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Abstract

As Water distribution infrastructures are ageing, their modernization process is leading to an increased incorporation of connected
devices into these physical systems. This transition is changing the nature of water distribution control systems from physical
systems to cyber-physical systems (CPS). However, this evolution is associated with an increased vulnerability to cyber-attacks.
Detecting such attacks in CPS is gaining traction in the scientific community with the recent release of cyber-physical datasets
that capture simultaneously the network traffic and the physical state of a water distribution testbed. This novel paradigm of
conjoint availability of these two types of data from a common source infrastructure opens a new question on how to combine
their information when training machine learning models for attack detection. As an alternative approach to previous models that
rely on model aggregation, this paper introduces Multi-Layer Concatenation, a combination scheme to merge the information from
the physical and network parts of a CPS from a data perspective, through a time-based join operation coupled with a propagation
process to keep the coherence of the global system. The evaluation of its impact assesses its benefits for machine learning-based
detection on three cyber-physical datasets, by measuring machine learning models’ performances on physical and network data
separately, and then on data combined through the proposed scheme.
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1. Introduction

Because water distribution systems are critical infrastructures, the attacks targeting them often stay undisclosed
to the public. Since the year 2000, the diversity of attackers’ profiles, motives and means are converging towards
an archetype of attacks conducted by outsiders using cyberattacks such as ransomware or remote-access, with the
intent of disrupting or paralyzing the infrastructure [15] [33]. The development of proactive approaches that avoid
such attacks through early detection is a task that Machine Learning (ML) algorithms have proved to be proficient
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at [35]. The rapid development of Internet of Thing (IoT) technologies causes an increase in the connectedness of
water distribution systems, shifting these physical systems into CPS, meaning that they are now composed of two
interacting subsystems, a physical one for water handling and a cyber one supporting the communication between
the devices and third party supervision systems. With cyber-attacks becoming prominent in the landscape of threats
against water distribution infrastructures, there has been an effort in the scientific community to better represent these
CPS in publicly available datasets, through physical datasets incorporating cyber-attacks [3] [31], and more recently
via cyber-physical datasets, with simultaneous captures from physical sensors and network traffic. Although the use of
either of these two types of data to develop ML models for cyber-attack detection is well represented in the literature,
the release of cyber-physical datasets opens novel research questions on how to combine the information present in
the whole system through those two data types, and what impact it has on detection performance.

To address these challenges, this paper introduces Multi-Layer Concatenation as a way to combine the information
from both subsystems from a data perspective, which complements the approach proposed in [12] that combines the
information from a model perspective, for which numerous models must run in parallel, implying heavy computational
cost, in addition to requiring a very specific implementation for the underlying infrastructure. Proposed Multi-Layer
Concatenation solves these issues by not being tied to the infrastructure and requiring less computational power.
Experiments consisting of applying Multi-Layer Concatenation on 3 cyber-physical datasets led to better Machine-
Learning model performances than when using physical or network data separately for multiple machine-learning
models, further establishing the combination of information from physical and network data as a promising research
field.

The remainder of this paper is organized as follows: Section 2 presents the state of the art, Section 3 explicits the
requirements for ML base cyber-attack detection, Section 4 presents the different cyber-physical datasets used and a
taxonomy of the cyber-attacks they incorporate, Section 5 describes the physical and network characteristics of the
datasets, Section 6 defines the proposed Multi-Layer Concatenation, Section 7 describes the experiments conducted
to assess its effect on ML models performances, followed by the presentation of the results in Section 8 and their
discussion in Section 9. Section 10 concludes this work.

2. State of the Art

This section highlights the traditional algorithms used for cyber-attack detection by comparing their performances
on network data and physical data respectively. Recent works on approaches to combine the information from physical
and network data is presented, with benefits on detection that motivate our work on combining the information from
a data perspective.

2.1. Detection of attacks against water distribution infrastructures

As described in the precedent section, the CPS nature of water distribution infrastructures makes cyber-attack
detection possible both on the network part and on the physical part. This section reviews the literature on attack
detection first on network data, then on physical data.

In a review comparing published ML algorithms performances for attack detection on cybersecurity datasets [25],
SVM, RF and DT achieve the best performances on intrusion detection tasks in terms of accuracy and precision, but
not for the recall metric, which represents a trade-off in prioritizing a high true positive over a low false negative rate.
In addition to the global performance evaluation of models, this study highlights how the performances vary depending
on the datasets and model, for instance, RF achieved 98.10% precision and 98.10% recall on KDD CUP99 dataset [24],
but only 81.40% precision and 75.30% recall on the NSL-KDD dataset (2009) [32]. A benchmark study comparing
tree-based approaches to deep learning approaches for tabular data, which network traces are part of, showed that
tree-based approaches outperform on both classification and regression tasks, with XGBoost [7] standing out as the
overall best performer. An empirical explanation of this observation points towards ANN being more affected by
uninformative features and less efficient at fitting irregular functions.

The use of physical data is already well established in the field of water distribution to monitor the physical pro-
cesses, with the first Supervisory Control And Data Acquisition (SCADA) systems being developed in the 1970s [13],
democratising the acquisition and storage of data. This availability of data benefits ML algorithms, allowing them to
be trained on physical monitoring tasks such as pipe failures[34] or leaks detection and localization [17]. However, in
addition to purely physical events, cyber attacks effects also reflect on the physical processes and thus ML algorithms
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can be used to detect them [22]. The Battle of the Attack Detection Algorithms (BATADAL) [31], which is a compe-
tition to develop cyber-attack detection algorithms on physical data of a water distribution network, had participants
that used ML algorithms in their final solution, such as Recurrent Neural networks (RNN) [5], Convolutional Varia-
tional Auto-encoder (CVAE) [6], RF [2] and MLP [1]. The ranking of these solutions is MLP, RNN, CVAE, and RF.
It is to be noted that these algorithms were not used as standalone solutions and were only part of bigger algorithmic
pipelines and that the best solution of the competition [16], with an accuracy of 97.5%, is not based on ML but used
an error threshold between a simulation of the water network and the SCADA data. In addition to the original con-
testants, recent work on the BATADAL dataset used Temporal Graph Convolutional Network and High Confidence
Auto-Encoder (HCAE) [28], respectively ranking eighth and third when put in the context of the competition, with
the latter being pointed out by the authors as more robust against previously unseen attacks.

These performance results show that the information present in network datasets varies between datasets and can
be insufficient to achieve good cyber-attack detection performances, while physical datasets allow good cyber-attack
detection performances. This points towards the potential benefits of combining the information present in these two
distinct types of data, allowing a complete representation of the system for the models to be trained on.

2.2. Combining physical and network information

CPS are multi-layer systems, with each layer in interaction with the others. The security of these systems needs
to consider these multiple layers together with their interaction, which cannot be done when considered individually.
ML models applied to CPS security thus need to integrate both the cyber and physical parts. However, the recent
identification of this problem is reflected in the literature by a lack of methods for performing the combination of
information of the different layers and is identified as a research gap in the field of CPS security [4].

One method based on ”hybrid multi-formalism” described in [12] consists of a combination of the prediction of
unsupervised anomaly detection models run separately on the physical and network data, that are then combined
through Bayesian networks, leveraging the interpretability of probabilistic modeling. Their results on specific attack
scenarios of the HITL dataset [11] achieve a precision of 99,75% and recall of 95,74% for the first scenario, and a
precision of 99,25% and a recall of 97,79% for the second scenario. These performances are an improvement over the
performances of the Naive Bayes algorithm, also a probabilistic model, from the HITL dataset associated paper [11],
which upon being trained separately on physical and network data achieved a precision of 66% and a recall of 92% on
physical data, and a precision of 90% and a recall of 15% on network data. It is to be noted that these last performances
were obtained with all attack scenarios put together rather than training on them individually. The results obtained by
this combination method focusing on the consolidation of the output of different models prove the progression margin
that can be obtained when shifting from treating physical and network data separately, to combining their information
during the learning process.

3. Requirements for detecting Attacks

This section explains the requirements for the efficient use of ML models for cyber-attack detection, and identify
the factors to take into account for evaluating our proposed Multi-Layer Concatenation.

Cyber-attack detection is well supported in the literature by the regular release of labelled datasets from the network
communication field on which to train models [27] [23]. The metrics used by the community to evaluate the detection
capability of developed models are mainly accuracy, precision and recall [26] (formulas given in appendix Appendix
A) but biases in these metrics notably in the case of unbalanced classes leads to an increased reliance on metrics
that take class imbalance into account such as balanced accuracy and Matthews Correlation Coefficient (MCC) [8]
which produces values that better represents the overall model performance in the case of negatively and positively
unbalanced datasets. The trustworthiness of the model and its prediction are challenges for ML applied to cybersecu-
rity, especially to critical infrastructures such as water distribution networks. This trustworthiness is measured by the
proportion of false alarms, which translates to the False Positive Rate (FPR) metric, which needs to be minimized to
avoid triggering ”alarm fatigue”, which effect on the personnel includes distrust in the alarm, boredom and apathy [9].
Trustworthiness is also tied to the explainability of the model used [19]. Models deemed ”Black-Boxes” such as MLP
cannot provide an interpretability of the output results, contrary to tree-based models. In the context of cybersecurity,
explainability is crucial to allow for quick identification of the attack entry-point, which then leads to faster isolation
of the compromised systems and quickens the resolution of the attack against the system.
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In the context of Multi-Layer Concatenation, its impact on the aforementioned metrics and models is a key evalu-
ation of its viability for cyber-attack detection.

4. Detecting Attacks against Water Distribution Networks

The multiplication of cyber-attacks against water treatment facilities [? ] [33] calls for better attack detection
models. These infrastructures categorized as CPS [30] use computational means to operate physical operations. This
duality comes with an enlarged attack perimeter, making them vulnerable to attackers operating in the cyberspace.

The release by the scientific community of cyber-physical datasets as well as tools to generate cyber-physical
data [21] [20] represents a notable step towards more representative data for these types of infrastructures. This section
first presents the testbeds used to generate the cyber-physical datasets used in our study, then places the cyber-attacks
from the datasets in the context of MITRE ATT&CK framework.

4.1. Testbeds and Datasets
A Hardware In the Loop . ”A Hardware-in-the-Loop Water Distribution Testbed” [11] is a cyber-physical testbed
composed of two subsystems, one real and one simulated. It served for the acquisition of the Hardware In The Loop
dataset (HITL) published in 2021. The addition of the simulated subsystem enables for a more complex architecture,
in an intent to overcome the limitations posed by too simplistic testbeds. The dataset comprises the data from multiple
scenarios, with attacks both of physical and network nature, with an emphasis made on the diversity of cyberattacks.
This dataset contains the physical readings of the Programmable Logic Controllers (PLC) and a capture of the network
traffic generated by the running testbed.
SWaT dataset. Secure Water Treatment (SWaT) is a water distribution testbed [? ] used to generate and publish
physical and cyber-physical datasets since 2015. It has been used to produce 7 different datasets between 2015 and
2020 with different attack scenarios. The dataset used in this study is the SWaT.A6 dataset from 2019, which has been
chosen for its variety of attacks and the presence of documentation explaining the conduct of the attack steps.
ICS Flow. The ICS-Flow dataset [10] published in 2023 contains data from a fully simulated bottle-filling pipeline.
Although it is not the same water distribution task as the other datasets, it uses the same range of components, including
valves, tanks, pipes, flow sensors and tank level sensors as well as comparable risks with regard to water consumption.
The difference resides in the additional components that are not found in the water distribution sector, such as conveyor
belts, and sensors for bottle positions.

4.2. A taxonomy of cyber attacks against Water Treatment Facilities

Fig. 1: Taxonomy of datasets attacks according to the MITRE
ATT&CK framework

This section compiles the different cyber-attacks found in
the three datasets introduced and places them in a taxonomy
following the Mitre ATT&CK framework composed of the re-
connaissance, collection and impact tactics.

The cyber-attacks present on the HITL dataset are com-
posed of 4 different types of active scanning from the re-
connaissance tactic, ARP-poisoning as an Adversary-in-the-
middle technique, part of the collection tactic, and 3 different
Direct Network Flood, a sub-technique part of Network De-
nial of service technique in the impact tactic. The ICS-flow
dataset also only uses ARP-poisoning in the collection tactic,
but differs in the Active Scanning technique by using IP and
port scans, as well as in the Network Denial Of Service tech-
nique by using PLC Read-request flood.

Figure 1 presents a taxonomy of the cyber-attacks present
in the datasets based on MITRE ATT&CK framework [29].
It can be observed that HITL and ICS-Flow datasets both in-
clude attacks from the Reconnaissance, Collection and Impact
tactics, covering multiple steps of the cyber-kill chain. The
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SWaT.A6 dataset attacks consisted of multiple SCADA data
exfiltration via a first malware inserted from a USB thumb drive and disruption of sensors and actuators from a second
malware inserted in the system via download. The documentation does not provide further details on the implementa-
tion of the different steps.

5. Characterization of Water Treatment Datasets Complexity

The physical and network topologies of the testbeds of each dataset are detailed here to provide an assessment of
their complexity in term of the quantity and repartition of their physical components, as well an assessment of their
network complexity from a graph theory perspective. The physical complexity of each testbed summarized in Table 1
shows the diversity of configurations between the studied datasets.

Table 1: Characteristics of physical testbeds

Physical Testbed Rows Columns Physical PLCs Simulated PLCs Percentage of
attacks in data

HITL 10923 43 1 3 18.47%
SWAT 13201 84 6 0 18.88%
ICS FLOW 39302 24 0 2 20.45%

The chosen datasets show a diversity in their physical characteristics. The main aspect of divergence is the number
and nature of the Programmable Logic Controllers (PLCs) that compose them, with SWAT being a purely physical
testbed in addition to being the most elaborated in terms of number of PLC, ICS-Flow being purely simulated and the
most simple one, while HITL is a mixed testbed that incorporates a physical and a simulated part. All of the physical
data from the 3 datasets have a similar proportion of attack.

This diversity is impacting the information contained in the physical data between the datasets, with smaller in-
frastructures containing less information. However, oppositely, smaller infrastructures also have a reduced attack
perimeter, with potential attack effects having only a few components to reflect on. To the best of our knowledge, no
study has yet measured the impact of testbed complexity on attack detection performances.

Fig. 2: Network topologies of MAC and IP communication for each
dataset

HITL MAC ICS-Flow MAC SWaT MAC

HITL IP ICS-Flow IP SWaT IP

Table 2: Characteristics of the network graphs

Dataset Graph Nodes Edges Weights
min max mean median sum

HITL mac 10 38 11 6.20·108 6.44·107 1.01·106 2.45·109

HITL ip 8 28 30 5.67·108 8.74·107 2.04·106 2.45·109

ICS-Flow mac 15 29 3 7.02·106 8.68·105 1530 2.52·107

ICS-Flow ip 19 25 3 7.02·106 1.01·106 895 2.52·107

SWaT mac 41 150 3 1.86·107 2.14·106 6.13·104 3.21·108

SWaT ip 80 219 2 1.86·107 1.47·106 2149 3.21·108

As for the physical characteristics, the network topologies also greatly differ between datasets. Figure 2 shows the
network graphs of each dataset, both for communications between IP addresses and MAC addresses. In these graphs,
the nodes represent unique MAC addresses for the first row and unique IP addresses for the second row. The edges
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represent a communication between two nodes, weighted by the total number of packets exchanged during the whole
dataset acquisition. The graphs properties computed in table 2 show a disparity between the datasets on the number of
nodes and edges, with ICS-flow having two times more IP nodes than HITL, and SWaT having ten times the number
of IP nodes of HITL dataset. The difference between the number of IP and MAC nodes can have multiple explanations
for each dataset such as multiple network interfaces on single machines, or in the case of the HITL dataset, the settings
of the virtualisation that ran the simulated part of the testbed.

A common property of all the datasets is the difference between the minimum and maximum weight of the graph
being from six to seven orders of magnitude, regardless of the number of nodes. Moreover, on HITL and ICS-Flow
datasets the maximum weight represents around a quarter of the sum of the weights, which means that in these
datasets, only two nodes are responsible for 25% of the total traffic. This ratio is 5% for the SWaT dataset, which can
be interpreted as it having more spread traffic between the nodes.

6. Multi-Layer Concatenation

To leverage both physical and network information, and thus to ease the investigation and improve incident re-
sponse, we propose a novel scheme for combining the information of both sources for the learning process from a
data perspective. First, the overall process is described, and the treatment pipeline is specified. We then provide an
algorithmic formalisation of the process with complexity analysis to assess its applicability.

6.1. The Multi-Layer Concatenation process

This paragraph explains the context and choices made for developing Multi-Layer Concatenation as well as a
process comparison with model-based information combination method from the literature.

Fig. 3: Comparison of model-wise and data-wise combination processes

As the network and physical data are obtained from independent sources but contain information from common
events, a challenge resides in preserving their coherence when combining them. The proposed scheme consists of
concatenating each network data row with the physical data row having the closest inferior time. This choice is
motivated by the different acquisition frequencies of these two types of data due to the timescale of the different
processes that they measure. The physical data time granularity is tied to the physical processes that are occurring and
thus limited by the laws of physics, specifically in the water distribution sector where it is bound to the speed at which
water displacement can occur. This implies that the acquisition frequency has a maximum, past which no physical
changes would have been measured between two consecutive acquisitions. This limitation is not present for network
data, where the limiting factors such as bandwidth or processing speed of the involved devices are of much higher
frequency. This results in the time granularity of network data reaching four orders of magnitude higher than that of
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the physical data, the latter being typically acquired each second. Once the data are merged, they can be directly used
to train ML models that will then use the information of both the physical and network layers at once.

This data-wise approach to combination differs from the model-wise combination process presented in [12]. Fig-
ure 3 explains the different processes: as stated by the authors, in a model-wise combination process we train models
on the physical and network data ”separately and simultaneously”, which means that the same timestep is treated
in parallel by models on physical data and models on network data. The outputs of these models are then used as
input for another model whose predictions leverage information from both physical and network data as provided by
its inputs. In a data-wise combination process such as the proposed Multi-Layer Concatenation, the physical and
network data are merged, then used as input for a model, whose prediction will also leverage information from both
network and physical data.

6.2. Data Treatment Pipeline

The steps of the data treatment pipeline that constitutes Multi-Layer Concatenation are as follows: The physical
and network data are typically segmented into multiple files. The files of interest are selected, cleaned and treated
to be in a consistent format. This step depends on the dataset and can include columns name uniformisation, time
format changes, and erroneous data corrections such as typos. The treated data are then concatenated and sorted by
time. The physical data are then checked for any row that would contain only missing values, which are dropped if
any. In our implementation, the data are then saved in a parquet format, which is a compressed format that allows
more memory-efficient loading than csv files, as their size increased due to concatenation. The next step consists of
creating a common time column on which to join the data. For both physical and network data we use the time column
that we duplicate in a new column named ”Time join”. For the network data we change this ”Time join” column’s
time granularity to match that of the physical time column. For instance, with physical data acquired each second
and network data acquired at the millisecond scale, the ”Time join” of the network data is truncated at the second,
resulting in all network data acquired during the same second having an identical ”Time join” value. We now proceed
to a left join of the physical data into the network data, on the ”Time join” column. This results in all network data
being acquired during the same second as physical data to have this physical data concatenated to them. An edge case
then occurs if network data was acquired during a second where there were no physical data. This can be caused by
uneven physical data acquisitions that sometimes have more than a one-second interval, or at the end of the acquisition
if the physical data acquisition is stopped before the network data acquisition. This edge case is characterized in the
data by network rows with missing physical data concatenated to them. We handle this edge case by replacing these
missing correspondences with the values of the last row that had a correspondence. The resulting data are then saved
in a parquet format for them to be used for the training of ML models.

6.3. Algorithmic formalisation

Algorithm 1 is a formalisation of Multi-Layer Concatenation where the three main operations described in the
precedent section are performed: first to create the columns for the left join, second to perform the join, and lastly to
handle missing correspondences. The time complexity on network data of size n is O(n · log(n)) for the sort operation,
O(n) to duplicate the time column, O(n) to change its format, which adds up to O(n·log(n))+2·O(n) = O(n+n·log(n)).
The time complexity on physical data of size m is O(m · log(m)) for the sort operation, O(m) to drop the rows and
O(m) to duplicate the time column, which also adds up to O(m · log(m)) + 2 ·O(m) = O(m +m · log(m)). The left join
operation is O(n) and O(m) for respective datasets as the data are already sorted. The missing correspondences search
is O( n(m−1)

2 ), characterised by the worst case when we have to look at all precedent data for each row, which simplifies
to O(nm). The final time complexity for algorithm 1 is O(n + n · log(n) + m + m · log(m) + nm)

The memory complexity of this algorithm with network data of size n × N and physical data of size m × M
is O(n · (N + M)), as it has for upper bound the memory space needed to contain the merged data because other
operations only apply to either single rows, values or columns at a time.

7. Experiments
Experimental Setup. The experiments were run on a laptop with 32Gb of RAM, 13th Gen Intel® Core™ i7-13700H
20 cores CPU, NVIDIA RTX A500 GPU. The operating system is Ubuntu 22.04.3 LTS, and evaluations were run
using Python 3.11.4 and the libraries pandas (2.0.2), numpy (1.25.1), scikit-learn (1.2.2), xgboost (1.7.6) and keras
(2.13.1).
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Algorithm 1: Efficient Algorithm for Multi-Layer Concatenation

Require: ConcatenatedNetwork data, ConcatenatedPhysical data
Ensure: merged data

1: Sort Network data by time
2: Sort Physical data by time
3: drop Physical data rows with only missing values
4: Physical data[time join]← Physical data[time]
5: Network data[time join]← Network data[time] with Physical data time granularity
6: merged data← left join(Network data, Physical data) on time join
7: for row in Merged data do
8: if all physical values are missing then
9: fill row with latest physical values

10: end if{ensures closest anterior physical data on missing correspondances}
11: end for
12: return merged data

Implementation. Multi-Layer Concatenation is implemented using a Python environment and the pandas and numpy
libraries following Algorithm 1. The missing correspondences have been handled directly during the left join with the
use of the merge asof function of pandas with the argument direction set to ”backward”. This implementation choice
has the particularity to fill the missing correspondences with the value of the closest anterior valid row, including its
missing values, that are kept as missing values when copied in the missing correspondence, whereas other possible
implementations such as the fillna function of the pandas library do not keep it as missing value and instead replace
them with the last non-missing value of the column. Our implementation of algorithm 1 took less than 8 seconds
to complete the join and missing correspondence operations together on the HITL dataset with network data of size
29829204 × 16 and physical data of size 10923 × 43. The models evaluated are XGBoost, Random Forest, Multi-
Layer Perceptron and Random Forest using cross-validation.

8. Evaluation

This section provides the analysis of the results of the experiments described above. Discussed results are shown
in Table 3 which provides the detection performances of the XGBoost algorithm on all the datasets considered in this
study. A complete listing of the performances of all the algorithms on physical and network data separately, as well
as on data combined through Multi-Layer Concatenation can be found in Appendix C. This section is organized as
follows: first we compare the performances obtained when using only network and physical data for training, then we
compare it to the results obtained when applying Multi-Layer Concatenation.

Table 3: Detection Performances of XGBoost on SWAT, ICS FLOW and HITL datasets

Testbed Dataset Precision Recall (TPR) TNR Accuracy F1 score Balanced accuracy MCC

SWAT Physical 0.9980 0.9936 0.9997 0.9980 0.9980 0.9949 0.9956
SWAT Network 0.7416 0.0533 0.9976 0.7372 0.6383 0.2277 0.1910
SWAT Combined 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ICS FLOW Physical 0.9934 0.9764 0.9975 0.9935 0.9934 0.9675 0.9805
ICS FLOW Network 0.9979 0.9977 0.9979 0.9979 0.9979 0.9816 0.9938
ICS FLOW Combined 0.9988 0.9966 0.9994 0.9988 0.9988 0.9950 0.9966

HITL Physical 0.9769 0.9185 0.9921 0.9780 0.9773 0.7602 0.9327
HITL Network 0.8355 0.5944 0.9987 0.8718 0.8152 0.4978 0.7252
HITL Combined 0.9993 0.9991 0.9994 0.9993 0.9993 0.9503 0.9985
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8.1. Detecting Attacks on physical and network layers individually

The results obtained without using Multi-Layer Concatenation correspond to the first and second rows for each
testbed of Table 3. Physical data alone allows for high detection performances in all three datasets, which are superior
by a significant margin to the performances on network data alone except for the ICS-Flow dataset. The detection
performances obtained on this dataset are extremely high regardless of the data, for which a possible explanation is
the much lower number of components that composes its testbed as discussed in section 5, which results in a simpler
learning task for the models. For all datasets, the physical data have a lower acquisition frequency, leading to a lower
number of physical data points. However, this difference is negligible for the ICS-Flow dataset with only a 15%
increase in the number of rows compared to a difference of 3 orders of magnitudes for the SWAT and HITL datasets.
The training time of XGBoost algorithm with regards to the number of data points is represented in Figure 4. The time
values are represented in a barplot, the dataset sizes are represented with linked points and expressed with the total
number of point in the dataset (#row × #columns) with values bound to the secondary y axis on the right. This figure
shows that the low number of physical data is associated with low training time of XGBoost of less than 3.5 seconds.
This lower size has the downside of making the least frequent attacks too rare for the model to be able to generalize
on them. This is particularly observed for the HITL physical data which only contains a total of 14 rows labeled with
scan attacks which goes down to 4 occurrences for the testing set after splitting the data. This effect has an impact on
the performances of XGBoost on the HITL physical data, where all 4 occurrences of scan attack were misclassified
as normal thus lowering the metrics of balanced accuracy and MCC.

These performances greatly vary from one dataset to another even though the data are of the same nature, which
illustrates that the classification task difficulty is dependent on the inner characteristics of the data itself. Combining
the information from the physical and network data is a way to overcome this limitation.

8.2. Detecting Attacks after Multi-Layer Concatenation

The use of the proposed Multi-Layer Concatenation results in higher detection performance of XGBoost on all
datasets and across all metrics. The highest benefit is measured on the HITL dataset with a balanced accuracy going
from 76.02% on physical data to 95.03% with Multi-Layer Concatenation. This increase on the HITL dataset is
explained by better performances on all classes, with a notable increase for the scan attacks. As the Multi-Layer
Concatenation uses network data as the base for the concatenation, the attacks have more occurrences for the model
to learn, which led to the model accurately classifying 16 out of the 21 occurrences on the test set after Multi-Layer
Concatenation which resolves this limitation of physical data.

Fig. 4: Training time of XGBoost algorithm in relation to datasets sizes

The training time of XGBoost after Multi-Layer
Concatenation in Figure 4 shows that the training
time is correlated to the dataset size, with HITL hav-
ing the highest training times of 3 seconds, 62 sec-
onds, 112 seconds respectively for physical, network,
and combined data. SWAT comes second with 3 sec-
onds, 17 seconds and 78 seconds. ICS-FLOW has
the lowest training times with 3 seconds on physical
data, 1 seconds on Network data and 3 seconds on
combined data. These extremely low values for ICS-
Flow training time are correlated with its very low
size, being at most 3 Million individual data points
for the combined dataset, compared to 892 Million
for SWAT and 1.75 Billion for HITL after concatena-
tion. The overall impact of the Multi-Layer Concate-

nation on the training time of algorithms is dependent on the original data sizes, namely the more physical features
there are, the more the combined data size will be expanded in comparison to the network data. This increase is of 1.3
billion data point for HITL, 2 Million for ICS flow and 890 Million for SWAT.

These results show that Multi-Layer Concatenation led to improvement of detection performances on all datasets,
even when extremely high performances are attained with network or physical data, establishing it as a viable and
efficient method for leveraging information combination for attack detection in CPS.
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9. Discussion

In this section, we evaluate the contribution of proposed MLC scheme with regards to requirements given in section
3, identify its limits, and place it in the context of ML-based attack detection.
Results. The use of Multi-Layer Concatenation when compared to the best performance obtained on separate data
leads to respectively 0.51%, 1.34% and 16.01% improvements in balanced accuracy for the XGBoost model on SWAT,
ICS-Flow and HITL datasets. The magnitudes of the improvements vary depending on the dataset and the detection
algorithm used, with an increase in performances observed even when extremely high performances are achieved
without using Multi-Layer Concatenation, as illustrated in ICS-Flow dataset. These results reinforce the combination
of information from physical and network data as being beneficial to ML predictions, as the model-based approach
proposed in [12] suggested. The performances of MLP on ICS-flow is the only instance from this study where Multi-
Layer Concatenation showed no significant improvement, the model performances being rather constant and overall
bad regardless of the data. Among potential explanations for this performance is the model being too small or with
unsuited layer architecture. The Multi-Layer Concatenation showed beneficial effects on tree-based models Decision
Tree, Random Forest and XGBoost (Appendix C.6), that are proven to perform better on tabular data than Deep-
Learning [14].

Regarding the requirements of Section 3, the increase of performance after applying Multi-Layer Concatenation
does include a reduction of FPR which aligns with the need for a reduced false alarm rate to reduce alarm fatigue and
associated effects. Moreover, it does not impose prerequisites on the model to be used on the merged data, resulting
in a neutral impact on explainability, which this approach neither impeded nor addressed. This places Multi-Layer
Concatenation as a step towards addressing the challenges faced by ML-based detection methods.
Limits. One limit of this approach resides in the augmented size of the merged data, which for network data with
billions of rows requires a consequent memory space to store the data after Multi-Layer Concatenation. This limit
can be overcome with the use of aggregation strategies on network data, which can also be coupled with using the
physical data as the base for the merge. A side effect of Multi-Layer Concatenation in the case of labelled data is the
creation of inconsistencies in the labels from the physical and network data after merging. These inconsistencies have
two causes, the first is the delay between the update of network and physical data, which causes the most frequently
acquired data to have its label updated before the other, and causes an inconsistency until the least frequently acquired
data gets updated. This effect occurs at the start and end of an attack. The second cause is when an attack starts and
ends without the least frequently acquired data having received an update. In that case, it will only be labelled in the
most frequently updated data. Using the labels from the data with the highest acquisition rate is thus the best solution
as they are the ones that are not affected by the described delays.

Taking these limitations into account allows for a pertinent and most beneficial use of Multi-Layer Concatena-
tion, for which the accessible mitigation means renders it an accessible solution for improving ML models detection
performances on CPS.

10. Conclusions and Perspectives

We propose Multi-Layer Concatenation as a novel method for combining the information of physical and network
data in the context of the CPS of water distribution networks. By assessing its effect on the performance of reference
ML algorithms for cyber-attack detection, compared to using physical and network data separately, we observe a
general improvement in the quality of detection on 3 different cyber-physical datasets from the literature. These
findings confirm the benefit of combining the information of physical and network data demonstrated in [12]. It opens
the way to more research into alternative combining methods and to a more widespread use of these methods to allow
for a better understanding of their effects.
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Appendix A. Performance Metrics

A.1. Precision:

Precision measures the proportion of true positive predictions among all positive predictions made by the model.

Precision =
T P

T P + FP
(A.1)

A.2. Recall or True Positive Rate (TPR):

The recall is the percentage of data positively labelled by the model that are effectively positive.

Recall =
T P

T P + FN
(A.2)

A.3. F1-Score:

The F1-Score is the harmonic mean of precision and recall.

F1S core =
2

1
Precision +

1
Recall

=
2 ∗ Precision ∗ Recall

Precision + Recall
(A.3)

A.4. True Negative Rate (TNR):

The TNR is the percentage of data negatively labelled by the model that are effectively negative.

T NR =
T N

T N + FP
(A.4)

A.5. Accuracy:

The accuracy is the percentage of data correctly labelled by the model.

Accuracy =
T P + T N

T P + FP + T N + FN
(A.5)

A.6. Balanced Accuracy:

The balanced accuracy is the arithmetic mean between TPR and TNR.

BalancedAccuracy =
T PR + T NR

2
(A.6)
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A.7. Mathews Correlation Coefficient (MCC):

The MCC [18] measures the correlations between the predicted and the true labels. It is regarded as a better single-
value representation of all four of the confusion matrix categories [8].

MCC =
(T P ∗ T N) − (FP ∗ FN)

√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

(A.7)

Appendix B. Models Hyperparameters

Model Specified
Hyperparameters Details

Decision Tree None Uses default hyperparameters (SKlearn V1.2.2)

Random Forest max depth=3

XGBoost tree method=”gpu hist” Enables use of GPU

MLP talpha=0.1, max iter=500,
early stopping=True, n iter no change=10

Appendix C. Detailed Results

Table C.4: Detection Performances on Physical Data

Testbed Classifier Precision Recall (TPR) TNR Accuracy F1 score Balanced Accuracy MCC fit time

SWAT XGB 0.9980 0.9936 0.9997 0.9980 0.9980 0.9949 0.9956 2s
SWAT RandomForest 0.8035 0.4549 0.9983 0.8478 0.7960 0.6202 0.6421 0s
SWAT MLP 0.8680 0.5544 0.9854 0.8664 0.8417 0.6532 0.6849 2s
SWAT DecisionTree 0.9947 0.9909 0.9962 0.9947 0.9947 0.9921 0.9884 0s

ICS FLOW Physical-all XGB 0.9934 0.9764 0.9975 0.9935 0.9934 0.9675 0.9805 2s
ICS FLOW Physical-all RandomForest 0.6821 0.0516 0.9995 0.8189 0.7412 0.2431 0.2159 0s
ICS FLOW Physical-all MLP 0.6548 0.0000 1.0000 0.8092 0.7238 0.1667 0.0000 1s
ICS FLOW Physical-all DecisionTree 0.9767 0.9414 0.9852 0.9769 0.9767 0.9091 0.9311 0s

ICS FLOW PLC bottle XGB 0.9410 0.8261 0.9753 0.9434 0.9411 0.7865 0.8433 0s
ICS FLOW PLC bottle RandomForest 0.6785 0.1470 0.9980 0.8166 0.7393 0.2884 0.3617 0s
ICS FLOW PLC bottle MLP 0.6167 0.0000 1.0000 0.7853 0.6909 0.1667 0.0000 0s
ICS FLOW PLC bottle DecisionTree 0.9283 0.8418 0.9501 0.9272 0.9277 0.8076 0.8057 0s

ICS FLOW PLC Water XGB 0.9896 0.9680 0.9948 0.9897 0.9896 0.9572 0.9691 0s
ICS FLOW PLC Water RandomForest 0.7277 0.0504 0.9991 0.8187 0.7409 0.2407 0.2127 0s
ICS FLOW PLC Water MLP 0.6548 0.0000 1.0000 0.8092 0.7238 0.1667 0.0000 0s
ICS FLOW PLC Water DecisionTree 0.9879 0.9710 0.9918 0.9879 0.9879 0.9602 0.9640 0s

HITL XGB 0.9769 0.9185 0.9921 0.9780 0.9773 0.7602 0.9327 3s
HITL RandomForest 0.8343 0.1709 0.9992 0.8410 0.7906 0.2806 0.3833 0s
HITL MLP 0.9032 0.6467 0.9677 0.9072 0.9019 0.5616 0.6975 1s
HITL DecisionTree 0.9647 0.9183 0.9736 0.9631 0.9639 0.7532 0.8900 0s
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Table C.5: Detection Performances on Network Data

Testbed Classifier Precision Recall (TPR) TNR Accuracy F1 score Balanced accuracy MCC fit time

SWAT XGB 0.7416 0.0533 0.9976 0.7372 0.6383 0.2277 0.1910 17s
SWAT RandomForest 0.6294 0.0109 0.9999 0.7272 0.6153 0.2057 0.0923 2m2s
SWAT MLP 0.5911 0.0568 0.9835 0.7298 0.6344 0.2269 0.1452 4m0s
SWAT DecisionTree 0.6513 0.0525 0.9929 0.7344 0.6367 0.2271 0.1695 12s

ICS FLOW XGB 0.9979 0.9977 0.9979 0.9979 0.9979 0.9816 0.9938 1s
ICS FLOW RandomForest 0.9323 0.7295 0.9760 0.9321 0.9126 0.6303 0.7896 0s
ICS FLOW MLP 0.7087 0.0325 0.9899 0.8116 0.7314 0.3071 0.1714 3s
ICS FLOW DecisionTree 0.9934 0.9935 0.9934 0.9934 0.9934 0.9478 0.9808 0s

HITL XGB 0.8355 0.5944 0.9987 0.8718 0.8152 0.4978 0.7252 1m2s
HITL RandomForest 0.7616 0.5644 0.9999 0.8631 0.8070 0.3222 0.7045 6m52s
HITL MLP 0.7558 0.5371 0.9999 0.8545 0.7988 0.3147 0.6838 24m7s
HITL DecisionTree 0.8077 0.6013 0.9933 0.8704 0.8180 0.5044 0.7199 27s

Table C.6: Detection Performances on Combined Data

Testbed Classifier Precision Recall (TPR) TNR Accuracy F1 score Balanced accuracy MCC fit time

SWAT XGB 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1m18s
SWAT RandomForest 0.8045 0.4363 1.0000 0.8447 0.7926 0.6172 0.6306 9m15s
SWAT MLP 0.9695 0.9471 0.9780 0.9695 0.9693 0.9495 0.9329 2h11m52s
SWAT DecisionTree 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2m5s

ICS FLOW Combined-all XGB 0.9988 0.9966 0.9994 0.9988 0.9988 0.9950 0.9966 3s
ICS FLOW Combined-all RandomForest 0.9329 0.7238 0.9768 0.9318 0.9116 0.6209 0.7884 1s
ICS FLOW Combined-all MLP 0.6999 0.0124 0.9998 0.8084 0.7251 0.1749 0.1007 1s
ICS FLOW Combined-all DecisionTree 0.9944 0.9935 0.9946 0.9944 0.9944 0.9621 0.9835 0s

ICS FLOW Combined-PLC bottle XGB 0.9988 0.9966 0.9993 0.9988 0.9988 0.9923 0.9964 0s
ICS FLOW Combined-PLC bottle RandomForest 0.9329 0.7357 0.9751 0.9325 0.9134 0.6334 0.7911 0s
ICS FLOW Combined-PLC bottle MLP 0.6747 0.0122 0.9950 0.8076 0.7256 0.1732 0.0946 1s
ICS FLOW Combined-PLC bottle DecisionTree 0.9955 0.9939 0.9959 0.9955 0.9955 0.9676 0.9867 0s

ICS FLOW Combined-PLC Water XGB 0.9988 0.9966 0.9993 0.9988 0.9988 0.9923 0.9964 1s
ICS FLOW Combined-PLC Water RandomForest 0.9329 0.7357 0.9751 0.9325 0.9134 0.6334 0.7911 0s
ICS FLOW Combined-PLC Water MLP 0.6499 0.0000 1.0000 0.8061 0.7196 0.1667 0.0000 1s
ICS FLOW Combined-PLC Water DecisionTree 0.9950 0.9916 0.9958 0.9950 0.9950 0.9617 0.9852 0s

HITL XGB 0.9993 0.9991 0.9994 0.9993 0.9993 0.9503 0.9985 1m52s
HITL RandomForest 0.8318 0.5545 1.0000 0.8600 0.8040 0.3195 0.6971 11m41s
HITL MLP 0.9401 0.8477 0.9832 0.9406 0.9378 0.6259 0.8747 48m0s
HITL DecisionTree 0.9994 0.9991 0.9995 0.9994 0.9994 0.9836 0.9987 2m11s
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