
CHAPTER 11

Trait-based ecological and
eco-evolutionary theory
Christopher A. Klausmeier, Colin T. Kremer, and Thomas Koffel

11.1 Overview of trait-based ecology
and evolution

11.1.1 Why trait-based ecology?

Ecological systems are complex, consisting of a
diversity of organisms whose growth, reproduction,
and interactions are often nonlinear. Furthermore,
these processes occur over multiple scales of organi-
zation and in environments that are heterogeneous
in space and time. Theoretical ecologists have
long pursued ways to simplify this complexity by
identifying, describing, and exploring the essential
features that drive ecological processes and
patterns (Levin 1992). One such approach, trait-
based ecology, offers a potent way of studying
the theoretical underpinnings of diversity, while
balancing reductionism and reality. This emerging
paradigm unites new and old ideas behind a
common focus: that by reducing our representation
of individuals, populations, or species to their most
essential characteristics—functional traits—we can
better understand ecological systems.

Trait-based approaches cut across organization
scales from the behavioral and physiological up to
the population, community, and ecosystem levels,
making it possible to study a range of fundamental
questions. For example, the performance of a
population of individuals within a given ecological
setting might be revealed by considering the traits
of an average individual, such as its life history,

behavior, and physiology. Similarly, the distribution
of an entire species across a range of environments
might be understood by considering its mean
trait values, across individuals and populations
(although trait variation also matters; Violle et al.
2012; Enquist et al. 2015). Traits can also be used
to characterize a range of interactions between
species, yielding insights into coexistence, trophic
interactions, and ultimately the diversity and com-
position of entire communities. In turn, representing
whole communities using features of their collective
trait distributions, rather than focusing in detail on
the identity of their constituent species, can reveal
general patterns of succession (e.g., Terseleer et al.
2014) and the influence of climate (e.g., Wieczynski
et al. 2019). Critical properties of ecosystems (pro-
ductivity, stability, etc.) may also be related to the
traits (or functions) of the communities they support
(e.g., Díaz and Cabido 2001; Roscher et al. 2012;
Polley et al. 2013). Finally, trait-based approaches
have the potential to integrate ecological and evo-
lutionary perspectives, due to their common focus
on functional traits (or phenotypes) and measures
of fitness. This makes it possible to consider both
the ecological consequences of evolutionary trait
change and the capacity of ecological forces to
impose selection and drive evolution.

Trait-based approaches are valuable to ecological
theory, offering both qualitative and quantitative
insights. Qualitatively, trait-based studies can
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uncover the mechanisms that drive ecological pro-
cesses, informing the structure of the equations used
to develop a model or theory. Quantitatively, these
studies also provide the parameters of equations by
measuring rates, efficiencies, and other key traits.
Consequently, trait-based theories are often inher-
ently mechanistic, due to their focus on function;
this contrasts with other theoretical techniques for
modeling diverse communities such as constructing
random community matrices or interaction net-
works (May 2001; Allesina and Tang 2012; Barbier
et al. 2018). To avoid biologically non-sensical
results, many ecological theories invoke one or
more tradeoffs (Kneitel and Chase 2004). Often these
tradeoffs represent reasonable assumptions, which
may nevertheless lack a strong empirical founda-
tion. Trait-based studies have the potential to pro-
vide new and quantitative insights into the tradeoffs
that constrain the strategies used when competing
for resources, avoiding predation, timing reproduc-
tion, etc. (Edwards et al. 2011). Furthermore, in an
era where ecologists are increasingly challenged to
quantitatively predict how species, communities,
and ecosystems will respond to environmental
change, a focus on species traits is essential. Trait-
based approaches are being used to anticipate shifts
in species distributions, community composition,
and ecosystem function driven by environmental
change (Suding et al. 2008; Thomas et al. 2012). They
can also be used to predict which species are likely
to become harmful invaders outside their native
ranges (Van Kleunen et al. 2010; Drenovsky et al.
2012), and to identify alternative targets for conser-
vation, such as focusing on the preservation of func-
tional biodiversity. Collectively, these examples give
an indication of the value of trait-based approaches
both for advancing basic theory as well as testing
and applying theory in real ecological systems.

11.1.2 What are traits?

Traits can be defined as measurable properties of
individual organisms; we are particularly interested
in functional traits, those that affect performance
and ultimately fitness (McGill et al. 2006; Violle
et al. 2007). There are many different kinds of traits,
reflecting the chemical composition, physiology,
morphology, genetics, and behavior of organisms.

Traits determine how a given individual functions
within its environment (e.g., its capacity to tolerate
temperature or toxins) as well as how it interacts
with other individuals or species (e.g., its ability to
compete for resources or escape from predators).
Traits may characterize how an organism is affected
by its environment (often called “response” traits),
how it influences its environment (“effect” traits),
or both (Díaz and Cabido 2001; Lavorel and Garnier
2002; Violle et al. 2007). Mathematically, traits can be
characterized as discrete, categorical, continuous, or
even function-valued (Gomulkiewicz et al. 2018).

Numerous reviews have identified the functional
traits most relevant to different groups of organisms
(e.g., phytoplankton, Litchman and Klausmeier
2008; zooplankton, Litchman et al. 2013; plants,
Westoby et al. 2002; Reich et al. 2003; insects, Poff
et al. 2006), while considering relationships among
traits, and how traits inform our understanding
of ecology. Some of these studies categorize traits
according to their type (life history, behavioral,
physiological, morphological) and ecological func-
tion (reproduction, resource acquisition, predator
avoidance). Given the vast number of possible traits,
it is often useful to organize them into hierarchies,
recognizing that the value of “high level” traits is
determined by combinations of a large number of
lower level traits. For example, while size might
strongly influence an individual’s fitness, size itself
is the product of other traits, ranging from how
an individual develops and forages, to the level
of individual genes. Establishing the relationships
between traits across such hierarchies, including
eventually bridging the genotype/phenotype gap,
remains an active and important area of research.

11.1.3 Historical survey of trait-based theories

The foundations of trait-based ecology long predate
its emergence as an identifiable paradigm. Even
the very earliest attempts to use mathematics to
describe and study ecological processes invoked
relationships that depended on parameters repre-
senting the traits of populations and species. For
example, logistic growth (Verhulst 1845) depends
on a population’s intrinsic growth rate and strength
of intraspecific competition, and predatory-prey
dynamics (Lotka 1920, Volterra 1926) are governed
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by traits including the growth rate of the prey,
and the attack rate, conversion efficiency, and
mortality rate of the predator. Corresponding efforts
to parameterize such models engaged empiricists
in quantifying these, and many other traits across
different species and under different conditions.
Lotka (1920) explicitly identified some parameters Q
with “the character of each species”, what we would
now call their traits, and noted that these would
change over time. Elsewhere (Lotka 1912, 1934), he
suggested that within-species trait variation could
be modeled as a distribution of phenotypes, whose
evolution would be subject to the same processes
that determine population dynamics. However, this
remained only a signpost for future work, because
Lotka and others took these traits as constants to
focus on population dynamics.

These traditional ecological models lay a solid
foundation for trait-based approaches, by linking
model parameters with the traits of organisms.
Trait-based approaches take this one step further, by
focusing on traits as key model outputs rather than
just inputs. That is, traits are not fixed parameters
but dynamic variables subject to change, typically
by some adaptive processes. This opens up a whole
new range of questions that can be addressed.

Optimization theory was one of the first trait-based
theories in ecology and evolution (Parker and May-
nard Smith 1990), with many notable, broad fields
of application. Life history theory addresses questions
such as optimal clutch size and the timing of life
history events, assuming trade-offs between demo-
graphic traits such as survival, growth and repro-
duction (Stearns 1992, Roff 2002). r/K selection is an
example linking suites of traits to the environment
(MacArthur and Wilson 1967). Optimal foraging the-
ory is another a well-developed field (Stephens and
Krebs 1986), where traits are the effort spent forag-
ing on different resources. These traits are typically
assumed to be optimized on a rapid, behavioral
timescale. Classic results include the marginal value
theorem for patch use (Charnov 1976), the zero-one
rule for substitutable resources (Emlen 1966), and
the μ/f rule for balancing foraging gains and preda-
tor risk (Gilliam and Fraser 1987). Eco-physiology
addresses resource allocation to different physiolog-
ical systems (e.g., Bazzaz and Grace 1997; Klaus-
meier et al. 2004).

Although optimization theory is a central
organizing theory in many areas of ecology
and evolution, it has been criticized on various
grounds (summarized in Maynard Smith 1978).
One limitation of optimality approaches is that they
assume that the payoff depends only on the strategy
played by an individual. However, for ecological
interactions that occur within and between species,
the payoff of a strategy often depends on what strat-
egy other individuals are playing. Game theory was
designed to investigate such situations, originally in
economics (Von Neumann and Morgenstern 1944;
Nash 1951) and later imported to biology (Maynard
Smith and Price 1973), where it became a standard
approach to studying animal behavior (Maynard
Smith 1982). The concept of an optimum strategy
is replaced by the evolutionarily stable strategy (ESS),
a strategy that cannot be improved on once it is
adopted by an entire population. Many applications
of game theory in behavioral ecology consider a
discrete set of strategies, so the payoffs can be
assembled in a matrix, but continuous strategy
spaces are also possible.

Another body of trait-based theory, concerning
competition for a spectrum of substitutable resources,
dominated community ecology theory in the
1970s. Species differ in their resource utilization
curves, which are related to a trait such as body
or beak size, averaged at the species level. This
underlying mechanistic model is then translated
into a Lotka–Volterra competition model, where
a species’ carrying capacity depends on its trait
and the competition coefficients depend on the
difference in species’ traits. MacArthur and Levins
(1967) first used such a model to examine limiting
similarity: how similar two resident species must be
to prevent an intermediate species from invading.
This approach was soon extended to a large number
of species evenly spaced along the trait axis.
Roughgarden (1972, 1979) showed that an unlimited
number of species can coexist in an idealized
deterministic setting, but May and MacArthur
(1972) found a limit to diversity in randomly
varying environments. This result was criticized on
mathematical (Turelli 1978) and ecological grounds
(Abrams 1983), and the theory of limiting similarity
fell out of fashion by the 1980s. Despite this history,
these one-dimensional Lotka–Volterra models are
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still widely used in trait-based eco-evolutionary
modeling. We now know much more about the
conditions that lead to continuous species packing
versus a discrete number of coexisting species
(Barabás et al. 2012).

One reaction to the disenchantment with this
niche-based Lotka–Volterra theory was a shift
to more mechanistic models of competition that
explicitly include the resources for which species
compete (Tilman 1982), although, the niche-based
Lotka–Volterra was originally formulated as an
explicit resource-consumer model (MacArthur
1970; Chesson 1990). Extended to include appar-
ent competition through shared predators and
stressors, this contemporary niche theory employs a
graphical approach to determine community struc-
ture based on Zero Net Growth Isoclines (ZNGIs),
which summarize the response of organisms to the
environment, and impact vectors, which summarize
the effect of organisms on the environment (Chase
and Leibold 2003). Because these models are more
mechanistic, the species parameters have direct
ecological meaning, so can be considered traits.
A common form of trait-based analysis of these
models involves depicting a large number of
species’ ZNGIs and impact vectors, which can
be used to determine community structure along
environmental gradients (Tilman 1982; Chase and
Leibold 2003). Recently we have extended this
approach using ZNGI and impact vector envelopes
to consider a continuum of strategies (Koffel et al.
2016). However, these graphical approaches restrict
the number of limiting factors to two or three,
capping the diversity that can emerge.

In the late 1980s and 1990s, two independent
groups—one American (Brown and Vincent 1987),
one European (Metz et al. 1996)—proposed a trait-
based theoretical framework that allows for the
emergence of community structure, termed adaptive
dynamics (Geritz et al. 1998). These approaches com-
bine ideas from evolutionary game theory and com-
munity ecology. In particular, they show how game
theory’s payoff can be identified with Darwinian fit-
ness, which is described as the per capita population
growth rate in a community ecological model. This
general formulation provided analytical tools that
could be applied to arbitrary ecological interactions

(i.e., not restricted to Lotka–Volterra models), which
led to a flood of applications (Section 11.2.3).
The original formulation of adaptive dynamics
makes a number of restrictive assumptions, such
as a separation of time scales between ecology
and evolution, small mutations, and asexual
populations; however, it can be seen as a particular
case within a constellation of closely related
theoretical frameworks (Abrams 2001; Section 11.3).

One other framework from the 1980s and 1990s
worth mentioning is that of community assembly
theory. In this purely ecological framework, species
from a finite or infinite regional species pool are
repeatedly introduced to a local community (Post
and Pimm 1983; Rummel and Roughgarden 1985;
Law and Morton 1993; Morton and Law 1997). Upon
successful invasion, the new state of the community
is computed and another random species is intro-
duced from the regional species pool. Three out-
comes are possible: the community is uninvasible,
a recurrent assembly cycle occurs, or community
assembly continues indefinitely along different
trajectories (Morton and Law 1997). Furthermore,
alternative outcomes are possible for a given set of
parameters (Law and Morton 1993). Although any
model of species interactions could be used, Lotka–
Volterra models are typical; many applications
employ trait-based models of competition (Rummel
and Roughgarden 1985) or food web assembly
(Morton and Law 1997) to define species interac-
tions. The community assembly framework shares
many similarities with adaptive dynamics—trait-
based formulations of interactions, use of invasion
criteria, separation of time scales between invasions,
and uninvasible states as a long-term outcome—but
these literatures have remained largely separate.

11.1.4 Overview of rest of chapter

Clearly, there is a rich history of trait-based theo-
retical approaches in ecology and evolution. In the
rest of this chapter, we describe how trait-based
models are set up and analyzed from the perspec-
tive of adaptive dynamics, and survey applications
(Section 11.2). Next, we discuss other trait-based
modeling frameworks and the connections between
them (Section 11.3). We then consider the extension
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of these frameworks to multiple traits and spatial
and temporal heterogeneity (Section 11.4). Finally,
we conclude in Section 11.5 by considering direc-
tions for future research.

11.2 Basic ideas

In this section we outline the basic principles
of trait-based theory, considering both density-
independent and density-dependent models, feed-
backs between ecological/environmental condi-
tions and trait values, and how optimization and
evolutionary approaches offer insights into the
dynamics and equilibria of such models. Finally,
we conclude by describing a range of phenomena
uncovered by applying trait-based theory.

Before we start, some words about terminol-
ogy. With their focus on functional traits, trait-
based approaches are, by design, phenotypic
approaches. The hierarchical level at which trait
variation occurs—within-individual plasticity,
within-species genetic variation, or between-species
differentiation—is a secondary concern and often
ignored. While this is a strength of the approach
because it can allow greater generality, it can lead
to confusing use of terminology. Here, we will
use the term strategy to refer to the trait values
of an individual, or of a population or species,
when intraspecific trait variation is negligible. For
frameworks that are explicitly ecological, we refer
to different species as such, but for more general
frameworks we use the term populations.

11.2.1 Density-independent models with traits
and optimization theory

Exponential growth has been called the first law
of population dynamics (Turchin 2001; Pásztor
et al. 2016). Such density-independent models
form the basis of the simplest approach to trait-
based modeling—optimization theory—and are
fundamental to understanding more realistic
density-dependent models. We begin with the
simplest case of an unstructured population i in
a constant environment in continuous time, with
population density Ni and growth rate ri:

dNi

dt
= riNi (11.1)

The solution of this equation is Ni(t) = Ni(0)erit,
which approaches zero if ri < 0 and grows to infinity
if ri > 0 (assuming no dispersal limitation, that is
Ni(0) > 0). Equilibrium is possible only when ri = 0,
which is infinitely unlikely in the absence of any
density-dependent stabilizing mechanism.

Simple as exponential growth may be, we can
begin to get ecological insights by considering how

a population’s growth rate ri

(
�xi; �E

)
depends on its

traits �xi and the environment �E (Geritz et al. 1998).
In general, the environment is a multidimensional
vector that represents all of the abiotic and biotic
factors that affect a population’s growth rate, such
as resource levels, temperature, and the density of
directly interacting species (assumed to be constant
in the density-independent case). How ri depends
on traits and the environment is the domain of
functional and physiological ecology and is a key
element in developing mechanistic trait-based mod-
els, including species distribution models (Kearney
and Porter 2009).

The critical values of the traits and environmen-
tal factors where ri

(
�xi; �E

)
= 0 separate population

growth from extinction (Maguire 1973). This can
be easily visualized in two dimensions (e.g., two
environmental variables, two traits, or one of each),
which we call Zero Invasion Plots (Figure 11.1).
Figure 11.1A illustrates the classical case of a popu-
lation with fixed trait values that requires two essen-
tial resources, such as nitrogen and phosphorus for
plants, so that �E = (R1, R2). Both resources are
required for growth, which leads to the L-shaped
ZNGI (Tilman 1982). Figure 1B shows a hypothetical
situation for a fixed environment where positive
growth occurs for a range of values of each trait. This
region also depends on an interaction between these
traits (such that the viable range of trait 1 depends
on the value of trait 2 and vice versa). Figure 1C
shows the interaction between a single trait and one
environmental factor. Ahorizontal slice through this
figure determines the fundamental niche of a popu-
lation with particular trait values. A vertical slice
determines what we call the fundamental commu-
nity for a particular environment: species with trait
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Figure 11.1 Zero Invasion Plots. A: two environmental factors (a ZNGI). B: two traits. C: one environmental factor and one trait. Gray shading
denotes positive fitness.

values outside the fundamental community cannot
persist even in isolation, so would not be expected
to occur absent facilitation.

Now, consider multiple populations, which
could represent different species (or, alternatively,
different strategies within a species) inhabiting
the same environment, governed by Equation
(11.1), and growing (i.e., ri > 0). Although these
populations do not interact and each has the
potential to grow to infinity due to the lack of
density dependence, we can still determine the
outcome of “competition” among these populations
by considering the relative abundance of each
population, pi = ni/

∑
jnj. Using the quotient rule,

we find the dynamics of pi to be

dpi

dt
= pi

(
ri −

∑
j
rjpj

)
= pi (ri − r̄) , (11.2)

where r̄ is the abundance-weighted average growth
rate. This is known as the replicator equation
(Hofbauer and Sigmund 1998). As can be seen from
the second form of Equation (11.2), a population i
with an above-average growth rate (ri > r̄) increases
in relative abundance and one with a below-average
growth rate decreases. Thus, in the long term,
the population with the highest growth rate will
dominate the community (pi → 1), while the relative
abundance of all others will decline to zero. This
justifies the use of the word fitness as a synonym for
the per capita growth rate, ri. If multiple populations
have equal fitness, we say they are neutral, because
their relative abundance is determined only by
initial conditions.

Instead of a finite number of populations, we now
consider a continuum of populations, ordered by
their strategy x, which also determines their fitness,
r(x). Generalizing the results from the replicator,
Equation (11.2), we know that the population with
the strategy conveying the greatest fitness will
dominate the community in the long term. We can
use elementary calculus to find the optimal strategy,
x*, which maximizes fitness given r(x). If x is one-
dimensional, we find the maximum by setting the
fitness gradient, dr

dx , equal to zero and solving for x.
To be a local maximum, we require the second
derivative of fitness to be negative, d2r

dx2 < 0 (Figure
2A). Since there can be multiple local maxima, we
have to compare the fitness of all local optima as
well as at the ends of the trait space to find the
global optimum x* (Fig. 2B–C).

So far, we have focused on continuous-time
models with unstructured populations, which can
be described by a single variable such as population
size or density. However, the theory of structured
populations (those with e.g., age-, stage-, or size-
structure) is well developed, and provides ways
to calculate the asymptotic population growth
rate r once a stable population structure has been
reached. In a discrete-time matrix model, it is
the logarithm of the dominant eigenvalue of the
Leslie–Lefkovitch matrix (Caswell 2001). Extensions
to temporally variable environments also exist:
Floquet exponents for periodic systems (Klausmeier
2008) and Lyapunov exponents for aperiodic
systems (Metz et al. 1992). Thus, the population
growth rate r can be optimized while accounting
for all the biological processes contributing to a
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Figure 11.2 Finding local and global maxima on fitness landscapes. A) A single, global optimum. B) Two local optima separated by a fitness
minimum. C) A boundary optimum.

population’s success, such as individual growth,
survival, and reproduction.

11.2.2 Density-dependent models with traits

Density dependence and limiting factors

It has long been recognized that at least some per
capita vital rates must depend on population density
for populations to not to grow to infinity (Turchin
2001). While this density dependence is often
modeled as a direct effect of density on per capita
growth rate, as in the logistic equation, it is often
useful to explicitly consider the limiting factors
such as resources or predators that mediate density
dependence (Chase and Leibold 2003; Meszéna
et al. 2006). One important consequence of this
environmental feedback loop is the competitive
exclusion principle: no more species can coexist at
equilibrium than there are shared limiting factors
(Levin 1970). This sets an upper limit on the
diversity that can be maintained in a community,
a limit that remains valid in trait-based models.

In particular, when there is only one limiting
factor, such as a resource R, stable coexistence is
impossible, and a single population will out-
compete all others. The break-even resource
level R* of a population i, where its net growth
gi = 0, is a simple metric that identifies the best
competitor: the population with the lowest R*

will exclude all others. This is known as the R*-
rule (Tilman 1982). Thus R* combines various
physiological parameters into a single metric of
competitive ability. In a trait-based setting, the R*-
rule provides a “pessimization” principle analogous
to the optimization principles applied to fitness
previously (Metz et al. 2008). When R* is expressed

as a function of traits, calculus can again be used to
minimize R*, and identify the optimal trait values
for a given environment (Klausmeier et al. 2004).

If species interacted only through a single limiting
factor, ecological communities would be much eas-
ier to understand, yet lack diversity, rendering them
far less interesting. Luckily this is not the case. When
there is more than one limiting factor and popula-
tions have differential responses and effects on those
factors, then stable coexistence becomes a theoreti-
cal possibility. The prototypical species-based com-
petition model is the Lotka–Volterra model, which
can be written as

⎧⎪⎨
⎪⎩

dN1

dt
= (r1 − α11N1 − a12N2) N1 = g1N1

dN2

dt
= (r2 − α21N1 − a22N2) N2 = g2N2

(11.3)

where ri are maximum growth rates and αii and αij

are intra- and interspecific competition coefficients,
respectively. The five possible outcomes of com-
petition are: i) species 1 outcompetes 2, ii) species
2 outcompetes 1, iii) species 1 and 2 coexist, iv)
either species 1 or 2 excludes the other depending
on initial conditions (founder control), and v) neutral
coexistence. Note that in Equation (11.3), we have
introduced gi to represent the per capita growth rate
(fitness) of a population, which now combines the
maximum exponential growth rate, r, with density
dependence.

Invasion analysis

Invasion analysis is a powerful approach to under-
standing coexistence between two populations
(Chesson 2000). The idea is to ask whether each
population (termed the invader) can invade a
monoculture of the other (termed the resident) at
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its equilibrium or other long-term attractor. The
invader is assumed to be sufficiently rare that it
has no effect on its own per capita growth rate or
the residents’. This results in density-independent
growth of the invader, which is characterized by
its invasion fitness, ginv(Eres). Here the resident
at its attractor determines the environment, Eres,
experienced by the invader (consisting of limiting
factors, possibly including its own density).
Negative invasion fitness means that the invasion
fails, while positive invasion fitness means that it
succeeds. If one population has positive invasion
fitness but the other has negative, then the first
excludes the second (Lotka–Volterra cases i–ii); if
both populations have negative invasion fitness,
there is founder control (Lotka–Volterra case iv).
Finally, if each population has a positive invasion
fitness (i.e., they are mutually able to invade), then
we say that the two populations stably coexist (as in
Lotka–Volterra case iii). However, because invasion
fitness focuses on the boundaries of the phase space,
it does not give us any information on the nature of
coexistence in this mutual invasibility case.

The main advantage of invasion analysis is that
it is easier to calculate invasion rates than to solve
for the coexistence attractor and determine its stabil-
ity. However, invasion analysis has a few potential
shortcomings. First, if there are multiple coexistence
equilibria, then the lack of mutual invasibility does
not imply that coexistence is impossible (Namba
and Takahashi 1993; Priklopil 2012). However, it can
be argued that such locally stable coexistence would
be vulnerable to stochastic events and that mutual
invasibility is more relevant to natural systems. Sec-
ond, when the resident has multiple attractors, a
positive invasion rate does not necessarily imply
that the invader persists. Instead the invader can
shift the resident from one of its attractors to the
other, which then repels the invader, termed the
“resident strikes back” scenario (Mylius and Diek-
mann 2001). Third, it is unclear how to extend inva-
sion analysis to more than two species (Saavedra
et al. 2017). Nonetheless, invasion analysis remains
a key tool for understanding competition and forms
the basis of many trait-based eco-evolutionary mod-
eling approaches to follow.

How to set up density-dependent trait-based
models

Having discussed species-based density-dependent
models previously, let us now describe how to set
up a trait-based model in four easy steps, focusing
on non-structured populations for simplicity. First,
start with a mechanistic species-based model and
identify groups of populations that are functionally
similar, which we call guilds. Populations within a
guild share the same fitness function, which will
depend on the same trait(s), but specific trait values
may differ between populations. If two populations
do have identical trait values, or strategies, they will
be selectively neutral (e.g., Lotka–Volterra case v).
As an example, one might model predators and prey
as two separate guilds (although this decision is part
of the art of modeling). Let G be the number of
guilds.

Second, generalize the model to encompass NG

populations in guild G, indexed by subscripts. For
example, let NG,i be the density of the population
with the ith strategy in guild G. Any terms that rep-
resent interactions between populations or between
populations and environmental factors should
be replaced by a sum over populations, making
no distinction between intra- and inter-specific
interactions.

Third, make some model parameters functions
of traits (this is the identity function if those
parameters are directly considered traits). Together,
the model then consists of a set of differential
equations of the form dNG,i

dt = gG(xG,i; �E( �N, �x))NG,i,
one for each population in each guild. Note
that the fitness function gG of a particular guild
now depends on the strategy of the focal pop-
ulation, xG,i, as well as environmental factors
�E. These in turn depend on the strategies and
densities of the rest of the community. Specifically,
�x = (�x1, �x2, . . . , �xG) and �xG = (xG,1, xG,2, . . . , xG,NG)

describe the set of all traits across guilds, and across
populations/strategies within a guild, respectively.
Densities are described similarly as �N = ( �N1, �N2, . . . ,
�NG) and �NG = (NG,1, NG,2, . . . , NG,NG). See Boxes
11.1 and 11.2 for examples of how to set up trait-
based models.
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The final step in setting up a trait-based model
is to define a source of trait variation. This choice
largely distinguishes various trait-based modeling
frameworks, which we compare in Section 11.3.
For pedagogical reasons, we will describe adaptive
dynamics (which assumes variation arises from
small, infrequent mutations) and adaptive statics
(adaptive dynamics at equilibrium, without the
assumption of small mutations); however, different
trait-based approaches often give similar results
(see Section 11.3).

It is important to keep in mind that there is usu-
ally no unique way of deriving a trait-based model
from a species-based one. All of the four steps (iden-
tifying guilds, generalizing to multiple populations,
making parameters functions of traits, and defining
a source of variation) are ultimately determined by
the ecological mechanisms identified as relevant by
the modeler in that particular context. For example,
a trait-based model designed to study the evolu-
tion of cannibalism would look different from the
competition model derived in Box 11.1, even if both
arose from the same single-population model. Simi-
larly, trait-based models studying the emergence of
food webs might lump prey and predators into a
single guild, unlike Box 11.2.

Box 11.1 Trait-Based Lotka–Volterra competition

A classic example of a trait-based model arises from the
Lotka–Volterra competition model. In it, there is a single
guild of competitors and no explicit environmental factors
aside from the abundance of competitors. Start with the
single-population logistic equation

dN
dt

= (r − αN) N

To make it into a trait-based model, we add subscripts
for each population i, sum interactions over strategies
j = 1, . . . ,N , and make model parameters r = r (xi) and
α =α

(
xi, xj

)
functions of the focal population’s trait xi and

the interacting population’s trait xj. Together, these changes
result in:

dNi

dt
=

⎛
⎝r (xi) −

N∑
j=1

α
(
xi, xj

)
Nj

⎞
⎠ Ni = g

(
xi; �x, �N

)
Ni

For simplicity, we drop the guild subscript and the explicit
consideration of the environment �E from the general for-
mulation in section 2.2.3. It is commonly assumed that the
maximum growth rate r is a unimodal function of x and that
α, the strength of competition (competition kernel), declines
to zero as a function of the difference in the strategies of the
focal and interacting populations. Two functions that satisfy
these assumptions are the quadratic r(x) = 1 − x2 and

the Gaussian α
(
xi, xj

) = exp
[
−(

xi − xj
)2

/σ 2
]
, where σ

controls the width of competition kernel.
Motivated by the seminal work of MacArthur and Levins

(1967), trait-based Lotka–Volterra models have been used
to investigate the conditions under which such models
lead to the coexistence of finitely many species with dis-
tinct trait values or a continuum of species (Barabás et al.
2012).

Invasion analysis of trait-based models

Having defined a trait-based model, how can
we analyze it? For simplicity, we will consider
a single guild with a single trait here. Begin
with a monomorphic resident population with
strategy x1 and find its ecological attractor (assumed
here to be an equilibrium for simplicity) and
the corresponding environment Ê (x1), such that

g
(

x1; Ê (x1)
)

= 0. Now consider the fate of a
rare population with a different strategy x0 by
calculating its invasion fitness when invading the

resident, g
(

x0; Ê (x1)
)

. As described previously,

invasion succeeds if g
(

x0; Ê (x1)
)

> 0 and fails if

g
(

x0; Ê (x1)
)

< 0. If the new strategy is quite similar
to the existing one, then successful invasion implies
replacement of the previous resident (Geritz
et al. 2002), except at special points described
next. This process is then repeated to generate a
“trait substitution process.” The fitness gradient,
∂g/∂x0

∣∣
x0 = x1

, measures directional selection on a
resident, given its strategy: if ∂g/∂x0 > 0 then the
trait evolves towards larger values (Figure 11.3A)
and if ∂g/∂x0 < 0 then it evolves towards smaller
values (Figure 11.3B). We will call a trait value or
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Box 11.2 Trait-Based predator-prey interactions

As a more complicated example of how to set up a
trait-based model, consider predator-prey interactions. We
begin with a classic predator-prey model, the Rosenzweig–
MacArthur model (Rosenzweig and MacArthur 1963), where
a prey with abundance N is consumed by a predator with
abundance P:

dN
dt

= (r − αN) N − aN
1 + haN

P

dP
dt

= eaN
1 + haN

P − mP

The prey grows at an intrinsic rate r and self-regulates
through a competition coefficient α. The predator consumes
the prey through a Type II functional response with attack
rate a and handling time h, and converts prey abundance
into predator abundance with efficiency e. Finally, m sets the
mortality rate of the predator.

To convert the previous model into a trait-based model,
we first need to identify the guilds at play. A natural
choice here consists of introducing two guilds: the prey
guild and the predator guild. Their abundances, generalized
to multiple populations, are respectively denoted Ni with
i = 1, . . . ,NN and Pi, with i = 1, . . . ,NP. Let the fitness
function of the prey and the predator depend on traits x and
y, respectively. We can then write:

dNi

dt
=

⎛
⎝r (xi) −

NN∑
j=1

α
(
xi , xj

)
Nj −

NP∑
j=1

a
(
xi , yj

)

1 + ∑NN
k=1 h

(
xk , yj

)
a
(
xk , yj

)
Nk

Pj

⎞
⎠ Ni

= gN

(
xi ; �x,�y, �N, �P

)
Ni

dPj

dt
=

⎛
⎝

NN∑
i=1

e
(
xi , yj

)
a
(
xi , yj

)
Ni

1 + ∑NN
k=1 h

(
xk , yj

)
a
(
xk , yj

)
Nk

− m
(
yj
)
⎞
⎠ Pj

= gP

(
yj ; �x,�y, �N, �P

)
Pj

As in the Lotka–Volterra competition model in Box 11.1,
prey growth rate r(xi) depends on the focal population’s
trait value and density-dependence, α(xi,xj) depends on
the trait values of the focal and interacting prey popu-
lations. The predators’ attack rate a(xi, yj), handling time
h(xk, yj), and conversion efficiency e(xi, yj) all depend on
the trait values of the predator and prey involved. Note that
there are multiple interactions in this model that have been
replaced by summations. The first summation in the prey
equation adds up competition between prey populations; the
second summation adds up predation by different predator
populations; and the third summation in the denominator
of the functional response adds up time predator j spends
handling different prey. Finally, the outer summation in the
predator equation adds up energetic gain from different prey
populations.

strategy x̂1 where directional selection disappears
(∂g/∂x0 = 0) an evolutionary equilibrium, also known
as a singular strategy (Geritz et al. 1998).

An evolutionary equilibrium is called a (global)
evolutionarily stable strategy (ESS) if no other
strategy can invade it. As in optimization models,
an evolutionary equilibrium can be either a
fitness maximum, and hence at least locally
evolutionarily stable, if ∂2g/∂x2

0

∣∣
x0 = x1

< 0 (Figure

11.3C), or a fitness minimum, if ∂2g/∂x2
0

∣∣
x0 = x1

> 0

(Figure 11.3D). This quantity ∂2g/∂x2
0, the second

derivative of invasion fitness with respect to the
trait of the invader, measures the strength of
stabilizing vs. disruptive selection (Figure 11.3C
vs. Figure 11.3D). An ESS represents an endpoint
of evolution or community assembly. Note that
if new strategies are restricted to be similar to
existing ones (e.g., due to small mutations), local
evolutionary stability is sufficient to prevent

further trait change. However, if large mutations
or immigration of different species occur, global
evolutionary stability is required (Figure 11.3C vs.
Figure 11.3E).

A second form of stability—convergence stability—
controls whether directional selection leads towards
or away from an evolutionary equilibrium (Eshel
1983; Geritz et al. 1998). An evolutionary equilib-
rium is convergence stable when ∂2g/∂x2

1 > ∂2g/∂x2
0.

Any combination of these two stability conditions
(evolutionary and convergence stability) is pos-
sible. An evolutionary equilibrium that is both
convergence and evolutionary stable (i.e., a fitness
maximum) is called a convergence stable strategy
(CSS), which behaves as we would naively expect
an optimum to behave. While fitness minima play
a minor role in optimization models, serving only
as boundaries between the basins of attraction of
alternative optima (Figure 11.2B), they can play a
central role in density-dependent models. The most
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Figure 11.3 Invasion fitness landscapes. Positive invasion fitness is denoted by gray shading. A-B) Directional selection. C) An evolutionarily stable
strategy (fitness maximum). D) A branching point (fitness minimum). E) A local-but-not-global ESS. F) A two-species evolutionarily stable community.

interesting case where the two conditions differ is
an evolutionary equilibrium that is convergence
stable but not evolutionary stable, which is called
a branching point (Geritz et al. 1998) for reasons
discussed below.

Geritz et al. (1998) gives a complete eight-fold
classification of the types of stability of monomor-
phic evolutionary equilibria, both in terms of these
second derivatives of invasion fitness and also
graphically using pairwise invasion plots (PIPs).
Whether the invasion of a resident with strategy x1

by an invader with strategy x0 is successful or not

depends only on the sign of g
(

x0; Ê (x1)
)
, or g(x0; x1)

for short. A PIP plots sign[g(x0; x1)] as a function of
the strategy of the resident and the invader (Figure
11.4). Graphically, convergence stability can be seen
along the main diagonal, whereas evolutionary
stability is assessed with a vertical line test through
the evolutionary equilibrium.

A mutual invasiblity plot (MIP) illustrates the pairs
of strategies x1 and x2 that can stably coexist, i.e.,

g (x2; x1) > 0 and g (x1; x2) > 0. It is constructed by
superimposing a PIP on its reflection around the 1-
1 line, exchanging the role of resident and invader
(Figure 11.5). In general, the region of stable coex-
istence through mutual invasibility (if one exists)
does not touch the 1-1 line other than at points
corresponding to one-strategy evolutionary equi-
libria. This implies that, in general, similar species
cannot coexist, representing an ecological limit to
similarity.

One important exception occurs near branching
points, where coexistence of similar strategies is
guaranteed. This means that a strategy that success-
fully invades a resident at a branching point does
not exclude it, but coexists with it. These coexisting
strategies then experience opposing directional
selection and diverge, justifying the name “branch-
ing point”. The final outcome may be a pair of
strategies that prevent invasion (Figure 11.3F), or the
development of further branching points leading to
a more diverse set of strategies, or other outcomes

Christopher Klausmeier



172 T H E O R E T I C A L E C O L O G Y

in
va

de
r 

tr
ai

t,
 x

0

in
va

de
r 

tr
ai

t,
 x

0
in

va
de

r 
tr

ai
t,

 x
0

in
va

de
r 

tr
ai

t,
 x

0

Figure 11.4 The eight-fold classification of pairwise invasibility plots (PIPs). A, G–H) Non-convergence stable repellors. B) An evolutionary
branching point is convergence stable but not evolutionarily stable. C–E) Continuous stable strategies (CSSs) are both convergence and
evolutionarily stable. F) The Garden of Eden is evolutionarily stable but not convergence stable.

Source: after Geritz et al. (1998)

(see following). A set of strategies (or species) that
is both globally uninvasible and convergence stable
is described as an evolutionarily stable community
(ESC); Figure 11.3F illustrates a two-species ESC
(Edwards et al. 2018; Kremer and Klausmeier 2017).
This scenario assumes no recombination between
the two diverging lineages, which may not be valid
in sexual species (Waxman and Gavrilets 2005). In
general, however, the existence of a branching point
indicates that more than one ecological strategy is
required to render a community uninvasible.

One important caveat about the previous dis-
cussion of the stability of evolutionary equilibria is
that all of the conditions based on derivatives are
strictly local criteria. Just as a local optimum may
not be a global optimum (Figure 11.2B), a local ESS
where ∂2g/∂x2

0 < 0 may be invasible by a strategy
that is sufficiently different than a resident (Figure
11.3E). In this case, assumptions about the source of
new phenotypes matters: under the assumption of
small mutations (in adaptive dynamics) or standing
genetic variation (in quantitative genetics, see

Christopher Klausmeier
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Figure 11.5 A mutual invasibility plot (MIP) shows pairs of strategies than can stably coexist. It is made by exchanging the roles of resident and
invader by flipping a PIP on itself.

Source: After Geritz et al. (1998).

Section 11.3), a local-but-not-global ESS would
represent a stable equilibrium, whereas larger
mutations or immigration of different species from
a regional species pool would allow the community
to escape such an equilibrium.

Trait-based predictions across
environmental gradients

The preceding section offered a detailed description
of how to determine the outcome(s) of community
assembly/evolution within a community, focusing
on particular trait(s), while other model parameters
remained fixed. An important application of trait-
based approaches is to examine how these outcomes
change as these external parameters vary. This can
be used to determine how community structure—
the diversity and abundance of species present and
the value and similarity of their traits—varies with
changes in model parameters, including along envi-
ronmental gradients, a central goal of community
ecology.

Other general insights emerge, including reveal-
ing how an N -species ESC may lose its evolution-
ary stability as an environmental parameter varies.
Intuitively, one might expect that a member of the
ESC loses stability as a branching point emerges;
however, except when the model has a particular
symmetry, the first bifurcation is a loss of global
evolutionary stability, resulting in a local-but-not-
global ESS (Figure 11.3E; Geritz et al. 1999). At the
same parameter value where the ESC first loses
its global evolutionary stability, an (N + 1)-species
ESC is created, with the new strategy at zero pop-
ulation density (Figure 11.6). Thus, the system is

discontinuous in traits but continuous in population
density at these evolutionary transcritical bifurcation
points. Alternatively, an N -species ESC may col-
lapse into an (N − 1)-species ESC as the density
of one of its members declines to zero. This is a
developing area of adaptive dynamics/trait-based
theory, sometimes described as the “bifurcation the-
ory of adaptive dynamics”.

An efficient way to compute bifurcation diagrams
of evolutionary equilibria is as follows (Kremer
and Klausmeier 2017). At an initial bifurcation
parameter value z, find a (preferably N = 1 species)
ESC by simultaneously solving for the abundance
N̂i and trait value x̂i of each population i such
that g

(
x̂i; �x

) = 0 and ∂g/∂x0
(
x̂i; �x

) = 0. There are
two equations and two unknowns per population,
which can be solved numerically using Newton’s
method. Then vary the bifurcation parameter value
z by a small amount δz and solve for the updated
evolutionary equilibrium, extrapolating the previ-
ous solution(s) as an initial guess. At each value
of the parameter z, i) assess global evolutionary
stability by checking that max g

(
x0; �x)

< 0, and
ii) verify that no species has gone extinct (N̂i > 0
for all i). These conditions correspond to passing
through an evolutionary transcritical bifurcation
point either forward (adding a strategy) or in
reverse (removing a strategy). Also, iii) check
convergence stability using the Jacobian matrix. If
the evolutionary equilibrium is still a convergence
stable global ESC with no strategy extinct, continue
varying z. Otherwise, stop (refining with a smaller
step size δz if necessary). To find the exact
bifurcation point, augment the system with the
nascent strategy’s eco-evolutionary equations

Christopher Klausmeier
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Figure 11.6 A bifurcation diagram showing an evolutionary transcritical bifurcation. A) Equilibrium traits and B) population sizes as a function of
an environmental parameter z. C–E) display PIPs occurring C) before, D) at, and E) beyond the bifurcation point z*. The solid lines on the PIPs
represent local maxima of the fitness landscape and the dashed lines represent local minima. F–I) show corresponding fitness landscapes at the
F–H) one-species and I) two-species evolutionary equilibria.
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g
(
x̂N+1

) = 0 and ∂g/∂x0
(
x̂N+1; �x) = 0 and two

additional unknowns, the trait value of the nascent
strategy x̂N+1 and the parameter value where the
bifurcation occurs z*. As a new (N + 1)-species ESC
is created at this point with N̂N+1 = 0, this solution
provides a natural starting point to be continued
as previously shown. The resulting evolutionary
bifurcation diagrams summarize predictions of
how the evolutionarily stable community structure
(trait values, diversity, and population densities)
varies with changes in a model parameter, such as
along an environmental gradient (e.g., Kremer and
Klausmeier 2017).

More complex possible outcomes

Within a given environment, stable evolutionary
equilibria are not the only possible outcome of eco-
evolutionary models used to study trait-based the-
ory. In this section we provide a non-exhaustive
summary of a growing set of dynamical phenomena
that have been discovered and which may provide
important insights into various ecological systems.

Limit cycles. Similar to their purely ecologi-
cal counterparts, eco-evolutionary systems can
converge towards limit cycles where species’
abundances and traits both fluctuate over time.
A classic example of these evolutionary cycles
happens in the context of predator-prey co-
evolution models (Dieckmann et al. 1995; Cortez
and Weitz 2014).

Evolutionary suicide. The pessimization princi-
ple mentioned earlier illustrates another classic
emergent phenomenon of eco-evolutionary models,
known more generally as the “Tragedy of the
commons” (Hardin 1968). We have described
how invasion analysis is used to understand the
repeated invasion and replacement of resident
populations by invaders with different trait values.
This sequence of replacements is determined
solely by the fitness of new invaders when rare;
nothing ensures that a new invader behaves
“optimally” when it has completely replaced the
former resident. For example, there is no reason
in general for the equilibrium population density
of successive invaders to increase. In fact, quite
the opposite can happen: evolution can drive a
population extinct, either through a continuous
decrease in density (Diekmann 2004; Boudsocq et al.

2011) or through a catastrophic tipping point in the
presence of an Allee-effect at low densities (Ferrière
2000). These phenomena are considered examples
of “evolutionary suicide” or “evolutionary traps”.

Branching-extinction evolutionary cycles. Another
interesting phenomenon happens when one of the
two populations generated by a branching point
goes extinct through evolutionary suicide (Dercole
2003). If the surviving population remains in the
basin of attraction of the original branching point,
it will be driven back towards the branching point
and diversify, again setting one population up to
experience evolutionary suicide. The succession
of these branching and extinction events lead to a
stable eco-evolutionary limit cycle.

Alternative evolutionarily stable states. Finally, as in
purely ecological models, alternative stable states
can occur in eco-evolutionary models in the form
of alternative ESSs and ESCs (Kisdi and Geritz
1999; Kremer and Klausmeier 2017). Such eco-
evolutionary priority effects mean that the initial
trait values of evolving population(s) will influence
which ESS/ESC is reached at equilibrium. This
once again illustrates that “optimality” in density-
dependent trait-based models is a subtle concept, as
density-independent models generally only possess
one global optimum.

11.2.3 Applications

Previously, we presented a general approach
for implementing a trait-based approach using
virtually any mechanistic model of community
dynamics. It is not surprising then that trait-based
approaches have been applied to a broad range of
systems in ecology and evolution, to study ques-
tions from what determines organism’s adaptations
to what drives large-scale ecosystem functions. Here
we give but a sampling of this extensive literature.
Many of the following examples use techniques
similar to those already described; others use related
methods (see Section 11.3).

This broad spectrum of applications includes
a wide range of different types of ecological
interactions. In the context of consumer-resource
interactions, trait-based models have shown
how different resource types influence consumer
diversification (Schreiber and Tobiason 2003), as
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well as revealing optimal allocation strategies for
taking up different resources (Abrams 1987) and the
effects of resource uptake plasticity (Bonachela et al.
2011). When applied to predator-prey interactions,
trait-based approaches have shown how evolution
can strongly alter predator-prey cycles (Cortez and
Weitz 2014) or even engender them (Abrams and
Matsuda 1997), and have helped us understand
what drives the evolution of prey defenses (Yoshida
et al. 2003; Koffel et al. 2018a). Trait-based models
of host-pathogen systems have shown how within-
host competition between pathogens is at the origin
of their virulence (Van Baalen and Sabelis 1995;
Alizon et al. 2013) and how spatial structure can
lead hosts to evolve altruistic defense strategies,
such as suicide upon infection (Débarre et al. 2012).
A diversity of other trophic situations has been
investigated, including mixotrophy (Andersen et al.
2015), cannibalism (Dercole and Rinaldi 2002; Hin
and de Roos 2019), and intra-guild predation (Patel
and Schreiber 2015), the latter two giving rise to
a rich set of eco-evolutionary phenomena such as
eco-evolutionary cycles and evolutionary suicide.
Trait-based approaches have also been applied
to positive interactions, e.g., to investigate the
emergence and maintenance of facilitation in arid
ecosystems (Kéfi et al. 2008), the role of facilitation
in primary succession (Koffel et al. 2018b), and the
impact of exploiters on the evolution of mutualism
(Jones et al. 2009).

Trait-based approaches have made it possible
to study the evolution of life-history traits in a
diversity of organisms and ecological situations,
including the size at maturation of exploited fish
stocks (de Roos et al. 2006), the seed size and
germination strategies of terrestrial plants (Geritz
et al. 1999; Mathias and Kisdi 2002; Levin and
Muller-Landau 2000), the foraging behavior of
herbivorous arthropods (Egas et al. 2005), and the
size and trophic strategies of unicellular planktonic
organisms (Chakraborty et al. 2017).

Trait-based approaches have also been used to
understand the emergence of community structure.
System-specific models have been applied to
shade-tolerant trees competing for light in forests
subject to disturbances (Falster et al. 2017),
phytoplankton-zooplankton systems along nutrient
gradients (Sauterey et al. 2017), global distributions

of phytoplankton (Follows et al. 2007), and
size-structured fish communities (Hartvig et al.
2011). A variety of size-structured food web models
have been developed to understand emergent
properties such as connectance, omnivory and
trophic structure (Loeuille and Loreau 2005; Fuchs
and Franks 2010; Banas 2011).

When implemented in ecosystem models with an
explicit abiotic environment, trait-based approaches
have shed light on how organismal adaptations
affect ecosystem processes. Examples include
understanding selection patterns on nitrogen-fixing
plants and their consequences for N-limitation
in ecosystems (Menge et al. 2008; Lu and Hedin
2019), the evolution of plant litter decomposability
(Boudsocq et al. 2011; Allison 2012; Barot et al.
2016; Arnoldi et al. 2019), and the determinants
of phytoplankton stoichiometry and their effect on
oceanic N:P ratios (Lenton and Klausmeier 2007).

11.3 Other trait-based frameworks

As noted in Section 11.2, a plethora of trait-based
modeling frameworks have been developed over
the years (Abrams 2001; Abrams 2005; Fussmann
et al. 2007), which we summarize in Table 11.1/.
Some of these frameworks are purely ecological,
assuming fixed trait values. Others are purely
behavioral/evolutionary, neglecting population
dynamics. Finally, many combine ecological and
evolutionary dynamics in various ways. These
frameworks differ in a number of ways:

• The level of biological organization at which traits
vary: within individuals (plasticity, including
behavior and physiological acclimation), within
species (genetic and non-genetic trait variation),
or between species

• The heritability of trait variation
• The degree to which biological details are aggre-

gated (do models track population sizes, trait
means, and possibly trait variance/covariances,
or entire phenotypic distributions?) (Figure 11.7)

• The relative timescales of different processes
• The source of new phenotypes (mutation or

immigration, occasional or continuous)

Despite their differences, these different frame-
works are all based on trait-dependent growth
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Figure 11.7 Three trait-based modeling frameworks aggregate biological details to different degrees. A) Species sorting. B) Ecological moment
methods. C) Adaptive dynamics.

functions g and many can be connected mathemati-
cally as limiting cases (Abrams 2001; Lion 2018).

They also can reach similar conclusions about
the long-term outcome of community assem-
bly/evolution. When there is a global conver-
gence and evolutionarily stable community, these
approaches often tend to similar outcomes. For
example, Figure 11.8 shows the outcome of the
Lotka–Volterra competition model (Box 11.1)
simulated using five different trait-based theoretical
frameworks. The ecological quantitative genetics
framework initialized with four similar species
leads to the four-species ESC predicted by adaptive
statics (Figure 11.8A). After a large but finite time,
species sorting leads to four distinct clusters of
species (Scheffer and van Nes 2006), which are
symmetrical (when initial strategies are regularly
spaced, Figure 11.8B) or irregular (when strategies
are randomly spaced, Figure 11.8C). Community
assembly (Figure 11.8D) and adaptive dynamics
(Figure 11.8E) also lead to four clusters of species,
each containing one or two very similar species,
although the transient dynamics vary considerably.

To understand why these distinct frameworks can
lead to similar outcomes, consider the oligomorphic
dynamics framework (Sasaki and Dieckmann
2011), which tracks the first three moments for
a finite number of phenotypic clusters. The
“zeroth” moment is the size of population i,
Ni =

∫
ni(x)dx; the first moment is its mean trait,

x̄i =
∫

x· ni(x)dx/Ni; and the second moment is its
trait variance, Vi =

∫
(x − x̄i)

2ni(x)dx/Ni. In the

absence of immigration and mutation, the dynamics
of each population are given by

dNi

dt
=

∫
g(x)ni(x)dx ≈ g (x̄i) Ni + 1

2
Vi

∂2g(x)

∂x2

∣∣∣∣∣
x = x̄i

Ni

(11.4a)

dx̄i

dt
= 1

Ni

∫
x · g(x)ni(x)dx − x̄i

Ni

∫
g(x)ni(x)dx

≈ Vi
∂g(x)

∂x

∣∣∣∣
x = x̄i

(11.4b)

dVi

dt
= 1

Ni

∫
(x − x̄i)

2g(x)ni(x)dx − Vi

Ni

∫
g(x)ni(x)dx

≈ Vi
2 ∂2g(x)

∂x2

∣∣∣∣∣
x = x̄i

(11.4c)

The moment equations in (11.4) are closed by
assuming a particular phenotypic distribution,
usually normal (Norberg et al. 2001). Assuming
small trait variance, each extant species at equilib-
rium is characterized by g (x̄i) = 0 (from Equations
11.4a) and ∂g

∂x = 0 (from Equations 11.4b)—the same
conditions defining an evolutionary equilibrium in
adaptive dynamics (see Section 11.2). The condition
for convergence stability matches the linear stability
of Equations 11.4b. Finally, Equations 11.4c shows
that trait variance Vi → 0 if ∂2g/∂x2 < 0—exactly the
same condition as for evolutionary stability (Taylor
and Day 1997). Therefore, it is not surprising that
these different frameworks give similar results at
equilibrium.

Christopher Klausmeier



Table 11.1 Comparison of trait-based modeling frameworks.

Modeling Framework Population Size (N) Trait Value (x) Trait Variance (V) Number of NxV Sets Source of New
Phenotypes

References
Ec

ol
og

ica
l

Traditional Community Models dynamic Fixed zero one-few None Verhulst 1845; Lotka 1920;
Volterra 1926

Species Sorting dynamic Fixed zero many None Chase and Leibold 2003;
Follows et al. 2007;
Bruggeman and Kooijman
2007

Community Assembly equilibrated fixed zero dynamic occasion immigration Post and Pimm 1983;
Rummel and Roughgarden
1985; Law and Morton
1993; Morton and Law
1997

Moment Methods dynamic dynamic dynamic one none or continuous
immigration

Wirtz and Eckhardt 1996,
Norberg et al. 2001;
Savage et al. 2007

Intraspecific Variability Theory dynamic fixed fixed one-few standing phenotypic
variation

Hart et al. 2016

Classical Quantitative Genetics N/A dynamic fixed or variable one standing genetic variation
or continuous mutation

Lande 1976

Optimization Theory N/A equilibrated zero one plasticity Stephens and Krebs 1986;
Stearns 1992; Roff 2002Ev

ol
ut

io
na

ry

Trait Diffusion Models dynamic fixed zero infinite continuous mutation Levin and Segel 1985;
Lehman and Tilman 1997;
Merico et al. 2014

Ec
o-

Ev
ol

ut
io

na
ry

Ecological Quantitative Genetics dynamic dynamic fixed few standing genetic variation Abrams 2005

Growth Rate Optimization Theory dynamic equilibrated zero any plasticity Smith et al. 2011

Adaptive Dynamics equilibrated dynamic zero dynamic occasional mutation Geritz et al. 1998

Adaptive Statics equilibrated equilibrated zero dynamic everything-is-everywhere Brown and Vincent 1987;
Kremer and Klausmeier
2017, Section 2 of this
chapter

Oligomorphic Dynamics dynamic dynamic dynamic any continuous mutation Sasaki and Dieckmann
2011

Drift Equation equilibrated dynamic dynamic any none or continuous
mutation

Gorban 2007
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Figure 11.8 The dynamics and long-term outcome of five different modeling frameworks applied to the same trait-based Lotka–Volterra model
with a four-species ESC. A) Ecological quantitative genetics. B) Species sorting, with a uniform distribution of species. C) Species sorting, with a
random distribution of species. D) Community assembly from a continuous species pool. E) Adaptive dynamics with small mutations.

When do we expect these other frameworks
to give significantly different results from the
adaptive statics approach we describe in Section
11.2? We are not aware of precise statements, but
here are some suggestions based on intuition and
experience:

• In the case of a local-but-not-global ESS (Figure
11.3E), the stochastic trait-substitution process of
adaptive dynamics will not find a global ESC,
whereas a model that allows large mutations or
immigration will not get stuck.

• If ecological quantitative genetics or oligomor-
phic dynamics models are not initialized with a
sufficient number of species, they will not find
a global ESC. Instead, they will get stuck at a
branching point. Furthermore, early trait conver-
gence can reduce the number of distinct species
in these simulations, leading to groups of neutral
species clustered on a fitness maximum (Edwards
et al. 2018).

• If there is no global ESC, then the details of how
new strategies arise will be important in deter-
mining the non-equilibrium dynamics.

• Increasing immigration or mutation rates (in
methods that allow this) will increase the trait
variance and eventually affect population size
(the “demographic load”; e.g., Ronce and Kirk-
patrick 2001) and the number and mean traits of
phenotypic clusters.

Frameworks with dynamic trait variances such
as ecological moment methods and oligomorphic
dynamics may fail at branching points, where
∂2g/∂x2

0 > 0, because the disruptive selection will
cause the trait variance to diverge. Ecological
moment methods are especially susceptible to this
problem because they attempt to represent an entire
community with only three pieces of information:
total population size, mean trait, and trait variance.
Thus, they are not well-suited to situations where
there is a multi-species ESC.

These different frameworks make different sim-
plifying assumptions, so no single approach is best
for all purposes. Questions that directly concern
the source of new phenotypes obviously require
a framework that includes those processes. Trait
continuum models make the fewest simplifications,

Christopher Klausmeier
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but are the most computationally intensive of the
listed approaches, intractably so for more than two
traits. Models that aggregate these details in order
to follow a small number of variables are required.
Ecological moment methods are particularly com-
pact, and each moment embodies a major ecological
perspective—total population (ecosystem), mean
trait (functional), and trait variance (diversity).
However, as described previously, they fail at
branching points where the variance diverges.

In contrast, the adaptive statics approach pre-
sented in Section 11.2 allows for a dynamic num-
ber of species. It makes the simplest assumption
about the source of new phenotypes (“everything is
everywhere”; Baas Becking 1934; De Wit and Bou-
vier 2006) and is computationally efficient, making
it an elegant approach focused on the ecological
mechanisms underlying community structure in the
absence of mutation or dispersal limitation. How-
ever, as an equilibrium approach, it is unable to deal
with trait dynamics on any time scale.

Adaptive dynamics takes a long-term perspec-
tive to address the evolutionary origins of diversity.
However, given its assumption of asexual repro-
duction, new phenotypes form populations that are
demographically independent of their progenitors.
This can seem simplistic from a purely evolutionary
biology standpoint, as it neglects the genetic, sex-
ual, behavioral, and spatial constraints that can pre-
vent reproductive isolation and assortative mating
from occurring, and has been the source of ongoing
debate (Doebeli et al. 2005; Gavrilets 2005).

Questions about short-term adaptive responses to
environmental perturbations require a framework
with trait variances such as ecological quantitative
genetics or oligomorphic dynamics. For such
questions, we recommend the ecological quan-
titative genetics approach, which allows species
evolution to occur within a community context
(e.g., McPeek 2017). Evolution that happens on
an ecological time scale can prevent a population
whose density is slowly decreasing from going
extinct, a phenomenon called “evolutionary rescue”
(Gomulkiewicz and Holt 1995). It can also allow per-
sistence in a continuously changing environment if
the rate of environmental change is slow enough
(Lynch and Lande 1993), although possibly with a
tipping point (Osmond and Klausmeier 2018).

Because trait-based approaches can be applied to
questions across ecology and evolutionary biology,
we need a diverse set of theoretical frameworks.
Understanding the relationships among these
frameworks (Table 11.1) as well as their strengths
and weaknesses is required to choose the best
approach for a given question. Devising new ways
to reduce the complexity of ecological communities
in our models will remain a valuable pursuit.

11.4 Extensions/Complications

The trait-based frameworks we have examined so
far were discussed in the simple ecological setting of
spatial and temporal homogeneity. Real ecosystems
are spatially extended and subject to both externally
driven and internally generated temporal fluctua-
tions, and this spatial and temporal heterogeneity
is known to be an important determinant of popu-
lation dynamics and community structure. Further-
more, we have focused on the dynamics of single
traits, another vast oversimplification. In this sec-
tion, we discuss how trait-based theoretical frame-
works can be made more realistic, and relevant to
more systems, by incorporating temporal and spa-
tial heterogeneity and multiple traits.

11.4.1 Traits in time

The invasion analysis presented in Section 11.2
assumes that a rare, invading population expe-
riences constant conditions (including resident
densities and environmental factors). However,
these conditions may vary due to externally driven
forcing (stochastic or deterministic) or internally
generated cycles or chaos. Adaptive dynamics
studies of temporally variable systems require
calculating an appropriate average invasion rate
ḡinv, based on the type of variability present within
a system and whether there is population structure
(Metz et al. 1992). Once the value of ḡinv has
been calculated, all the machinery of adaptive
dynamics can be used exactly as presented in
Section 11.2: calculating (time-averaged) fitness
gradients, locating evolutionary equilibria, and
determining their convergence and evolutionary
stability.
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Unstructured populations. In the case of an unstruc-
tured population experiencing periodic forcing, we
can simply average the instantaneous invasion rate,

ginv

(
x0; �E(t)

)
, over a period:

ḡinv = 1
τ

∫ τ

0
ginv

(
x0; �E(t)

)
dt (11.5)

(Smith and Waltman 1995). It is straightforward to
calculate ḡinv when cycles arise from external forc-
ing with known period τ , but potentially harder
when cycles are endogenously generated, as the
precise value of τ must be determined numerically
and may depend on the trait values of resident
species. If the environment varies stochastically or
chaotically, then the definition of invasion fitness is
the limit of Equation (11.5) as t → ∞. In practice,
it is usually not possible to calculate this infinite
integral to find the exact invasion rate, so an approx-
imation can be obtained by simply averaging ginv

over a long interval of time. Note that, because the
integral in Equation (11.5) is linear, the gradient
of average fitness needed for adaptive dynamics
studies, ∂ ḡinv/∂x0, is equivalent to the average of the
gradient of instantaneous fitness,

∂ ḡinv

∂x0
= 1

τ

∫ τ

0

∂ginv

∂x0
dt (11.6)

which may be easier to calculate numerically (Kre-
mer and Klausmeier 2017).

Structured populations. As described in Section
11.2, in a constant environment invasion fitness is
given as the dominant eigenvalue of the transition
matrix. Intuition might suggest that, in fluctuating
environments, invasion rate could be calculated
by simply averaging the dominant eigenvalue of
the transition matrix over a period in a periodic
system (or over a long interval of time in an
aperiodic system). However, that turns out to
be incorrect. Instead, obtaining invasion rates
requires calculating the dominant Floquet exponent
(periodic systems; Klausmeier 2008), or more
generally, the dominant Lyapunov exponents
(aperiodic systems; Metz et al. 1992). In both cases,
this must usually be done numerically.

As a final technical note, the definitions of
invasion fitness given previously are based on the
adaptive dynamics framework, and specifically its
separation of time scales. When other trait-based

modeling frameworks are employed (Section 11.3),
other approaches are required. For example, in
the ecological quantitative genetics approach, the
average trait(s) of a population change in response
to instantaneous fitness gradients, which depend
in turn on the current environment. As genetic
variance approaches zero, trait change slows, and
quantitative genetics results converge on those of
adaptive dynamics. However, with larger genetic
variances, rapid evolution is possible. and complex
interactions with ecological dynamics may arise
(Hairston et al. 2005).

Recently, we used trait-based models to examine
the evolutionary stability of species coexistence
in variable environments. We used the adaptive
statics framework to investigate two fluctuation-
dependent coexistence mechanisms (sensu Chesson
2000): relative nonlinearity and the storage effect.
We found that relative nonlinearity can easily sup-
port an ESC of two species (a fast grower and supe-
rior competitor), but higher diversity was improb-
able (Kremer and Klausmeier 2013). The storage
effect is a potentially more powerful coexistence
mechanism. When the environment alternates peri-
odically between two states and the period of forc-
ing is large, two species can coexist as an ESC under
a wide range of conditions (Miller and Klausmeier
2017). When the environment varies continuously,
more species can coexist, with a limit to similarity
resulting in species with evenly spaced trait values
(Kremer and Klausmeier 2017). We also found more
baroque outcomes, such as alternative evolutionary
attractors (Miller and Klausmeier 2017; Kremer
and Klausmeier 2017). When using the quantitative
genetics framework, we found that evolutionarily
stable coexistence was robust to a small amount of
trait variance, but that larger trait variance allowed
rapid evolution leading to complex dynamics
and species convergence, ultimately undermining
species coexistence (Kremer and Klausmeier 2013).

11.4.2 Traits in space

The theoretical framework as described in Section
11.2 implicitly assumes that populations, communi-
ties, and ecosystems do not vary in space, or that
dispersal between locations is negligible so that spa-
tial patterns can be derived directly from bifurcation
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diagrams (Section 11.2.2). These assumptions sim-
plify the analysis of trait-based theory when they
can be empirically justified for particular organ-
isms, scales, or questions (e.g., in well-mixed plank-
tonic systems). However, accounting for space may
be essential when: i) interactions between organ-
isms (and populations) are spatially structured (e.g.,
competition among terrestrial plants), ii) the trait(s)
of interest are directly related to the movement of
individuals, or iii) important environmental factors
vary in space, such that populations in different
locations experience different selective pressures,
and dispersal is not negligible. How ecological pro-
cesses vary in space is the focus of metapopulation,
metacommunity, and metaecosystem theories, all
of which can be all be integrated with trait-based
approaches.

In the adaptive dynamics framework, account-
ing for space simply consists of adding structure
to populations. Rather than considering a single,
unstructured population, we instead examine a col-
lection of multiple subpopulations (whose dynam-
ics are driven by local processes), that are coupled
together by the exchange of individuals through
dispersal. When the subpopulations are discrete,
well-separated entities, we call them “patches”, and
their collective population dynamics can be mod-
elled using matrices similar to Leslie matrices,

d �Ni

dt
=

(
G

(
xi; E

(
�x, �N

))
+ D (xi)

) �Ni (11.7)

where �Ni is a vector of the abundances of population
i in different patches, G is a diagonal matrix
governing within-patch dynamics and D is a matrix
encoding dispersal among patches. In principle,
both local processes and dispersal may depend
on trait x. Alternatively, it is sometimes more
appropriate to model populations as continuously
distributed through space (Troost et al. 2005). In this
approach, population dynamics can be modeled
using systems of partial differential equations called
reaction-diffusion systems, which take the form

∂Ni

∂t
= g

(
z, xi; E

(
�x(z), �N(z)

))
Ni + d (xi)

∂2Ni

∂z2

(11.8)

where z denotes the spatial dimension, g determines
the local dynamics, and the last term allows disper-

sal (Okubo and Levin 2001). Other approaches vary
in their level of detail, from explicitly accounting
for the discrete nature of individuals to treating
entire populations as either present or absent (e.g.,
patch occupancy models and cellular automata, see
Levins 1969; Durrett and Levin 1998; Klausmeier
and Tilman 2002).

Whatever the approach, the fitness of an invading
strategy is always given by the dominant eigen-
value of the matrix (G + D) or the linear operator
g + d ∂2/∂z2, which is its asymptotic population
growth rate once a stable spatial structure across all
subpopulations is reached (Metz et al. 1992; Troost
et al. 2005; Van Baalen and Rand, 1998). In the case
of reaction-diffusion equations, the linear opera-
tor usually needs to be approximated by a matrix.
The fitness gradient can be calculated numerically
using a finite difference approximation or it can be
computed directly using techniques from sensitivity
analysis (Caswell 2001), providing additional con-
ceptual insight: under some conditions, the fitness
gradient of the population as a whole can be shown
to be equal to a weighted average of the local selec-
tion gradients, where the weights are the squared
abundances of the corresponding subpopulations
(Wickman et al. 2017).

Moving from the adaptive dynamics framework
to the ecological quantitative genetics framework
requires a separate equation for trait dynamics
(Kirkpatrick and Barton 1997; Case and Taper 2000;
Ronce and Kirkpatrick 2001; Norberg et al. 2012). In
the reaction-diffusion setting, this takes the form

∂xi

∂t
= V

∂g
∂x0

∣∣∣∣
x0=xi

+ d

(
∂2xi

∂z2 + 2
∂ log Ni

∂z
· ∂xi

∂z

)

(11.9)

where the first term captures local directional selec-
tion and the second term incorporates gene flow (the
second term of which accounts for asymmetric gene
flow due to gradients in population density). This
powerful framework allows for the investigation of
local adaptation, since the trait values of a popula-
tion depend explicitly on space z.

Applications of spatially-explicit trait-based the-
ory span a diverse set of systems, from bacterial
biofilms (Nadell et al. 2016), to social vertebrates
and insects (Lehmann et al. 2008), terrestrial plants
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(Kéfi et al. 2018), pathogens (Débarre et al. 2012),
and plankton in poorly mixed water columns
(Troost et al. 2005, Wickman et al. 2017). It has
provided a number of important insights into
the evolution of species ranges (Kirkpatrick and
Barton 1997; Case and Taper 2000), the response
of communities to environmental change (Norberg
et al. 2012), the maintenance of species diversity in
heterogeneous environments (Wickman et al. 2017),
and the global distributions of plankton (Follows
et al. 2007).

The evolution of dispersal itself is an extensively
studied topic. It has long been recognized that
spatial variation alone is not sufficient to favor the
evolution of dispersal (Hastings 1983; Dockery et al.
1998; Parvinen 1999; Wickman et al. 2017). Only the
continuous availability of underexploited patches,
either at the edge of an invading population, or
maintained by regular disturbance or demographic
stochasticity, can turn dispersal into an advanta-
geous trait (Ronce 2007). More subtly, dispersal
can evolve as an altruistic behavior (e.g., when
it reduces competition among an organism’s kin,
despite offering no direct benefits).

More generally, spatially-explicit approaches
have been essential to the understanding of the
evolution of cooperation and a variety of other
altruistic traits (Lion and Van Baalen 2008; Lehmann
et al. 2008). In completely homogenous systems,
altruism is selected against due to the “Tragedy of
the commons” (Hardin 1968). Conversely, spatial
structure and local dispersal can create “viscous
populations”, where related individuals tend to
cluster in space, favoring the evolution of altruism
(Lion and Van Baalen 2008).

11.4.3 Multiple traits

The theory on evolutionary equilibria and their sta-
bility presented in Section 11.2 focused on systems
with a single trait. In the real world, an organism
can be characterized by a myriad of traits that are all
simultaneously under selection. Even though trade-
offs can constrain the space of possible trait com-
binations, any given population’s strategy is often
determined by its specific values of multiple traits.
For this reason, a general trait-based theory that
applies to multidimensional traits is necessary.

In practice, setting up a trait-based model with
multidimensional traits follows the same recipe
laid out in Section 11.2.2, except that �xG,i is now a
vector whose coordinates are the collection of traits
defining the ith strategy in guild G. Invasion fitness

g
(
�x0; Ê

(�x1
))

of a mutant �x0 follows, with the fitness
gradient now being a true vector. Evolutionary
equilibria are characterized by the trait vectors
�x0 that cancel out the components of the fitness
gradient. Because of fitness interactions between
traits—selection on one trait usually depends on
other traits—finding a multidimensional evolu-
tionary equilibrium implies solving a system of
coupled equations. This also applies if the multiple
traits belong to separate guilds, such as co-evolving
predator-prey systems, as it comes to no surprise
that the optimal trait for a prey will depend on
the trait of the predator, and vice-versa. Finally,
assessing whether these evolutionary equilibria are
evolutionarily stable relies on extending the tools
presented in Section 11.2.2 to multidimensional
space, which is done in practice by checking if the
Hessian matrix of the invasion fitness is negative
definite for unbounded traits. If the trait space
is bounded, constrained optimization has to be
used instead.

There is another complication, specific to the
multi-dimensional nature of this problem, that
involves the idea of convergence stability defined in
Section 11.2.2. This problem has been well-explored
in the adaptive dynamics context (Leimar 2009; see
also Débarre et al. 2014 for a similar approach in
ecological quantitative genetics). This complication
is subtle, as convergence stability depends on
the nature and characteristics of trait variation.
In an evolutionary context, genetic variation
is usually constrained through correlations—
formally encoded in the genetic variance-covariance
matrix, also known as the G-matrix of quantitative
genetics (Lande 1979)—such that selection on one
trait can lead to evolution of another trait, even
when the latter is not under selection. Due to
these correlations, convergence stability cannot
always be solely assessed using the Jacobian of
the fitness gradient (the “selection” part), but
can also depend on the exact nature of genetic
correlations (the “variation” part). To formalize
this issue, Leimar (2009) distinguishes between two
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notions of convergence stability. The first, “absolute
convergence stability”, imposes very restrictive
conditions on the Jacobian of the fitness gradient
under which an evolutionary equilibrium will be
locally convergence stable under any conceivable
adaptive path and G-matrix. The second, “strong
convergence stability”, places a weaker condition
on the Jacobian under which an evolutionary equi-
librium will be locally convergence stable under the
most probable evolutionary trajectory. This second
definition of convergence stability is weaker than
the first one: if an evolutionary equilibrium is only
strong convergence stable, one could find some very
particular series of mutations allowing escape from
this equilibrium (Leimar 2009).

Applications of trait-based theories that involve
multiple traits are diverse. Two-dimensional trait
spaces, resulting in practice from a three-way trade-
off between three traits, are a natural starting point.
They have been influential in ecology (Grime 1974)
and are associated with counterintuitive outcomes,
such as the possibility of positive correlations
between two traits when the last one is not
controlled for (Van Noordwijk and de Jong 1986).
A recent example in plants involves the study of
optimal allocation between resource competition
and the tolerance of and resistance to herbivory—
with the latter two traits corresponding to “defense”
(Koffel et al. 2018a). We showed that investment in
defense is expected to increase along a resource
gradient, but that increase in partial resistance,
mixed tolerance and resistance, or coexistence
of a completely resistant and a tolerant strategy
were all possible outcomes, depending on the
shape of the allocation trade-off that constrains the
three traits. In another two-dimensional example,
Falster et al. (2017) showed how a model of plants
differing in leaf mass per unit leaf area and height
at maturation in a complex forest ecosystem can
generate a very diverse community, including a
diverse set of shade-tolerant species. In the context
of macroevolutionary dynamics, accounting for
multiple phenotypic dimensions has been shown
to have a strong influence on the structure of
the emerging food webs (Allhoff et al. 2015).
Using a general model of asymmetric competition,
Doebeli and Ispolatov (2017) showed that the

diversity of strategies that coexist at the end of the
diversification process scales exponentially with the
number of traits considered.

Despite these applications, most trait-based mod-
els focus on a single trait or a pair of traits linked by
a hard trade-off (effectively one trait). One barrier to
multi-trait models is coming up with a manageable
way to define the shape of multi-dimensional trade-
offs. A possibility is to base them on a common
energetic or material currency, so that total alloca-
tion to different traits is constant, while functions
with flexible shapes encode whether investment in a
specific trait has diminishing or accelerating returns
(Koffel et al. 2018a). Further investigation of mul-
tiple traits—how they affect convergence stability,
how to efficiently find eco-evolutionary equilibria,
and how to encode multi-dimensional trade-offs—
remains an important area for future theoretical
development.

11.5 Frontiers of trait-based modeling

11.5.1 Comparisons with empirical systems

One of trait-based theory’s advantages, as previ-
ously discussed, is its ability to make quantitative
predictions about the diversity and distribution of
trait values likely to occur within populations and
communities, and how these distributions might
change across environmental gradients (Sections
11.2.2). In principle, this should provide increased
opportunities to test theoretical predictions and
models using experimental and observational data.
A handful of examples exist, spanning a range of
traits, systems, and ecological dynamics. Regarding
individual populations and communities in
particular environments, examples include studies
of the size-dependent flowering strategies of plants
(Childs et al. 2003; Rees et al. 2006; Metcalf et al.
2008), the reproductive strategies of female Soay
sheep (Childs et al. 2011), and the height and
distribution of foliage in herbs and trees (Givnish
1982; King 1990). Considering population and
community dynamics through time, successful
examples include studies of the predatory-prey
cycles exhibited in a rotifer/algae system (Yoshida
et al. 2003), and seasonal patterns in aquatic food
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webs (Boit et al. 2012; Curtsdotter et al. 2019).
Across environmental gradients, predictions of
trait-based theory have been tested by examining
variation in forest productivity along elevational
gradients (Enquist et al. 2017; Fyallas et al. 2017),
plant allocation to foliage, wood, and fine roots
across nitrogen gradients (Dybzinski et al. 2011),
and global relationships between the optimal
temperature of phytoplankton species and the mean
annual temperatures they experience (Thomas et al.
2012). These examples are exciting and highlight
the power of trait-based approaches to bridge gaps
between the theoretical and empirical world.

However, compared to the extensive (and grow-
ing) body of literature focused on theory alone,
these empirical tests are few in number. In part,
this may reflect challenges posed by the limited
availability of high-quality trait data across multiple
individuals, species, and environments over time
(e.g., Kremer et al. 2017). Excitingly, portions of this
constraint are being alleviated through a variety
of massive community-wide efforts to compile and
publish trait data, especially for terrestrial plants
(e.g., TRY database; Kattge et al. 2011). We think,
however, that it is more likely that the shortage of
examples simply reflects the fact that few teams
have attempted to bring together trait-based the-
ory with empirical observations. We hope that the
introduction to trait-based theory presented in this
chapter will help lower the barriers associated with
this challenge, while convincing readers of the value
of this opportunity to tighten theoretical-empirical
linkages and to advance the field of ecology.

11.5.2 Linking trait- and species-based
approaches

In this chapter we have focused on purely trait-
based approaches, where a species’ performance
is defined solely by its traits. This is an effective
way to reduce model complexity when the number
of relevant traits is less than the number of
species. However, achieving this reduction requires
knowing the identity (and values) of the relevant
traits and how best to incorporate them into process-
based models, both of which represent significant
challenges. When more species are introduced into

trait-based models (such as ecological quantitative
genetics models) than can persist in an evolution-
arily stable community (ESC), distinct species may
converge on an adaptive peak to become selectively
neutral (terHorst et al. 2010; Edwards et al. 2018).
This may represent a phenomenon that happens
in the real world (McPeek 2017; Edwards et al.
2018), but it is also potentially symptomatic of
situations where trait-based models are missing
important functional variation among species. Are
there hybrid approaches that would allow us to
combine trait-based models with species-based
models that account for species-specific differences?

One possibility, inspired by Chesson’s modern
coexistence theory (Chesson 2000), would be to con-
sider introducing species-specific terms that either
affect “fitness differences” or are (de-)stabilizing. To
allow for fitness differences, we would simply add
a species-specific term εi to a species’ growth rate so
that

dNi

dt
=

(
g

(
xi; E

(
�x, �N

))
+ εi

)
Ni (11.10)

Theoretically, these fitness-difference terms would
simply promote dominance by species with higher
εi values. The real value of this formulation
would be in parameterizing the trait-dependent
population dynamics of actual species, where
species differences that cannot be attributed to the
traits considered would be captured by this species-
dependent “error term.”

If these species-specific effects are instead
(de-)stabilizing, the theoretical implications are
more interesting and require more intricate model
modifications. For example, these terms could rep-
resent species-specific sources of negative density-
dependence, such as intraspecific competition for
mates or specialized natural enemies (Scheffer and
van Nes 2006), or positive density-dependence such
as Allee effects (Noest 1997). Negative density-
dependence inhibits resident species more than
invaders (who are naturally at low density),
stabilizing coexistence of slightly inferior and
neutral species. In contrast, positive density-
dependence inhibits rare invaders compared to
established residents, leading to more cases of
founder control (Section 11.2.2, Lotka–Volterra
case iv). A systematic exploration of these effects,
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as well as broader efforts to integrate trait- and
species-based approaches, would be valuable.

11.5.3 Using trait-based theory to improve
Earth Systems Models

One frontier where trait-based theory is poised
to make important contributions involves earth
systems modeling. Earth Systems Models (or
ESMs) are spatially explicit models of the dynamic
physical and chemical interactions of the earth’s
land, ocean, and atmosphere (Heavens et al. 2013).
They are used to study the past development of
our planet’s climate and the operation of global
biogeochemical cycles. ESMs are also powerful
tools for projecting future environmental and
ecological conditions under different anthropogenic
climate change scenarios, including shifting species
ranges and altered ecosystem function (Heavens
et al. 2013). While ESMs contain sophisticated
descriptions of physical and chemical processes,
biological processes (including ecology and evo-
lution) are treated more coarsely or are absent
entirely. Historical factors, critical uncertainties
(including the absence of a widely-accepted, general
model of ecology), data shortages (needed to
parameterize and validate biological sub-models),
and computational demands (ESMs are already
computationally intensive) all contribute to limit the
level of biological detail in ESMs. These constraints
are problematic, as ecological and evolutionary
processes can significantly affect physical and
chemical properties, driving feedbacks that regulate
the global carbon cycle. Consequently, making
more accurate projections of future environmental
conditions from regional to global scales depends
in no small part on developing more realistic repre-
sentations of ecology within ESMs. Fundamentally,
this is a question of how to model variation in
traits (and hence, ecosystem function) through time
and space at a global scale. Trait-based approaches
offer promising ways to enhance the flexibility
and biological diversity of biogeochemical models
(Litchman et al. 2015) and ESMs without adding
large computational demands.

Currently, the terrestrial and marine components
of ESMs typically aggregate Earth’s vast functional
diversity of individuals and species into somewhere

between two and a dozen functional groups or
functional types. All members of a single group are
assumed to have fixed identical traits or functions,
intended to represent an average individual.
Turnover in traits across environments only occurs
through changes in the relative abundances of
groups, driven by underlying environmental
gradients and/or interactions between groups,
such as competition or predation. For example,
marine systems often contain basic N-P-Z models
(where mineral nutrients, N, support a single,
generic phytoplankton, P, that is in turn consumed
by a generic zooplankton, Z) (e.g., Fasham et al.
1990). Extensions of this basic structure expand the
diversity of plankton functional types considered,
based on factors including size (e.g., Le Quéré
et al. 2005; Stock et al. 2014). Similarly, terrestrial
models, termed Dynamic Global Vegetation Models
(DGVMs) tend to focus on the dynamics of a
handful of plant functional types representing trees
and herbaceous species. Predetermined bioclimatic
envelopes control the distribution of each functional
group, while environmental (and in some cases,
competitive) factors control the relative abundance
of each group within a given location (Foley et al.
2000; Sitch et al. 2003). Critiques of these approaches
include: i) the fact that fixed trait values significantly
under-represent the functional variation within and
across communities, and ii) interactions between
functional groups are over-simplified have been
raised in both terrestrial and marine systems
(e.g., Van Bodegom et al. 2012; Reichstein et al.
2014; Litchman et al. 2015). Furthermore, there
are concerns in terrestrial systems that population
demographics and community succession follow-
ing disturbance are poorly resolved (Fisher et al.
2018), and that fixed bioclimatic constraints of
functional groups may severely hamper the ability
of DGVMs to predict the effects of climate change,
as new, no-analog environments and communities
emerge (Van Bodegom et al. 2012).

Trait-based approaches offer promising ways
to address these shortcomings, in both marine
and terrestrial systems. Efforts to build the next
generation of more realistic ecosystem models fall
into several groups. This includes adding flexibility
to functional groups by replacing fixed trait values
with trait-environment relationships that are either
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empirically parameterized (terrestrial, Zaehle and
Friend 2010; Van Bodegom et al. 2012; Verheijen
et al. 2015; temperature dependence in marine
models, e.g., Stock et al. 2014) or that emerge
from various optimality assumptions (terrestrial,
Xu et al. 2012; Meir et al. 2015; marine, Smith
et al. 2011). In marine systems, both moment
methods (Terseleer et al. 2014) and species sorting
(Bruggeman and Kooijman 2007; Follows et al.
2007; Ward et al. 2012) have been investigated.
Others have adopted a detailed individual- or
agent-based approach, where traits vary across
individuals, determining their survival, growth,
and reproduction, and hence the transmission of
their traits to successive generations (terrestrial,
Scheiter et al. 2013; Sakschewski et al. 2015; marine,
Clark et al. 2011, 2013). This approach allows for trait
variation within communities, as well as emergent
patterns of trait variation across environments and
adaptation to ongoing environmental change, but
comes at substantial computation costs. While
the goal of these diverse studies is the eventual
development of the next generation of more
biologically realistic ESMs, few if any have yet
been applied at the full scale of an ESM, but rather
focus on regional examples. Sorting out which of
these approaches, all variously focused on traits,
provides the most useful balance between flexibility,
feasibility, and reality at different scales and in
diverse systems awaits further research.

11.5.4 Final thoughts

As we have seen, trait-based approaches have a
long history in ecology and evolution (Section 11.1),
extending well before the emergence of trait-based
ecology as an identifiable and important paradigm.
In recent decades, theoretical frameworks such as
adaptive dynamics (Section 11.2) have used evolu-
tionary concepts to provide tools for understanding
a diverse set of ecological interactions and systems
(Section 11.2.3). An expanding range of trait-
based modeling frameworks (Section 11.3), tailored
to different situations, may superficially appear
quite different, but are in fact they closely related
(Table 11.1). Trait-based theory can incorporate
complicating factors such as temporal and spatial
heterogeneity and multiple traits (Section 11.4).

Future developments of trait-based modeling
approaches show great promise in advancing
both our theoretical and empirical understanding
of ecology, from community structure to global
ecosystem dynamics (Section 11.5).
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