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Abstract

Many statistical inference and machine learning methods rely on the ability to optimize an
expectation functional, whose explicit form is intractable. The typical method for conducting
such optimization is to approximate the expected value problem by a size-N sample average,
often referred to as sample average approximation (SAA) or M-estimation. When the solu-
tion to the SAA problem cannot be obtained in closed form, the majorization-minimization
(MM) algorithm framework constitutes a broad class of incremental optimization solutions,
relying on the iterative construction of surrogates, known as majorizers, of the original prob-
lem. The ability to solve an SAA problem depends on the availability of all N observations,
contemporaneously, which is difficult when N is large or data are observed as a stream. We
propose a stochastic MM algorithm that solves the expected value problem via iterative SAA
majorizer constructions using sequential subsets of data, which we call Sequential Sample Av-
erage Majorization–Minimization (SAM2). Compared to previous stochastic MM algorithm
variants, our method permit an extended definition of majorizers, and does not rely on con-
vexity and smoothness assumptions or make functional restrictions on the class of problems
and majorizers. We develop a theory of stochastic convergence for SAM2, made possible via the
presentation of a novel double array uniform strong law of large numbers. Examples of SAM2
algorithms are given along with a numerical demonstration of SAM2 to the quantile regression
problem.
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1 Introduction

A common task that often arises when conducting statistical inference or machine learning is to
solve the problem of obtaining

LF⋆ := argminθ∈TF (θ) , (1)

where T is the so-called parameter space, with typical element θ, and F : T → R is an objective
function, defined at each θ ∈ T by

F (θ) := E [f (θ,X)] ,

the expectation of f (θ,X), for some random X in some space X. Typically, the underlying proba-
bility measure of X is unknown and thus F cannot be accessed, directly. However, given access to
a sample of independent and identically distributed (i.i.d.) replicates of X: {X i, 1 ≤ i ≤ N}, one
can approximate problem (1) by the realizable problem of obtaining

LN := argminθ∈T
1

N

N∑
i=1

f (θ,Xi) . (2)

The approximation of (1) by (2) has appeared throughout the literature under many names, includ-
ing extremum estimation (Amemiya, 1985; Gourieroux & Monfort, 1995), M-estimation (Serfling,
1980; van der Vaart & Wellner, 2023), minimum contrast estimation (Dacunha-Castelle & Duflo,
1986; Bickel & Doksum, 2015), in statistics, empirical risk minimization (Vapnik, 1998; Vidyasagar,
2003; Shalev-Shwartz & Ben-David, 2014), in machine learning, and sample average approximation
(SAA; Bonnans 2019; Shapiro et al. 2021; Cui & Pang 2022) in optimization theory.

In general, (2) is not assumed to be solvable in closed form, and thus iterative optimization
routines are required in practice. Given various assumptions regarding the smoothness or con-
vexity of f (·, x) (x ∈ X), numerous methods are available for solving (2), including Newton’s
algorithm and (sub-)gradient descent (see, e.g., Polyak 2021), and derivative-free methods, such
as the Nelder–Mead algorithm and pattern search (see, e.g., Audet & Hare 2017), among other
techniques. However, such techniques often require the parameter of the problem be vector-valued,
which is unnatural in many learning settings, where T consists of elements that take value in the
probability simplex or in the positive definite matrices, as in the problem of estimating finite
mixtures of Gaussian distributions, for example (cf. McLachlan & Peel 2000).

EM and MM algorithms The Expectation–Maximization (EM) approach of Dempster et al.
(1977) (see also McLachlan & Krishnan 2008) provides a framework for conducting optimization of
probabilistic models in potentially non-vector spaces, via the construction of numerical surrogates
for f, whose optimization generates a stable sequence of parameter estimates that monotonically
improve the objective values. The EM approach can be viewed as a special case of the so-called
Majorization–Minimization (MM) algorithms (Hunter & Lange, 2004; Lange, 2013, 2016), which
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extend the applicability of the EM algorithm beyond probabilistic models, to more general surro-
gate constructions for f, to include any function of the form g : T×X×T→ R, fulfilling criterion
f (θ, x) ≤ g (θ, x; υ), for any θ, υ ∈ T and x ∈ X, with equality whenever θ = υ. This permits
the inclusion of gradient descent, proximal algorithms and proximal gradient descent, quadratic
approximation algorithm (Bohning & Lindsay, 1988), and the convex concave procedure (Yuille
& Rangarajan, 2003), among other methods, within the MM algorithm framework. Furthermore,
the framework has been extended to permit coordinate and block-wise iterations (Meng & Rubin,
1993; Razaviyayn et al., 2013; Chalvidal et al., 2023), stochastic surrogates (Celeux & Diebolt,
1992; Delyon et al., 1999; Fort & Moulines, 2003), and decentralized computation (Dieuleveut
et al., 2021; Cadoni et al., 2016).

Beyond the applicability, inclusivity, and extendability, the MM framework has a strong unified
theoretical foundation, with numerous available global convergence and convergence rates results
available. Generally applicable results in this direction include the global convergence theory of
Vaida (2005), Lange (2013), Byrne (2014), Lange (2016), Lange et al. (2021), and Cui & Pang
(2022), as well as the block-wise results of Razaviyayn et al. (2013), and the convergence rates of
Mairal (2015), Chouzenoux & Pesquet (2016), and Hong et al. (2017).

Stochastic algorithms As described, the MM algorithms above solve the sample problem (2),
for fixed sample size N to produce an estimate for the solution of the expectation problem (1).
Via the general SAA theory of Shapiro et al. (2021), it can be shown that the set of solutions
of LN converges in set deviation to LF⋆ , almost surely, as N gets large. However, the process
of solving repeated SAAs as N increases assumes the availability of the entirety of the sequence
{X i, 1 ≤ i ≤ N}, for each N , which is infeasible in practice when data are often accessed as a
stream, and when computer memory is so as to make storage of the entire sequence of data
impossible for large N .

A more feasible scenario is that one has limited access to the data set, via only the subset
{X t,i, i = 1, . . . , Nt} at time t, where {Nt, t ≥ 1} is a sequence of positive integers denoting sample
sizes. Such situations arise in the so-called online or iterative algorithms setting, and approaches
for solving (1) in such situations are most notably exemplified by the popular stochastic gradient
descent algorithms and their variants and refinements, as studied in Shalev-Shwartz & Ben-David
(2014), Lan (2020), Lin et al. (2020), Shapiro et al. (2021), among an ever expanding body of
literature. As per their deterministic variants, these algorithms require parameters be vector-
valued, among other restrictions, and thus are not universal in their applicability. These limitations
are similarly shared by stochastic Newton algorithms such as those of Schraudolph et al. (2007),
Byrd et al. (2016), and Meyn (2022).

To resolve these limitations, one can again turn to stochastic variants of EM and MM algo-
rithms, which have been comprehensively studied over the years. Examples of such works include
the pioneering work of Cappé & Moulines (2009), whose online EM algorithm forms the basis of
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the lineage of works including those of Karimi et al. (2019b), Karimi et al. (2019a), Dieuleveut
et al. (2021), Karimi & Li (2021), Fort et al. (2021a), and Fort et al. (2021b) regarding the on-
line, stochastic, and mini-batch estimation of probabilistic models. The online EM framework of
Cappé & Moulines (2009) was also extended to optimization of general models via the online MM
extension of Nguyen et al. (2022). In each of these works, the surrogates of f are required to take
a restrictive linearized form, which is required for obtaining theoretical guarantees.

Next, we note the original works of Mairal (2013) and Razaviyayn et al. (2016), who laid the
foundation for a convexity-based approaches to theory, where the convergence of the algorithm is
obtained via strong convexity and Lipschitz smoothness assumptions on the surrogate of f, with f

required to be convex or strongly convex to obtain the convergence rates. Other works following
this direction include the works of Liu et al. (2018), Liu et al. (2019), Zhang et al. (2019), Mokhtari
& Koppel (2020), Chouzenoux & Fest (2022), Karimi et al. (2022), and Lupu & Necoara (2023).

Finally, we note the approach of Cui & Pang (2022) who exchange the convexity and Lipschitz
smoothness of the surrogates with the inclusion of a proximal term. This approach has been further
developed in Liu et al. (2022) and Liu & Pang (2023).

Current work and contributions Taking the approach of Cui & Pang (2022) as a starting
point, we derive a novel approach for solving problem (1) via a stream of data, using an MM
algorithm approach. We call our method Sequential Sample Average Majorization–Minimization,
or SAM2 for brevity.

Like the method of Cui & Pang (2022), our approach solves an iterative sequence of optimization
problems, characterized by surrogate functions of f, using subsamples {X t,i, i = 1, . . . , Nt} at each
iteration t. However, unlike Cui & Pang (2022), our method does not require a proximal term
be included as part of the surrogate function, and thus generalizes the approach, since an MM
surrogate functions are closed under the addition of a proximal term, as per Cui & Pang (2022),
or a Bregman proximal term, as per Lange (2016), Rossignol et al. (2022), and Khanh Hien et al.
(2022). As such SAM2 can be viewed as a direct generalization of the Cui & Pang (2022) method.
We develop a theory of the almost-sure convergence of SAM2, when the number of iterations tends
to infinity. Our theory makes no use of convexity and Lipschitz smoothness assumptions nor
restrictions on the form of the surrogate functions and thus provides the least restrictive framework
for constructing stochastic MM algorithms, to the best of our knowledge.

In addition to less restrictive assumptions on MM surrogate functions, our approach permits
an expanded definition of such surrogates, in that one may take υ ∈ U instead of υ ∈ T, for
some arbitrary set U. This permits for a broader interpretation of the MM algorithm framework,
following in the spirit of Mairal (2015) who consider the allowance for surrogates to depend on
iteration t, and Naderi et al. (2019) who relax the requirement that the surrogate satisfies f (θ,X) =

g (θ,X; υ) for some υ. In particular, the expanded definition allows us to solve problem (1), with f

only implicitly defined via the condition that for every θ ∈ T, F (θ) ≤ E [g (θ,X; υ)] for all υ ∈ U,
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and there exists a υ ∈ U such that F (θ) = E [g (θ,X; υ)].
As a byproduct of proving the global convergence of SAM2, we obtain a uniform strong law

of large numbers for double arrays, which is novel, to the best of our knowledge. This strong
law provides a useful result with verifiable regularity conditions for functions indexed by compact
Euclidean sets, which serves as an alternative to the more generic theory of Ziegler (2001). The
result can also be viewed within the context of Andrews (1992), who posit a double array extension
of some uniform strong laws, but do not make explicit the required conditions.

Beyond our general convergence results, we also provide detailed investigations of an online
mirror descent algorithm and an online proximal-gradient algorithm as examples of special cases
of the SAM2 framework. These examples are complemented by numerical results regarding the
application of SAM2 to quantile regression, and in particular, the least absolute deviation (LAD)
problem. We benchmark our SAM2 algorithm against Stochastic Subgradient descent (SSG), where
we demonstrate that the performance of SSG is sensitive to user calibrated step size schedule,
which is avoided by SAM2.

The remainder of the manuscript is organized as follows. The SAM2 algorithm framework is
described in Section 2. Asymptotic convergence analysis of SAM2 is provided in Section 3. Technical
descriptions of online mirror descent and proximal-gradient algorithms as examples are provided in
Section 4. Numerical illustrations of SAM2 to the LAD problem appears in Section 5. And finally,
proofs and technical results are reported in Section 6.

Notations. Throughout the paper, vectors are column-vectors. ⟨a, b⟩ denotes the dot product
in Rd and ∥ · ∥ is the associated norm. ∂f is the subdifferential of a function f and ∇f denotes
the gradient of a differentiable function f . The theorems, lemmas, corollaries, propositions and
examples share the same counter; while the algorithms have a separate counter.

2 The SAM2 algorithm

We consider the following optimization problem on a compact subset T of Rd

argminθ∈TF(θ), (3)

when the Majorization–Minimization (MM) framework applies:

A1. There exists a Borel set U of Rd′ and a measurable function G : T× U→ R such that

(a) For all υ ∈ U, F(·) ≤ G (·; υ) on T.

(b) For all θ ∈ T, there exists υ ∈ U such that F (θ) = G (θ; υ).

For all θ ∈ T, we define
U[θ] := {υ ∈ U : F(θ) = G(θ; υ)};
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under A1-b, this set is not empty. We consider the cases when G is an intractable expectation, but
stochastic oracles exist.

A2. (a) Let (Ω,A,P) be a probability space and (X,X ) be a measurable space. There exists a
measurable function g : T × X × U → R such that G(θ, υ) := E [g(θ,X; υ)]; and for all θ ∈ T
and υ ∈ U, E [|g(θ,X; υ)|] <∞.

(b) A stream of random variables {X t,i, t ≥ 1, 1 ≤ i ≤ Nt}, defined on (Ω,A,P) and i.i.d. with
the same distribution as X, is available.

Therefore, a stochastic oracle can be defined as follows, computed from N examples:

G(θ; υ) ≈ 1

N

N∑
i=1

g(θ,X i; υ).

Example 1. Consider the minimization of a function F on T, a compact subset of Rd. Assume
that F(θ) := E [f(⟨θ,X⟩)] where f : R → R is a convex function such that E [|f(⟨θ,X⟩)|] < ∞ for
all θ ∈ T̃ ⊃ T.

By writing ⟨θ, x⟩ = ⟨υ, x⟩+
∑d

j=1(θj−υj)xj, it holds since f is convex (see (Lange, 2013, Section
8.3))

f(⟨θ, x⟩) ≤ g(θ, x; υ) :=
1

d

d∑
j=1

f (⟨υ, x⟩+ d(θj − υj)xj) , υ ∈ T.

We assume that T̃ is large enough so that E [|f (⟨υ,X⟩+ d(θj − υj)Xj) |] <∞ for all θ, υ ∈ T.
Set U := T and G(θ; υ) := E [g(θ,X; υ)]. The condition on T̃ implies that A2 is verified. For any

υ ∈ T, we have g(θ, x; υ)−f(⟨θ, x⟩) ≥ 0, thus implying that A1-a holds. Finally g(θ, x; θ) = f(⟨θ, x⟩)
thus showing that A 1-b holds and U[θ] ⊇ {θ}. If f is strictly convex, then U[θ] = {θ}. This
majorizer is particularly useful for converting a d-dimensional optimization problem to iterations
that solve d one-dimensional problems instead. Often, the one-dimensional problems have either
computationally efficient or closed form solutions, when the d-dimensional problem lacks either.

Example 2. Consider the maximization of a positive function F on a compact subset T of Rd, when
F(θ) :=

∫
f(θ, x)ν(dx) where ν is a σ-finite positive measure on (X,X ) and f ≥ 0. Equivalently,

we minimize − log F. We assume that F <∞ on T.
The MM framework holds for the minimization of − log F since the Jensen’s inequality implies

that for any τ ∈ T

− log F(θ) ≤ G(θ; τ) := − log F(τ)−
∫

log

(
f(θ,X)

f(τ,X)

)
f(τ,X)

F(τ)
ν(dx).

Here, U := T and A 1-a holds. We have G(θ; θ) = − log F(θ) for all θ ∈ T, so that A 1-b holds
and U[θ] ⊇ {θ}. Set g(θ, x; τ) := − log F(τ) − log (f(θ,x)/f(τ,x)) f(τ,x)/F(τ). Then A2 holds under the
integrability condition of x 7→ log (f(θ,x)/f(τ,x)) f(τ, x) with respect to ν, for all θ, τ ∈ T.
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We note that this majorization scheme is exactly that which is used to derive the famous
expectation–maximization algorithms of Dempster et al. (1977) (see, also McLachlan & Krish-
nan, 2008), as per (Lange, 2013, Sec. 9.8) and (Razaviyayn et al., 2013, Sec. 8.5). In that case,
f is the complete data likelihood.

Example 3. Consider the minimization of a function F : Rd → (−∞,+∞], on a compact convex
subset T of Rd, when F(θ) := E [f(θ,X)]; we assume that E [|f(θ,X)|] < ∞ for all θ ∈ T so
that T ⊂ dom(F). Let b : Rd → (−∞,+∞] be a lower semicontinuous convex function, such
that T ⊂ dom(b), continuously differentiable and strictly convex on an open neighborhood S of T.
Define the Bregman divergence associated to b

Db (θ; τ) := b(θ)− b(τ)− ⟨∇b(τ), θ − τ⟩ , θ ∈ Rd, τ ∈ T. (4)

It holds for any θ ∈ Rd, x ∈ X, τ ∈ T and γ > 0

f(θ, x) ≤ g(θ, x; (τ, γ)) := f(θ, x) +
1

γ
Db (θ; τ) + ιT(θ),

where ιT : Rd → (−∞,+∞] is the characteristic function of T, defined as ιT(θ) = 0 if θ ∈ T and
ιT(θ) = +∞, otherwise. Set U := T×R>0, and G(θ; υ) := E [g(θ,X; υ)]. Then the condition A2 is
verified. For any υ := (τ, γ) ∈ U, we have g(·, x; υ)− f(·, x) ≥ 0 on T since b is convex, so that A
1-a holds. In addition, for all θ ∈ T and γ > 0, g(θ, x; (θ, γ)) = f(θ, x) and g(θ, x; (τ, γ)) ̸= f(θ, x)

when τ ̸= θ since b is strictly convex; hence, A1-b holds and U[θ] := {(θ, γ), γ > 0}.

Non uniqueness of the majorizing functions. If (θ, υ) 7→ G(θ; υ) and (θ, x, υ) 7→ g(θ, x; υ)

satisfy A1 and A2, then the functions (θ, υ, τ) 7→ G(θ; υ) + φ (Db (ς(θ); ς(τ))) and (θ, x, υ, τ) 7→
g̃(θ, x; υ, τ) := g(θ, x; υ) + φ (Db (ς(θ); ς(τ))) also satisfy A1 and A2 as soon as

(i) φ : R≥0 → R≥0 and ς : T→ T are measurable functions, and φ(0) = 0.

(ii) Db (·; ·) is the Bregman divergence (see (4)) associated to a strictly convex and continuously
differentiable function b : S→ R defined on a neighborhood S of T.

Note indeed that for all θ ∈ T and x ∈ X, it holds{
∀(υ, τ) ∈ U× T : g(θ, x; υ) ≤ g̃(θ, x; υ, τ)

∀υ ∈ U[θ] : g(θ, x; υ) = g̃(θ, x; υ, θ).

The introduction of such a Bregman term in the majorization mechanism is the essence of many
proximal-type algorithms such as the Proximal point algorithm (see e.g. (Polyak, 2021, Section
3.5)) and the Mirror Descent algorithm (see Section 4.1) among examples. The motivation is
essentially to make the minimization of the majorizing function easier.
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Population MM and SAM2 algorithms

When argminTG(·; υ) is not empty for all υ in the set U (see e.g. Proposition 11-i for sufficient
conditions), then the Population MM algorithm given by Algorithm 1 defines a T-valued sequence
{θt, t ≥ 1} satisfying a descent property: F(θt+1) ≤ F(θt) for all t ≥ 0. We have indeed by A1 and

Algorithm 1 Population MM
Require: an initial value θ0 ∈ T
Ensure: A T-valued sequence {θt, t ≥ 0}.
1: for t = 0, · · · , do
2: Choose υt ∈ U[θt].
3: Compute θt+1 ∈ Argmin

θ∈T
G(θ; υt).

4: end for

by definition of θt+1: F(θt+1) ≤ G(θt+1; υt) ≤ G(θt; υt) = F(θt).
When G does not have a closed form expression but stochastic oracles g(θ,X; υ) for G(θ; υ) are

available, a stochastic Population MM can be designed. We consider in this paper the Sequential
Sample Average Majorization–Minimization algorithm (SAM2) given by Algorithm 2. Note that
under the compactness property of T, the set of minimizers in Equation (5) of Algorithm 2 is not
empty as soon as for any x ∈ X and υ ∈ T, the function θ 7→ g(θ, x; υ) is lower semicontinuous on
T.

Algorithm 2 The SAM2 algorithm
Require: a sequence {Nt, t ≥ 1} of positive integers, an initial value θ0 ∈ T
Ensure: A T-valued sequence {θt, t ≥ 0}.
1: for t = 0, · · · , do
2: Sample a minibatch {X t+1,i, i = 1, · · · , Nt+1} of size Nt+1.
3: Choose υt ∈ U[θt].
4: Compute

θt+1 ∈ Argmin
θ∈T

1

Nt+1

Nt+1∑
i=1

g
(
θ,X t+1,i; υt

)
. (5)

5: end for

Remark. In the preceding discussion, we note that G (·; υ) for υ ∈ U[θ], is a local approximation of
F in a neighborhood of θ ∈ T (see A1), whereas the relationship between G and g from A2 is used
to estimate G via Monte Carlo simulation. Putting this together, at each iteration of Algorithm 2,

1

Nt+1

Nt+1∑
i=1

g
(
θ,X t+1,i; υt

)
is used as an estimate of the approximation G (·; υt) of F. The forthcoming analysis of Algorithm 2
focuses around the control of the numerical and stochastic errors regarding this joint approximation
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and estimation process. Such requirement to control both types of errors is not unique to the SAM2
algorithm, as similar analysis is required for gradient-based algorithms when the objective function
F is an intractable expectation: gradient-based algorithms operate directly on the sample gradient
of F. Unlike such algorithms, however, computation of (5) does not always require information
regarding the gradient of F, which is an advantage when such objects are difficult or costly to
compute.

3 Asymptotic convergence analysis of SAM2

This section is devoted to the almost-sure convergence of SAM2 when the number of iterations
tends to infinity, under the additional assumption that each majorizing function G(·; υ) possesses a
unique minimizer denoted by T(υ) (see A3-Item b). Regularity conditions on g and the objective
function F are also assumed (see A3-Item a,Item c) which imply continuity properties of G and T

(see Proposition 11 and Proposition 12). The proof consists in comparing one iteration of SAM2 to
one iteration of Population MM and proving that under conditions on the stochastic perturbations,
both algorithms have the same limiting set.

We start with discussing the fixed points of Population MM and how this set of points is
related to the minimizers of F (see Theorem 4). Then, a general result on the convergence of
perturbed iterative scheme is derived (see Theorem 5), whose main assumptions are the existence
of a Lyapunov function for the iterated map, and the perturbation is vanishing in a sense related
to this Lyapunov function; this convergence theorem covers general iterative scheme and is not
restricted to the case of the MM one. In the MM framework, the objective function F plays the role
of the Lyapunov function and Proposition 7 shows that the vanishing perturbation condition is
satisfied as soon as the perturbation is vanishing in a sense related to the majorizing functions
G. Combining Theorem 5, Proposition 7 and a condition on the batch size (see A 4) yields the
convergence result for SAM2 (see Theorem 9).

The convergence analysis is derived under the following regularity conditions on F and g.

A3. a) For any x ∈ X, the function (θ, υ) 7→ g(θ, x; υ) is continuous on T× U. In addition, there
exists p > 1 such that E

[
sup(θ,υ)∈T×U |g(θ,X; υ)|p

]
<∞.

b) For all υ ∈ U, the set ArgminTG(·; υ) has exactly one element, denoted by T(υ).

c) The function θ 7→ F(θ) is continuous on T.

Under A3-a, a minimizer θt+1 in (5) exists: SAM2 is well defined. A3-a also implies that θ 7→
G(θ; υ) is continuous for all υ ∈ U (see Proposition 11); since T is compact, the set ArgminTG(·; υ)
has at least one element. Finally, A3-a and A3-b imply that T is a continuous point-to-point map
from U to T (see Proposition 12).
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Example 3 (to follow). Assume in addition that (i) F is a lower semicontinuous convex function
on Rd; (ii) for all x ∈ X, θ 7→ f(θ, x) is continuous on T and there exists p > 1 such that
E [supθ∈T |f(θ,X)|p] <∞; (iii) γ is restricted to a compact ball in R>0: γ ∈ [g−, g+].

The dominated convergence theorem implies that F is continuous on T so that A 3-c holds.
Since b is continuous and γ is lower bounded from zero, then A 3-a also holds. In addition, for
all (τ, γ) ∈ U, θ 7→ G(θ; (τ, γ)) is strictly convex on T since b is strictly convex and F is convex;
hence, Argminθ∈TG(θ; (τ, γ)) is not empty and has exactly one element.

Theorem 4 provides sufficient conditions for ArgminTF not to be empty and included in the
the set L, defined by

L := {θ ∈ T : ∀υ ∈ U[θ],∀τ ∈ ArgminTG(·; υ),F(τ) = F(θ)}. (6)

L contains points in T such that, starting from such a point, one iteration of Population MM can
not decrease the value of the objective function. Theorem 4 shows that it is included in the subset
of T consisting of points such that, starting from such a point, one iteration of Population MM

does not decrease the value of the majorizing function whatever it is. Such a property follows from
A1, which implies that for all θ ∈ T, υ ∈ U[θ] and τ ∈ ArgminTG(·; υ), it holds

F(τ) ≤ min
T

G(·; υ) ≤ G(θ; υ) = F(θ). (7)

When ArgminTG(·; υ) has exactly one element denoted by T(υ), then Theorem 4 also shows that

L = {θ ∈ T : ∀υ ∈ U[θ],F(T(υ)) = F(θ) = minTG(·; υ)} = {θ ∈ T : ∀υ ∈ U[θ],T(υ) = θ}, (8)

so that L is the set of the fixed points of Population MM (see Algorithm 1). The proof of Theorem 4
is given in Section 6.2.

Theorem 4. i) Assume A3-a. For all υ ∈ U, the set ArgminTG(·; υ) is not empty.

ii) Assume A1, A3-a and A3-c. The set ArgminTF is not empty and ArgminTF ⊂ L ⊂ {θ ∈ T :

θ ∈ ArgminTG(·; υ) for all υ ∈ U[θ]}.

iii) Assume A1 and A3. Then the equalities (8) hold.

Example 3 (to follow). Under the stated assumptions, A1 and A3 are verified. Let us identify
the set L.

Let θ ∈ T and υ = (θ, γ) ∈ U[θ]: for υ := (θ, γ), since θ 7→ G(θ; υ) is a lower semicontinuous
proper convex function then it holds (see e.g. (Bauschke & Combettes, 2011, Theorem 16.3)):
0 ∈ ∂ [G(·; υ)] (T(υ)). By (Bauschke & Combettes, 2011, Corollary 16.48 and Proposition 16.6),
we have

∂ [G(·; υ)] (T(υ)) = γ ∂ [F+ ιT] (T(υ)) +∇b(T(υ))−∇b(θ).
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Therefore, the condition T(υ) = θ is equivalent to 0 ∈ ∂ [F+ ιT] (θ): the set L is the set of the
minimizers of F on T. Note also that we have L = {θ ∈ T : ∃υ ∈ U[θ],T(υ) = θ}.

The proof of the asymptotic convergence consists in observing that SAM2 is a stochastic per-
turbation of the Population MM iterative scheme τ t+1 = T(υt) for υt ∈ U[τ t]. While the sequence
{τ t, t ≥ 0} possesses a Lyapunov function i.e. F(τ t+1) ≤ F(τ t) for all t ≥ 0, this is no more the
case for the SAM2 sequence {θt, t ≥ 0}. Indeed, under A3-b, θt+1 is the minimizer of an approx-
imation of the majorizing function G(·; υt) so that in general, F(θt+1) ̸= F(T(υt)). Nevertheless,
the following result shows that as soon as the error |F(θt+1) − F(T(υt))| vanishes when t → +∞,
the sequence {θt, t ≥ 0} inherits the same limiting behavior as the Population MM sequence. The
proof of Theorem 5 is given in Section 6.3; it is adapted from (Fort & Moulines, 2003, Proposition
9) which addresses the case U[θ] = {θ} for all θ ∈ T.

Theorem 5. Let T be a compact subset of Rd, U be a subset of Rd′ and let L ⊆ T be a set such
that L ∩ T is compact. Let T : U→ T and F : T→ R be a continuous function such that

(H-i) for all θ ∈ T, there exists U[θ] ⊆ U such that F(T(υ)) ≤ F(θ) for all υ ∈ U[θ].

(H-ii) for any compact subset K in T \ L, infθ∈K infυ∈U[θ] (F(θ)− F(T(υ))) > 0.

Let {(θt, υt), t ≥ 0} be a T× U-valued sequence such that υt ∈ U[θt] for all t ≥ 0 and

(H-iii) limt |F(T(υt))− F(θt+1)| = 0.

Then the sequence {F(θt), t ≥ 0} converges to a connected component of F(L ∩ T). If F(L ∩ T)
has an empty interior, the sequence {F(θt), t ≥ 0} converges to F⋆ and the sequence {θt, t ≥ 0}
converges to the set T ∩ LF⋆ where LF⋆ := {θ ∈ L : F(θ) = F⋆}.

Let us start with discussing H-i and H-ii on two examples.

Example 6. Assume A1, A2 and A3, and U[θ] = {θ} for all θ ∈ T. We prove the conditions H-i
and H-ii are verified with L := {θ ∈ T : F(θ)− F(T(θ)) = 0} = {θ ∈ T : T(θ) = θ}.

A3-b and A3-c imply that T is a point-to-point map and F is a continuous function. Since F

and T are continuous on T (see A3-c and Proposition 12), the set L is closed which implies that
L ∩ T is compact. By A 1 (see also (7)), F(T(θ)) ≤ F(θ) for all θ ∈ T, so that H-i holds. By
definition of L, F(θ) − F(T(θ)) > 0 for all θ ∈ T \ L; since θ 7→ F(θ) − F(T(θ)) is continuous on
T, the condition H-ii holds.

Example 3 (to follow). We prove the conditions H-i and H-ii are verified.
H-i follows from A1, which holds true for this example. For H-ii, observe that by assumption

U[θ] = {(θ, γ), γ ∈ [g−, g+]} and remember that F and T are continuous functions on T and U
respectively (see Proposition 12). If θ ∈ T\L then θ is not a minimizer of F on T, and θ ̸= T(θ, γ)
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for all (θ, γ) ∈ U[θ]. Then, (θ, γ) 7→ F(θ) − F(T(θ, γ)) is a positive continuous function on
K × [g−, g+] for any compact set K ⊂ T \ L. This establishes H-ii.

When γ is not assumed lower bounded away from zero, the condition H-ii may not hold. As
a counter-example, consider the minimization of the absolute value function F(θ) = |θ| on the
compact subset T := [−a, a] of R; choose b(τ) := τ 2. Then T(θ, γ) = sign(θ)(|θ| − γ)+ which
implies that F(θ) − F(T(θ, γ)) = |θ| ∧ γ. Therefore, infθ∈K infγ>0 F(θ) − F(T(θ, γ)) = 0 for any
compact subset K of [−a, 0) ∪ (0, a].

Checking H-iii is specific to each perturbation of Population MM since it relies on the definition
of θt+1 given θt and υt. The following result, whose proof is given in Section 6.4, provides conditions
implying that if θ′ is such that G(θ′; υ)−minT G(·; υ) is small, then |F(θ′)− F(T(υ))| is small.

Proposition 7. Assume A1 and A3. Assume also that for any δ > 0, there exists η̃δ > 0 such
that

(θ, θ′) ∈ T× T, υ ∈ U[θ] : ∥θ′ − T(υ)∥ ≥ δ =⇒
(
G(θ′; υ)− G(T(υ); υ)

)
≥ η̃δ. (9)

For any ϵ > 0, there exists αϵ > 0 such that for any θ, θ′ ∈ T and for all υ ∈ U[θ], it holds

|F(θ′)− F(T(υ))| ≤ ϵ+ αϵ sup
T
|F| Diam(T)

(
G(θ′; υ)− G(T(υ); υ)

)
,

where Diam(T) denotes the diameter of the compact set T.

Example 8 (Example 6 to follow). Let us check the condition (9). Since U[θ] = {θ}, we have
θ′ − T(υ) = θ′ − T(θ) and G(θ′; υ) − G(T(υ); υ) = G(θ′; θ) − G(T(θ); θ). By Proposition 12,
T is a continuous function so that the set Kδ := {(θ, θ′) ∈ T × T : ∥θ′ − T(θ)∥ ≥ δ} is a
compact subset of T×T. G(T(θ); θ) = minT G(·; θ) and the minimizer is unique by A3-b; therefore,
G(θ′; θ)− G(T(θ); θ) > 0 for all (θ′, θ) ∈ Kδ. Finally, G and T are continuous (see Proposition 11
and Proposition 12). Hence η̃δ exists.

Example 3 (to follow). The proof of (9) is on the same lines as in the Example 8. Set Kδ :=

{(θ, θ′, γ) ∈ T×T× [g−, g+] : ∥θ′−T(θ, γ)∥ ≥ δ}. Under the stated assumptions, T is continuous on
T× [g−, g+] so Kδ is compact. In addition, G(θ′; υ)− G(T(υ); υ) > 0 for all (θ′, υ) ∈ Kδ. Finally,
G is a continuous function. Hence η̃δ exists.

We are now ready to apply Theorem 5 and provide a result on the asymptotic convergence of
SAM2. Theorem 9 establishes the almost-sure convergence of the SAM2 sequence to the set L =

{θ ∈ T : T(υ) = θ for all υ ∈ U[θ]}. In order to satisfy the condition H-iii of Theorem 5, we apply
Proposition 7 and provide sufficient conditions for the property limt{G(θt+1; υt)−G(T(υt); υt)} = 0

to hold almost-surely. Upon noting that

0 ≤ G(θt+1; υt)− G(T(υt); υt) ≤ 2 sup
(θ,υ)∈T×U

∣∣∣∣∣ 1

Nt+1

Nt+1∑
i=1

g(θ,X t+1,i; υ)− G(θ; υ)

∣∣∣∣∣ ,
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(see Section 6.6), we use a uniform strong law of large numbers (see Section 6.5) and assume that
the batch size Nt increases rapidly enough.

A4. The size {Nt, t ≥ 1} of the mini-batch #t satisfies
∑

t≥1N
−((p−1)∧(p/2))
t <∞, where p is given

by A3-a.

When p ∈ (1, 2], the batch size Nt can be set to Nt ∝ t1/(p−1)(ln t)(1+β)/(p−1) for β > 0. When
p ≥ 2, the batch size Nt can be set to Nt ∝ t2/p(ln t)(1+β)2/p for β > 0. A large value of p yields a
slow increase of the batch size Nt.

Theorem 9. Assume A2, A3-a, A3-b, A4 and U is compact. Let {θt, t ≥ 0} be the output of the
SAM2 algorithm. Then with probability one

i) limt{G(θt+1; υt)− G(T(υt); υt)} = 0.

Set
L+ := {θ ∈ T : ∃υ ∈ U[θ],T(υ) = θ}.

If in addition A1 and A3-c hold, then with probability one,

ii) {F(θt), t ≥ 0} converges to a connected component of F(L+).

iii) If F(L+) has an empty interior, then {F(θt), t ≥ 0} converges to F⋆ and {θt, t ≥ 0} converges
to {θ ∈ L+ : F(θ) = F⋆}.

The proof of Theorem 9 is given in Section 6.6. When U[θ] = {θ} for all θ ∈ T, then L+ = L
where L is given by (7). Note also that for Example 3, L+ = L even though U[θ] is not reduced
to a singleton.

When the majorizing function G(·; υt) can be exactly evaluated at each iteration, it is known
that the convergence of the objective function along the path {τ t, t ≥ 0} of the Population MM

algorithm follows from the monotonicity of t 7→ F(τ t) (see e.g. (Lange et al., 2021, Proposition
2.1)). When only oracles of the majorizing function are available, the monotonicity property along
the SAM2 sequence does not hold anymore; nevertheless, the sequence {F(θt), t ≥ 0} may still
converge, as shown by Theorem 9.

Since there is no guarantee that for the SAM2 sequence, θt+1 ∈ {θ ∈ T : F(θ) ≤ F(θt)}, the
stability of the SAM2 sequence can not follow from the compactness of the level sets of the descent
function F. In this paper, the stability is ensured by forcing a compact-valued sequence (see (5) and
the compactness assumption on T). Nevertheless, a self-stabilization by projections on growing
compact sets could be explored, by adapting (Fort & Moulines, 2003, Propositions 10 and 11).
Such an extension is out of the scope of this paper.

Iterative algorithms having a descent function converge to the set of the so-called no-progress
points (see e.g. (Lange et al., 2021, Proposition 2.2.)). Under A1 and the assumption U[θ] = {θ},
we have F(τ) ≤ F(θ) for all τ ∈ ArgminTG(·; θ) and the inequality is strict when θ /∈ ArgminTG(·; θ).
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Hence, the set of the no-progress points is the set L given by (6). Theorem 9 provides sufficient
conditions for the SAM2 sequence to converge to L (observe that L = L+ when U[θ] = {θ} and
ArgminTG(·; θ) has exactly one element).

4 SAM2 examples

4.1 An Online Mirror Descent Algorithm

The goal is to minimize F : Rd → R on a compact convex set T, via a Mirror Descent approach
(see Nemirovskii & Yudin (1983), see also the overview Bubeck (2015)). Consider the case when

MD1. (a) F is continuously differentiable in an open neighborhood S of T. There exists a measur-
able function h : T × X → Rd such that ∇F(θ) = E [h(θ,X)] where E [∥h(θ,X)∥] < ∞ for all
θ ∈ T. No exact computation of the expectation is available.

(b) A stream of independent random variables with the same distribution as X is available, and
h(θ, x) can be computed for all (θ, x) ∈ T× X.

Choose a function ψ satisfying

MD 2. ψ : Rd → (−∞,+∞] is a lower semicontinuous convex function, T ⊂ dom(ψ), and it is
a continuously differentiable strictly convex function on S. The function b := ψ − F is strictly
convex.

Define the Bregman divergences associated to ψ and b

Dψ (θ; τ) := ψ(θ)− ψ(τ)− ⟨∇ψ(τ), θ − τ⟩ , Db (θ; τ) := b(θ)− b(τ)− ⟨∇b(τ), θ − τ⟩ .

The Online Mirror Descent algorithm is given by Algorithm 3. The update mechanism (10) is

Algorithm 3 The Online Mirror Descent algorithm
Require: a sequence {Nt, t ≥ 1} of positive integers, an initial value θ0 ∈ T
Ensure: A T-valued sequence {θt, t ≥ 0}.
1: for t = 0, · · · , do
2: Sample a minibatch {X t+1,i, i = 1, · · · , Nt+1} of size Nt+1.
3: Set Ht+1 := N−1

t+1

∑Nt+1

i=1 h (θt, X t+1,i)
4: Compute

θt+1 ∈ Argmin
θ∈T

〈
Ht+1, θ

〉
+Dψ

(
θ; θt

)
. (10)

5: end for

equivalent to
θt+1 = Argminθ∈T

(
ψ(θ)− ψ(θt)−

〈
∇ψ(θt)−Ht+1, θ − θt

〉)
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thus showing that it is Mirror Descent applied with a constant step size γ (set to one here without
loss of generality, since ψ can be replaced with ψ/γ). Note also that the minimizer exists and is
unique since ψ is strictly convex on T.

Online Mirror Descent is a SAM2 algorithm. Following the same lines as in (Beck & Teboulle,
2003, section 3) (see also (Bubeck, 2015, Section 4.2.), (Lange et al., 2021, Section 4.2.2)), we prove
that under MD1 and MD2, Algorithm 3 is a SAM2 algorithm. Set U := T and define

G(θ; υ) := F(υ) + ψ(θ)− ψ(υ)− ⟨∇ψ(υ)−∇F(υ), θ − υ⟩+ ιT(θ), θ ∈ Rd, υ ∈ T; (11)

ιT is the characteristic function of T. For θ, υ ∈ T, we have G(θ; υ) = F(θ) + Db (θ; υ) + ιT(θ).
Therefore, G(θ, υ) ≥ F(θ) for all θ, υ ∈ T sinceDb (θ; υ) ≥ 0 under MD2. In addition, G(θ; θ) = F(θ)

for all θ ∈ T since Db (θ; θ) = 0, and since b is strictly convex, we have Db (θ; υ) > 0 for θ ̸= υ.
Hence, U[θ] = {θ}. From (11), we have G(θ, υ) = E [g(θ,X; υ)] where g is given by

g(θ, x; υ) := ⟨h(υ, x), θ⟩+Dψ (θ; υ) + C(υ) + ιT(θ);

C(υ) does not depend on θ. Hence, it is readily seen that solving (5) is equivalent to solving (10):
Online Mirror Descent is a SAM2 algorithm.

The limiting set. Under MD1, MD2 and

MD3. for all x ∈ X, θ 7→ h(θ, x) is continuous on T and E [supθ∈T ∥h(θ,X)∥p] <∞ for some p > 1

the conditions A1, A2 and A3 are satisfied. Since U[θ] = {θ}, then L+ = L; let us identify the
set L given by (6). Since θ′ 7→ G(θ′; θ) is a lower semicontinuous convex function with domain T,
T(θ) solves (see e.g. (Bauschke & Combettes, 2011, Theorem 16.3))

0 ∈ ∂ [ψ(·)− ⟨∇ψ(θ)−∇F(θ), ·⟩+ ιT(·)] (T(θ)).

Hence, T(θ) = θ is equivalent to 0 ∈ ∇F(θ)+∂ιT(T(θ)) by (Bauschke & Combettes, 2011, Corollary
16.48) . Hence L is the set of the minimizers of F on T.

For the sequence {θt, t ≥ 0} given by Algorithm 3, Theorem 9 shows that, as soon as the size
of the mini batches is chosen so that A4 holds: the sequence {F(θt), t ≥ 0} converges to minT F

and the sequence {θt, t ≥ 0} converges to the set of the minimizers.
When the majorizing function G relies on a Bregman divergence, as it is the case in this

example, the convergence analyses usually adopt a different approach which uses the three-point
inequality by Chen & Teboulle (1993): the function that plays the role of a descent function
is not F but it is a Bregman distance between the current iterate and a minimizer. In that
approach, ϵ-approximate stationarity is generally discussed, most often along an averaged path
(see e.g. Nemirovski et al. (2009); Lan et al. (2012); Nedić & Lee (2014); Zhang & He (2018);
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Lan (2020); Dragomir et al. (2021); D’Orazio et al. (2023)), from which asymptotic convergence
can be obtained (see e.g. (Beck & Teboulle, 2003, Theorem 4.1) in the deterministic case, or Lei
& Zhou (2020) for convergence in expectation of Online Mirror Descent). While our approach
addresses the almost-sure convergence under a constant step size, but at the price of a mini-batch
size Nt increasing at each iteration, the other approach considers the case Nt = 1 but the step size
is iteration-varying and its choice is crucial.

4.2 An Online Proximal-Gradient algorithm

The objective is to minimize a composite function F := Fs + Fc on a compact convex subset T of
Rd, where

PG1. (a) the function Fs : Rd → R is continuously differentiable with L-Lipschitz gradient.
There exists a measurable function h : T × X → Rd such that ∇Fs(θ) = E [h(θ,X)] where
E [∥h(θ,X)∥] <∞ for all θ ∈ T. No exact computation of the expectation is available.

(b) A stream of independent random variables with the same distribution as X is available, and
h(θ, x) can be computed for all (θ, x) ∈ T× X.

(c) the function Fc : Rd → (−∞,+∞] is a continuous convex function, T ⊂ dom(Fc) and for all
γ > 0, the proximal map of γFc + ιT is a point-to-point map with an explicit expression.

ιT denotes the characteristic function of the set T; remember that the proximal map is given
by

ProxγFc+ιT(θ) := Argminτ∈T

(
γFc(τ) +

1

2
∥τ − θ∥2

)
.

The Online Proximal-Gradient algorithm, given by Algorithm 4, is a stochastic perturbation of
a forward-backward splitting process in optimization (see Lions & Mercier (1979), see also (Beck
& Teboulle, 2009, Section 1.3.3.) for an introduction as a MM technique) in which the forward
operator is not explicit and learnt from a stream of oracles (see e.g. (Combettes & Wajs, 2005,
Section 3) for a pioneering contribution on inexact proximal-gradient algorithms).

Algorithm 4 The Online Proximal-Gradient algorithm
Require: a sequence {Nt, t ≥ 1} of positive integers, an initial value θ0 ∈ T, ϵ > 0
Ensure: A T-valued sequence {θt, t ≥ 0}.
1: for t = 0, · · · , do
2: Sample a minibatch {X t+1,i, i = 1, · · · , Nt+1} of size Nt+1.
3: Set Ht+1 := N−1

t+1

∑Nt+1

i=1 h (θt, X t+1,i)
4: Choose γt+1 ∈ [ϵ, 1/L]
5: Compute

θt+1 = Proxγt+1Fc+ιT

(
θt − γt+1Ht+1

)
. (12)

6: end for
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Online Proximal-Gradient is a SAM2 algorithm. Set U := T × [ϵ, 1/L] and for all θ ∈ T, set
U[θ] := {(θ, γ), γ ∈ [ϵ, 1/L]}. The function

G(θ′; (θ, γ)) := Fs(θ)+⟨∇Fs(θ), θ′ − θ⟩+
1

2γ
∥θ′−θ∥2+Fc(θ

′)+ ιT(θ
′), θ′ ∈ Rd, θ ∈ T, γ ∈ [ϵ, 1/L]

satisfies A1 under PG1. We also have G(θ′; (θ, γ)) = E [g(θ′, X; (θ, γ))] where

g(θ′, x; (θ, γ)) := Fs(θ) + ⟨h(θ, x), θ′ − θ⟩+
1

2γ
∥θ′ − θ∥2 + Fc(θ

′) + ιT(θ
′)

= Fc(θ
′) +

1

2γ
∥θ′ − θ + γh(θ, x)∥2 + C(γ, θ) + ιT(θ

′)

where C(γ, θ) does not depend on θ′. Therefore, the minimization (5) is equivalent to the compu-
tation of the proximal-gradient operator (12), thus showing that Algorithm 4 is a SAM2 algorithm.

The limiting set. Under PG1 and

PG2. (a) Fs is convex,

(b) for all x ∈ X, θ 7→ h(θ, x) is continuous on T and E [supθ∈T ∥h(θ,X)∥p] <∞ for some p > 1

the conditions A 1, A 2 and A 3 are satisfied. Since θ′ 7→ G(θ′; (θ, γ)) is a (proper) lower
semicontinuous strictly convex function possessing a minimizer T(θ, γ), then this minimizer is the
unique solution of (see e.g. (Bauschke & Combettes, 2011, Theorem 16.3))

0 ∈ ∂
[
⟨∇Fs(θ), ·⟩+

1

2γ
∥ · −θ∥2 + Fc(·) + ιT(·)

]
(T(θ, γ)).

By (Bauschke & Combettes, 2011, Corollary 16.48), T(θ, γ) = θ, is equivalent to 0 ∈ ∇Fs(θ) +
∂Fc(θ) + ∂ιT(θ). Observe that this property does not depend on γ which implies that L+ = L.
This property also yields

L = {θ ∈ T : 0 ∈ ∂ [F+ ιT] (θ)}.

Since F is a lower semicontinuous proper convex function, then L is the set of the minimizers of F
on T.

For the sequence {θt, t ≥ 0} given by Algorithm 4, Theorem 9 shows that as soon as the size of
the mini batches is chosen so that A4 holds: the sequence {F(θt), t ≥ 0} converges to minT F and
the sequence {θt, t ≥ 0} converges to the set of the minimizers of F on T.

In the literature, the convergence analysis of perturbed Proximal-Gradient algorithms usually
relies on the Siegmund-Robbins lemma (see (Robbins & Siegmund, 1971, Theorem 1) for a stochas-
tic version assuming the errors are nonnegative; see also Atchadé et al. (2017) for an extension
addressing the case of signed errors and deterministic perturbations; and Lai (1989) for nonnega-
tive errors and possibly non converging cumulated errors). Different settings were considered. Let
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us cite as few examples, the finite-sum setting Nitanda (2014); Fort & Moulines (2023); the convex
case under summability assumptions on the errors Ht+1 −∇Fs(θt) which reveal restrictive for the
i.i.d. streaming framework considered here Combettes & Pesquet (2015); the convex case under
possibly biased errors Atchadé et al. (2017); the convex case when Fs is uniformly convex at a
minimizer and the conditional variance of the error is controled by ∥∇Fs(θt)∥2 and does not vanish
Rosasco et al. (2020). The closest result to the one we obtain is (Atchadé et al., 2017, Theorem 6),
which covers Algorithm 4: applied with a lower bounded stepsize sequence {γt, t ≥ 1}, it provides
almost-sure convergence of the SAM2 sequence to a point in L under the assumption

∑
tN

−1
t <∞.

5 A numerical illustration: Regression under a quantile loss

function

The effectiveness of the SAM2 algorithm is demonstrated in the following simulation analysis. We
consider a linear model with heavy-tailed noise, for which most existing theories and implemen-
tation are no longer applicable. In contrast, we show that SAM2 applies straightforwardly with
theoretical guarantees. More specifically, we consider the following linear model,

Y =
〈
θ,W

〉
+ ϵ (13)

where θ ∈ Rℓ is the unknown regression parameter, W := (1,W ) and W ∈ Rℓ−1 are the covariates
and Y ∈ R is the response variable. The random variables W and ϵ are defined in (Ω,A,P); the
additive noise ϵ is assumed independent of W and W is integrable E[∥W∥] <∞.

The goal is to learn the regression parameter θ from streaming data, independent and with the
same distribution as X := (W,Y ). We are interested in very heavy-tailed noise ϵ, typically with
infinite variance, for which the standard squared-loss approach cannot be applied: the quantile
regression (QR) loss is commonly used instead. Let q ∈ (0, 1) be a specified quantile level, the
so-called QR problem consists of finding the solution of the following minimization problem

argmin
θ∈Rℓ

E
[
ρq(Y −

〈
θ,W

〉
)− ρq(Y )

]
, ρq(u) := (q − 1u<0)u. (14)

This objective function is finite for all θ ∈ Rℓ under the integrability condition on W (see e.g.
Lemma 17). Note that the addition of the second term in (14) does not impact the solution of the
minimization problem but guarantees the existence of the loss and allows to consider more general
settings. In this section, we consider the possibly penalized QR problem and aim to solve:

argmin
θ

Fη (θ) , Fη(θ) := E
[
ρq(Y −

〈
θ,W

〉
)− ρq(Y )

]
+ η∥θ∥1, (15)

where ∥θ∥1 is the sparsity inducing L1-norm of θ and η ≥ 0. When q = 1/2, we recover the so-called
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Least Absolute Deviation (LAD) problem. As the QR loss is non smooth, a number of standard
algorithms cannot be applied. More specifically, the two main sources of complication in QR are the
heavy-tail of the noise and the non-smoothness of the loss. The sometimes called check function ρq
is non-differentiable at 0. When the noise is not of finite variance, most least-square-based theories
or Huber-based robust approaches are not applicable. To handle non-smoothness, most approaches
are two-step approaches with first the design of a smooth approximation of the QR loss and then
the optimization of this approximation, with the hope that the distance between the estimates and
the true minimizers can be controlled and tends to zero. Various smooth approximations have been
proposed, using a perturbation of the check function that can be majorized by a quadratic funtion
(Hunter & Lange, 2000), kernel convolution-based smoothing (Jiang & Yu, 2022; Chen et al., 2019),
a huberized pinball loss for robust to outliers but essentially Gaussian noise (Ichinose et al., 2023),
transformation of the QR loss into a least-square loss on new response variables (Chen et al., 2020),
etc. The type of approximations designed generally guides in turn the subsequent optimization
technique. For instance Hunter & Lange (2000) use an MM algorithm, while Chen et al. (2019,
2020); Ichinose et al. (2023); Zheng (2011) exploit the differentiability of their approximation
to derive stochastic gradient or stochastic Newton-Raphson algorithms. The position of SAM2

appears quite unique in the QR literature, as SAM2 does not require to change the target loss to
a smooth approximation while performing the loss optimization with an MM framework. The
following proposition shows that we can indeed formulate the QR problem so as to exhibit a
convenient majorizer, which is both easy to optimize and satisfies the SAM2 requirements under
mild conditions. Note however, that the result below only holds for linear regression functions
while some of the previous mentioned methods, e.g. (Hunter & Lange, 2000; Ichinose et al., 2023)
can also deal with non-linear regressions. Regarding the addition of a Lasso penalty for variable
selection, most approaches including SAM2 handle this extension straightforwardly.

Proposition 10. Assume there exists p⋆ > 1 such that E [∥W∥p⋆ ] <∞. Then A1 and A2-Item a
are satisfied with

gη (θ,X; τ) :=
1

ℓ

ℓ∑
j=1

(
ρq(Y −

〈
τ,W

〉
+ ℓW jτj − ℓW jθj)− ρq(Y ) + ηℓ|θj|

)
,

and U[θ] = {θ} for all θ. In addition, A3 is satisfied with p = p⋆. The optimization step (5) is
explicit for all q ∈ (0, 1) and η ≥ 0.

The proof is in Section 6.7. Whatever the dimension ℓ of θ, gη is a sum of functions that
involve each θi separately and can then be separately minimized over a one-dimensional space. A
ℓ-dimensional problem is then turned into ℓ 1-dimensional problems. In Section 6.7, we show that
such 1-dimensional minimization can be solved exactly.
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5.1 Simulation Setup

Let X i := (W i, Y i) ∈ Rℓ−1 × R for each i ∈ [N ] be the realization of an i.i.d. sample of (W,Y ).
We consider the following linear model,

Y =
〈
θtrue,W

〉
+ ϵ (16)

where W := (1,W1, . . .Wℓ−1) is a ℓ-dimensional covariate vector. The examples {W i, i ∈ [N ]} are
sampled independently, from a multivariate normal distribution N (0,Σ) with a covariance matrix
Σ whose entries are Σr,s := r|r−s| for r, s ∈ [ℓ− 1]. We set ℓ = 11 and r = 0.9. The true coefficient
is set to

θtrue := 10

(
1

ℓ
,
2

ℓ
. . . ,

ℓ− 1

ℓ
, 1

)
.

The noise distribution is chosen to be Cauchy ϵ ∼ Cauchy(0, 1), and the random variables ϵi are
independent.

The unknown parameter θ is learnt from the examples (X i, Y i), as a minimizer of the criterion
(15) in the case η = 0 and q = 0.5. For SAM2 the sequence {Nt, t ≥ 1} is chosen so as to satisfy
assumption A4. For a Gaussian vector W , the assumption A3 is satisfied for any p > 1 so that the
theory claims that a sufficient condition for the convergence of SAM2 is the Nt’s increase as slowly
as desired. However, we illustrate below that too small constant values are not recommended.
Thus, we first illustrate SAM2 with a linearly growing modified so as to start with batch sizes of
100: Nt = max(100, t). As will be illustrated in Section 5.3, this burnin has no real impact on
the algorithm convergence but starting with batch sizes of 100 provides better starts. The number
of iterations is set to T = 1000. It follows that the total number of data points processed is
N =

∑T
t=1Nt = 505, 450.

As the QR loss is non-smooth, for comparison, we implement a stochastic subgradient (SSG)
algorithm using a subgradient gq(θ; (w, y)) of ρq(y − ⟨θ, w̄⟩) with respect to θ which is given by

gq(θ; (w, y)) := −
(
q − 1y−⟨θ,w̄⟩<0

)
w̄; w̄ := (1, w).

The SSG algorithm is essentially the subgradient algorithm, but using noisy subgradients and a
sequence of positive step sizes {γt, t ≥ 1}. It uses the standard update specified in Algorithm 5,
written with the possibility to use mini batches also denoted by {Nt, t ≥ 1}.

SSG requires the choice of step sizes and mini-batch sizes, while SAM2 requires only to choose a
sequence of mini-batch sizes {Nt, t ≥ 1}.

For all algorithms, the iterate is arbitrarily initialized to θ0 := (1, . . . , 1) and a Polyak averaging
is also performed starting at T0 = 500, for t > T0: θ̄t = t−1−T0

t−T0 θ̄t−1 + 1
t−T0 θ

t. For a quantitative
performance assessment, we compute the root mean squared error (RMSE) or L2-error at each
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Algorithm 5 The SSG algorithm
Require: a sequence {Nt, t ≥ 1} of positive integers and of positive step sizes {γt, t ≥ 1}, an

initial value θ0 ∈ T
Ensure: A T-valued sequence {θt, t ≥ 0}.
1: for t = 0, · · · , do
2: Sample a minibatch {X t+1,i, i = 1, · · · , Nt+1} of size Nt+1.
3: Compute

θt+1 = θt − γt+1
1

Nt+1

Nt+1∑
i=1

gq
(
θ;X t+1,i

)
(17)

4: end for

iteration:
RMSEt := ||θt − θtrue|| .

SAM2 is then compared to SSG using various settings in order to assess their respective robustness
to the step size and batch size choices.

5.2 Sensitivity to step sizes

Regarding the SSG algorithm, we first consider a standard setting with mini-batches of equal size.
To compare both algorithms using the same amount of observations and perform the same number
of parameter updates, the batch size is set to ⌊N/T ⌋ = 505 for all iterations except the last one
which is augmented with the remaining data points and then includes 955 samples. This later
adjustment has very little impact. SSG requires the user to decide on a step size sequence, which
has been reported to be impactful and the main practical limitation of gradient algorithms. Three
such sequences are thus tested: γt = 1

(t+1)0.51
, γt = 1

(t+1)0.6
and γt = 1

(t+1)0.7
.

Figure 1 shows, for one simulated data set, the sequences (left) of RMSE obtained with SAM2 and
the three SSG tested settings, with a zoom on the last 500 iterations (right). Two representations of
the RMSE evolution are reported in Figure 1, one with respect to the number of parameter updates
(iterations, in the first line), and the other with respect to the number of processed samples (second
line). The lowest RMSE are obtained for SAM2 and SSG with step sizes γt = 1

(t+1)0.51
, with SAM2

outperforming the later. For γt = 1
(t+1)0.7

, the SSG blue curve is not visible on the zoomed plot as its
RMSE are too large. Polyak averaging performed with a burnin, starting at T0 = 500, is beneficial
to the SAM2 RMSE but not for the SSG RMSE. In terms of observed RMSE, the Polyak averaging
performance decreases as the burnin phase T0 becomes smaller. Note that the RSME curve of the
Poliak averaging sequence is not the Polyak averaging of the RMSE sequence. Overall, although
noisier, the SAM2 estimations appear less biased than the SSG ones. This is illustrated on some
parameter sequences in Figure 2. The plots illustrate that SAM2 estimates are in general closer to
the true values. In addition, the simulations confirm the often reported fact that SSG performance
can be quite sensitive to the step size choice, with 2 out of 3 settings showing significantly larger
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Figure 1: LAD example. First line: RMSE over iterations for SAM2 (black), SSG with different step size schedules,
γt =

1
(t+1)0.51 (red and purple), γt = 1

(t+1)0.6 (green) and γt =
1

(t+1)0.7 (blue). All SSG sequences are with constant
batch sizes except the purple curve which uses the same batches as SAM2. The left plot shows a zoom on the last
half iterations, with additional RMSE curves for the Polyak averaging sequences (dashed lines). Second line: same
comparison of RMSE but over number of processed samples.

RMSE. In contrast, SAM2 does not require such tuning. It is quite robust to the choice of the Nt’s
as soon as they are not kept too small for too many iterations. Typically, when Nt = t, which
lowers the first batch sizes, SAM2 performs similarly as in Figure 1 but with a slower start. We
further investigate the sensitivity to batch sizes in the next section.

5.3 Sensitivity to batch sizes

First, for SSG a second strategy is considered for the mini-batch size with a varying size Nt so that
at each iteration the SSG algorithm uses the exact same data points as SAM2. This setting is tested
only for SSG with γt =

1
(t+1)0.51

, which provided before the best results. For this sequence of step
sizes, the purple curve in Figure 1 shows RMSE obtained when using the same mini-batch sizes
and data points for both SAM2 and SSG. The stronger impact is seen on the second line of Figure 1.
SAM2 and SSG with linearly increasing batch sizes, show better start reaching lower RMSE faster.
This is consistent with the intuition that more frequent parameter updating is preferable than finer
optimization steps at the early stages of the algorithms. Overall, final SSG RMSE do not seem to
be much impacted by this change of batch sizes. For this specific simulation, the constant batch
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Figure 2: LAD example. Sequences of estimates for components θ1, θ2, θ3 and θ11, using SAM2 with linear Nt =
max(100, t) (black) and SSG with γt =

1
(t+1)0.51 and constant batch sizes Nt = 505 (red). Polyak averaging sequences

are shown with dashed lines. True parameter values are indicated by the blue horizontal dashed lines.
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Figure 3: LAD example. First line: RMSE over iterations for SAM2 with different batch size sequences, original
SAM2 (black) and constant (505) batch size SAM2 (blue). The left plot shows a zoom on the last half iterations, with
additional RMSE curves for the Polyak averaging sequences (dashed lines). Second line: same comparison but with
respect to the number of samples.

size setting slightly outperforms eventually the varying one but boxplots in Figure 5 show than on
average both setting lead to very similar performance.

Symmetrically, Figure 3 shows then the result of two SAM2 runs, where the previous setting is
compared with one where the batch sizes are set to a constant ⌊N/T ⌋ = 505, as for the previous
SSG. Although this does not satisfy condition A4 on the Nt’s, this setting provides better RMSE in
the first iterations but is eventually equivalent as the batch sizes increase. The Polyak averaging
sequences suggest that the constant batch size version of SAM2 will eventually be outperformed by
the increasing size one, as expected. Figure 4 further shows SAM2 sequences with constant batch
sizes successively set to constant between 1 and 10. Nt should not be set too low. For Nt = 1,
the algorithm diverges very quickly. For Nt = 5, RMSE values remain very high and noisy, while
Nt = 10 still provides much larger RMSE than Nt = 505.

This first set of simulations suggests that SAM2 has the advantage, over its stochastic gradient
SSG counterpart, not to require the choice of a step size sequence, while choosing batch sizes is not
problematic. One could argue that the need to use increasing Nt’s could be limiting, typically if
one does not control the data stream. But note that this is only a sufficient condition and that
SAM2 seems to perform well for constant Nt’s too especially when combined with Polyak averaging.
For SSG the sensitivity to the step size appears not to be as easily compensated by appropriate
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Figure 4: LAD example. RMSE over iterations for SAM2 with constant batch size set from Nt = 2 to Nt = 10: (a)
For Nt = 1 only the first 100 iterations are shown due to the explosion of the values, (b) For Nt = 2 note the very
high RMSE values too, (c) Comparison of the Nt = 5 and Nt = 10, (d) Nt = 10 RMSE sequence and comparison
with Nt = 505.
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Figure 5: LAD example, 100 simulations. Last iteration RMSE boxplots for SAM2 and SSG with different batch and
step size schedules. Left plot: From left to right, SAM2, SAM2 with Polyak averaging, SSG and its Poliak averaging,
with varying batch size, with constant batch sizes set to 505, both with γt = 1

(t+1)0.51 , SSG with constant batch
sizes set to 505 with γt =

1
(t+1)0.6 and γt =

1
(t+1)0.7 . Right plot: zoom on the 6 best algorithms. Poliak averaging is

performed for all algorithms with T0 = 500.

batch sizes.

5.4 Average assessment

The comparison is completed by repeating the same experiment for 100 different simulated data
sets using the same QR model. Figure 5 shows the boxplots obtained with the SAM2 and SSG

algorithms, using the RMSE at the last iteration. More specifically, eight settings are considered:
SAM2 with Nt = max(100, t) and its Polyak averaging, SSG for γt = 1

(t+1)0.51
with both varying

batch sizes and constant Nt = 505, and their respective Polyak averaging. SSG with Nt = 505 for
γt =

1
(t+1)0.6

and γt = 1
(t+1)0.7

are also shown.
The same conclusions as in the previous sections hold. The sensitivity of SSG to step sizes is

confirmed while SAM2 outperforms the other settings with a simple increasing sequence of Nt’s.
SAM2 produces noisier sequences which are easily smoothed via Polyak averaging, which further
improves the final SAM2 estimates. In contrast, Polyak averaging is not beneficial to SSG in none of
the configurations. This is essentially due to the parameter sequences that are much more biased
as illustrated in Figure 2. At last, the good performance of SAM2 is at the expense of a higher
computation cost due to the resolution of an optimization problem at each iteration, while SSG

involves only a straightforward update.
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6 Proofs and Technical results

6.1 Technical results on F, G and T

Proposition 11. i) Assume A3-a. G is continuous on T×U, and ArgminTG(·; υ) is not empty
for any υ ∈ U.

ii) Assume A3-c. ArgminTF is not empty.

iii) Assume A1. For any υ ∈ U, minT F ≤ minT G(·; υ). In addition, for any θ ∈ T and υ ∈ U[θ],
0 ≤ G(θ; υ) + minT F ≤ F(θ) + minT G(·; υ).

Proof. Under A3-a, the dominated convergence theorem implies that the function (θ, υ)→ G(θ; υ)

is continuous. Since T is compact, infT G(·; υ) is not empty for any υ ∈ U.
Under A3-c, θ 7→ F(θ) is continuous on the compact set T; hence, ArgminTF is not empty.
Let υ ∈ U. A 1-a implies that minT F ≤ minT G(·; υ). This inequality, combined with the

equality in A1-b, yields the second statement.

Proposition 12. Assume A3-a and A3-b. Then

i) T is continuous on U.

ii) (θ, υ) 7→ G(θ; υ)− G(T(υ); υ) is continuous on T× U.

Proof. (i) Let υ⋆ ∈ U and {υt, t ≥ 0} be a U-valued sequence such that limt υ
t = υ⋆. Then, by A

3-b, for all θ ∈ T
G(T(υt); υt) ≤ G(θ; υt).

By A 3-a, G is continuous on T × U (see Proposition 11); then limt G(θ; υ
t) = G(θ; υ⋆). The

sequence {T(υt), t ≥ 0} is a T-valued sequence and there exists a subsequence {υρ(t), t ≥ 0}
such that limt T(υ

ρ(t)) exists and is in T. Note that, as a subsequence of {υt, t ≥ 0}, we have
limt υ

ρ(t) = υ⋆. Using again that G is continuous, we have for all θ ∈ T

G(lim
t
T(υρ(t)); υ⋆) ≤ G(θ; υ⋆).

This inequality implies that limt T(υ
ρ(t)) is a minimizer of θ 7→ G(θ; υ⋆). Since this minimizer is

unique by A3-b, we have limt T(υ
ρ(t)) = T(υ⋆). This holds true for any subsequence {υρ(t), t ≥ 0}

and concludes the proof.
(ii) It follows from the continuity of T and of G (see Proposition 11).

6.2 Proof of Theorem 4

For all υ ∈ U, ArgminTG(·; υ) is not empty by Proposition 11-i. ArgminTF is not empty by
Proposition 11-ii.
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Proof of Item ii. Let θ ∈ ArgminTF. From (7), we have for any υ ∈ U[θ], minT F = F(θ) ≥ F(τ)

for any τ ∈ ArgminTG(·; υ). This yields τ ∈ ArgminTF and F(θ) = F(τ). Hence θ ∈ L.
Let θ⋆ ∈ L. Let v ∈ U[θ⋆] and τ ∈ ArgminTG(·; υ). Since θ⋆ ∈ L, we have F(τ) = F(θ⋆). Combined
with (7), this yields G(θ⋆; υ) = G(τ ; υ). Therefore, G(θ⋆; υ) = minT G(·; υ) and θ⋆ ∈ ArgminTG(·; υ).
Proof of Item iii. By definition, we have L = {θ ∈ T : F(T(υ)) = F(θ) for all υ ∈ U[θ]}.
Let θ ∈ T such that θ ∈ ArgminTG(·; υ) for all υ ∈ U[θ]. By A3-b, ArgminTG(·; υ) = {T(υ)} which
implies that θ = T(υ) for all υ ∈ U[θ]. Hence, F(θ) = F(T(υ)) for all υ ∈ U[θ] and θ ∈ L. The
proof is concluded with (7).

6.3 Proof of Theorem 5

Since F is continuous and L ∩ T is compact, the set D := F(L ∩ T) is a compact subset of R.
Denote by Dβ the β-neighborhood of the closed set D: Dβ := {w ∈ R : d(w,D) < β}; d is the
Euclidean distance from a point to a closed set. Since D is compact, we have

D =
⋂
β>0

Dβ. (18)

Step 1. Let α > 0. Since Dα is a finite union of disjoint bounded intervals, there exist a positive
integer nα and two increasing real-valued sequences {aα(k), 1 ≤ k ≤ nα} and {bα(k), 1 ≤ k ≤ nα}
such that

Dα =
nα⋃
k=1

(aα(k), bα(k)) . (19)

Step 2. Since F is continuous and Dα/2 is open, F−1(Dα/2) is an open covering of L∩T. Define

ϵα := inf
θ∈T\F−1(Dα/2),υ∈U[θ]

(F(θ)− F(T(υ))) ; ρα := ϵα ∧ α. (20)

Observe that since T \ F−1(Dα/2) is a compact subset of T \ L, then ϵα > 0 (and therefore ρα > 0)
by H-ii.

Step 3. We write

F(θt)− F(θt+1) = F(θt)− F(T(υt)) + F(T(υt))− F(θt+1). (21)

By H-iii, there exists Tα such that

∀t ≥ Tα, |F(T(υt))− F(θt+1)| ≤ ρα/2. (22)

Hence, if t ≥ Tα and θt ∈ T\F−1(Dα/2) then (20)-(22) imply that F(θt)−F(θt+1) ≥ ϵα−ρα/2 ≥ ρα/2.
Consequently, upon noting that infT F > −∞, the sequence {F(θt), t ≥ 0} is infinitely often in Dα/2
and therefore in Dα. This implies that the sequence {F(θt), t ≥ 0} is infinitely often in an interval of
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(19): set Iα := (aα(k⋆), bα(k⋆)) where k⋆ is defined by k⋆ := max{k ∈ {1, · · · , nα} : lim inft F(θ
t) >

aα(k)}.
Step 4. Let t ≥ Tα such that F(θt) ∈ Iα. We prove by induction that for any s ≥ 0,

F(θt+s) < bα(k⋆). The property holds true for s = 0; assume it holds for s > 0. Using again (21),
we distinguish two cases

• if F(θt+s) ∈ Dα \ Dα/2, then (20)-(22) imply that F(θt+s) − F(θt+s+1) ≥ ϵα − ρα/2 ≥ ρα/2.
Hence F(θt+s+1) ≤ F(θt+s)− ρα/2 < bα(k⋆)− ρα/2 < bα(k⋆).

• if F(θt+s) ∈ Dα/2, then (21)-(22) and H-i imply that F(θt+s) − F(θt+s+1) ≥ 0 − ρα/2. Since
F(θt+s) < bα(k⋆)− α/2 and ρα ≤ α, then F(θt+s+1) < bα(k⋆).

This concludes the induction.
Step 5. We have lim inft F(θ

t) > aα(k⋆) and there exists t such that for all τ ≥ 0, F(θt+τ ) <
bα(k⋆). Hence, F(θt) ∈ Iα for any t large enough: the set F of the limiting points of {F(θt), t ≥ 0}
is not empty and is included in the interval Iα.

Let 0 < α1 < α2: Iα1 ⊆ Iα2 so that for any positive sequence {αn, n ≥ 0} decreasing to zero,
F ⊂

⋂
n Iαn and

⋂
n Iαn is an interval. Note also that

⋂
n Iαn ⊂ F(L ∩ T) by (18). Therefore, the

sequence {F(θt), t ≥ 0} converges to an interval in F(L ∩ T); this concludes the proof of the first
claim.

Step 6. Let us prove the last statement. If F(L∩T) has an empty interior, there exists F⋆ such
that limt F(θ

t) = F⋆. Since {θt, t ≥ 0} is a compact sequence and F is continuous, then {θt, t ≥ 0}
converges to the set {θ ∈ T : F(θ) = F⋆}.

Let a converging subsequence {θρ(t), t ≥ 0}, with limiting value θ⋆ ∈ T; such a sequence exists
since T is compact. The proof is by contradiction: assume that θ⋆ /∈ L. Since L ∩ T is closed,
there exists δ > 0 such that the compact ball Kδ := {θ ∈ T : ∥θ − θ⋆∥ ≤ δ} is in T \ L. The
assumption H-ii implies that there exists ϵδ > 0 such that for all θ ∈ Kδ and for all υ ∈ U[θ],
F(θ) > ϵδ + F(T(υ)). Since limt θ

ρ(t) = θ⋆, there exists Tδ such for all t ≥ Tδ, θρ(t) ∈ Kδ. Therefore
for all t ≥ Tδ, F(θρ(t)) > ϵδ + F(T(υρ(t))) which yields

lim
t
F(θρ(t)) ≥ ϵδ + lim

t
F(T(υρ(t))). (23)

On the other hand, the assumption H-iii and the result limt F(θ
t) = F⋆ imply that

lim
t
F(T(υρ(t))) = lim

t
F(θρ(t)+1), F⋆ = lim

t
F(θt) = lim

t
F(θρ(t)) = lim

t
F(θρ(t)+1). (24)

The results (23) and (24) imply that F⋆ ≥ ϵδ + F⋆ which is a contradiction.
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6.4 Proof of Proposition 7

Let ϵ > 0. Since F is continuous (see A3-c) and T is compact: there exists ηϵ > 0 such that

∥τ − θ′∥ ≤ ηϵ =⇒ |F(τ)− F(θ′)| ≤ ϵ/2.

and supT |F| <∞. It holds

|F(T(υ))− F(θ′)| = |F(T(υ))− F(θ′)|
(
1∥T(υ)−θ′∥≤ηϵ + 1∥T(υ)−θ′∥>ηϵ

)
≤ ϵ

2
+

2

ηϵ
sup
T
|F| ∥T(υ)− θ′∥.

Set δϵ := ϵηϵ/(4 supT |F|). Then we write by using (9)

∥T(υ)− θ′∥ ≤ ∥T(υ)− θ′∥1∥T(υ)−θ′∥<δϵ + ∥T(υ)− θ′∥1∥T(υ)−θ′∥≥δϵ
≤ δϵ + ∥T(υ)− θ′∥1∥T(υ)−θ′∥≥δϵ
≤ δϵ + 2 Diam(T) 1G(θ′;υ)−G(T(υ);υ)≥η̃δϵ

≤ δϵ +
2

η̃δϵ
Diam(T)

(
G(θ′; υ)− G(T(υ); υ)

)
.

As a conclusion, by using the definition of δϵ, we have

|F(T(υ))− F(θ′)| ≤ ϵ+
4

ηϵ η̃δϵ
sup
T
|F| Diam(T)

(
G(θ′; υ)− G(T(υ); υ)

)
.

6.5 Uniform strong Law of Large Numbers for double arrays

Theorem 13 establishes a uniform strong Law of Large Numbers for double arrays, with the proof
following the same lines of argument as that of (Andrews, 1992, Thm. 3), for example.

Theorem 13. Assume

B1. i) V is a compact subset of Rυ and (X,X ) is a measure space.

ii) h : V × X → R is measurable and there exists p > 1 such that E [supu∈V |h(u,X)|p] < ∞,
where X is a X-valued random variable defined on (Ω,A,P).

iii) For all x ∈ X, u 7→ h(u, x) is continuous on V.

iv) The deterministic Z>0-valued sequence {Nt, t ≥ 1} satisfies
∑

t≥1N
−((p−1)∧(p/2))
t <∞.

v) The random variables {X t,i, t ≥ 1, 1 ≤ i ≤ Nt}, defined on (Ω,A,P), are i.i.d. with the same
distribution as X.
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Then, with probability one,

lim
t→∞

sup
u∈V

∣∣∣∣∣ 1Nt

Nt∑
i=1

h
(
u,X t,i

)
− E [h (u,X)]

∣∣∣∣∣ = 0.

Set H(u) := E [h(u,X)]. Observe that under B 1-ii and B 1-iii, the dominated convergence
theorem implies that H is continuous on V.

The proof of Theorem 13 is based on Proposition 14: statement i) establishes a strong Law of
Large numbers for a fixed u ∈ V, and statement ii) establishes a strong Law of Large numbers for
the modulus of continuity defined for any δ > 0, by

ωδ(x) := sup
u∈V,u′∈V,∥u−u′∥≤δ

|h(u, x)− h(u′, x)|.

In the terminology of Davidson (2021, Sec. 22.4), statement i) is referred to as almost sure pointwise
convergence of the quantity N−1

t

∑Nt

i=1 h (u,X
t,i)−H (u) to zero, and statement ii) implies its strong

asymptotic uniform stochastic equicontinuity (often shorted to strong stochastic equicontinuity,
for brevity), via the Markov’s inequality. By Davidson (2021, Thm. 22.8), when V is compact
(and thus totally bounded and separable), taken together, almost sure pointwise convergence
and strong stochastic equicontinuity are equivalent to almost sure uniform convergence to zero of
N−1
t

∑Nt

i=1 h (·, X t,i) − H. Thus, under A6, the conclusions of Theorem 13 and Proposition 14 are
almost equivalent.

Proposition 14. Assume B1.

i) For any u ∈ V, there exists Ωu ∈ A such that P(Ωu) = 1 and on Ωu

lim
t→∞

∣∣∣∣∣ 1Nt

Nt∑
i=1

h
(
u,X t,i

)
− H(u)

∣∣∣∣∣ = 0.

ii) For any δ > 0, E[(ωδ(X))p] <∞ and there exists Ω̄δ ∈ A such that P(Ω̄δ) = 1 and on Ω̄δ

lim
t→∞

∣∣∣ 1
Nt

Nt∑
i=1

ωδ(X
t,i)− E [ωδ(X)]

∣∣∣ = 0.

Finally, limδ→0 E [ωδ(X)] = 0.

Proof. Item i. Let u ∈ V. Set Y t,i := h (u,X t,i) − H(u). We prove that for any ε > 0,
P(lim suptA

t
ε) = 0 where Atε := { N−1

t

∣∣∣∑Nt

i=1 Y
t,i
∣∣∣ ≥ ε}. This will imply that with probability

one, limt→∞N−1
t

∑Nt

i=1 Y
t,i = 0 and conclude the proof.
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We write, by using the Markov inequality,

∑
t≥1

P(Atε) =
∑
t≥1

P

(∣∣∣∣∣N−1
t

Nt∑
i=1

Y t,i

∣∣∣∣∣ ≥ ε

)
≤ ε−p

∑
t≥1

N−p
t E

[∣∣∣∣∣
Nt∑
i=1

Y t,i

∣∣∣∣∣
p]

where p > 1 is given by B 1-ii. The random variables {Y t,i, t ≥ 1, 1 ≤ i ≤ Nt} are i.i.d. and
centered under B1-ii and B1-v. Hence

E

[∣∣∣∣∣
Nt∑
i=1

Y t,i

∣∣∣∣∣
p]

= E

[∣∣∣∣∣
Nt∑
i=1

Y ⋆,i

∣∣∣∣∣
p]
,

where {Y ⋆,i, i ≥ 1} are i.i.d. random variables with the same distribution as Y 1,1. n 7→
∑n

i=1 Y
⋆,i is

a martingale sequence with Lp-moment (see B1-ii): by (Hall & Heyde, 1980, Section 2.4 Theorem
2.10), there exists a constant Cp such that for any t ≥ 1,

E

[∣∣∣∣∣
Nt∑
i=1

Y ⋆,i

∣∣∣∣∣
p]
≤ Cp E

∣∣∣∣∣
Nt∑
i=1

|Y ⋆,i|2
∣∣∣∣∣
p/2
 .

From standard calculations (see e.g. Lemma 15), this yields

E

[∣∣∣∣∣
Nt∑
i=1

Y ⋆,i

∣∣∣∣∣
p]
≤ CpN

(p/2)∨1
t E

[
|Y ⋆,1|p

]
.

Under B1-iv, the Borel-Cantelli lemma implies that P(lim suptA
t
ε) = 0.

Item ii. Let δ > 0. We write ωδ(x) ≤ 2 supu∈V |h(u, x)|; from B1-ii, we have E [(ωδ(X))p] <∞.
Set Y t,i := ωδ(X

t,i) − E [ωδ(X)]. Following the same lines as in the proof of Item i, it can be
proved that under B1-ii, B1-iv and B1-v, limtN

−1
t

∑Nt

i=1 Y
t,i = 0 with probability one; details are

omitted.
Let us apply the dominated convergence theorem. Let x ∈ X. By B1-i and B1-iii, for any ϵ > 0,

there exists ηϵ,x > 0 such that ∥u−u′∥ ≤ ηϵ,x implies |h(u, x)−h(u′, x)| ≤ ϵ. Therefore, for any ϵ > 0,
there exists ηϵ,x > 0 such that for any δ ∈ [0, ηϵ,x], ωδ(x) ≤ ϵ. This implies that limδ→0 ωδ(x) =

0. In addition, ωδ(X) ≤ 2 supu∈V |h(u,X)| and the RHS is integrable by B 1-ii. Therefore, the
assumptions of the dominated convergence Theorem are satisfied and limδ→0 E [ωδ(X)] = 0.

Proof of Theorem 13. Define IQ := {1/q, q ∈ Z>0}. Since V is compact (see B1-i), for any
δ ∈ IQ, there exists a finite covering of V by closed balls {Bδ,1, · · · , Bδ,Lδ

} of radius δ; let us denote
by υδ,1, · · · , υδ,Lδ

the centers of these balls. Set

Ω⋆ :=
( ⋂
δ∈IQ,ℓ∈{1,··· ,Lδ}

Ωυδ,ℓ

)
∩
(⋂
δ∈IQ

Ω̄δ

)
,
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where Ωυ and Ω̄δ are given respectively by Proposition 14-i and Proposition 14-ii. Since Ω⋆ is a
countable intersection of sets of probability one, then P(Ω⋆) = 1. We prove that on Ω⋆,

lim
t→∞

sup
u∈V

∣∣∣∣∣ 1Nt

Nt∑
i=1

h
(
u,X t,i

)
− H(u)

∣∣∣∣∣ = 0.

Let ϵ > 0. By Item ii, there exists δϵ > 0 such that |E [ωδϵ(X)] | ≤ ϵ/6; without loss of generality
we can assume that δϵ ∈ IQ and we do so. We write

sup
u∈V

∣∣∣∣∣ 1Nt

Nt∑
i=1

h
(
u,X t,i

)
− H(u)

∣∣∣∣∣ ≤ sup
ℓ∈{1,...,Lδϵ}

sup
u∈Bδϵ,ℓ

∣∣∣∣∣ 1Nt

Nt∑
i=1

h
(
u,X t,i

)
− H(u)

∣∣∣∣∣ .
We now prove that on Ω⋆, there exists Tϵ such that for all t ≥ Tϵ, each of the Lδϵ terms in the RHS
is upper bounded by ϵ. This will conclude the proof.

Fix ℓ ∈ {1, · · · , Lδϵ}. We write supu∈Bδϵ,ℓ

∣∣∣N−1
t

∑Nt

i=1 h (u,X
t,i)− H(u)

∣∣∣ ≤ ∑2
j=1 Tj,ϵ,ℓ(t) + T3,ϵ,ℓ

where

T1,ϵ,ℓ(t) := sup
u∈Bδϵ,ℓ

∣∣∣∣∣ 1Nt

Nt∑
i=1

h
(
u,X t,i

)
− 1

Nt

Nt∑
i=1

h
(
uδϵ,ℓ, X

t,i
)∣∣∣∣∣ ,

T2,ϵ,ℓ(t) :=

∣∣∣∣∣ 1Nt

Nt∑
i=1

h
(
uδϵ,ℓ, X

t,i
)
− H(uδϵ,ℓ)

∣∣∣∣∣ ,
T3,ϵ,ℓ := sup

u∈Bδϵ,ℓ

|H(uδϵ,ℓ)− H(u)| .

It holds by definitions of ωδ and δϵ,

T1,ϵ,ℓ(t) ≤
1

Nt

Nt∑
i=1

ωδϵ(X
t,i) ≤ ϵ

6
+

∣∣∣∣∣ 1Nt

Nt∑
i=1

ωδϵ(X
t,i)− E [ωδϵ(X)]

∣∣∣∣∣ ;
by Item ii, since δϵ ∈ IQ, on Ω⋆ there exists T1,ϵ such that for any t ≥ T1,ϵ, we have T1,ϵ,ℓ ≤ ϵ/3.

By Item i, on Ω⋆ there exists T2,ϵ such that for any t ≥ T2,ϵ, T2,ϵ,ℓ(t) ≤ ϵ/3.
Finally, T3,ϵ,ℓ ≤ E [ωδϵ(X)] ≤ ϵ/6 by definition of δϵ.
Set Tϵ := T1,ϵ ∨ T2,ϵ. On Ω⋆, for any t ≥ Tϵ and for any ℓ ∈ {1, · · · , Lδϵ},

sup
u∈Bδϵ,ℓ

∣∣∣∣∣ 1Nt

Nt∑
i=1

h
(
u,X t,i

)
− H(u)

∣∣∣∣∣ ≤ 2ϵ

3
+
ϵ

6
≤ ϵ.
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Lemma 15. Let {Y i, i ≥ 1} be i.i.d. variables such that E [|Y 1|p] <∞ for some p > 1. Then,

E

∣∣∣∣∣
N∑
i=1

(Y i)2

∣∣∣∣∣
p/2
 ≤ N (p/2)∨1 E

[
|Y 1|p

]
.

Proof. First case: p/2 ≤ 1. We write

E

∣∣∣∣∣
N∑
i=1

(Y i)2

∣∣∣∣∣
p/2
 ≤ E

[
N∑
i=1

∣∣(Y i)2
∣∣p/2] = E

[
N∑
i=1

∣∣Y i
∣∣p] = N E

[
|Y 1|p

]
.

Second case: p/2 ≥ 1. By the Minkowski inequality, we write

E

∣∣∣∣∣
N∑
i=1

(Y i)2

∣∣∣∣∣
p/2
 =

(∥∥ N∑
i=1

(Y i)2
∥∥
p/2

)p/2

≤

(
N∑
i=1

∥(Y i)2∥p/2

)p/2

.

The RHS is equal to(
N∑
i=1

E
[
|Y i|p

]2/p)p/2

=

(
N∑
i=1

E
[
|Y 1|p

]2/p)p/2

=
(
N E

[
|Y 1|p

]2/p)p/2
= Np/2 E

[
|Y 1|p

]
.

This concludes the proof.

6.6 Proof of Theorem 9

6.6.1 Proof of Item i

We write

G(θt+1; υt)− G(T(υt); υt)

≤ G(θt+1; υt)− 1

Nt+1

Nt+1∑
i=1

g(θt+1, X t+1,i; υt) +
1

Nt+1

Nt+1∑
i=1

g(T(υt), X t+1,i; υt)− G(T(υt); υt)

where we used that, by definition of θt+1,

1

Nt+1

Nt+1∑
i=1

g(θt+1, X t+1,i; υt)− 1

Nt+1

Nt+1∑
i=1

g(T(υt), X t+1,i; υt) ≤ 0.
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Since G(θt+1; υt)− G(T(υt); υt) ≥ 0 by definition of T(υt), then

∣∣G(θt+1; υt)− G(T(υt); υt)
∣∣ ≤ 2 sup

(θ,υ)∈T×U

∣∣∣∣∣ 1

Nt+1

Nt+1∑
i=1

g(θ,X t+1,i; υ)− G(θ; υ)

∣∣∣∣∣ .
The proof is concluded by application of Theorem 13 with u← (θ, υ), V← T×U and h(u,X)←
g(θ,X; υ). Note indeed that A3-a implies B1-ii and B1-iii; A4 implies B1-iv; and A2-Item b implies
B1-v.

6.6.2 Proof of Item ii and Item iii.

Lemma 16. Let K be a compact subset of T. The set V := {(θ, υ) : θ ∈ K, υ ∈ U[θ]} is a compact
subset of T× U.

Proof. V is bounded as a subset of the compact set T×U. Let us prove it is closed. Let {θt, t ≥ 0}
be a K-valued sequence converging to θ⋆ ∈ K, and let {υt, t ≥ 0} be a sequence converging to
υ⋆ ∈ U and such that υt ∈ U[θt]; we prove that υ⋆ ∈ U[θ⋆]. Since F and G are continuous functions
(see A3-c and Proposition 11), we have

F(θ⋆) = lim
t
F(θt) = lim

t
G(θt; υt) = G(θ⋆; v⋆),

thus showing that υ⋆ ∈ U[θ⋆]. This concludes the proof.

We apply Theorem 5 with L ← L+.
Step 1. We first prove that L+ is closed. Let {θt, t ≥ 0} be a L+-valued sequence, converging

to θ⋆; let us show that θ⋆ ∈ L+.
There exists a sequence {υt, t ≥ 0} such that υt ∈ U[θt] and T(υt) = θt for all t ≥ 0. Since
{υt, t ≥ 0} is a U-valued sequence, there exists v⋆ ∈ U and a subsequence {υρ(t), t ≥ 0} such that
limt υ

ρ(t) = υ⋆. It holds

F(θ⋆) = lim
t
F(θρ(t)) = lim

t
G(θρ(t); υρ(t)) = G(lim

t
θρ(t); lim

t
υρ(t)) = G(θ⋆; υ⋆)

where we used that F and G are continuous on T and T × U respectively (see A3-c and Proposi-
tion 11). In addition,

θ⋆ = lim
t
θρ(t) = lim

t
T(υρ(t)) = T(lim

t
υρ(t)) = T(υ⋆),

where we used that T is continuous on U (see Proposition 12). Hence, there exists υ⋆ ∈ U[θ⋆] such
that T(υ⋆) = θ⋆: θ⋆ ∈ L+.

Step 2. By A3-b and A3-c, T is a point-to-point map and F is continuous.
Step 3. The condition H-i follows from A1 (see (7)).
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Step 4. Let K be a compact subset of T \ L+ and set V := {(θ, υ) : θ ∈ K, υ ∈ U[θ]}. By
Lemma 16, V is a compact subset of T × U. For (θ, υ) ∈ V, F(θ) − F(T(υ)) > 0 since θ /∈ L+

(see (7) and A3-b). In addition, the function (θ, υ) 7→ F(θ)− F(T(υ)) is continuous on V. Hence,
inf(θ,υ)∈V F(θ)− F(T(υ)) > 0 and this concludes the proof of H-ii.

Step 5. By Proposition 7, H-iii holds as soon as limt G(θ
t+1; υt) − G(T(υt); υt) = 0 and the

condition (9) holds. The first limit holds true by Item i. Let us prove (9). Applying Lemma 16
with K := T shows that {(θ, υ) : θ ∈ T, υ ∈ U[θ]} is a compact subset of T × U. Therefore, since
T is continuous on U, the set Kδ := {(θ, θ′) ∈ T × T, υ ∈ U[θ] : ∥θ′ − T(υ)∥ ≥ δ} is compact. On
Kδ, A3-b implies that G(θ′; υ)−G(T(υ); υ) > 0. Since G and T are continuous, then the condition
(9) is verified.

6.7 Technical results of Section 5

Lemma 17. Let q ∈ (0, 1). For all y, u ∈ R, |ρq(y + u)− ρq(y)| ≤ |u|.

Proof. Set ∆ := ρq(y+u)−ρq(y). Assume that y+u ≥ 0 and y ≥ 0. Then ∆ = q(y+u)−qy = qu

and |∆| ≤ |u|.
Assume that y + u < 0 and y < 0. Then ∆ = (q − 1)(y + u− y) = (q − 1)u and |∆| ≤ |u|.
Assume that y + u ≥ 0 and y < 0. This implies that u > 0 and y ≥ −u. Then ∆ = q(y + u) −
(q − 1)y = y + qu ∈ [(q − 1)u, qu], and |∆| ≤ |u|.
Assume that y + u < 0 and y ≥ 0. This implies that u < 0 and y < −u. Then ∆ = (q − 1)(y +

u)− qy = −y + (q − 1)u ∈ [qu, (q − 1)u], and |∆| ≤ |u|.

Proof of Proposition 10 We write for any τ ∈ Rℓ

〈
θ,W

〉
=
〈
τ,W

〉
+

1

ℓ

ℓ∑
j=1

(
ℓ(θj − τj)W j

)
,

and since the function u 7→ ρq(u) is convex, this yields

ρq

(
Y −

〈
θ,W

〉)
≤ 1

ℓ

ℓ∑
j=1

ρq

(
Y −

〈
τ,W

〉
− (ℓ(θj − τj)W j)

)
.

Set
fη(θ,X) := ρq(Y −

〈
θ,W

〉
)− ρq(Y ) + η∥θ∥1,

We obtain fη(θ, ·) ≤ gη(θ, ·; τ) for any θ, τ ∈ Rℓ. When τ = θ, it is easily checked that gη(θ, x; θ) =
fη(θ, x). Since ρq is strictly convex, then U[θ] = {θ}. This concludes the proof of A1. It is easily
seen that |ρq(Y + u)− ρq(Y )| ≤ |u| (see e.g. Lemma 17) so that

|gη(θ,X; τ)| ≤ (2∥τ∥+ ∥θ∥) ∥W∥+ η∥θ∥1.
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Hence, since T is a compact set, A3-a is satisfied with p = p⋆; remember that W := (1,W ) ∈ Rℓ.
A 3-b holds since ρq is strictly convex. Finally, since u 7→ ρq(u) is continuous, the functions
θ 7→ fη(θ, x) and (θ, τ) 7→ gη(θ, x; τ) are continuous on T and T×T respectively, for all x ∈ R×Rℓ.
The proof of A3 is concluded by the dominated convergence Theorem.

The optimization step Let q ∈ (0, 1) and η > 0. The SAM2 update (5) in Algorithm 2, boils
down to solving ℓ independent optimizations in 1D (see Proposition 10)

argminu∈R
1

Nt+1

Nt+1∑
i=1

{
ρq

(
Y t+1,i −

〈
τ,W

t+1,i
〉
+ ℓW

t+1,i

j τj − ℓW
t+1,i

j u
)
− ρq(Y t+1,i) + ℓη|u|

}
.

Using notation aN+1 := 0, bN+1 := 2ℓηN and qN+1 = 1
2

to account for the penalty term, the 1D
optimizations are all of the form

argmin
u∈R

gN,η(u) with gN,η(u) :=
1

N

N+1∑
i=1

ρqi(ai − biu); (25)

where for all i ∈ [N ], qi = q and (ai, bi) ∈ R2 with bi assumed different from 0 without loss of
generality. For all i ∈ [N + 1], set µi := ai/bi with µN+1 = 0 and denote by µ(i,N+1) the order
numbers µ(1,N+1) ≤ µ(2,N+1) ≤ . . . ≤ µ(N+1,N+1). By definition of ρqi , it holds

u ≤ µi =⇒ ρqi(ai − biu) = |bi|(µi − u) (qi1bi>0 + (1− qi)1bi<0)

u ≥ µi =⇒ ρqi(ai − biu) = |bi|(u− µi) ((1− qi)1bi>0 + qi1bi<0) .

This implies that the function u 7→ gN,η(u) tends to +∞ when |u| → +∞, is continuous on R,
and is linear on the intervals

(
µ(i,N+1), µ(i+1,N+1)

]
for all i ∈ [N ]: a minimizer of u 7→ gN,η(u) is

argmini∈[N+1]gN,η(µi). If η = 0, the same conclusion holds straightforwardly.

7 Conclusion

We have proposed a new SAM2 algorithm that extends the applicability of MM algorithms in a
stochastic optimization context where the objective majorizers cannot be observed or computed
exactly but can be estimated through stochastic simulations. When compared to gradient ap-
proaches, MM algorithms are interesting because their progress toward the target does not critically
depend on the tuning of hyperparameters such as step-sizes. In a stochastic context, combining
MM with sample averaging, SAM2 uses Monte-Carlo approximations of the majorizers constructed
from samples of data. The setting of step-sizes is then replaced by successive samples of increasing
sizes, whose exact values are not critical as illustrated numerically in our experiments. Another
advantage of SAM2 is that no smoothness assumptions are made on the objective and majorizers,
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which covers a much larger number of situations than gradient-based approaches. Nevertheless,
when compared to gradient update, the sample averaging update links successive estimates only
through a warm-start-like relationship that may result in a more variable sequence of estimations.
One standard way to reduce this variability is to use Polyak averaging. With our framework,
another possibility is to add a Bregman term between two successive estimates. Such addition
leads to a minor change in the majorizers definition while penalizing departure from the previous
parameter value and producing much smoother sequences. Similarly sparsity constraints though a
L1 norm could easily be added without changing the applicability of SAM2. In practice, this could
be of great practical interest to handle datasets both large in size and dimension.
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