationships between non-independent traits that constrain their variation 

trait: any measurable characteristic of an individual; functional traits are those that affect 
performance and ultimately fitness. See also strategy. 

unstructured populations: populations that can be described by a single variable such as 
population size or density 


