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Abstract

In a previous work, the authors showed that the maximum number of in-
finitely long synchronous directed walks that never meet is equal to the dimen-
sion d of the no-meet matroid, namely the largest order of a collection of vertex-
disjoint cycles. Given w > d , we want to compute the meeting time of w walks:
the first time step tw such that, given any set of w walks, at least two of them
must meet no later than tw . We precisely prove that the meeting time is at most
n −w +2, where n is the number of vertices. A connection is established with a
cops and robber game on directed graphs with helicopter cops and an invisible
slow robber. The meeting time of w walks equals the capture time in this game,
when at most w −1 capture attempts are allowed. While this capture time can
be computed in polynomial time, we show that it is NP-hard to compute the
minimum number of cops h needed to catch the robber. More insights are also
given on the number h and its relation to pathwidth and other graph parame-
ters. Finally we analyze these game measures on digraph tensor products.

Keywords: Capture time, Complexity, Cop number, Cops and robber games, Di-
graphs, Hunters and rabbit, No-meet matroid, Walks.

1 Introduction

Consider a set of infinitely long walks through a digraph. They have the no-meet
property if the i -th vertices appearing in the walks are disjoint for every i ≥ 1. Con-
sider, for example, a set of agents or robots simultaneously walking through a net-
work. Since the walks are simultaneous and one time step is needed to traverse
each edge, the walks are called synchronous walks. Assuming that two robots should
never be on the same vertex at the same time leads to the no-meet property. It is
proved in [4] that the largest possible cardinality of a set of walks with the no-meet
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property is equal to the dimension d of the so-called no-meet matroid. It is also
shown there that d equals the maximum number of vertices belonging to a collec-
tion of vertex disjoint cycles. We are going to prove that the number d is nothing but
the minimum number of capture attempts in a cops and robber game. Each time a
cop patrols a vertex for a time step costs one token. The number of capture attempts
can then be seen as the number of tokens spent to capture the robber.

In this paper, we are interested in the first time walks meet. More precisely, given
a number w > d , we aim to study the first time step tw such that, given any set
of w walks, at least two of them must meet no later than tw . We show that this is
exactly the capture time of the game when at most c = w −1 capture attempts are
allowed. The main result of the paper is that the capture time with c ≥ d attempts
is at most n − c +1, where n is the number of vertices. In other words, given any set
of w > d directed walks, at least two of them meet at time at most n −w +2. Notice
the difference with classical work (see, e.g., [12, 25]) related to the meeting time of
random walks modeled as the hitting time of some Markov chain. In our paper, we
focus on the worst case in terms of meeting time, and the moves are not random.

We might also see a link with multi-agent path finding (MAPF) problems re-
viewed in [29]. Each agent has a source location and a target location that he wants
to reach. At each time step, an agent can either move to a neighbor (in an undi-
rected graph) or stay in his position (which is equivalent to assume that there is a
loop for each vertex). The most basic version assumes that two agents cannot be
simultaneously on the same vertex, and the goal is to minimize the time needed to
reach all targets. This problem and some of its variants are known to be NP-hard
(see, e.g., [30, 32]). Observe that our result about meeting time has some implica-
tions for MAPF problems. Assume that the agent’s moves should follow the edges of
a directed graph, and that an agent can wait in a vertex only if there is a loop there.
Assume the number of agents w is strictly larger than the dimension d of the associ-
ated no-meet matroid. We can certify that if the MAPF problem has a solution, then
the number of time steps to simultaneously reach all targets (or the makespan) is at
most n −w . This observation is useful only if the dimension d is strictly less than n
which implies that there are some vertices without loops.

Other applications related to finite state machines are mentioned in [4] where
the concept of h-robust distinguishing sequences is introduced, and the meeting
time tw is shown to be an upper bound of the robustness threshold h.

Cops and robber games have been introduced by Quillot in [26] and intensively
studied over the last four decades in their many variants. For a nice introduction,
mainly on undirected graphs, see, e.g., [8].
Seymour and Thomas [27] introduced a variant with helicopter cops, namely the
cops need not follow the graph edges. In their version the robber must follow the
graph edges, but has unlimited speed so in one time step he (or she) can visit any
vertex on a cop free path starting from his position. When the robber is visible to the
cops, the cop number of an undirected graph, being the minimum number of cops
needed to guarantee the capture, equals the treewidth of the graph plus one [27]. If
the robber is invisible to the cops, the cop number equals the pathwidth of the graph
(or vertex separation number) plus one [22, 20]. In both versions the winning strat-
egy for the cops is monotone, namely the robber territory never increases. These
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kind of games are also formulated as graph searching problems, for a bibliography
see [15].
Much work has been done mostly on undirected graphs, but different game versions
(and their relation to graph parameters) are studied on directed graphs too, see for
example [3, 5, 19, 24, 31]. Barát [3] studied the invisible version of the game on di-
rected graphs, and he showed that the cop number is either the directed pathwidth
pw of the digraph or pw +1. The author also conjectured that the game is mono-
tone.
An analogue of the game we analyze has been studied on undirected graphs under
the name hunters and rabbit (or prince and princess) [1, 11], where helicopter cops
play against an invisible robber moving at speed one. In fact, our game is a directed
version of hunters and rabbit where loops are admitted.
In hunters and rabbit, the cop (or hunter) number can be determined for special
graphs such as paths, cycles, grids or hypercubes [1, 7]. An upper bound on the cop
number for trees is given in [18]. In [13] the authors show that the cop number is
upper bounded by pw +1, but can be arbitrarily smaller. However, when a mono-
tone capture is required, pw cops are needed. The complexity of computing the cop
number is not known, however the problem is FPT when parametrized by the size
of a minimum vertex cover [? ].

Capture time of a strategy using a fixed number of cops has been introduced by
Bonato et al. [9]. In most of the literature, the concept is related to the (original)
variant of the game where cops have no helicopter, so they both follow the edges
with speed one and the robber is visible. In [9] they showed that for graphs with cop
number one, the capture time is at most n − 4, where n is the number of vertices
of the graph. Later, Brandt et al. [10] proved that the bound O(nk+1) is tight for
graphs whose cop number is k ≥ 2. The latter result extends to directed graphs,
while Kinnersley showed [21] that there are directed graphs with cop number one
whose capture time is Ω(n2).

The concept of capture attempts has been studied for node searching, namely
the version with helicopter cops and invisible robber with unlimited speed: in [14]
Fomin and Golovach showed that, for this variant, the number of capture attempts
equals the smallest length of an interval graph containing the original graph, they
also proved that this is equivalent to the vertex separation sum and that calculating
the minimum number of capture attempts in node searching is NP-hard.

The game we study is played on a directed graph D = (V, A) where loops are al-
lowed and each vertex has at least one outgoing arc, we assume that the cops need
not follow the digraph arcs, while the robber must move to a vertex adjacent from
his current position (differently from vertex search games). We also assume that the
robber is invisible to cops, while he can see the cops’ positions. Note that in most
cops and robber games, the robber can also stay on his current vertex (this can be
obtained by adding loops on all the vertices in our version).

We show that the cop number in our version of the game is upper bounded by
the directed pathwidth pw of the digraph plus one, but it can be arbitrarily smaller.
Moreover we show that the game is not monotone, but when a monotone capture is
required, the cop number is pw or pw +1. These same results have been proved for
the hunters and rabbit game [13]. We also prove that the cop number is at least the
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minimum outdegree of any induced subgraph of D. Finding an induced subgraph
whose minimum outdegree is maximized can be done in polynomial time. The cop
number is also upper bounded by the size of a minimum feedback vertex set.

In many variants of cops and robber games (see e.g. [16, 23]) computing the cop
number is NP-hard. We will show that computing the cop number for our game is
NP-hard too. It remains NP-hard even if one requires that the capture occurs before
some time step. On the other hand, our results imply a polynomial algorithm to
compute the minimum number of capture attempts.

The paper is organized as follows. In Section 2 we give the main definitions re-
lated to the game. Some connections between the proposed game and no-meet
matroids are presented in Section 3. The main result related to capture time versus
capture attempts is shown in Section 4. Section 5 is dedicated to the cop number.
Finally, digraph tensor products are considered in Section 6.

2 Game definitions

Consider a directed graph D = (V, A) where loops are allowed and δ+(D), the mini-
mum outdegree of D, is at least one. We define a game on D which we will refer to
as HCISR (helicopter cops invisible slow robber). A set of cops wants to capture a
robber moving on D with the following rules:

1. At step 1 the cops pick W1 ⊆ V, then the robber picks a vertex ri ∈ V.

2. At step i +1 (for any i ≥ 1) the cops pick Wi+1 ⊆ V and the robber picks ri+1 ∈
N+(ri ).

In other words, at each step the cops can pick any vertex, while the robber must pick
a vertex adjacent from his current position (we use N+(v) to denote the set of vertices
y such that (v, y) is an arc of D. If S is a set, N+(S) := {y ∈ V(D) | ∃x ∈ S, with (x, y) ∈
A(D)}).
We say that the cops capture the robber if ri ∈ Wi for some i ≥ 1. The capture is
at time t , if t is the minimum index such that rt ∈ Wt . The cops do not know the
vertex picked by the robber; their strategy is defined by the sequence (Wi )i≥1, while
the robber strategy is defined by (ri )i≥1. A cop strategy is winning if, by playing that
strategy, they can capture the robber regardless of his strategy. We say that a cop
strategy uses h cops if h is the maximum of |Wi | over all the indices. The capture
time of a cop winning strategy is the maximum time step T, over all possible robber’s
strategies, such that the cops capture the robber at time T. A cop winning strategy
uses c attempts if c =∑T

i=1 |Wi |, where T is the capture time of the cops’ strategy.
Let Ri be the set of vertices where the robber can be at step i . Observe that if the

robber was not yet captured at time step i −1, then we have Ri = N+(Ri−1) \ Wi . We
say that a capture is monotone if R j ⊆ Ri for every j ≥ i .

The cop number of D, denoted by cn(D), is the minimum h such that there ex-
ists a winning strategy using h cops. The capture attempts number of D, denoted
by ca(D) is the minimum c such that there exists a cop winning strategy using c at-
tempts. The capture time using c ≥ ca(D) attempts, denoted by ct (D,c) is the min-
imum capture time of a cop winning strategy using c attempts. When fixing a time
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Figure 1: Example of a digraph D with two intersecting 3-cycles.

limit l , we can define cn(D, l ) (resp. ca(D, l )) as the minimum number of cops (resp.
capture attempts) needed for the cops to capture no later than time step l . Observe
that ca(D, l ) ≤ c is equivalent to ct (D,c) ≤ l . As an example consider a directed cycle
Y on n vertices: we have cn(Y) = 1, ca(Y) = n, ct (Y,n) = 1, cn(Y, l ) = ⌈n

l ⌉, ca(Y, l ) = n.
Notice that if the cycle contains a loop around each vertex, the cop number raises to
2 while it equals 1 even if there is at least one vertex without loop. For illustration,
consider a digraph D containing a directed cycle on 4 vertices numbered from 1 to
4 and 3 loops (no loop around 4). Then cn(D,1) = 4, while cn(D, l ) = 2 for 2 ≤ l ≤ 7,
and cn(D,8) = 1 implying that cn(D) = 1. A possible winning strategy for l = 2 is to
put cops in vertices 2 and 3 at time 1 (so W1 = {2,3} and R1 = {1,4}) and then move
the cops to vertices 1 and 2 at time 2 to catch the robber. A winning strategy in the
last case (i.e., when l = 8) is given in the following table (we show the cop position
Wt and the robber territory Rt for 1 ≤ t ≤ 8). The cop is trying to reduce the territory
of the robber using the fact that there is no loop around vertex 4. At time 2, the size
of the territory decreased from 3 to 2. Then the cop is “pushing" the robber until
the territory contains again vertex 4. Using one more time the lack of possibilities
at vertex 4, the cop is able to reduce the size of the territory from 2 to 1. He contin-
ues pushing the robber to reach again vertex 4, and capture him at vertex 1. While
the strategy seems intuitive, we will show later that computing an optimal winning
strategy is an NP-hard problem, so one should not always expect a simple winning
strategy. Observe that the capture in this case is not monotone. If we impose mono-

t 1 2 3 4 5 6 7 8
Wt {3} {1} {2} {3} {1} {2} {3} {1}
Rt {1,2,4} {2,3} {3,4} {1,4} {2} {3} {4} ;

Table 1: Winning strategy for the cops on a cycle with four vertices and loops on all
vertices except vertex 4.

tonicity, it is not possible to capture the robber using only one cop. Using 2 cops is
however sufficient to monotonously capture the robber no later than time step 2
(the strategy is the one described above where W1 = {2,3} and W2 = {1,2}). We also
notice that ca(D) = 4 = ca(D, l ) for any l ≥ 1 and ct (D,c) = 1 for any c ≥ 4.

To better illustrate the definitions, let us consider another example where D is
a 5-vertex digraph containing two intersecting directed cycles: one going through
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vertices 1, 2 and 3 and another containing vertices 3, 4 and 5 (Fig 1). The values of

l 1 2 3 4 5
cn(D, l ) 5 2 1 1 1
ca(D, l ) 5 4 3 3 3

Table 2: The values of cn(D, l ) and ca(D, l ) for the 5-vertex digraph with two inter-
secting 3-cycles.

cn(D, l ) and ca(D, l ) for different values of l are given in Table 2. For l = 1, the num-
ber of cops and the number of capture attempts needed to capture the robber are
obviously equal to the number of vertices. If the cops are more patient and accept
to capture the robber only on time step 2, then only 2 cops are needed. A possible
strategy is W1 = {3,4} and W2 = {2,3}. This leads to 4 capture attempts which is ex-
actly the minimum required number of capture attempts to guarantee the end of
the game no later than time step 2. If we can wait until time step 3, then one cop
is sufficient to do the job. A possible winning strategy is to keep the cop at vertex 3
for all 3 time steps. This leads to 3 capture attempts which is again equal to ca(D,3).
If l increases further, both cn(D, l ) and ca(D, l ) stay constant. Observe also that we
obviously have ca(D, l ) ≤ l .cn(D, l ) since each cop can make at most one capture at-
tempt at each time step. We have seen in Table 2 that ca(D, l ) and l · cn(D, l ) can be
equal for some values of l and different for others. In terms of capture time for the
considered graph, we have ct (D,3) = 3, ct (D,4) = 2, and ct (D,5) = 1 while capture is
not guaranteed with less than 3 attempts.

D = (V, A) Directed graph (assuming the minimum outdegree δ+(D) ≥ 1)
N(D) The no-meet matroid related to D
d(N(D)) Dimension of N(D); equal to the size of the largest cycle subdigraph
L (D, l ) A layered digraph related to D containing exactly l layers
cn(D, l ) Minimum number of cops to capture the robber no later than time l
cn(D) The cop number: minimum number of cops to capture the robber
ca(D, l ) Minimum number of capture attempts to catch the robber no later

than time l ; equal to the size of a minimum vertex cut in L (D, l )
ca(D) Minimum number of attempts to catch the robber; equal to d(N(D))
ct (D,c) Minimum capture time if c capture attempts are allowed
Wt The set of vertices patrolled by cops at time t
Rt Robber territory: possible locations assuming he was not yet caught
tw Meeting time of w walks (w > d(N(D)): first time step such that,

given any set of w walks, at least two of them meet no later than tw

Table 3: Notation summary

For the sake of clarity, most of notation is summarized in Table 3.
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3 From no-meet matroid to capture attempts

Consider a digraph D = (V, A) where the minimum outdegree δ+(D) is at least 1.
Given a positive integer l , we define the l layers expansion of D, L (D, l ) as follows.
The vertex set of L (D, l ) includes a source s, a sink t and l layers so that each layer
is a copy of V. We indicate the copy of u ∈ V on layer j as u j . We call V j the vertices
of the layer j and we have V(L (D, l )) = {s, t }∪⋃l

j=1 V j . We connect the source s to

all the vertices of V1 and the sink t from all the vertices of the last layer Vl . A copy of
each arc of A is made between two consecutive layers so that

A(L (D, l )) =
( ⋃

v∈V
(s, v1)

)
∪

 ⋃
(u,v)∈A

j∈{1,...,l−1}

(u j , v j+1)

∪
( ⋃

v∈V
(v l , t )

)
.

By construction, there is a one-to-one mapping between (s, t )-paths in L (D, l ) and
walks of length l−1 in D. Moreover, w internally vertex-disjoint (s, t )-paths in L (D, l )
correspond to w walks of length l − 1 in D so that for j = 1, ..., l the j th vertices of
the walks are all different (no-meet condition). A subset of vertices S ⊆ V is said to
be independent if there exist arbitrarily long walks starting at S (one walk starting
from each vertex) that never meet. It is shown in [4] that V and the set of inde-
pendent sets form a matroid N(D) entitled no-meet matroid. The class of no-meet
matroids strictly contains transversal matroids and is strictly contained inside the
class of gammoids [4]. The dimension of the no-meet matroid denoted by d(N(D))
is the size of a maximum-size independent set. A maximum-size independent set is
called a basis. All bases of a matroid have the same size and every independent set
is a subset of at least one basis. Consider, for example, the digraph related to Figure
1. The set {1,2,3} is a basis while the set {2,5} is a dependent set.

Observe that a vertex (s, t )-cut in L (D, l ) corresponds to a choice of capture at-
tempts that allows to catch the robber no later than time l in the game HCSIR played
on D. ca(D, l ) can then be found by computing a minimum-size vertex (s, t )-cut in
L (D, l ). This is summarized in the next observation.

Observation 3.1. ca(D, l ) is the minimum size of a vertex (s, t )-cut in L (D, l ) and is
equal to the maximum number of vertex-disjoint (s, t )-paths in L (D, l ).

Proof. The minimum size of a vertex (s, t )-cut in L (D, l ) is equal to the maximum
number of vertex-disjoint (s, t )-paths in L (D, l ) by direct application of Menger’s
theorem. Consider now capture attempts corresponding to a minimum-size (s, t )-
cut: if the j th copy u j of a vertex u belongs to the vertex-cut, a capture attempt is
performed on vertex u at time j . Any path in L (D, l ) should necessarily contain one
of the vertices of the (s, t )-cut. In other words, any walk in D will be intersected no
later than l implying that the robber is captured. If the number of capture attempts
is strictly less than the size of an optimal vertex (s, t )-cut, then the subset S of vertices
of L (D, l ) corresponding to capture attempts (if a capture attempt occurs on vertex
u at time j , then u j belongs to S) is not a vertex (s, t )-cut. This implies that L (D, l )
contains a path not intersected by S. As a consequence, D contains a walk that can
be followed by the robber to escape (at least until time l ).
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As already mentioned, the dimension of the no-meet matroid d(N(D)) is the size
of a largest set S such that there are |S| infinitely-long vertex-disjoint synchronous
walks starting at S. Therefore, the combination with the previous observation leads
to our second observation.

Observation 3.2. Let D be a digraph with δ+(D) ≥ 1 and let N(D) be its related no-
meet matroid. Then, d(N(D)) = min

l
ca(D, l ) = ca(D).

It is proved in [4] that the dimension of the matroid equals the size of the largest
cycle subdigraph (i.e., collection of vertex-disjoint cycles). Notice that this does not
mean that each basis is the vertex-set of a largest cycle subdigraph. It only implies
that there is at least a maximum cycle subdigraph whose vertex-set is a basis. It can
be computed in O(n3) using matching in bipartite graphs (see, e.g., Theorem 13.8.1
in [2]). Therefore there exists an O(n3) algorithm to compute ca(D).
We also know from [4] that the minimum in Observation 3.2 is achieved for some
l ∈ O(n5). In other words, there exists a constant C such that for any D and l ≥ Cn5,
ca(D, l ) = ca(D) = d(N(D)). It is then enough to consider a number of layers l ≥ Cn5

to check the independence of a set. The observation about the number of layers
implies that the capture time is at most Cn5 when c ≥ d(N(D)) attempts are allowed.
We will prove in next section that the capture time is in fact bounded by n +1− c.

4 Capture time vs capture attempts

Given a digraph D, the function ca(D, l ) is obviously non-increasing in l . As already
mentioned, we know that after some l̄ ∈ O(n5) the function ca(D, l ) is constant. Here
we show that the above estimate can be lowered and we get a sharp result related to
the capture time of the game HCSIR.

Note that for c ≥ ca(D), ct (D,c) = l where l is the minimum integer such that
ca(D, l ) = c. We will show that the capture time ct (D,c) of the game using c ≥ ca(D)
attempts is at most n − c +1. As a consequence, we will deduce that given any set of
w > d(N((D)) walks, at least two of them meet no later than n −w +2.

Consider a maximal collection of vertex-disjoint (s, t )-paths F on L (D, l ): for

j = 1, ..., l − 1 it defines a matching between V j and V j+1. Let M j
F

⊆ V j be the

matched vertices and U j
F

:= V j \M j
F

the unmatched vertices. For a collection F and

j = 1, ..., l −2, let I j
F

be the set of vertices u j ∈ U j
F

that either have a copy u j+1 ∈ U j+1
F

or such that the vertex z j+2 ∈ M j+2
F

matched with u j+1 has a copy z j+1 ∈ U j+1
F

.
Let us start with the following lemma proved through augmenting-path tech-

niques.

Lemma 4.1. Let l ≥ 2, if F is a collection of ca(D, l ) > d(N(D)) disjoint (s, t )-paths
on L (D, l ), then for every 1 ≤ k ≤ l −1, there exists a collection G of ca(D, l ) disjoint

(s, t )-paths such that Uk
F

= Uk
G

and a path P = sv1
1 ....vk

k , with v j
j ∈ U j

G
for j = 1, ...,k

and vk+1
k ∈ Mk+1

F
.
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Proof. First of all note that ca(D, l ) < |V(D)|, otherwise ca(D, l ) = |V(D)| and we
would have d(N(D)) = |V(D)|, which is incompatible with ca(D, l ) > d(N(D)). There-

fore U j
F

̸= ; for j = 1, ..., l . Note that U j
F

and U j+1
F

cannot contain the copies of

the same vertices (i.e., there exists at least one vertex v ∈ V such that v j ∈ U j
F

while

v j+1 ∉ U j+1
F

), since otherwise F would contain a matching between the copies of
the same set of vertices, implying that D contains a cycle subdigraph of size ca(D, l )
and thus ca(D, l ) ≤ d(N(D)).

We use an inductive argument on k to show the property of the Lemma: when
k = 1, there must exist v1

1 ∈ U1
F

such that v2
1 ∈ M2

F
, otherwise U1

F
and U2

F
would

contain the copies of the same vertices. We can just take G =F and the path P = sv1
1

is as required.
Now assume the lemma is true for a given k ≤ l −2 and let’s show it holds for k +1.
Among all collections X of ca(D, l ) disjoint (s, t )-paths on L (D, l ), such that Uk+1

X
=

Uk+1
F

and Uk+2
X

= Uk+2
F

let F ′ be the one that maximizes |Ik
X
|. By induction we

have the existence of a collection G ′ and a path P as in the hypothesis. In partic-
ular Uk

F ′ = Uk
G ′ , thus if we join the arcs of G ′ until layer k with the arcs of F ′ from

layer k onward, we still have a collection G of ca(D, l ) disjoint (s, t )-paths that max-
imizes |Ik

X
|. Moreover Uk+1

G
= Uk+1

F ′ = Uk+1
F

. Let vk
k be the last vertex of the path P,

we have that vk+1
k ∈ Mk+1

G
. This means that G contains an arc from vk+1

k to some

yk+2
1 ∈ Mk+2

G
and L (D, l ) \ G has the copy of this arc between vk

k and a yk+1
1 : call a1

this arc. We will show that yk+1
1 ∈ Uk+1

G
and thus P ∪ a1 is a path as required since

yk+2
1 ∈ Mk+2

G
(see Figure 2 for illustration).

Assume by contradiction that yk+1
1 ∈ Mk+1

G
, then G contains an arc from a vertex

xk
1 to yk+1

1 : call b1 this arc. If xk+1
1 ∈ Mk+1

G
, then G contains an arc from xk+1

1 to some

yk+2
2 and L (D, l )\G contains an arc from xk

1 to yk+1
2 : call a2 this arc. Note that, given

that yk+2
2 is matched from xk+1

1 ̸= vk+1
k (since xk

1 ̸= vk
k ), then yk+1

2 ̸= yk+1
1 . Similarly,

if yk+1
2 ∈ Mk+1

G
, then G contains an arc from a vertex xk

2 to yk+1
2 : call b2 this arc and

note that xk
2 ̸= xk

1 . As long as yk+1
j , xk+1

j ∈ Mk+1
G

, we can define a j ,b j , xk
j , yk+1

j as

above, with the xk
j being all distinct and the yk+1

j being all distinct. Now, since Mk
G

does not contain the same copy of vertices as Mk+1
G

, there must exist h ≥ 1 such that

either xk+1
h ∈ Uk+1

G
or yk+1

h+1 ∈ Uk+1
G

. Figure 2 illustrates the situation where h = 2 and

xk
h ∈ Uk+1

G
.

Let Q be the path of G from s to xk
h . Define F̂ as the collection obtained from G

by removing the arcs of Q and the arcs {b1, ...,bh} and adding the arcs of the path P
and the arcs {a1, ..., ah}. It is easy to see that F̂ is still a collection of ca(D, l ) disjoint
(s, t )-paths with Uk+1

F̂
= Uk+1

G
= Uk+1

F
and Uk+2

F̂
= Uk+2

G
= Uk+2

F
. Note that Uk

F̂
=

(Uk
G

\ {vk
k })∪ {xk

h } and we have vk+1
k ̸∈ Uk+1

G
, yk+1

1 ̸∈ Uk+1
G

, so vk
k ̸∈ Ik

G
. On the other

hand either xk+1
h ∈ Uk+1

F̂
or yk+1

h+1 ∈ Uk+1
F̂

, namely xk
h ∈ Ik

F̂
. It means that |Ik

F̂
| = |Ik

G
|+

1 = |Ik
F ′ |+1, which contradicts the maximality of F ′.

Corollary 4.2. Let l ≥ 2, if ca(D, l ) > d(N(D)), then ca(D, l −1) ≥ ca(D, l )+1.

Proof. By Lemma 4.1 applied to k = l − 1 we have a collection G and a path P =
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1

b1

xk+1
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yk+1
2

a2

xk
2

xk+1
2

b2

Figure 2: Illustration of the proof of Lemma 4.1.

sv1
1 ...v l−1

l−1 on L (D, l ) such that v i
i ∈ Ui

G
for i = 1, ..., l −1. Consider the collection G ′

on L (D, l −1) that contains the same arcs as G on the first l −1 layers, plus the arcs
of the path P and all arcs from Ml−1

G
∪ {v l−1

l−1} to t . This is a collection of ca(D, l )+1
disjoint (s, t )-paths on L (D, l −1).

Corollary 4.2 implies that ca(D, l ) starts with ca(D,1) = n and is strictly decreas-
ing with increasing l , until its value reaches d(N(D)) and remains constant. This
implies the following upper bound for the number of capture attempts.

Theorem 4.3. Let D be a digraph on n vertices with δ+(D) ≥ 1. Let c be such that
d(N(D)) ≤ c ≤ n. The number of attempts needed to capture the robber no later than
time n − c +1, satisfies ca(D,n − c +1) ≤ c.

Proof. Suppose by contradiction ca(D,n − c +1) > c, then by applying Corollary 4.2
n − c times we have

ca(D,1) ≥ ca(D,2)+1 ≥ ca(D,3)+2 ≥ ... ≥ ca(D,n − c +1)+n − c > n.

This is impossible since ca(D,1) = n.

Observe that Corollary 4.2 implies that ct (D,c) defined for d(N(D)) ≤ c ≤ n is
a non-increasing piecewise constant function reaching all integer values between
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ct (D,d(N(D)) and 1 = ct (D,n). In other words, by allowing one more attempt, we
cannot reduce the capture time by more than one time step.

Theorem 4.4. The capture time using c attempts satisfies ct (D,c) ≤ n − c + 1, and
ct (D,c)−1 ≤ ct (D,c +1) ≤ ct (D,c).

Proof. The inequality ct (D,c) ≤ n − c + 1 is a direct consequence of ca(D,n − c +
1) ≤ c. Moreover, ct (D,c +1) is obviously less than or equal to ct (D,c). Assume that
ct (D,c +1) = l < ct (D,c). Then, ca(D, l ) ≤ c +1. Combined with ct (D,c) > l , we get
that ca(D, l ) = c +1 > d(N(D)). From Corollary 4.2, we can infer that ca(D, l +1) ≤
ca(D, l )−1 = c. Therefore, ct (D,c) ≤ l +1 = ct (D,c +1)+1 ending the proof.

The above bounds are sharp as we can see by considering the family of digraphs
obtained by taking a cycle on r vertices, and a path oriented towards the cycle and
containing n − r +1 vertices disjoint from the cycle except for the terminal vertex of
the path. Let v1, v2, ..., vn−r+1 be the vertices of the path while vn−r+1,...,vn belong
to the cycle. The digraph D contains an edge vi vi+1 for i < n in addition to the edge
vn vn−r+1. The dimension is r , while ca(D, l ) = n − l + 1 for 1 ≤ l ≤ n − r + 1. This
can be checked as follows. Using Theorem 4.3 we deduce that ca(D, l ) ≤ n − l +1 for
1 ≤ l ≤ n − r + 1. To prove equality, we only have to exhibit n − l + 1 synchronous
disjoint walks of length l −1. They are provided below where each row shows the l
vertices belonging to each walk.

v1 v2 · · · vl−1 vl

v2 v3 · · · vl vl+1
...

... · · · ...
...

vn−l+1 vn−l+2 · · · vn−1 vn

Since these walks correspond to vertex-disjoint paths in L (D, l ), we need at least
n−l+1 capture attempts to intersect each one of these walks implying that ca(D, l ) ≥
n−l+1. If l ≥ n−r +1, then ca(D, l ) = r since ca(D, l ) is non-increasing with increas-
ing l and we just proved that ca(D, l = n − r +1) = r . The capture time values imme-
diately follow from what we know about ca(D, l ): ct (D,c) = n − c +1 for r ≤ c ≤ n.

As a consequence of the above theorem, we get the main result of the paper,
namely an upper bound for the meeting time. Remember that tw is the first time
step such that, given any set of w walks, at least two of them must meet no later
than tw .

Theorem 4.5. Let d(N(D)) < w ≤ n and c = w −1, then tw = ct (D,c) and tw ≤ n −
w +2.

Proof. From the definition of ct (D,c), a robber can escape until time t = ct (D,c)−1
when using c ≥ d(N(D)) capture attempts. This means the layered graph L (D, t )
contains w = c +1 disjoint paths, hence there exist w = c +1 walks in D that do not
meet until time t , implying tw ≥ ct (D,c). On the other hand, suppose that tw >
ct (D,c), then we can find w paths that are disjoint in L (D, l = ct (D,c)) making it
impossible to capture the robber with c attempts in time at most ct (D,c). In other
words, we have tw = ct (D,c). Using Theorem 4.4, we deduce that tw ≤ n−w +2.
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V \ {1}

V \ {2}
V \ {3}

V \ {4}
V \ {5}

Figure 3: The digraph D4 obtained from the digraph D of Fig 1.

Let us state Theorem 4.5 in a different way. Consider a number d(N(D)) < w ≤ n
and build the digraph Dw whose vertex set corresponds to subsets of V(D) of size
exactly w . An arc from {vi1 , ..., viw } to {v j1 , ..., v jw } exists in Dw only if {v j1 , ..., v jw } can
be obtained from {vi1 , ..., viw } by replacing each vertex by exactly one of its succes-
sors in D (in other words, w walkers located at {vi1 , ..., viw } can move to {v j1 , ..., v jw }
in exactly one step without meeting). Theorem 4.5 implies that each path of Dw con-
tains at most n −w arcs (and is then cycle-free). As an example, consider again the
digraph D of Figure 1 where d(N(D)) = 3 and take w = 4. The digraph D4 is shown in
Figure 3. We can see that D4 does not contain paths of length 2.

Another consequence of Corollary 4.2 is that ca(D,n) = d(N(D)), therefore to
compute d(N(D)) and ca(D) it is enough to compute the maximum number of dis-
joint (s, t )-paths on L (D,n). However, we already have an algorithm to compute the
two measures based on matching in bipartite graphs [4].

5 Cop number

In this section we give some considerations on the cop number. Let us start by re-
calling the definition of directed path decomposition and pathwidth.
A directed path decomposition of D is a collection of subsets (called bags) B1, ...Bk

such that

1.
⋃k

i=1 Bi = V(D)

2. If i < j < k, then Bi ∩Bk ⊆ B j

3. For every arc uv there exist i ≤ j such that u ∈ Bi and v ∈ B j .

The width of a path decomposition is maxi |Bi |−1. The directed pathwidth of D, de-
noted by pw(D), is the minimum possible width of a directed path decomposition
of D.
An equivalent measure is the directed vertex separation. Let σ = (v1, ..., vn) be an
ordering of V(D). The separation of σ is maxi |N+({vi+1, ..., vn})∩ {v1, ..., vi })|. The
directed vertex separation of D is the minimum separation among all possible or-
derings. This number equals the directed pathwidth of D [31].
Similarly to what is shown in [3] for their version of the game, the number of cops
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1

2

3

4

Figure 4: Example of a digraph D with cn(D) < pw(D).

for our game is upper bounded by the pathwidth plus one. This follows immedi-
ately from the fact that our game is not more difficult for the cops than the same
game with an arbitrarily fast robber, but we give a direct proof to better illustrate the
relation with the pathwidth.

Theorem 5.1. The cop number cn(D) of the game HCISR is at most 1+pw(D).

Proof. Let B1, ...,Bk be a directed path decomposition of D. We prove that the se-
quence W1 = B1, ...,Wk = Bk is a winning strategy for the cops.
To prove this, we will inductively show that for t ≤ k, if rt ∈ Wa , with a ≤ t , then the
robber is captured.
The statement is clearly true at the initial time step (the cops are in W1). For the in-
ductive step assume rt+1 ∈ Wb with b ≤ t +1 ≤ k. If b = t +1 the robber is captured,
so assume b ≤ t . At step t , the robber is at rt ∈ Wa , for some a: if a ≤ t the robber
is captured by induction, otherwise assume a ≥ t + 1. By property 3 of a directed
path decomposition, since rt rt+1 is an arc of D, there exist i ≤ j such that rt ∈ Wi

and rt+1 ∈ W j . Note that rt ∈ Wa ∩Wi , so if i ≤ t , then by property 2 rt ∈ Wt , so the
robber is captured. If i ≥ t +1, since rt+1 ∈ Wb ∩W j , with b ≤ t +1 ≤ j , we have that
rt+1 ∈ Wt+1 and again the robber is captured.

Note that this bound is tight: it is easy to see that directed cycles with loops on all
vertices have directed pathwidth 1 and two cops are needed to capture the robber.
On the other hand, for a loopless directed cycle C, pw(C) = cn(C) = 1. Furthermore
the digraph in Figure 4 has cop number 1 (strategy 3,2,3,4,2,4) and it is not hard
to see (by checking all possible vertex orderings) that the directed vertex separation
and hence the directed pathwidth is 2. We will construct in Section 6 digraphs with
cop number arbitrarily less than the pathwidth.

Observe that HCISR is not monotone as there is no monotone capture with one
cop from the digraph of Figure 4. We can actually prove the following

Theorem 5.2. A monotone capture for HCISR on a digraph D requires at least pw(D)
cops, and at most 1+pw(D) cops.

Proof. Let us start with the upper bound. We are going to show the monotonicity
of the winning strategy introduced in the proof of Theorem 5.1. We already proved
that if the robber was not captured before time t , then the robber territory satisfies
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Rt ⊆ V(D) \∪i=t
i=1Wi . Let us prove by induction that Rt+1 ⊆ Rt . We obviously have

R1 = V(D)\W1 and R2 ⊆ V(D)\(W1∪W2) leading to R2 ⊆ R1. Let us assume that Rt ⊆
Rt−1. Since both sets Rt and Rt+1 are subsets of V(D)\∪i=t

i=1Wi , we only have to show

that (V(D) \∪i=t
i=1Wi ) \ Rt does not intersect Rt+1. Let v ∈ (V(D) \∪i=t

i=1Wi ) \ Rt . Since
v ∉ Rt ∪Wt , v ∉ N+(Rt−1). This implies (by induction hypothesis) that v ∉ N+(Rt ).
Hence v ∉ Rt+1. As a consequence, Rt+1 ⊆ Rt , proving the induction. The strategy is
hence monotone and the upper bound is valid.
To prove the lower bound, let W1, ...,Wk be the monotone winning strategy for the
cops and let V(D) \ W1 = R1 ⊇ ... ⊇ Rk =; be the corresponding sets of possible rob-
ber positions. Let R̄i = V(D) \ Ri be their complements.
Suppose, by contradiction, that the number of cops h is strictly less than pw(D) and
observe that k > 1. We can order the vertices of D so that the vertices of R̄i appear
before those of R̄i+1 \ R̄i for every i = 1, ...,k − 1. Let σ = (v1, ..., vn) be such an or-
dering (where n := |V(D)|). By equality of pathwidth and vertex separation, there
exists l , with h < l < n, such that |N+({vl+1, ..., vn})∩ {v1, ..., vl })| ≥ pw(D). Observe
that {v1, ..., vl } ⊂ R̄1 = W1 would imply that pw(D) ≤ |N+({vl+1, ..., vn})∩{v1, ..., vl })| ≤
l ≤ |W1| ≤ h, contradicting the assumption h < pw(D). By construction of σ, we can
then assume that there exists a time step t < k such that R̄t ⊆ {v1, ..., vl } and R̄t+1 ⊇
{v1, ..., vl }. This means that Rt ⊇ {vl+1, ..., vn}, therefore |N+(Rt )∩{v1, ..., vl }| ≥ pw(D).
But there are less than pw(D) cops, thus Rt+1 ∩ {v1, ..., vl } ̸= ;, which is a contradic-
tion.

It is a known result, see e.g. [6], that it is NP-hard to approximate the pathwidth of
a graph up to a constant, this holds also for directed pathwidth, given that the path-
width of a graph G equals the directed pathwidth of the biorentation of G. Therefore
we have the following result.

Corollary 5.3. It is NP-hard to compute the minimum number of cops required for a
monotone capture in the game HCISR on a given digraph D.

Next theorem introduces further bounds for the cop number. We use D[S] to
denote the subdigraph induced by a set of vertices S ⊂ V. Let FV(D) denote the size
of a minimum feedback vertex set (a vertex set intersecting all directed cycles).

Theorem 5.4. max
S⊆V

δ+ (D[S]) ≤ cn(D) ≤ FV(D).

Proof. For the cops to win, there must exist a time step t such that Rt =;. Now if a
strategy uses h < δ+(D) cops, we have R1 ̸= ; and for every i , |N+(Ri )| > h, implying
Ri+1 ̸= ;. This clearly implies that the cop number is as least the minimum outde-
gree of the graph. This also holds for any induced subgraph D[S] leading to the lower
bound (since the cop number of D cannot be smaller than the cop number of any
induced subgraph). The validity of the upper bound is also obvious: by putting a cop
on each vertex of an optimal feedback vertex set, the robber is necessarily captured
since all directed cycles are intersected.

While computing the size of an optimal feedback vertex set is an NP-hard prob-
lem, the lower bound of Theorem 5.4 is in fact easy to compute. Once we have a pro-
cedure to check whether D contains an induced digraph D[S] such that δ+ (D[S]) ≥ k

14



for some k, one can use it to compute the lower bound through binary search. Such
a procedure is straightforward: continuously update the digraph by deleting each
vertex whose outdegree is < k until there are no possible updates. If the remain-
ing digraph is not empty, we have a subdigraph whose minimum outdegree is ≥ k,
otherwise no such subdigraph exists. This approach to maximize the minimum out-
degree was already proposed in literature, for example, in [28] for community detec-
tion.

Simple bounds for cn(D, l ) are recalled in the following Proposition.

Proposition 5.5. ⌈ ca(D,l )
l ⌉ ≤ cn(D, l ) ≤ ca(D, l ).

Proof. Each cop among the cn(D, l ) cops can perform at most one capture attempt
at each time step leading to ca(D, l ) ≤ l ·cn(D, l ). Moreover, we need at most one cop
to carry out each capture attempt, implying that cn(D, l ) ≤ ca(D, l ).

We know from the previous section that ca(D, l ) can be computed in polynomial
time, implying that we have an l -approximation of cn(D, l ). However, computing
cn(D, l ) is NP-hard for every fixed l . We will show this using reductions from the
following partition problem: given positive integers (a1, ..., an) decide whether there
exists X ⊂ {1, ...,n} such that

∑
i∈X ai =∑

i ̸∈X ai . In other words, one wants to partition
the given integers into two subsets having the same sum. This is a well-known NP-
complete problem [17].

Theorem 5.6. For every l ≥ 2 it is NP-hard to compute the number cn(D, l ) of a given
digraph D.

Proof. Let (a1, ..., an) be an instance of the partition problem and let m :=
∑

i ai
2 . We

can clearly assume m ∈ N (otherwise we have a NO instance). We construct a di-
graph D such that cn(D, l ) = m if and only if (a1, ..., an) is a yes instance of partition.
The digraph D contains, for each i = 1, ...,n, the biorentation of the complete graph
on ai vertices. Let V1, ...,Vn be their vertex sets. The digraph D also contains l−2 dis-
joint copies of the biorientation of the complete graph on m vertices. Let Z1, ...,Zl−2

be their vertex sets. All vertices of D have also a loop. An example of this construc-
tion is shown in Figure 5.
Suppose there exists a solution X to the partition problem: a winning strategy using
m cops is Z1, ...,Zl−2,∪i∈XVi ,∪i ̸∈XVi . Note that this strategy uses exactly l time steps
and m cops. Now, using Theorem 5.4, we get cn(D, l ) ≥ cn(D) ≥ δ+(D) = m, there-
fore cn(D, l ) = m.
Vice versa, suppose cn(D, l ) = m. Let t (i ) be the last time step t such that Rt ∩Zi ̸= ;.
Then we necessarily have W1+t (i ) = Zi since N+(Zi ) = Zi and |Zi | = m. So the cops
need l − 2 time steps to eliminate the Zi ’s from the robber’s territory and can only
use 2 time steps to eliminate V1, ..,Vn . Therefore in one of the two time steps they
must cover ∪i∈XVi , for some X ⊂ {1, ...,n} and since they only use m cops it means
that

∑
i∈X ai =∑

i ̸∈X ai = m and thus X is a solution of partition.

With a similar construction we can reduce partition to the problem of determin-
ing whether cn(D) = m on a particular digraph D.
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V1 V2 V3

Z1

Figure 5: Construction from Theorem 5.6 with partition instance (3,4,3) and l = 3.

Theorem 5.7. It is NP-hard to compute the number cn(D) of a given digraph D even
if it does not contain loops.

Proof. Let (a1, ..., an) be an instance of the partition problem and let m :=
∑

i ai
2 . We

can clearly assume m ∈ N (otherwise we have a NO instance). We can also assume
that ai > 2 for i = 1, ...,n (if this is not the case, consider the equivalent instance
(3a1, ...,3an)). We construct a loop-free digraph D such that cn(D) = m if and only if
(a1, ..., an) is a yes instance of partition.
The digraph D contains, for each i = 1, ...,n, the biorientation of the complete graph
on ai vertices. Let V1, ...,Vn be their vertex sets and let V :=∪i Vi . The digraph D also
contains 3 disjoint copies of an independent set on m vertices. Let I1, I2, I3 be their
vertex sets. The digraph D contains arcs from every vertex in I j to every vertex in I j+1

for j = 1,2; arcs from every vertex in V to every vertex in I1 and arcs from every vertex
in I3 to every vertex in V. We show that cn(D) = m if and only if the partition instance
is true. Suppose there exists a solution X to the partition problem: a winning strat-
egy using m cops is W1 =I1,W2 =I1,W3 =∪i∈X Vi ,W4 =∪i ̸∈X Vi ,W5 =I3,W6 = I3. To
see this, observe that R1 = V ∪ I2 ∪ I3; R2 = V ∪ I3; R3 = I1 ∪ (∪i ̸∈XVi ); R4 = I1∪I2;R5 =
I2,R6 =;. Therefore this is a winning strategy on D using m cops, which are neces-
sary by Theorem 5.4.
Assume partition is false and let (Wt )t≥1 be a cop strategy using m cops. For a subset
of vertices S, we say that S(t ) is available (to the robber) if Rt ∩S ̸= ;. We show that
the strategy cannot be winning by inductively showing that for t ≥ 1, if V(t ) is not
available, then I1(t ) and I3(t ) are available, therefore Rt ̸= ;.
For t = 1, V(t ) is available since |V| > m.
Assume V(t +1) is not available. Since partition is false, there are at least three dif-
ferent time steps s ≤ t +1 in which Ws ∩V ̸= ;.
To see this, assume, by contradiction, that there are at most two time steps s′, s′′
when some cop is in V. Let W′,W′′ be the set of cops in V at time step s′, s′′ respec-
tively. Let αi := |W′∩Vi |. Note that, since the Vi are vertex sets of complete digraphs,
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if αi ≤ ai − 2, then W′′ ⊇ Vi ; moreover if αi = ai − 1, then |W′′∩Vi | ≥ ai − 1. Since
|W′|, |W′′| ≤ m,

2m ≥
n∑

i=1
(|W′∩Vi |+ |W′′∩Vi |) ≥

∑
αi=ai

(ai +0) + ∑
αi=0

(0+ai ) +

+ ∑
1≤αi≤ai−2

(αi +ai ) + ∑
αi=ai−1

2(ai −1) >
n∑

i=1
ai = 2m

which is contradictory. The last inequality is strict because ai > 2 and there must be
at least one index for which 1 ≤ αi ≤ ai −1, otherwise the set X := {i |αi = ai } would
be a solution of the partition instance.
Let t1 < t2 < t3 ≤ t +1 be the last three time steps before t +1 such that Ws ∩V ̸= ;.
We have that

∀τ s.t. t1 ≤ τ< t +1, I3(τ) is not available (1)

otherwise, since N+(I3)=V, t1, t2, t3 are not maximal. Note that, using the induction
hypothesis, (1) means that V(τ) is available for t1 ≤ τ< t +1.

Now t3 = t + 1, because if t3 < t + 1, then, given the maximality of t3 and the fact
that V(t +1) is not available, we would have V(t3) is not available, contradicting (1).
Note that V(t1), I1(t1), I2(t1) are available if t1 = 1, because Wt1 ∩ V ̸= ;. Assume
t1 > 1: if V(t1 − 1) is available, then I1(t1) is available (Wt1 ∩V ̸= ;); if V(t1 − 1) is
not available, then by induction hypothesis, I1(t1 − 1) is available and so I2(t1) is
available. It can be proved using another induction argument that for every τ with
t1 ≤ τ < t2, either I1(τ) or I2(τ) is available: it is true for τ = t1, moreover if I1(τ)
is available, then one among I1(τ+ 1), I2(τ+ 1) must be available (recall that V(τ)
is available); if I2(τ) is available, then, by (1), Wτ+1 = I3(τ+ 1), so I1(τ+ 1) is avail-
able. Note that, since Wt2 ∩V ̸= ;, I2(t2 − 1) cannot be available, otherwise I3(t2)
would be available, contradicting (1). Therefore I1(t2 − 1) (and V(t2 − 1)) are avail-
able. It follows that I2(t2), I1(t2),V(t2) are available. By inductive reasoning, using
(1), we have that Wτ = I3 and I2(τ), I1(τ),V(τ) available for every t2 < τ < t3. Thus
I2(t3 − 1), I1(t3 − 1),V(t3 − 1) are available, so I3(t3) and I1(t3), namely I3(t + 1) and
I1(t +1), are available (Wt3 ∩V ̸= ;). This settles the inductive step

The complexity of computing the cop number in the hunters and rabbit game,
namely the restriction of our game to undirected loopless graphs, is unknown. Nev-
ertheless, by Theorem 5.7, we have that it is NP-hard to compute the cop number in
the directed version of hunters and rabbit.

6 Tensor products

Given two digraphs G and H, the tensor product G×H has vertex set V(G)×V(H) and
contains an arc from (x, y) to (x ′, y ′) if there is an arc from x to x ′ in G and an arc
from y to y ′ in H. For a vertex z = (x, y) of G×H, x can be interpreted as the G-label
of z while y is its H-label.
We aim to study some properties of ca(G×H) = d(N(G×H)). We still assume that
δ+(G) ≥ 1 and δ+(H) ≥ 1 to make the game possible on the considered digraphs.
Let n(G) denote the number of vertices of a digraph G.
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V1 V2 V3

V

Figure 6: Construction from Theorem 5.7 with partition instance (3,4,3). Thick ar-
rows indicate all arcs from one set to the other

Theorem 6.1. Let G and H be digraphs such that δ+(G) ≥ 1 and δ+(H) ≥ 1. Then
ca(G)
n(G)

ca(H)
n(H) ≤ ca(G×H)

n(G×H) ≤ min
(

ca(G)
n(G) , ca(H)

n(H)

)
.

Proof. Let us first prove that ca(G)ca(H) ≤ ca(G×H). From ca(G) = d(N(G)), we
know that we can build ca(G) infinitely-long walks in G that do not meet. Similarly,
one can build in H ca(H) non-meeting infinitely-long walks. For each walk in G and
each walk in H we can build a walk in G×H: the i th vertex is (xi , yi ) where xi (resp.
yi ) is the i th vertex in the walk through G (resp. H). This provides ca(G)ca(H) non-
meeting infinitely-long walks through G×H, showing that ca(G)ca(H) ≤ ca(G×H).
Let us now prove ca(G×H) ≤ min(ca(G)n(H),ca(H)n(G)). We know that ca(G) at-
tempts are sufficient to capture a robber walking through G. From Theorem 4.3,
ca(G) vertices of the layered digraph L (G, l ) where l = n(G)− ca(G)+ 1 intersect
all (s, t )-paths. Assume that this set is S = ⋃l

j=1 S j where S j ⊆ V(G) j = {v j : v ∈
V(G)}. Consider now the layered digraph L (G×H, l = n(G)− ca(G)+ 1). The set
T =⋃l

j=1{(v,u) j : u ∈ V(H), v j ∈ S j } is of size ca(G)n(H). Any (s, t )-path in L (G×H, l )

induces a path in L (G, l ) that is necessarily intersected by S. Since all possible val-
ues of the H-label u are considered in the T definition, the set T intersects all (s, t )-
paths of L (G×H, l ) implying that ca(G×H) ≤ ca(G)n(H). Similarly, one can show
that ca(G×H) ≤ ca(H)n(G) ending the proof.

Since it seems natural that ca(G) increases when the digraph size is larger, the
ratio ca(G)/n(G) might be more suitable to quantify the difficulty to capture a rob-
ber walking through G. Theorem 6.1 says that by considering the product of two
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digraphs, the difficulty cannot exceed the difficulty of either of the two digraphs and
stays above the product of the difficulties of the two digraphs.

Note that the lower bound in Theorem 6.1 is reached, for example, if ca(G) =
n(G), or ca(H) = n(H) (the lower and upper bound are then equal), or ca(G) = 1 or
ca(H) = 1 (in the last case, H contains exactly one loop that is necessarily reached by
the robber after some time, implying that for any walk in G×H the H-label becomes
constant after some time).

We know from Theorem 4.3 that ct (G×H,c) ≤ n(G)n(H)− c + 1 when using c
attempts, with ca(G×H) ≤ c ≤ n(G)n(H). More insights are given below.

Corollary 6.2. Let G and H be digraphs with outdegree at least 1. Then,

ct (G×H,ca(G)n(H)) ≤ n(G)− ca(G)+1 and

ct (G×H,ca(H)n(G)) ≤ n(H)− ca(H)+1.

Proof. The proof of the upper bound in Theorem 6.1 directly implies the two in-
equalities of the corollary.

We show an upper bound similar to that of Theorem 6.1 for the cop number
cn(G×H).

Theorem 6.3. Let G and H be digraphs with outdegree at least 1. Then cn(G×H)
n(G×H) ≤

min
(

cn(G)
n(G) , cn(H)

n(H)

)
.

Proof. Let (Wi )i≥1 be a winning cop strategy on G (resp. H) using cn(G) (resp. cn(H))
cops, it is easy to see that the strategy (Wi ×V(H))i≥1 (resp. ((V(G)×Wi )i≥1) is a win-
ning strategy for the cops on G×H. The required upper bound then follows imme-
diately.

Let Hm be the digraph obtained from the biorentation of a complete graph on m
vertices by adding a loop on every vertex.

Lemma 6.4. Let G be a digraph and Hm be the digraph defined above. Then pw(G×
Hm) ≥ m ·pw(G)

Proof. Consider a minimum (wrt separation) ordering of V(G×Hm): if there exist
g ̸= g ′ ∈ V(G), h′,h′′,h′′′ ∈ V(Hm) such that (g ′,h′′) is before (g ,h′′′) and after (g ,h)
in the ordering, then we can obtain an ordering of (at most) the same separation
by moving (g ,h) right before (g ,h′′′) in the ordering. This is true because (g ,h′′′)
and (g ,h) have the same out-neighbors (Hm is vertex symmetric). Therefore, by
iteratively performing these moves as long as it is possible, we obtain a minimum
ordering σ such that, for every g ∈ V(G), the vertices whose first element is g are
consecutive. The separation of σ is at least m ·pw(G).

Let Ĝ be the digraph of Figure 4 and recall that pw(Ĝ) = 2,cn(Ĝ) = 1. Let Gm =
Ĝ×Hm . Combining Lemma 6.4 and Theorem 6.3 we get a family of digraphs Gm

such that cn(Gm) ≤ m and pw(Gm) ≥ 2m, implying that cn(Gm) ≤ pw(Gm)

2
.
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7 Conclusion

Let us summarize the main contributions of the paper:

- We defined a new variant of the cops and robber game on digraphs where the
robber is invisible and slow (one mandatory move along an arc at each time
step) while the cops can freely move (helicopter model). The new game can
be seen as a more general version of the hunters and rabbit game.

- We proved that it is NP-hard to compute the minimum number of cops re-
quired to capture the robber. The problem remains difficult even when cap-
ture is required before some constant time limit.

- We showed that the cop number is at most 1 plus the pathwidth (pw(D)) of
the graph while it can be arbitrarily smaller than pw . If a monotone capture
is required, then at least pw , and at most 1 + pw cops are required to capture
the robber.

- We observed that the cop number is at least the minimum outdegree of any
induced subdigraph, a graph parameter that can be easily computed. It is also
less than or equal to the size of a minimum feedback vertex set.

- We studied the minimum number of capture attempts ca(D) required to cap-
ture the robber. We observed that this number is easy to compute since it is
equal to the dimension of the no-meet matroid which is nothing but the max-
imum order of a collection of vertex-disjoint cycles. When a time limit l is
considered, the minimum number of capture attempts ca(D, l ) is still easy to
compute.

- We proved that the capture time is at most n − c +1 for a number of attempts
c ≥ ca(D). This implies the main result of the paper: among any set of w >
ca(D) synchronous walks through a digraph D, there are at least two walks
that meet at time at most n −w +2.

- We analyzed the cop number, the minimum number of captures ca(D), and
the capture time on digraph tensor products.
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