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Meaning, truth-conditions and
entailments



Natural language semantics
How to interpret sentences?
And smaller items (e.g. words)?

• What is the interpretation of a linguistic item?
• Good question. One has freedom here.
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• What about a numeral, e.g. 5?

• Some abstract atomic entity.
• The collection of all sets of 5 elements.
• Some other entity?

• What about a name, e.g. Marie Curie?
• A certain person.
• A certain collection of properties (incl. being a woman, a physicist, a
chemist, born in Warsaw).

• Some other entity?
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• What about a sentence, e.g. Today is Wednesday?

• Its truth value.
• The collection of situation it which it is true.
• Some other entity?

• What about a verb phrase, e.g. eats a cake?
• The collection of every person that eats a cake.
• The collection of every event of someone eating a cake.
• Some other entity?
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• Model: mathematical representation of the universe.
→ the metaphysical/conceptual universe, more than the physical one

• A model contains all the information required to determine the
truth value of any (unambiguous) sentence (in addition to grammar of
the language/an understanding of the sentence).
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Model (of a first-order language)
• D = {a,b, c,d, e, f};
• I(Sabine) = a; I(Fred) = b; I(Paris) = c; I(Marseille) = d;
• I(human) = {a,b}; I(book) = {e, f}; I(sleep) = {b};
• I(read) = {(a, e)}; (x, y) ∈ I(read) iff x reads y

• I(in) = {(a, c), (b,d)}. (x, y) ∈ I(read) iff x is in y

• Model-theoretic semantics (MTS) interprets items (e.g. words,
sentences) in terms of a model.

• Two main questions:
1. For any given sentence, under which conditions is it true?
2. For any given pair of sentences, does the first entail the second?
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• Question No. 2 (about entailment) is weaker than question No. 1
(about truth conditions).

• Given two sentences S1 and S2, (by definition:)
S1 entails S2 iff what makes S1 true makes S2 true too.

• answering question No. 1⇒ answering question No. 2

• For question No. 2, MTS does not seem necessary:

(1) a. Sabine is a human being and is reading a book.
b. Sabine is reading a book.
c. Sabine or Fred is reading a book

• [(1a)] ⊨ [(1b)], [(1c)], and [(1b)] ⊨ [(1c)]
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• MTS answers question (i) (and also (ii)) based on a notion of
reference.

• D = {a, . . . }
I(Sabine) = a; . . . ; I(human) = {a, . . . }; . . .

• Natural language is arguably grounded in our extra-linguistic
environment (Harnad 1990).

(Grounding might be one of the missing key ingredients in AI systems;
Bender and Koller 2020.)

• Grounding/reference is a primitive phenomena in MTS.
→ probably why MTS has been more popular that proper
proof-theoretic semantics in the XXth century

• Interestingly, MTS was first developed in the philosophy of
mathematics and was not adopted by linguists before the 1960s.
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• Advantage of question No. 2: it is less metaphysical.
For any given pair of sentences, does the first entail the second?

• Strongly related to logic: the study of the formal validity of
arguments.

• The birth of logic is usually associated with Aristotle (385-322 BC).
• Has been interpreted as a reaction to the Sophists.
• Aristotle’s approach: What in the form of an argument makes it
valid (independently of its rhetorical force)?
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• Which of these arguments, if any, are valid?

(2) a. Premise(s): All politicians are criminals, and some
criminals are liars.
Conclusion: Some politicians are liars.

b. Premise(s): Some politicians are criminals, and all
criminals are liars.
Conclusion: Some politicians are liars.

• Only (2b).
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• Any argument of the same form is valid.

(3) Premise(s): Some As are Bs, and all Bs are Cs.
Conclusion: Some As are Cs.

• This pattern expresses part of the meaning of some and all, in
proof-theoretic terms.

• It is possible to describe all possible entailment relations in natural
language (NL) with such patterns?

• This looks (at least) very difficult.
• One of the reasons why such patterns are not ideal: NL is highly
ambiguous.
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• Structural ambiguity:

(4) Fred saw Sabine with a pair of glasses.

• Lexical ambiguity:

(5) Jamy had lunch near the bank.

• The methodology of formal semantics:
• define a logical language with well-known inferential properties,
• define a translation function from NL sentences to sets of logical
formulas.

• The translation should preserve the entailment relations.
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The language of first-order logic



• The development of FOL started in the work of Charles Sanders
Pierce (1839-1914), Giuseppe Peano (1858-1932) and Gottlob Frege
(1848-1925).

• Alfred Tarski (1901-1983) gave it its now standard (model-theoretic)
semantics.
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Alphabet of FOL

Five kinds of symbols:

• a set C of elements called ‘constants’;
• a set X of elements called ‘variables’;
• a set P of elements called ‘predicates’, each of them associated
with a natural number called its ‘arity’;

• a set of three elements called ‘logical operators’: negation ¬,
conjunction ∧ and the existential quantifier ∃;

• the open ( and close ) parentheses.

(This is a slight simplification; full FOL uses functions of various arity instead of
constants.)
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Natural language in FOL
• Constants: Sabine,Marcel
• Unary predicates: human,book, truck, sleep, old,
• Binary predicates: drive, read

• Formulas:
• [Sabine is human] = human(Sabine)
• [There is a book] = ∃x. book(x)
• [There is an old book] = ∃x. book(x) ∧ old(x)
• [Marcel drives a truck] = ∃x. drive(Marcel, x) ∧ truck(x)
• [Sabine reads a book] = ∃x. book(x) ∧ read(Sabine, x)
• [a book is read by Sabine] =∃x. book(x) ∧ read(Sabine, x)
• [Sabine reads no book] = ¬(∃x. book(x) ∧ read(Sabine, x))
= ∀x. book(x)→ ¬read(Sabine, x)

• [Sabine reads every book] = ¬(∃x. book(x) ∧ ¬read(Sabine, x))
= ∀x. book(x)→ read(Sabine, x)

14
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• Are these translations satisfying? (truth conditions? entailment
relations?)

• These can be defined in terms of models.
• A model of FOL defines how to interpret the basic constituents of
the language, except for the variables, via a domain (D) and an
interpretation function (I):

• I(a constant) = an entity ∈ D
• I(a unary predicate) = a set of entities ∈ D
• I(a binary predicate) = a set of pairs of entities ∈ D
• I(a ternary predicate) = a set triplets of entities ∈ D
• etc.
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Model (of a first-order language)
• D = {a,b, c,d, e};
• I(Sabine) = a; I(Marcel) = b;
• I(human) = {a,b}; I(book) = {c,d}; I(truck) = {e};
• I(read) = {(a, e)}; (x, y) ∈ I(read) iff x reads y

• I(drive) = {(b, c)}; (x, y) ∈ I(drive) iff x drives y
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• Variables get their interpretation from a variable assignment f:

• f(a variable) = an entity ∈ D

• important detail: A variable assignment f can be ‘updated’: for x ∈ X and
d ∈ D, f[x := d] is a new variable assignment.
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• Given a model M = (D, I) and a variable assignment f, the valuation
is the function defined inductively by:

• ∀n-ary P ∈ P , ∀t1, t2, . . . , tn ∈ C ∪ X ,

JP(t1, t2, . . . , tn)KM,f =
T if (Jt1KM,f, Jt2KM,f, . . . , JtnKM,f) ∈ I(P)
F otherwise

;

• ∀ϕ ∈ F , J¬ϕKM,f =
T if JϕKM,f = F
F otherwise

;

• ∀ϕ, ψ ∈ F , Jϕ ∧ ψKM,f =
T if JϕKM,f = T and JψKM,f = T
F otherwise

;

• ∀ϕ ∈ F , ∀x ∈ X ,

J∃x. ϕKM,f =
T if there is some d ∈ D s.t. JϕKM,f[x:=d] = T
F otherwise

.

• This definition covers (recursively) all possible FOL formulas.
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Consequences
• [Sabine reads a book] = ∃x. book(x) ∧ read(Sabine, x)
True iff there is an entity d ∈ I(book) such that
(I(Sabine),d) ∈ I(read)

i.e. iff there is an entity that is both a book
and read by Sabine.

• [Sabine reads an old book] = ∃x. old(x) ∧ book(x) ∧ read(Sabine, x)
True iff there is an entity d ∈ I(old) such that d ∈ I(book) and
(I(Sabine),d) ∈ I(read) i.e. iff there is an entity that is old and a
book and read by Sabine.
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Consequences
• [Sabine reads no book] = ¬(∃x. book(x) ∧ read(Sabine, x))
= ∀x. book(x) → ¬read(Sabine, x)
True iff there is not entity that is both a book and read by Sabine.

• [Sabine reads every book] = ¬(∃x. book(x) ∧ ¬read(Sabine, x))
= ∀x. book(x) → read(Sabine, x)
True iff all entities that are books are also read by Sabine.
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• Lewis (1970):
• The model-based valuation is important!
(or a logic for the formulas)

• Without truth-conditions nor logic, FOL formulas are meaningless.
• Translating sentences to meaningless formulas is useless.
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• Aristotle’s syllogistic can be expressed in FOL.

premises: Every human is mortal. ∀x. human(x) → mortal(x)
Socrates is human. human(Socrates)

conclusion: Socrates is mortal. mortal(Socrates)

• Validity of the syllogism: for any model in which both premises are
true, the conclusion is also true.
(the premises taken together entail the conclusion)

22



• Many NL sentences can be translated into FOL.

(even more with
extensions)

• Various forms of knowledge too:

(6) a. ∀x. cat(x) → mammal(x)
(hyponymy)

b. ∀x. bachelor(x) ↔ male(x) ∧ single(x)
(synonymy)

c. ∀x. in(x,Paris) → in(x, France)
(geographical knowledge)

• However, everyday reasoning involves a lot of rules like dogs
usually have four legs or most adult birds can fly, which cannot be
faithfully expressed in standard FOL.
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Compositionality



• Many NL sentences can be translated into FOL. How?

• Standard methodology in formal semantics:
• start with a syntactic structure (or derivation, or …), in which lexical
items are disambiguated,

• describe how this syntactic object is translated into a formula.

S

VP

PP

NP

N
glasses
(spectacles)

DET

some

PREP

with

VP

NP

N

kid

DET

a

Vt

saw

NP

PN

Sabine

∃x. kid ∧ ∃y. glass.spectacles(y) ∧ see(Sabine, x) ∧ with(Sabine, y)
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• Until the 60s, formal linguists paid little attention to semantics.

• Formal logic had been used by philosophers of language but more
to study inference patterns between sentences (e.g. in relation to
belief, using modal logic) than to understand the systematic relation
that exists between a sentence and its meaning.

• Montague
• was a logician who unified and applied some of the latest tools from
symbolic and philosophical logic to natural language,

• wanted to show how semantics could be computed compositionally
from syntax.

• See the work of Partee (2011) and Partee (2014) for more about the history
of formal semantics.
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• See the work of Partee (2011) and Partee (2014) for more about the history
of formal semantics.
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• Bach (1989, p.8):
In Montague’s papers on natural language, which were written
in the late 1960s and early 1970s, Montague claimed that nat-
ural languages could be treated in just the same way as the
formal artificial languages of the logician.

[…] Chomsky’s thesis
was that natural languages can be described as formal systems.
Montague added to this the idea that natural languages can be
described as interpreted formal systems.

• Three seminal articles:
• English as a formal language (Montague 1970a);
• Universal grammar (Montague 1970b);
• The proper treatment of quantification in ordinary English (Montague
1973, ‘PTQ’).
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• Principle of compositionality (Gamut 1991):
the meaning of a composite expression must be wholly determ-
ined by the meanings of its composite parts and of the syntactic
rule by means of which it is formed

• RMK: The ‘composite parts’ of a constituent are its direct
subconstituents.

• Frege is often credited for this principle, but this is questionable
(Pelletier 1994).

• According to compositionality, syntax describes how to combine the
meaning of the units of meaning in a very systematic way.
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• Some consequences:

• replacing a component with a paraphrase (irrespectively of their
structure) has no impact on the meaning of the whole,

• semantics = one semantic composition rule per syntactic rule + lexical
semantics,

• the semantics of a constituent does not depend on its role (e.g. subject
or object for an NP) in the sentence,

• the meaning of an expression is the same in all contexts,
• once one knows the meaning of a lexical item, they can use it in any
structure/context.

• One would often like AI systems to process language more
compositionally.
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• Can be seen as a methodological principle. E.g.,
• to draw the line between semantics and pragmatics;
• to define multiword expressions (to kick the bucket, ivory tower).

• Stronger or less depending on the kind of composition rules and
lexical semantic entries that one is ready to accept.

• Often seen as the source of the productivity of natural language,
which ‘can (in Humboldt’s words) “make infinite use of finite
means”’ (Chomsky 1965).
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• Let us define a compositional grammar.

• This is an introduction to formal semantics; we’re about to do
something much simpler (both in terms of syntax and semantics) than
what Montague did (and what has been done since).

• Here: a context-free grammar (CFG) for syntax.

Ex. CFG (excluding lexical rules):
S → NP VP
NP → DET N
NP → PN
VP → Vi
VP → Vt NP

Ex. tree:

S

VP

NP

N

singer

DET

a

Vt

knows

NP

PN

Sabine
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• Let’s pair each CFG rule with a semantic composition operation. ⇒
compositionality

• First try; something simple and intuitive:

• Composition rules:
S → NP VP
v(s, o) ← s v(_, o)
NP → PN
n ← n
VP → Vt NP
v(_, o) ← v o

S
know(Sabine, Fred)

VP
know(_, Fred)

NP
Fred

PN
Fred

Fred

Vt
know

knows

NP
Sabine

PN
Sabine

Sabine

What is know(_, Fred)?
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• Can we formalise know(_, Fred)?

• What is the semantics of quantified NPs such as every kid?
• Some additional tool is needed.
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λ-calculus



• λ-calculus is a formalisation of computation, developed by Alonzo
Church in the 1930s.

• Reused by Montague and his followers in the context of NL to
express semantic computation:

• each lexical item is piece of program,
• syntax indicates how to plug these pieces together,→ program
• run the program. → semantic representation

• ‘know(_, Fred)’: λs. know(s, Fred)
• This is a function.
• Any other letter (i.e. r, or t, instead of s) is fine.
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• β-reduction:
• (λo.λs. know(s, o)) Fred

→β λs. know(s, Fred)
• (λs. know(s, Fred)) Sabine→β know(Sabine, Fred)

(the actual definition is a bit technical)
(the actual definition makes λ-calculus a Turing-complete programming
language)
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• A λ-term might expect anything as argument (not only constants).
Ex: (λP. PMarcel)

(λs. sleep(s)) →β (λs. sleep(s))Marcel
→β sleep(Marcel)

• Existential quantifiers? (some, a)
• [some human is mortal] = ∃x. human(x) ∧mortal(x)
• [some human] = λQ. ∃x. human(x) ∧ Q x
• [some] = λP.λQ. ∃x. P x ∧ Q x

• Universal quantifiers? (every, all)
• [every human is mortal] = ∀x. human(x)→ mortal(x)
• [every human] = λQ. ∀x. human(x)→ Q x
• [every] = λP.λQ. ∀x. P x→ Q x
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• β-reductions that are going to be useful:
• (λP.λQ. ∃x. P x ∧ Q x) (λx. dog(x))

→β λQ. ∃x. ((λx. dog(x)) x) ∧ Q x
→β λQ. ∃x. dog(x) ∧ Q x

• λs. ((λQ. ∃x. dog(x) ∧ Q x) (λo. like(s, o)))
→β λs. ∃x. dog(x) ∧ ((λo. like(s, o)) x)→β λs. ∃x. dog(x) ∧ like(s, x)

• (λQ. ∃x. cat(x) ∧ Q x) (λs. ∃y. dog(y) ∧ like(s, y))
→β ∃x. cat(x) ∧ ((λs. ∃y. dog(y) ∧ like(s, y)) x)
→β ∃x. cat(x) ∧ ∃y. dog(y) ∧ like(x, y)
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α-conversion
• Bound variables can be renamed:

• λx. P x y ≡ λz. P z y,
• ∃x. P x y ≡ ∃z. P z y,

• During some β-reductions, they must be renamed, to avoid
‘clashes’:
(λQ. ∃x. cat(x) ∧ Qx) (λs. ∃x. dog(x) ∧ like(s, x))
̸→β ∃x. cat(x) ∧ ∃x. dog(x) ∧ like(x, x)
→β ∃x. cat(x) ∧ ∃y. dog(y) ∧ like(x, y)

(Defining when/how to do this is what makes defining β-reduction precisely
technical.)
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Putting everything together



• Lexicon:JeveryDETK = λP.λQ. ∀x. P x→ Q xJaDETK = λP.λQ. ∃x. P x ∧ Q xJcatNK = λx. cat(x)JdogNK = λx. dog(x)JJamyPNK = JamyJFredPNK = FredJsleepsViK = λs. sleep(s)JlikesVtK = λs.λo. likes(s, o)

• Composition rules:
S → NP VP
s v ← s v
NP → DET N
dn ← d n
NP → PN
λP. Pn ← n
VP → Vi
v ← v
VP → Vt NP
λs. (O (λo. v s o)) ← v O

S
∃x. cat(x) ∧ ∃y. dog(y) ∧ like(x, y)

VP
λs. ∃x. dog(x) ∧ like(s, x)

NP
λQ. ∃x.

dog(x) ∧ Q x

N
λx. dog(x)

dog

DET
λP.λQ. ∃x.
P x ∧ Q x

a

Vt
λs.λo. like(s, o)

likes

NP
λQ. ∃x.

cat(x) ∧ Q x

N
λx. cat(x)

cat

DET
λP.λQ. ∃x.
P x ∧ Q x

a
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Is this translation satisfying?

42



• Lexicon:JeveryDETK = λP.λQ. ∀x. P x→ Q xJaDETK = λP.λQ. ∃x. P x ∧ Q xJcatNK = λx. cat(x)JdogNK = λx. dog(x)JJamyPNK = JamyJFredPNK = FredJsleepsViK = λs. sleep(s)JlikesVtK = λs.λo. likes(s, o)

• Composition rules:
S → NP VP
s v ← s v
NP → DET N
dn ← d n
NP → PN
λP. Pn ← n
VP → Vi
v ← v
VP → Vt NP
λs. (O (λo. v s o)) ← v O

S
∃x. cat(x) ∧ (∀y. dog(y)→ like(x, y))

VP
λs. ∀x. dog(x)→ like(s, x)

NP
λQ. ∀x.

dog(x)→ Q x

N
λx. dog(x)

dog

DET
λP.λQ. ∀x.
P x→ Q x

every

Vt
λs.λo. like(s, o)

likes

NP
λQ. ∃x.

cat(x) ∧ Q x

N
λx. cat(x)

cat

DET
λP.λQ. ∃x.
P x ∧ Q x

a

Is this translation satisfying?

42



• According to Partee (2014), the problem of quantifier scope
ambiguity played a key role in the history of semantics and:
[it is] a difficult problem for every theory of the syntax-semantics
interface. The basic problem is that if one accepts the principle
of compositionality, then an ambiguous sentence like [Every stu-
dent read one book.] must have two different syntactic struc-
tures, even though there may be no independent syntactic evid-
ence of ambiguity.

• Many solutions have been proposed; a.o.:
• Montague translates syntactic derivations (not trees),
• quantifier raising (May 1977),
• using a logical language which allows under-specified quantifier
scope (e.g. Minimal Recursion Semantics; Copestake et al. 2005).
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Natural language inference



• There are natural language processing (NLP) systems that produce
semantic representations (logic-based or otherwise).

• How to test them (at scale)?
• ‘Reasoning’ datasets:

• FraCas (Cooper et al. 1996).
• Recognizing textual entailment (RTE; Dagan, Glickman and Magnini
2006).

• Natural language inference (NLI; Bowman et al. 2015).

• Logic vs common-sense reasoning.
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FraCas 3.66
• Every resident of the North American continent can travel freely
within Europe. Every Canadian resident is a resident of the North
American continent.

• Can every Canadian resident freely within Europe?

FraCas 3.38
• No delegate finished the report.
• Did any delegate finish the report on time?
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PASCAL RTE 1550

• T: In 1998, the General Assembly of the Nippon Sei Ko Kai (Anglican
Church in Japan) voted to accept female priests.

• H: The Anglican church in Japan approved the ordination of women.

PASCAL RTE 731
• T: The city Tenochtitlan grew rapidly and was the center of the
Aztec’s great empire.

• H: Tenochtitlan quickly spread over the island, marshes, and
swamps.
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NLI
• A soccer game with multiple males playing.
• Some men are playing a sport.

NLI
• A smiling costumed woman is holding an umbrella.
• A happy woman in a fairy costume holds an umbrella.

NLI
• A man inspects the uniform of a figure in some East Asian country.
• The man is sleeping.
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• Basis of the formal approach (e.g. Bos and Markert 2005; Haruta,
Mineshima and Bekki 2022):

• syntactic parsing (usually with CCG; Steedman and Baldridge 2011),
• conversion to logical formulas,
• gathering axioms about lexical- and world-knowledge,
• theorem proving.

• The formal approach works well on most logic-oriented datasets.
• Not so much on common-sense reasoning ones.
• Why?
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• Syntactic parsing is hard (and compositional semantics is heavily
dependent on syntax).

• Formal semantics is hard.

(7) a. The kids saw three cows {each/in total}.
b. Cédric is a good mathematician but a bad politician.
c. The rabbit in the hat has long ears.
d. I saw Marcel not stop at the traffic light.
e. What she said is more true than what he said.

• Listing enough lexical- and world-knowledge axioms is hard.
• Common sense reasoning and pragmatics is hard.
• Most of our concepts (e.g. being in holiday, what a country is) are fuzzy.
Most of our expectations (e.g. birds can fly, dogs have four legs) are
cancelable.
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• Scaling symbolic approaches (within a language but also across
languages) is very hard.

• Contemporary neural approaches seem to fair better on
common-sense reasoning. (but not the same kind of errors)

• Basis of the neural approach:
• formatting the problem so that it can be sent to a text encoder (e.g.
BERT; Devlin et al. 2019),

• feeding the vector encoding of the text to a classifier
(entailment/neutral/contradiction, yes/no/idk).

• No symbolic representations, only vectors.
• What are these?
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Distributional semantics



• Harris (1954):
each language can be described in terms of a distributional
structure, i.e. in terms of the occurrence of parts (ultimately
sounds) relative to other parts

[...] The distribution of an element
will be understood as the sum of all its environments. An envir-
onment of an element A is an existing array of its co-occurrents,
i.e. the other elements, each in a particular position, with which
A occurs to yield an utterance.

• A language is structured (different types of items can be defined, and
these items are variously related to each other).

• This structure can be uncovered by studying items’ distribution.
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• Relation with structuralism (de Saussure 1916; Ducrot 1973)?

• Related questions.
• Related methods.
• More emphasis on distributions, less on meaning.
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• Distributional hypothesis (in semantics): the meaning of an item is
strongly correlated with its distribution.

• Harris (1954): ‘certain aspects of meaning [are] functions of
measurable distributional relations’

• Strong version: you can extract the meaning of a word from its
distribution in a large enough corpus.
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• Semantic space (Osgood, Suci and Tannenbaum 1957): words are
represented as vector, each dimension corresponds to some
opposition (e.g. happy/sad, soft/hard, slow/fast).

• Not built distributionally.
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• In information retrieval (IR): development of vector representations
of documents based on document-form cooccurence matrices
(Salton, Wong and Yang 1975; Dumais et al. 1988).

• Birth of distributional semantics: convergence of distributionalism,
semantic spaces and IR methods?
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• Distribution: set of contexts
→ impractical definition; need for a simplification/approximation

• Basic implementation (Schütze 1993; Lund and Burgess 1996):
• vocabulary of forms V = {w1,w2, . . . ,wN},
• corpus (sequence of forms) T = t1 t2 . . . tn,
• window size s ≥ 1,

• ∀i, j ≤ N, Ai,j = number of times wi occurs at distance ≤ s from wj is T,
• ui = [Ai,1, Ai,2, . . . , Ai,N] is a representation of the distribution of wi,
→ vector space of dimension N = |V|

• dimensionality reduction
→ vector space of arbitrary dimension N′

• semantic space?
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ui

uj

d ≥ 0

θ ∈ [0, 2π]

O

• Euclidean distance = d = |ui − uj|
• Cosine similarity = cos(θ) = cos((ui,uj))
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• Human similarity judgements on words correlate with similarity in
the vector space.
Ex: queen is more similar to prince than to bread.

• Given an ambiguous word in context (glass) in I’d like a ___ of water,
the sum/average of the ui of the context helps a lot in the
disambiguation.

• Forms are also (more or less) clustered by part-of-speech.
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• Dimensionality reduction?
• too large vectors are computationally impractical
• lot of redundancy in the original dimensions
• reduction finds generates a smaller and less redundant space
• intuition: some dimensions are combined, others are dropped
• the original space can be (approximately) reconstructed
• similar topology in the original and new spaces

• Various spaces:
• cooccurrence criterion,
• reduction operation.
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• Machine learning systems infer parameters from data.

• Maybe word representations can be inferred?
• Language models (LM) have always been useful for natural
language generation (in e.g. machine translation, speech recognition).

• Bengio, Ducharme and Vincent (2001) suggested to replace
traditional n-gram models with neural models.
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n-gram LM

P(ti|ti−n+1, ti−n+2, . . . , ti−1) ≈
#ti−n+1ti−n+2...ti−1ti
#ti−n+1ti−n+2...ti−1

Neural LM
classifier using a concatenation of word embeddings as input

P(ti|ti−n+1, ti−n+2, . . . , ti−1) = f([uti−n+1 · uti−n+2 · . . . · uti−1 ])

→ these ui are distributional
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• Mikolov et al. (2013) go ‘full distributional’:
• left and right context,
• no interest in language modelling, but in representations.

• Word2Vec (CBOW) uses a window around the form to predict:

...

+

linear + softmax

output: probability distribution over the vocabulary

input: embeddings of the tokens in the window
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(from Mikolov et al. 2013)
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Analogies

• Berlin ≈ (Paris - France) + Germany
• queen ≈ (king - man) + female
• walking ≈ (swimming - swam) + walked
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• Embedding spaces can be visualised with methods such as t-SNE
(van der Maaten and Hinton 2008).

• Want to get intuitions about the evolution of a word?
Build different spaces, one per period of interest (Tainturier 2020, for
the French islamo-gauchisme in the written medias).
(other idea, that I have not tried: build a single space, but add the
corresponding period at the end of the word; e.g. unicorn_1990s for
occurrences of unicorn in the 1990s)
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• Count-based and neural methods may look very different but still
correspond to related distributional computations; (Levy and
Goldberg 2014; Pennington, Socher and Manning 2014).

• For most NLP tasks (e.g. syntactic parsing), relatively little annotated
data is available compared to the complexity of the task.

• Consequence: overall performance is highly dependant on the
word representations used (i.a. Pennington, Socher and Manning 2014;
Peters et al. 2018; Devlin et al. 2019).

• Distributional methods provide very useful representations.
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• Word embeddings often contain morpho-syntactic and semantic
information (i.a. Köhn 2015; Gupta et al. 2015; Gaddy, Stern and Klein 2018).

• Contextual embeddings:
• e.g. ELMo (Peters et al. 2018) and BERT (Devlin et al. 2019),
• take the context into account,
• contain information related to syntax and sentence semantics (Tenney
et al. 2019).

(Count-based contextual distributional embeddings: Schütze 1992)

• How to disentangle the syntactic and semantic information? (Chen
et al. 2019; J. Y. Huang, K.-H. Huang and Chang 2021)
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• Distributional embeddings tend to encode harmful biases (i.a.
Caliskan, Bryson and Narayanan 2017).

• Related problem: reporting bias
• Gordon and Van Durme (2013): ‘researchers need to be aware that the
frequency of occurrence of particular types of events or relations in
text can represent significant distortions of real-world frequencies
and that much of our general knowledge is never alluded to in natural
discourse’

• Daumé III (2016): ‘if you were to try to guess what color most sheep
were by looking and language data, it would be very difficult for you to
conclude that they weren’t almost all black. [...] In English, ”black
sheep” outnumbers ”white sheep” about 25:1 (many ”black sheep”s are
movie references); in French it’s 3:1; in German it’s 12:1.’

(see also Shwartz and Choi 2020)
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• TODO talk about:
• grounding and multi-modality
• the fact that formal semantics and distributional semantics seem
complementary

• directions for combining the two approaches
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