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Abstract

Despite the well known scale-dependency of ecological interactions, relatively
little attention has been paid to understanding the dynamic interplay between
various spatial scales. This is especially notable in metacommunity theory,
where births and deaths dominate dynamics within patches (the local scale),
and dispersal and environmental stochasticity dominate dynamics between
patches (the regional scale). By considering the interplay of local and regional
scales in metacommunities, the fundamental processes of community ecology—
selection, drift, and dispersal—can be unified into a single theoretical frame-
work. Here, we analyze three related spatial models that build on the classic
two-species Lotka-Volterra competition model. Two open-system models focus
on a single patch coupled to a larger fixed landscape by dispersal. The first is
deterministic, while the second adds demographic stochasticity to allow ecologi-
cal drift. Finally, the third model is a true metacommunity model with dispersal
between a large number of local patches, which allows feedback between local
and regional scales and captures the well studied metacommunity paradigms as
special cases. Unlike previous simulation models, our metacommunity model
allows the numerical calculation of equilibria and invasion criteria to precisely
determine the outcome of competition at the regional scale. We show that both
dispersal and stochasticity can lead to regional outcomes that are different than
predicted by the classic Lotka-Volterra competition model. Regional exclusion
can occur when the nonspatial model predicts coexistence or founder control,
due to ecological drift or asymmetric stochastic switching between basins of
attraction, respectively. Regional coexistence can result from local coexistence
mechanisms or through competition-colonization or successional-niche
trade-offs. Larger dispersal rates are typically competitively advantageous, except
in the case of local founder control, which can favor intermediate dispersal
rates. Broadly, our models demonstrate the importance of feedback between
local and regional scales in competitive metacommunities and provide a
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unifying framework for understanding how selection, drift, and dispersal jointly
shape ecological communities.
KEYWORDS
coexistence, competition-colonization trade-off, Lotka—Volterra competition,
metacommunity theory, priority effect, spatial structure, stochasticity
INTRODUCTION population dynamics are fast relative to dispersal and dis-

Ecological communities are shaped by the fundamental
processes of selection, drift, and dispersal (Vellend, 2010).
Selection, which includes both niche and fitness differ-
ences (Chesson, 2000), has been the focus of much ecologi-
cal theory. It is exemplified by the Lotka-Volterra
competition model (Lotka, 1932; Volterra, 1926), ecology’s
most iconic model of interspecific competition. For almost
a century, the Lotka-Volterra equations have provided the
cornerstone of understanding competitive interactions
between species; the Web of Science lists more than 1500
articles that mention “Lotka-Volterra competition” in
their title, abstract, or keywords. The model is simple
enough for analytical results, yet predicts diverse competi-
tive outcomes (competitive exclusion, coexistence, and
founder control) (Hofbauer & Sigmund, 1998).

More recently, however, this emphasis on local, deter-
ministic processes has been increasingly challenged
(Lawton, 1999). The most striking example is neutral the-
ory, which is based on stochastic ecological drift and dis-
persal, but neglects selection (Hubbell, 2001). Given its
simplicity, neutral theory does surprisingly well at
predicting various macroecological patterns such as spe-
cies abundance distributions and species area curves
(Allouche & Kadmon, 2009; Chisholm & Pacala, 2010;
Haegeman & Etienne, 2011; Hubbell, 2001; Rosindell
et al., 2012). Yet species differ in ecologically relevant ways
(Harpole & Tilman, 2006), in disagreement with the cen-
tral assumption of neutrality. Only by tying together the
fundamental processes of selection, drift, and dispersal can
we ultimately achieve a complete picture of ecological
communities (Cadotte, 2007, Gravel et al., 2006; Holt,
2006; Scheffer & van Nes, 2006).

Metacommunity ecology provides a multiscale frame-
work for integrating selection, ecological drift, and dispersal
in patchy landscapes (Holyoak et al., 2005; Leibold &
Chase, 2017; Leibold et al., 2004). It was originally concep-
tualized as an organizing framework with four major para-
digms (i.e., clusters of similar models; Leibold et al., 2004).
At intermediate dispersal rates, the species-sorting para-
digm corresponds to traditional community ecology, where
local selective processes dominate. Under dispersal limita-
tion, the patch-dynamics paradigm assumes that local

turbances, so that each patch can be assumed to be at equi-
librium (although possibly invasible), and only the
identities of the species present must be tracked
(Klausmeier & Tilman, 2002). With dispersal surplus, the
mass-effects paradigm invokes source-sink dynamics to
explain the persistence of species that would otherwise be
excluded (Koffel et al., 2022; Pulliam, 1988). Finally, ecolog-
ical drift has largely been relegated to the neutral-theory
paradigm, despite the general importance of stochasticity in
community ecology (Shoemaker et al., 2020).

While these paradigms have been useful for organizing
our understanding of metacommunities, they are based on
different simplifying assumptions, use different mathemat-
ical formalisms, and even track different state variables
(patch occupancy vs. species abundance), all of which
impede their conceptual unification. Consequently, many
now believe that metacommunity ecology must move
beyond these special cases toward a unified framework
that encompasses all of these paradigms (Brown et al.,
2017; Leibold & Chase, 2017; Shoemaker & Melbourne,
2016; Thompson et al., 2020). A major step in the develop-
ment of a unified metacommunity framework was taken
by Thompson et al. (2020). They developed a multispecies,
spatially explicit, simulation model of competitive
metacommunities that captures the four paradigms as spe-
cial cases and focuses their results on explaining how spe-
cies’ niches and dispersal rates shape patterns of various
diversity measures (e.g., a, 3, and y). However, due to the
complexity of such models, gaining detailed insight into
the mechanisms that engender the different outcomes is
difficult.

Our goal in this paper is to build toward a unified
metacommunity model from a complementary angle.
Community ecology is notoriously complex (Lawton,
1999; Simberloff, 2004). Simple models can help to cut
through this complexity to obtain general insights.
Rather than relying on complex simulations, our aim is
to develop the simplest possible model that incorporates
selection, drift, and dispersal.

To understand our full metacommunity model and
provide clarity to the roles of dispersal and demographic
stochasticity in shaping metacommunity dynamics, we
investigate increasingly complex models. We start by
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reviewing the basics of the classic deterministic
Lotka-Volterra competition model. We then turn it into
an open system by incorporating dispersal with a regional
species pool and examine how the qualitatively distinct
outcomes of classic Lotka—Volterra competition (competi-
tive exclusion, coexistence, founder control, and neutral-
ity) are affected by dispersal. We further extend our model
by incorporating stochasticity, where the stochastic
Lotka—Volterra competition model originally suggested by
Chiang (1954) serves as our starting point. More recently,
immigration from the regional species pool was added to
this single-patch model (Capitin et al., 2015, 2017;
Haegeman & Loreau, 2011). Here, we examine this sto-
chastic open-system model more thoroughly, across all
local, deterministic qualitative outcomes and a range of
dispersal rates. Finally, we couple an infinite number of
such local patches together to derive a true multiscale
metacommunity model. In this closed-metacommunity
model, regional abundances are not fixed, but emerge
from local dynamics coupled by dispersal; these regional
abundances then provide feedback to influence local out-
comes. This model exposes how selection, ecological drift,
and dispersal interact to determine the outcome of
metacommunity competition. We recover all of the classic
metacommunity paradigms and coexistence mechanisms,
but our framework generalizes these specific cases and
provides a unified perspective on metacommunities.

CLASSIC LOTKA-VOLTERRA
COMPETITION MODEL

The two-species Lotka-Volterra competition model has
played a central role in theoretical ecology since its intro-
duction (Hofbauer & Sigmund, 1998; Lotka, 1932;
Volterra, 1926). As a deterministic nonspatial model, it
represents pure selection sensu Vellend (2010). In this
section, we summarize this model (henceforth referred to
as the “classic LV competition model”) and its behavior
to provide a baseline for understanding the more general
models incorporating dispersal and demographic
stochasticity that we investigate in this paper.

The classic LV competition model is given by the fol-
lowing system of ordinary differential equations:

N N N

b:rlNl 1— 1+ 02N

dt K; (1)
%—FN 1_N2+(leN1 ’

a 22 K,

where N; is the density of species i, r; its intrinsic growth
rate, and K; its carrying capacity. The competition coeffi-
cients oy can be thought of as the competitive effect of

species j on species i. Whenever o; > 1, an individual of
species j exerts a stronger competitive effect on species i
than an individual of species i does on its own species.
Note that other formulations of the classic LV competi-
tion model exist (Mallet, 2012). All parameters are
assumed to be positive.

The classic LV competition model has four qualita-
tively different outcomes:

1. Competitive exclusion—species 1 outcompetes 2
(K1 > a2K, and K, < 0, K7) or species 2 outcompetes
1 (K1 < oK, and K > (121K1).

2. Coexistence—species 1 and 2 coexist (Kj> oK,
and K, > (leKl).

3. Founder control—species 1 or 2 outcompetes the
other depending on initial conditions (K; < ;K>
and K, < 051 K7).

4. Neutrality—competitively
(K1 = a2K; and K = 051 K7).

equivalent species

For simplicity, we assume the two species have equal
carrying capacities throughout unless otherwise noted.
Under this assumption, we depict these four outcomes as
a function of the competition coefficients o; in Figure 1.

DETERMINISTIC
OPEN-SYSTEM MODEL

As our first extension of the classic LV competition
model, we consider a local community in a single patch

0 1
aq2

FIGURE 1 Outcomes in the classic (deterministic, local)
Lotka-Volterra competition model (Equation 1), assuming equal
carrying capacities (K; = K,). Neutrality is at the intersection of the
regions (a2 =0z =1).
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that is open to dispersal from the external region, assum-
ing fixed regional abundances. This type of model, also
known as a mainland-island model (Hanski &
Gyllenberg, 1993), could also represent a single patch in
a metacommunity where the contribution of all the other
patches is averaged over. The equations for this model
extend the classic LV model (Equation 1) and are
given by:

dN Ni+o;aN
l—rlNl <1—1a122> +m1(NR,1—N1)

dt K,
dN2 Nz + (X21N1 (2)
=rnNy;|1-—77— +mZ(NR,2—N2).
dt K,

Here, m; and m, are the dispersal rates to and from the
region of species 1 and 2, respectively, and Ng; and Ng;
are the average regional abundances of species 1 and 2,
respectively (Koffel et al., 2022). As with the classic LV
equations, we analyzed Equation (2) by solving for the
equilibria, which for these equations we did numerically,
as the analytical solutions are not informative even when
available. See also Fenchel (1975) and Holt (1983) who
considered immigration of one of the competing species.

The addition of immigration from the region makes
true exclusion impossible in the deterministic open-system
model, so both species 1 and species 2 will always be pre-
sent in the steady-state community, albeit possibly at very
low densities. This also means that the boundaries
between the four qualitative outcomes for the classic LV
model will no longer always be sharp. With low dispersal,
competitive exclusion still occurs for all practical purposes,
but as dispersal increases the local dynamics become
increasingly irrelevant and the system becomes dominated
by mass effects from the region (Figure 2). Even though
neither species will ever be entirely excluded, we can still
identify founder control by calculating when there are two
stable equilibria for the system. With low dispersal, the
deterministic open-system model is similar to the classic
LV model, but as dispersal increases, one of these equilib-
ria collides with the unstable equilibrium and disappears,
leaving the system with a single stable equilibrium under
sufficiently high dispersal (Figure 3) (Fenchel, 1975).

To better compare the deterministic open-system out-
comes to the classic LV outcomes (and forthcoming
results from stochastic models), we depict each outcome
as a “square-pie chart,” where the size of each wedge
gives the relative size of the basin of attraction of that
equilibrium and its color indicates the relative abun-
dances (see the legend for Figure 4). We then plot these
outcomes along varying competitive abilities, for three
different levels of dispersal (Figure 4; analysis described
in Appendix S1). The figure thus shows the effective

competitive exclusion of species 1 (2) as red (blue)
squares, and coexistence as red-purple to purple to
blue-purple squares as the relative density of species 1
increases at the coexistence point. Founder control is
shown as a square with two wedges of different colors.

Figure 4 shows that the classic LV coexistence region
is preserved when dispersal is added, although the
boundary is blurred and, that for large dispersal rates,
the coexistence region expands into the classic
competitive-exclusion and founder-control regions
(Figure 4a). Finally, with the addition of dispersal, the
case of competitively identical species, o; =0 =1, no
longer holds any particular significance: the degenerate
outcome of neutrally stable equilibria of the classic LV
model is replaced by a single stable equilibrium (Fenchel,
1975). Although perhaps unsurprising, these results will
serve as an important basis of comparison for our sto-
chastic Lotka-Volterra models.

STOCHASTIC
OPEN-SYSTEM MODEL

We now further extend the open-system Lotka-Volterra
model by incorporating demographic stochasticity. We
model the stochastic dynamics as a continuous-time
Markov  process (Renshaw, 2011). Unlike the
continuous-state classic LV and deterministic open-system
model, population sizes N; and N, now take on nonnega-
tive integer values, representing the discrete nature of
individuals in finite communities.

Populations change due to five demographic pro-
cesses that occur at rates determined by the state of the
system (Figure 5). A process that happens at rate Z will
occur in a small time interval 8¢ with probability Z x &t
(Renshaw, 2011). The first two processes are a simple
implementation of the local dynamics of the classic LV
competition model:

1. Density-independent birth increases the population
size of species i (N; — N; + 1), at rate B;(N;) =r;N;.

2. Density-dependent death due to competition
decreases the population size (N;— N;—1), at rate
D;(N1,N>) =rNi(N; + a;N;) /K;, where j designates
the other species, K; is the carrying capacity of the
focal species i and oy is the interspecific competition
coefficient of species j on species i (intraspecific com-
petition coefficients equal one in this formulation).

The next two processes model dispersal:

1. Immigration from the external region increases the
population size (N;— N;+1), at rate I;=m;Ng;,
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FIGURE 3 (a) Effective founder control (o2 = 1.4, = 1.3) then coexistence for increasing dispersal rate for the deterministic
open-system model. Solid lines depict one stable equilibrium, and dashed lines the other. (b—€) Phase planes for the levels of dispersal
indicated in panel (a). Other parameters: r; =r, =1, K1 =K, =K =50, Ng; =Ng, =K.
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region, and largely conform to the outcome without dispersal (Figure 1). Other parameters: r; =r, =1, K; =K, =K =50, N1 =Ng, =K.

where m; is the dispersal rate and Ng; is the fixed
regional abundance of species i.

2. Emigration from the focal patch decreases the popula-
tion size (N; — N; — 1), at rate E;(N;) = m;N;.

The final process models external disturbances:

1. Disturbance drives both species to be locally extinct
(N1 —0,N, —0) at rate X.

Given the above demographic processes, the
most straightforward means of analysis is to simulate the
dynamics (Figures 6-8b,d,f). However, because these sim-
ulations are inherently noisy, obtaining clean results
requires time-consuming simulations, even using the rel-
atively efficient Gillespie algorithm (Gillespie, 1977;
Renshaw, 2011). A more elegant approach is to model
how the probability distribution of community states
P(N1,N;) changes over time, which is given by the

85U80|7 SUOWILIOD BAIIeR.D 8]qedt|dde ayy Aq peusenoh aJe sspe YO ‘8sn Jo se|ni 1oy Areiqi8UIIUO 8|1 UO (SUORIPUOD-PUE-SWBILI0D A8 |IMAeIq Ul UO//:SANY) SUORIPUOD Pue SWie | 8u1 88S *[£202/TT/Z0] uo Ariqi]auljuo A8 (1M ‘soueld 8ueIyo0D AQ TEGT WOS/Z00T 0T/I0p/AW0D A8 |imAteIq Ul |UOS eUINO fesa//SAny WOl pepeo|umod ‘v ‘€202 ‘GTOLLSST



8 of 26 LERCH Er AL.

N, +1 ) Stochastic open-system methods
A

<] & While the master Equation (3) can be used to project the

+N t] probability distribution of community states through time,

= | = we are often most interested in the system’s long-term

N, o< Bt > .' < Bt 1l > o behavior. An extension to the Perron-Frobenius Theorem

D, +E 4 D, +E; for real matrices that are nonnegative except along the

ol diagonal guarantees the existence and uniqueness of the

+|| + stationary distribution P(N;,N,) (Virgo & Guttenberg,

IS 2015). It is given by the eigenvector associated with the

N — 1 : dominant, zero eigenvalue of the transition-rate matrix

2 A, which can be efficiently calculated numerically. The

Ny —1 Ny N; +1 stationary distribution P(N;,N,) provides a detailed

FIGURE 5 State transitions in the stochastic LV model.

“master equations” (Capitdn et al., 2015; Chiang, 1954;
Renshaw, 2011):

PPN _ gy (N2 1) 4 1 (N~ D]P(N, —1V)
+[B2(N; = 1) + I,(N, — 1)|P(N, N, — 1)
+[Di(N1 +1,N2) + E1 (N1 + 1)]P(N; +1,N,)
+ [D2(N1,N24+1) + E;(N2+1)]P(N,N,+ 1)

N1) +11(Ny) + D1 (N1,N2) + E1 (Ny)

+By(N3) + I,(N,) + Dy (N1,N>)

+X]P(N1,N>).

E

(3)

Equation (3) explicitly tracks the changing prob-
ability distribution of population sizes driven by
the transitions shown in Figure 5. For example, the
first term accounts for births and immigration
events of species 1, where one individual of species 1 is
added to the patch (i.e., a (N7 —1,N,) state transitions to
a (N1,N,) state). Because probability mass is con-
served, each process is featured twice, through
a creation and a removal term (with all removals
collected in the last term of Equation 3). Equation (3)
is a doubly infinite set of equations from
0<N;<00,0<N,<o0, but P(N;,N;) is vanishingly
small for sufficiently large N;. Therefore, in practice, we
truncate the system at the value N« taken as twice the
carrying capacity, which is large enough to ensure that
there is a negligible probability of mass reaching the edge
of our state space. Because Equation (3) is linear in the
probabilities P(Nl,Nz) it can be rewritten in compact
vector-matrix form as 4 = AP, with the transition-rate
matrix A.

description of the long-term behavior of the system, but
this level of detail can make it difficult to understand
how species parameters affect the outcome. Therefore,
following Capitdn et al. (2015), we decompose the sta-
tionary distribution into discrete outcomes by identifying
local peaks in probability (N LN 2> where the community
spends considerable time, which roughly correspond to
equilibria of the deterministic system (Equation 2). We
then sum the probability distribution in the basin of attrac-
tion of each peak to summarize the overall probability dis-
tribution as the probability of being associated with a given
outcome to obtain more-readily interpreted values. As we
did for the deterministic open-system model, we summa-
rize these coarse-grained outcomes by a “square-pie chart,”
with the wedges color coded by the corresponding relative
abundance of the species at the peak (insets in
Figures 6-8a,c.e, and 9) and the size of the wedges
representing the summed probability of each outcome.

Stochastic open-system results

In an isolated system (m; =0), the stationary distribution
~ 1I,N;=0,N, =
P(N1,N,) = .
0,otherwise
extinction of both species as a result of drift. However, in

reflects the inevitable

an open system (m;>0), the stationary distribution is
always nontrivial due to constant, nonzero immigration
rates. For this section, we omit disturbance (X=0) to
facilitate the comparison with the classic and determinis-
tic open-system LV outcomes. We first give three exam-
ples whose competition coefficients result in three of the
qualitative outcomes of the classic LV competition
model: competitive exclusion, coexistence, and founder
control.

Our example of classic LV competitive exclusion
(Figure 6) largely follows the expected outcome of the
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FIGURE 6 Example outcomes in the stochastic open system corresponding to competitive exclusion in the classic LV model

(o2 = 1.25,05; = 0.8) for increasing equal (m; = m, = m) dispersal rates: (a, b) m=1073, (c, d) m=1072, (e, f) m=10""1. (a, c, e) Stationary

probability distribution 13(N 1,N3), colored according to coarse-grained states as in Figure 9. (b, d, f) Example time series. At low dispersal

rates the dominant competitor (species 2) can almost completely exclude the inferior competitor (species 1). However, the inferior

competitor is maintained by mass effects given sufficient dispersal. Other parameters: r; =r, =1, K; =K, =K =50, Ng; =Ng, =K, X =0.

corresponding deterministic, nonspatial model. Under
low dispersal rates, the community is dominated by
the superior competitor, with the inferior competitor
often completely absent from the patch (Figure 6a,b).
These intermittent extinctions could not occur in the
deterministic open system, where any level of dis-
persal precluded exclusion. As dispersal increases, the
inferior competitor, species 1, occurs more consis-
tently and with increasing abundance in the patch,

supported by mass effects from the
(Figure 6¢-f).

In our example of classic LV coexistence (Figure 7),
large dispersal rates lead to the expected outcome of coex-
istence, with approximately normally distributed varia-
tion around the equilibrium (Figure 7e,f). As dispersal
becomes more limited (Figure 7a-d), the system spends
more time in the vicinity of the two monoculture

equilibria, with infrequent transitions between them

region
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FIGURE 7 Example outcomes in the stochastic open system corresponding to coexistence in the classic LV model (015 = oz =0.9) for

increasing equal (m; = m, = m) dispersal rates: (a, b) m =103, (c,d) m=10"2, (e, f) m=10"1. (a, c, €) Stationary probability distribution

}A’(N 1,N3), colored according to coarse-grained states as in Figure 9. (b, d, f) Example time series. Due to demographic stochasticity, both

species rarely co-occur with low dispersal; however, both species almost always occupy the patch simultaneously with high dispersal. Other

parameters: ri =r, =1, K1 =K, =K =50, Ng1 =Ng, =K, X =0.

(Figure 7b,d), leading to trimodal probability distribu-
tions (Figure 7a,c), as first noted by Capitan et al. (2015).
Thus, ecological drift overcomes the stable coexistence
predicted by the corresponding deterministic model
through frequent extinctions of single species, which are
reversed when it successfully recolonizes from the regional
landscape. Note that making interspecific competition
weaker or making the carrying capacity larger (compared
with a1, = a1 =0.9 and K; = K, =50 shown in Figure 7)

would lead to the system spending less time close to the
monoculture equilibria for a given dispersal rate.

Our example of classic LV founder control (Figure 8)
is similar to that of deterministic coexistence (Figure 7)
at high dispersal rates (apparent coexistence;
Figure 8e,f) and low dispersal rates (with even more
infrequent transitions between monoculture equilibria,
Figure 8a,b). Intermediate dispersal rates illustrate a
qualitatively new outcome: alternation between two
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FIGURE 8 Example outcomes in the stochastic open system corresponding to founder control in the classic LV model (o, = o1 =1.2)
for increasing equal (m; = m, = m) dispersal rates: (a, b) m=10"3, (¢, d) m=10"1%, (¢, {) m=1071. (a, c, e) Stationary probability
distribution IA’(N 1,N3), colored according to coarse-grained states as in Figure 9. (b, d, f) Example time series. Given sufficiently high

dispersal rates, both species coexist; otherwise, the probability distribution remains bimodal. Other parameters: r; =r, = 1, K; =K, =K =50,

Ng1=Nga=K, X=0.

alternative coexistence states with relative dominance
by each species and the other maintained by mass
effects (Figure 8c,d) as seen in the deterministic open
system (Figure 3).

Figure 9 summarizes the coarse-grained outcomes
as a function of the competition coefficients for three
dispersal rates. As above, the stochastic model
exhibits analogs of the classic LV model outcomes:

(1) effective competltlve exclusion (N 1>0,N, ~0—blue
squares, N, >0,N; ~0—red squares), (2) stable coexis-
tence (N; >0,N, > 0—purple squares), and (3) apparent
founder control, with two peaks in the probability distri-
bution corresponding to monoculture equilibria
(ﬁ 1> O,N >, ~0and N 5> O,IQ 1 ~ 0—split blue/red squares,
as Figure 8a,b) or alternating dominance by each species
(N;>N,>0 and N,>>N;>0, split blue-purple/
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FIGURE 9 Summary of outcomes in the stochastic open system for decreasing equal (m;, = m, = m) dispersal rates: (a) m =101,

(b) m =102, (c) m =103, Each square represents the equilibrium distribution of patch types for a particular set of parameter

values, as in Figures 6-8. With high dispersal rates, both species coexist. Decreasing dispersal rates lead to competitive exclusion

with both the coexistence and (especially) founder control regions reduced compared to the classic LV model (Figure 1). Other

parameters: r{ =r, =1, K1 =K, =K =50, Np; =Ng, =K, X =0.

red-purple squares, as Figure 8c,d). The stochastic
open system also shows trimodal outcomes (both mono-
cultures plus coexistence states, as Figure 7c,d, split blue/
red/purple squares; Capitan et al., 2015).

Comparing stochastic and deterministic
open-system results

We can compare the outcomes for the stochastic
open-system model (Figure 9) to the outcomes in the

deterministic open-system model (Figure 4) to sepa-
rate the influence of dispersal and stochasticity on
Lotka-Volterra competition. For high dispersal rates,
the outcomes in the deterministic and stochastic
open systems are qualitatively similar (Figures 4a
and 9a). Both models exhibit expanded coexistence
regions and smaller founder-control regions in
a2-0p; space compared with the classic Lotka-Volterra
model (Figure 1), as dispersal heavily subsidizes inferior
competitors, making competitive exclusion more
difficult.
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For low dispersal however, the deterministic
open-system model (Figure 4b,c) differs markedly
from the stochastic open-system model (Figure 9b,c).
The deterministic open-system model (Equation 2)
approaches the classic Lotka-Volterra model
(Equation 1), as one would expect, while the stochastic
open-system model differs in two respects. First, the
coexistence region for the stochastic open system is
somewhat reduced, and second, the founder-control
region is strongly reduced. While these two differences
are both induced by stochasticity, as we explain below
and in Appendix S2, two different mechanisms are
responsible for the discrepancies. To understand these
two mechanisms, we must delineate how the effects of
stochasticity change with carrying capacity.

The deterministic open-system model is, in a sense,
the large-population limit of the stochastic open-system
model, as under very large populations, stochastic fluctu-
ations become small compared with the size of the popu-
lation. In Appendix S3: Figure S1, we depict the effects of
increasing carrying capacity under low dispersal
(m=1073). As the carrying capacity increases, the coex-
istence region approaches the coexistence region for the
deterministic open-system model. Thus, the reduction of
the coexistence region in the stochastic open-system
model compared with the deterministic model is
due to small population effects (ecological drift).
Curiously, the founder-control region exhibits the oppo-
site pattern as the carrying capacity increases, where
the founder-control region becomes even smaller
(Appendix S3: Figure S1). This occurs due to the asym-
metry in the switching rates between the two basins of
attraction for which species dominates a patch increases
with carrying capacity (see Appendix S2 for details).

METACOMMUNITY MODEL

Although the open-system models may be applicable on
shorter timescales and to mainland-island systems where
regional abundances may be treated as constant, the feed-
back from local to regional dynamics cannot be neglected
on longer timescales in metacommunities consisting of
many local patches. In particular, explanations of species
coexistence ultimately require a closed system that does
not rely on immigration from outside the system
(Chesson, 2000). At first thought, extending our stochas-
tic open-system model to multiple patches may seem
intractable due to the complexity of incorporating demo-
graphic stochasticity in even one patch (Equation 3).
Fortunately, as we show below, a closed-metacommunity
model can be derived with the same number of equations
as the stochastic open-system model, N2, . While this

closed-metacommunity model is nonlinear, it is still pos-
sible to efficiently solve for equilibria numerically. Unlike
the open-system models, species can now become extinct
regionally. Thus, there are now multiple equilibria,
corresponding to the empty system, monocultures of each
species, and potential coexistence. Invasion criteria
can also be calculated, allowing us to sharply
delineate the different competitive outcomes at the
regional metacommunity scale: competitive exclusion,
coexistence, and founder control.

We assume an infinite number of patches that are
identical in their underlying environmental conditions,
but that vary in their population densities at any instant.
We also assume that dispersal is global, connecting all
patches to each other equally (a spatially implicit
approach). We follow the dynamics of the probability dis-
tribution of community states P(N1,N,) as in Equation
(3). Due to ergodicity (Metz & Gyllenberg, 2001), this has
two equivalent interpretations: as the probability distri-
bution over time in a single patch and as the probability
distribution over space across the metacommunity. The
key insight is that the regional abundance Ng; of each
species is no longer a free parameter, but reflects the
mean abundance of that species averaged across the
probability distribution P(N1,N>):

Ngi=Ni= > P(N,Ny)N; 4)
(N1,N2)

Substituting Equation (4) in the master Equation (3)
yields our closed-metacommunity model.

Metacommunity model methods

As noted above, our closed-metacommunity model
Equations (3) and (4) is a nonlinear system of N% . equa-
tions. Therefore, it is not analytically tractable and must
be analyzed numerically. The most straightforward
approach is to numerically integrate the dynamics over
time. We use this method to study the dynamics of inva-
sion, but it remains too slow to carefully explore parame-
ter space.

An alternative approach is to focus on long-term out-
comes by finding equilibria and their stability. Given the
high dimensionality of the system, applying a numerical
root-finding algorithm directly to Equations (3) and (4)
with %:0 is slow and not guaranteed to converge.
However, each species can be characterized by a single
number, its average abundance N, greatly reducing the
dimensionality of the problem. We use the stochastic
open-system model to construct a black-box function that
outputs the average local abundance (N LN 2) for a given
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regional-abundance (Ng1,Ng,) input. To efficiently find
the metacommunity equilibrium, we apply a numerical
root-finding algorithm to this black-box function to find
(N1,N3) = (Ng1,Ngy), yielding a self-consistent solution
(see Ghoshal et al., 2004; Metz & Gyllenberg, 2001 for
similar approaches to different models).

We can also use this black-box function to
calculate metacommunity-level invasion criteria. First,
we find the species i monoculture equilibrium N; by
solving (N;,Nj) = (Ng;,0). Then, we introduce a
vanishingly small inoculum e of species j by setting
(Ngi-Ngj) =(Ni,€) and calculating its average abun-
dance N;. We define };; = log(N;/€) >0 as the invasion
criterion of species j into resident species i (see
Casagrandi & Gatto, 2002; Massol et al., 2009, and
Metz & Gyllenberg, 2001 for related approaches to
metacommunity invasion criteria). These invasion
criteria can be interpreted the usual way (Grainger et al.,
2019; Turelli, 1978) to determine the outcome of competi-
tion at the regional metacommunity scale: if A, >0 and
M1 <0, species 1 excludes species 2; if A;,<0
and 2, >0, species 2 excludes species 1; if A;,>0 and
A1 >0, species 1 and 2 coexist; and if A, <0 and A,; <0,
there is founder control. Boundaries between outcomes
in parameter space can be determined numerically by
setting A;; = 0.

Metacommunity model results

We first look at the range of outcomes in the classical LV
model by varying the competition coefficients a;, and oy
for a set of dispersal rates assumed to be equal
(m; = my =m) (Figure 10). For large dispersal rates, the
outcome nearly matches that of the classic LV model
(Figure 10a vs. Figure 1). Echoing the results of the sto-
chastic open-system model (Figure 9), as dispersal
becomes more limited, the regions of competitive exclu-
sion expand at the expense of the coexistence and
founder-control regions, with the founder-control region
practically disappearing for m<10~3% (Figure 10b-d).
Note that neutrality in the classic LV model
(012 = ap; =1) leads to regional neutrality in this case of
equal dispersal rates. Looking at the distribution
of coarse-grained outcomes in cases of coexistence, we
see that species are less likely to co-occur in a patch when
interspecific competition is large (Appendix S3:
Figure S2). Increasing the community size by increasing
K enlarges the coexistence region, but has little effect on
the founder-control region (Appendix S3: Figure S3), as
explained for the stochastic open system above and in
Appendix S2.

Next, we consider the impact of unequal dispersal
rates (Figure 11), assuming symmetric competition
(012 = 01 = @) across the range of outcomes in the classi-
cal LV model. In the case of coexistence in the classic LV
model (x<1), species coexist at the metacommunity
scale if neither species’ dispersal rate is below a threshold
value or if they have similar dispersal rates
(Figure 11a,b). In the case of neutral competitors (o = 1),
stable coexistence at the metacommunity scale is impos-
sible: the species with the higher dispersal rate excludes
the other (Figure 11c).

The case of founder control in the classic LV model
(a>1) is more complicated (Figure 11d-f). As seen in
Figure 10, classic LV founder control never scales up to
regional coexistence. Much like the case of classic LV
coexistence, when both species have low dispersal rates,
the better disperser outcompetes the other species at the
metacommunity scale, since dispersal must be high
enough for the invader to take over patches occupied by
the resident species. However, continuing to increase
dispersal rates leads to founder control at the
metacommunity scale. This occurs because when dis-
persal rates are too high, the invader is unable to hold
onto a patch, since individuals quickly disperse away.
Thus, overall, an intermediate dispersal rate is best for a
species to invade a monoculture of the other.

These local-regional feedback also alter the dynamics
of the invasion process (Figure 12). Near the upper bound-
ary of the region where species 1 wins (“x” marker in
Figure 11e), the invasion accelerates over time, displaying
faster-than-exponential dynamics (Figure 11b). This is the
result of positive feedback between patches occupied and
the takeover of new patches. As more patches become
occupied regionally, the immigration rate increases, mov-
ing the boundary between local basins of attraction closer
to the resident equilibria, which facilitates further stochas-
tic transitions between states, accelerating the invasion
process.

External disturbances (X > 0) have little effect on the
outcome in the case of coexistence (a < 1; Appendix S3:
Figure S4a,b) or neutrality (a=1, Appendix S3:
Figure S4c), but change the outcomes in the case of foun-
der control in the classic LV model (a > 1; Appendix S3:
Figure S4d-f, compared with Figure 11). Disturbances
increase the importance of colonizing empty patches,
so that regions of parameter space that resulted in
regional founder control in the absence of disturbances
now result in competitive exclusion. The ability to colo-
nize recently disturbed patches makes it easier for better
colonizers to exclude poorer ones, a result that is mir-
rored in the case of a competition-colonization trade-off
(see below).
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FIGURE 10 Outcomes in the metacommunity model for decreasing equal (m; = m, = m) dispersal rates: (a) m=1, (b) m=10"1,
(¢c) m=1072,(d) m=10"3. High dispersal rates conform to the classic LV model. Both the coexistence and (especially) founder control
regions shrink, and are replaced by competitive exclusion, with lower dispersal rates. Other parameters: r; =r, =1, K; =K, =50, X =0.

Finally, we consider two trade-offs that allow regional
coexistence despite local competitive exclusion: the
competition-colonization  trade-off = (Hastings,  1980;
Hutchinson, 1951; Tilman, 1994) and the successional-niche
trade-off (Pacala & Rees, 1998). In both cases, we assume
that species 1 is the better local competitor.

A competition-colonization trade-off occurs when
the inferior competitor has a higher dispersal rate
(my>m;) (Figure 13). For a broad range of parameter
values, there is regional coexistence, and for a narrow
range at a high dispersal rate of species 2, regional foun-
der control occurs (Figure 13a). Figure 13b,c shows the
patch dynamics expected under competition-colonization
coexistence: recently disturbed patches are rapidly

colonized by species 2, which dominates until species
1 arrives and displaces it. Interestingly, for larger dis-
persal rates of species 2, it is not excluded when species
1 colonizes the patch but co-occurs locally due to mass
effects (Figure 13d,e).

A successional-niche trade-off exists when the inferior
competitor has a higher local growth rate (r,>r;)
(Figure 14). Again, there is a broad range of parameter
values where the species coexist wedged between regions
of competitive exclusion (Figure 14a). Figure 14b,c show
the patch dynamics under successional-niche coexis-
tence: both species have the same probability of coloniz-
ing a recently disturbed patch, but the faster growing
species reaches its carrying capacity more quickly and
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FIGURE 11 Outcomes in the metacommunity model for increasing symmetric (o, = az; = o) interspecific competition coefficients:

(&) a=0.9, (b) x=0.99, (c) a =1, (d) a=1.01, () a =1.1, (f) « = 1.5. For parameters with classic LV coexistence or neutrality, the species
with the higher dispersal rate performs better (panels a-c). However, with classic LV founder control, intermediate dispersal rates are
optimal (panels d, e, ). Other parameters: r; =r, =1, K3 =K, =50, X =0. Dot and X in panel (e) indicate parameter values simulated in
Figure 12.
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FIGURE 12 Invasion dynamics in the metacommunity model for two examples of regional competitive exclusion in the classic
LV case of founder control: (a) m; =0.01 (dot in Figure 11e), (b) m; =0.1 (X in Figure 11e). Upper and lower panels are identical
except for the scaling of the y-axis (arithmetic vs. logarithmic) to show faster-than-exponential growth in panel (b). Other
parameters: o1, =0y = =1.1, m, =0.002, ry =r, =1, K; =K, =50, X =0.

then slows the takeover by the superior competitor
(Figure 14c).

DISCUSSION

“[Plerhaps the major weakness of traditional
community ecology, and why it has so conspic-
uously failed to come up with many patterns,
rules and workable contingent theory, is its
overwhelming emphasis on localness.”
—Lawton, 1999

John Lawton’s famous critique of community ecology
levied harsh criticism of the field’s focus on local dynam-
ics. Metacommunity ecology provides one response that
gives insight into the importance of regional dynamics on
community outcomes (Leibold & Chase, 2017; Leibold
et al, 2004). Yet, gaps in our understanding of the

interplay between local and regional scales remain. In
particular, although regional processes are no longer
neglected, formal treatments considering both the local
and regional scales have been rare (see Thompson et al.,
2020). For example, regional processes are often treated
in a patch dynamics framework, which ignores complex-
ity within patches. Only by incorporating both local
and regional processes can a complete picture of
metacommunities emerge.

To address this gap, we built a series of simple models
of two-species metacommunities based on Lotka-
Volterra competition that includes dispersal, demo-
graphic stochasticity and random external disturbances.
We studied these models in two settings, each appropri-
ate for different natural systems. In the open-system
models, we focused on one patch, with dispersal coming
from a fixed regional community (island-mainland); in
the closed-system, metacommunity model, we considered
an infinite number of patches coupled by dispersal.
The metacommunity model builds on the stochastic
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FIGURE 13 Competition-colonization trade-off in the metacommunity model can permit stable coexistence (01, =0.5,01 = 2).
(a) Overview of outcomes. (b, ¢) m, =1072, (d, e) m, = 1. (b, d) Stationary probability distribution f’(N 1,N2), colored according to
coarse-grained states as in Figure 9. (c, e) Example time series. Disturbances are indicated by triangles under the x-axis. Other
parameters: ry =r, =1, K1 =K, =50, m; = 1073, X =0.01.

open-system model by setting Nz = N so that the regional ~ on a single patch embedded within a larger landscape.
abundances emerge from the collection of local patches. Species cannot be driven extinct due to continuous immi-
The main difference is that the open-system models focus  gration, although patches can be dominated by one
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FIGURE 14 Successional-niche trade-off in the metacommunity model can permit stable coexistence (a;; =0.5,05; = 2). (a) Overview of

outcomes. (b) Stationary probability distribution P(N;,N,), colored according to coarse-grained states as in Figure 9. (c) Example time series.

Disturbances are indicated by triangles under the x-axis. Other parameters: r; =10~1,r, =10, K; =K, =50, m; =m,; =10"3, X =0.01.

species. In contrast, the metacommunity model operates
at a larger spatial scale, which allows distinct regional
outcomes (competitive exclusion, coexistence, founder
control) to emerge.

Scaling outcomes from local to regional

Because our metacommunity model includes both
explicit stochastic within-patch population dynamics and
the colonization and extinction of patches, it can be used
to show the interplay between local and regional out-
comes. Notably, outcomes from the classic LV model
(Figure 1) do not necessarily scale up to the same
regional outcomes. We summarize the major results
below, contrasting the open- and closed-system models
and connecting them with other models.

Classic LV coexistence

When the classic LV model predicts local coexistence
(012 < 1,001 <1), the metacommunity model often does
as well (Figures 10 and 11a,b). However, the size of the
coexistence region is reduced when dispersal is limited. If
one species is a relatively poor competitor (o close to
one [Figure 10]) or a relatively poor disperser (small m;
[Figure 11a,b]) then it will be regionally excluded.
Ecological drift makes coexistence more difficult, as also
seen in the stochastic open-system model (Figures 7a,b
and 9). Neuhauser and Pacala (1999) found a similar
shrinking of the coexistence region in a spatially explicit
stochastic model. In the presence of disturbances
(Appendix S3: Figure S4), an additional impediment to
coexistence arises. The decreased abundance N; in jointly
occupied patches reduces a species’ effective colonization
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rate m;N;, so it may be excluded if it was dispersal lim-
ited, as seen in a patch-occupancy model (fig. 3a in
Klausmeier, 2001).

In the coexistence region, the probability distribution
of community states P(N;,N;) can be unimodal,
bimodal, or even trimodal (Figures 7 and 9). Similar pat-
terns of multimodality in stochastic models can result
from what is known as a “saddle crawl-by” (Hastings
et al, 2021), when an unstable equilibrium is
attracting in one dimension (observed in a predator-prey
model; Abbott & Nolting, 2017). A related phenomenon,
“flickering,” occurs when stochastic excursions to
attractors become more common close to a critical transi-
tion (Scheffer et al., 2009), as observed in trophic cas-
cades (Carpenter et al., 2008) and lake eutrophication
(Carpenter & Brock, 2006). In our model, these effects
result in increased time spent near the monoculture equi-
libria, especially for parameter values that are close to
where the coexistence equilibrium loses its stability.
However, multimodal probability distributions in our
model can also occur for parameters that are firmly in
the classic LV coexistence region (see also Capitan et al.,
2015). Such multimodality requires stochasticity due to
the discreteness of individuals and small population sizes.
This phenomenon, known as discreteness-induced transi-
tions, has previously been observed in chemical reaction
networks (Bibbona et al., 2020; Togashi & Kaneko, 2001).

Classic LV exclusion

When the classic LV model predicts competitive exclu-
sion (oy;>1,a3<1), the open-system models predict
dominance by the superior competitor, with the inferior
competitor persisting due to immigration from the region
(Figures 2, 4, 6 and 9). This represents the mass-effects
paradigm, which is a powerful explanation of local diver-
sity (Koffel et al., 2022; Mouquet & Loreau, 2003).

The metacommunity model also predicts competitive
exclusion in regions where the classic LV model predicts
competitive exclusion if the competitors have equal growth
and dispersal rates (r; = rj,m; = m;) (Figure 10). However,
in the face of external disturbances that reset patches
(X >0), regional coexistence can occur through two well
known mechanisms: the competition-colonization trade-
off between competitive ability and dispersal rate
(Hastings, 1980; Hutchinson, 1951; Tilman, 1994;
Figure 13) and the successional-niche trade-off between
competitive ability and growth rate (Pacala & Rees, 1998;
Figure 14). Our results echo classic patch-occupancy models
of these trade-offs (Pacala & Rees, 1998; Tilman, 1994),
although regional competitive exclusion of the superior
local competitor is possible unlike in a strict hierarchical

competition model (Tilman, 1994). Thompson et al. (2020)
showed that alpha diversity increased with increased dis-
persal under a competition-colonization trade-off. We find
the same in our model (Figure 13d,e) and dissect the mech-
anism underlying this phenomenon: the combination of
patch dynamics and mass effects allows the superior
colonizer to persist in patches dominated by the
superior competitor. We also find new phenomena in
the competition-colonization case, such as regional founder
control (Figure 13a). In contrast with a patch-occupancy
model (Orrock & Watling, 2010), we found that ecological
drift does not preclude coexistence when coexistence is
mediated by a competition-colonization trade-off. This dis-
crepancy is likely due to the lack of explicit local dynamics
in that model.

Classic LV founder control

The case when the classic LV model predicts founder
control (o; > 1,00 >1) is the most complicated. For
equal low dispersal rates (m;=m,), the stochastic
open-system model shows dominance by one species,
unless the competition coefficients are nearly balanced or
the carrying capacities are very small, in which case the
two alternative stable states led to a bimodal probability
distribution (Figures 8a-d and 9b,c). In a single patch,
this would represent stochastic switching between stable
states (Figure 8b,d). In a landscape of patches subject to
the same fixed immigration, this would appear as a spa-
tial mosaic of the different states. Without stochastic
switching, the founder-control region approaches the
classic LV model for small dispersal rates (Figure 4c).
Larger dispersal rates led to apparent coexistence, as
immigration dominates local processes (Figures 4a, 8e,f
and 9a).

The feedback between local and regional dynamics
led to different results in the closed-metacommunity
model (Figure 10). At high, equal dispersal rates, the
regional outcome matches the classic LV outcome
(Figure 10a). This is not surprising because the whole
metacommunity is effectively well mixed and reflects the
positive feedback where a regionally abundant species
will send more immigrants to other patches, solidifying
its hold on them. As dispersal becomes more limiting, the
relative strength of the alternative stable states (i.e., the
size of their basin of attraction and depth of their poten-
tial well; Nolting & Abbott, 2016) seen in the stochastic
open system (Figure 9) can overcome this positive feed-
back, leading to competitive exclusion at the regional
scale (Figure 10b-d). Ecological drift is essential to this
result because it allows local patches to occasionally flip
from one stable state to the other, more often from the

85U80|7 SUOWILIOD BAIIeR.D 8]qedt|dde ayy Aq peusenoh aJe sspe YO ‘8sn Jo se|ni 1oy Areiqi8UIIUO 8|1 UO (SUORIPUOD-PUE-SWBILI0D A8 |IMAeIq Ul UO//:SANY) SUORIPUOD Pue SWie | 8u1 88S *[£202/TT/Z0] uo Ariqi]auljuo A8 (1M ‘soueld 8ueIyo0D AQ TEGT WOS/Z00T 0T/I0p/AW0D A8 |imAteIq Ul |UOS eUINO fesa//SAny WOl pepeo|umod ‘v ‘€202 ‘GTOLLSST



ECOLOGICAL MONOGRAPHS

| 21 0f 26

weaker stable state to the stronger (see Appendix S2:
Figure S1 for an example in the stochastic open-system
model). This contrasts with the open-system results,
whose spatial mosaic could be interpreted as long-term
coexistence.

When dispersal rates are not equal, the regional out-
come can be either competitive exclusion or founder con-
trol (Figure 11d-f). A species that disperses slightly more
than its competitor can exclude it but, if it disperses too
quickly, it spreads its individuals too thinly across the
landscape, failing to hold onto patches and therefore
making a successful invasion unlikely. The advantage of
intermediate dispersal rates is reminiscent of the phalanx
strategy of clonal plants (Lovett Doust, 1981). The posi-
tive feedback between regional abundance and local
dynamics can be seen in the accelerating invasion rate as
a species becomes established (Figure 12b).

Patch-occupancy models of local founder control pre-
dict either neutral regional dynamics (equal dispersal
rates) or competitive exclusion by the better disperser
(Klausmeier & Tilman, 2002; Shurin et al., 2004). The dif-
ference with the metacommunity model in this paper can
be attributed to the lack of explicit local dynamics in
these patch-occupancy models, which severs the feed-
back from regional abundance to local dynamics.
Spatially explicit models with generic initial conditions
also predict regional competitive exclusion (Neuhauser &
Pacala, 1999), unless the habitat is discrete (Levin, 1974)
or nonconvex (e.g., two spatial regions connected by a
thin corridor; Mimura & Kawasaki, 1980), which can sta-
bilize a spatial mosaic of the two species.

Classic LV neutrality

The case of identical competitors (a3 = a1 = 1) is mathe-
matically degenerate, but serves as the basis of the
neutral-theory paradigm (Hubbell, 2001). In our deter-
ministic open-system model, this degenerate outcome is
replaced by a unique stable equilibrium (Figure 4). In our
stochastic open-system model, it results in a bimodal
probability distribution at low dispersal (Figure 9b,c)
and apparent coexistence at high dispersal (Figure 9a).
Thus, when dispersal is incorporated, we find nothing
exceptional about true neutrality: the outcome for
slightly different competition coefficients is qualitatively
similar.

In our closed-metacommunity model, local neutrality
translates to regional neutrality only if species also have
equal dispersal rates (m; = m,), as evidenced by the inter-
section between outcomes precisely at a;; =0 =1 in
Figure 10. However, the slightest difference in dispersal
rates leads to competitive exclusion of the poorer

disperser (Figure 11c). Once again, feedback between
local and regional dynamics drives the difference
between the stochastic open-system and metacommunity
models.

Role of deterministic and stochastic
processes

Our models include both deterministic and stochastic
processes, and we present our results in terms of proba-
bility distributions of different community states. Here
we highlight the role of deterministic and stochastic pro-
cesses in determining the outcome of competition.

Deterministic processes

The metacommunity paradigms often focus on the situa-
tion of local competitive exclusion (Leibold & Chase,
2017). In contrast, our LV model continuously covers all
local outcomes, from competitive exclusion to coexis-
tence and founder control, with neutrality in the center
(Figure 1; see also Thompson et al., 2020). The details of
local selection have a strong impact on the regional out-
come, although the borders between outcomes may shift
(Figures 9 and 10).

Stochastic processes

Demographic stochasticity generally has the largest
impact on small populations in simple birth-death
models (Renshaw, 2011). This raises the question: what is
small? Here, we see that coexistence is robust even in rel-
atively small communities with a carrying capacity
K =50 individuals (Appendix S3: Figure S3) unless one
species was nearly excluded in the deterministic model.
Although this suggests that coexistence is robust to the
effects of demographic stochasticity unless the commu-
nity consists of only a handful of individuals, other
results make clear that stochasticity can have a qualita-
tive influence even in relatively large populations. For
example, the outcome in the founder-control region
remains different from the deterministic model even
for K = 200.

The open-system models also show markedly differ-
ent behavior in the founder-control region under low dis-
persal and increasing carrying capacities compared with
their deterministic counterparts (compare Figure 4c and
Appendix S3: Figure S1). In the limit of high carrying
capacity K, the stochastic model should become more
similar to the deterministic one due to relatively smaller
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fluctuations but, since it does not, it leaves us with the
question of how to reconcile the two models on a biologi-
cal level. As we show in Appendix S2, the answer is that
while founder control is lost for the steady-state distribu-
tion in the stochastic model even under high carrying
capacities, the time it takes for this to play out becomes
increasingly long with increasing K. For even moderately
large K, the time it takes for founder control to become
lost is on the order of billions of generations. For all prac-
tical purposes then, the stochastic open system exhibits
founder control for the time scales relevant to ecological
communities. Thus, for large enough populations, the
deterministic and stochastic open-system models can be
said to agree on when there is founder control, provided
we restrict the time available for the dynamics to
unfold. This nuances our results on the loss of the
founder-control region in the open-system models.
Indeed, our results here suggest that founder control as a
phenomenon cannot be properly gauged from the sta-
tionary distribution alone, and that an appropriate time
scale must be set. Our model itself provides no easy way
of determining this, and the appropriate time scale must
ultimately be informed by the biology of the system of
interest.

Furthermore, stochasticity is vital for a number of
results from our metacommunity model, supporting the
claim that its impact on community ecology is often quali-
tative and predictable as opposed to just “adding noise” to
a deterministic trajectory (Shoemaker et al., 2020). Most
importantly, stochasticity forces an exploration of phase
space. As an example, classic LV bistability (i.e., local
founder control) can result in complex and rich regional
dynamics, since we see that switching between the two
stable states will occur given a long enough waiting time.

Environmental stochasticity is also incorporated
through random external disturbances that drive both
species to become extinct locally. Coexistence through
the competition-colonization and successional-niche
trade-offs relies on these stochastic events, followed by
faster population dynamics. This separation of regional
and local timescales is an important aspect of under-
standing metacommunities.

Metacommunity paradigms

Even in a homogeneous environment, our models illustrate
all of the metacommunity paradigms. The mass-effects par-
adigm is seen in the open-system models at high dispersal
(Figures 2 and 8e), but is mostly missing from the
metacommunity model except in the competition-
colonization case at high dispersal (Figure 13d,e). This
is not surprising since we assume a homogeneous

environment, and mass effects require a stable source of
immigrants that is lacking in the metacommunity model.
Including underlying environmental variation would be
necessary to see mass effects in our metacommunity model
and represents an important future direction for unifying
metacommunity ecology. In place of mass effects at high
dispersal rates in the metacommunity model, species
sorting occurs (Figure 10a). More generally, in our model,
species sorting occurs whenever the regional outcome
matches the expected local outcome, for example away
from the boundaries between outcomes (open-system:
Figure 9, metacommunity: Appendix S3: Figure S2). Patch
dynamics occurs when there are multimodal probability
distributions. This arises when there are external distur-
bances (X>0), as in the competition-colonization
(Figure 13) and the successional-niche cases (Figure 14).
Patch dynamics can also result without disturbances at
the border between outcomes due to ecological drift
(Figure 9, Appendix S3: Figure S2).

Empirical tests

Although the main goal of this paper is to unify dispa-
rate strands of competition and metacommunity theory,
our models (open-system and closed metacommunity)
make testable predictions in the form of the bifurcation
diagrams (Figures 9-11, 13, 14; Appendix S3:
Figures S1-S4). They recapitulate the predictions of
their constituent models (mass effects, the neutral
theory, and patch dynamics, including competition-
colonization and successional-niche trade-offs), so
empirical tests of those models are also relevant to ours.
However, our models also make some novel predictions:
the intermediate optimum dispersal rate for
invasion with local founder control (Figure 11d-f),
the possibility of accelerating invasions (Figure 12b) and
the regional exclusion of superior competitors in the
competition-colonization scenario (Figure 13). One gen-
eral recommendation for empiricists interested in test-
ing this theory is to report the probability distribution of
community states (as in Figures 6-8a,c,e), either over
time or over space.

These predictions could be tested in laboratory micro-
cosms using protists (e.g., Altermatt et al., 2015; Legault
et al., 2019) or Tribolium beetles (e.g., Dallas et al., 2021;
Mertz et al., 1976), in either a single patch subject to
immigration (open-system) or an array of patches
coupled by dispersal (metacommunity). In natural sys-
tems, experimental tests of the open-system model pre-
dictions may be more feasible, because single
communities are the experimental units and regional
abundances and dispersal rates could be manipulated.
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The open-system model is more generally applicable,
because it makes no assumptions about the regional set-
ting, but since it assumes external immigration, it cannot
address questions of true regional coexistence. The
closed-metacommunity model could be tested using nat-
ural metacommunities, such as inquiline communities of
pitcher plants (Miller & Kneitel, 2005) or nectar microbes
(Chappell & Fukami, 2018).

Limitations and future directions

Although we believe our metacommunity model is useful
due to both its simplicity and generality, it naturally has
limitations. To maintain computational tractability, we
make a number of simplifying assumptions. We assume
an infinite number of patches in a spatially implicit
framework allowing us to ignore correlations between
regional events. In other words, an infinite number of
patches guarantees that each patch is governed by the
same master equation. Results from epidemiology
(Ghoshal et al.,, 2004) and predator—prey dynamics
(Sjodin et al., 2014) suggest that this is likely a useful
approximation for much smaller and spatially explicit
metacommunities. Based on their simulations, our model
could reasonably be expected to capture the qualitative
dynamics of metacommunities with only a handful of
patches. That said, some qualitative differences would
arise from including explicit space. Most notably, the
homogenizing effect of dispersal on patches is weaker in
spatially explicit models (Thompson et al., 2020).
Relatedly, the cost of having too high a dispersal rate
with local founder control (Figure 11d-{) is likely to have
been weaker because species would not distribute them-
selves as thinly across the entire landscape (i.e., they
could still amass at high densities in neighboring
patches). Finally, exponential and accelerating invasion
rates (Figure 12) may be replaced by traveling waves
where invader abundance increases quadratically, unless
dispersal kernels are fat-tailed (Kot et al., 1996).

Further, most of our results focus on long-term
dynamics (except Figure 12), with the time scale to reach
these dynamics often unclear, as we saw when compar-
ing the stochastic and deterministic open-system models
in the founder-control region. Such assumptions are nec-
essary, however, as our model is computationally expen-
sive. Consequently, we limit our analyses to communities
with two species. Although our modeling framework
expands naturally to an arbitrary number of species, it is
unclear how to analyze our model practically if it were to
be expanded to include more species (see also Capitdn
et al., 2017). This framework also lends itself to exten-
sions that consider evolution in spatially structured

populations (e.g., Leibold et al., 2019). In addition, we
call on further work to analyze our current framework
and apply it to a range of scenarios, such as different
birth-death processes and community interactions
beyond competition (e.g., predator-prey interactions;
Sjodin et al., 2014).

Most significantly, we study a homogeneous
underlying environment. This feature is particularly
important, since environmental heterogeneity is
central to the Leibold et al. (2004) classification of meta-
communities into paradigms, species sorting and mass
effects in particular. Including underlying patch hetero-
geneity is an important next step toward a general theory
of competitive metacommunities that can fully capture
all existing paradigms. Recent papers have developed
such simulation models and analyzed them for
multispecies communities (Ovaskainen et al., 2019;
Shoemaker & Melbourne, 2016; Thompson et al., 2020).
Due to the differing goals of these studies, the effects of
dispersal and stochasticity on two-species competition
were not analyzed thoroughly, as we have done here.
Thus, extending our framework to consider a heteroge-
neous environment would serve as a valuable bridge
between our model and other recent studies.

Conclusions

Most broadly, we provide perhaps the simplest possible
model unifying the fundamental processes of community
ecology of selection, drift, and dispersal. Doing so gives us
a computationally tractable model of metacommunity ecol-
ogy that moves beyond the standard paradigms. We high-
light the flexibility of our approach through case
studies like competition-colonization and successional-
niche trade-offs. Finally, we show how the dynamical
interplay of processes occurs at local and regional scales
and ultimately leads to competitive outcomes in
metacommunities.
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