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ABSTRACT Root zone soil moisture (RZSM) refers to the amount of water present in the soil layer where
plants can freely absorb water, and its information is crucial for various applications such as hydrology and
agriculture. SMOS and SMAP remote sensing satellites provide soil moisture (SM) data on a global scale but
limit their sensing capability to a depth of approximately 5 cm. However, for a comprehensive understanding
of soil water content in the root zone, a deeper insight into RZSM is essential, which extends from 5 cm to
100 cm. Hence, to bridge the gap between the surface SM and RZSM, SMOS surface SM information
( 5 cm) was integrated into the root zone ( 100 cm) using a simple subsurface physical model. SMOS
RZSM data are available on a global scale with 25 km sampling on EASE grid 2, which provides a daily
temporal scale from 2010 to the present. The main aims of this study were to i) check the efficacy of a simple
model-based approach and ii) investigate the importance of remote sensing SM observations for the retrieval
of RZSM. Here, we investigate the benefit of the simple model-based approach by comparing SMOS RZSM
(simple model) and SMAP, ERA5, and GLDAS RZSM (complex model or data-assimilation) with in-situ
SM. We then investigated the role of remote sensing SM observation in the retrieval of RZSM by comparing
SMOS RZSM and SMAP RZSM products over rice-irrigated areas for dry seasons (minimal rainfall) in
Telangana, South India. First, SMOS RZSM was evaluated with in-situ SM data for four distinct networks:
SCAN, HOBE, SMOSMANIA, and Amma catch from 2011 to 2017. The results between SMOS RZSM
and in-situ SM show an average correlation coefficient between 0.54 and 0.8 with an average unbiased root
mean square difference (ubRMSD) within the threshold of 0.04 m3/m3. The average correlation coefficient
between the RZSM and in-situ SM for the SMOS and SMAP RZSM shows better performance in the range
(0.55 to 0.93) than the ERA5 and GLDAS RZSM in the range (0.20 to 0.93). Finally, the outcomes of SMOS
and SMAP RZSM over irrigated areas show that only SMOS RZSM captures changes in SM dynamics due
to irrigation, particularly during the dry season.

INDEX TERMS Surface soil moisture, root zone soil moisture, SMOS, SMAP, GLDAS, ERA5.

I. INTRODUCTION
SM is a crucial element of the land surface and atmo-
sphere [1]. Hence, SM is useful for various applications,
such as hydrology [2], agriculture [3], climatology [4], and
meteorology [5]. SM is highly variable in space and time,
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and remote sensing has been found to be an effective method
for capturing this variability on a global scale [6]. Various
sensors, such as passive, active, and optical/thermal sensors,
are used to retrieve SM data on regional or global scale.

L-band radiometers such as Soil Moisture and Ocean
Salinity (SMOS) [7] and Soil Moisture Active Passive
(SMAP) provide global SM at a sensing depth of 5 cm [8], but
there is a significant challenge in obtaining SM information
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at depths that are relevant to the root zone of plants. SM infor-
mation at the root zone is useful for various applications such
as hydrological modeling [9], land surface modeling [10],
weather forecasting [11], agricultural productivity [12], and
flood /drought monitoring [13]. Despite advancements in
remote sensing, direct observation of RZSM using satellites
remains a challenge.

Various methods exist for measuring RZSM, including
ground measurements [14], data-driven [15], data assim-
ilation [16], [17], [18], satellite observations [19], [20].
Ground measurements provide direct measurements like
time-domain reflectometry (TDR) [21] or cosmic-ray neutron
probe [22], but limit its applicability in spatial coverage.
Data-driven approaches such as time series analysis and
machine learning show promise but require high-quality
input data for training a model [23], [24]. Data-assimilation
methods, like Global Land Data Assimilation (GLDAS) [25],
the fifth-generation European Centre for Medium-Range
Weather Forecasts atmospheric analysis product (ERA5)
[26], Soil Moisture Active Passive (SMAP) level-4 RZSM
product [27], combines satellite observations and numerical
models and provides more accurate results but are com-
putationally intensive. Satellite observations, for eg., ERS
scatterometer [19], [28], and SMOS [20], utilize surface SM
to estimate RZSM, by considering a link between surface SM
and RZSM [29], [30].
Wagner et al. [19] proposed a simple water model to

estimate RZSM from satellite observations. The model inte-
grates surface SM information (satellite observations) into the
RZSMbased on hydraulic conductivity, which depends on the
time required to transfer water from the surface to the deeper
soil layer. The SMOS RZSM is estimated using a similar
model but modified using recursive exponential filters [31],
similar to Albergel et al. [32], including soil texture
information, as discussed by Al Bitar et al. [33]. The SMOS
RZSMhas been available from 2010 to the present on a global
scale. Several studies have validated the SMOSRZSMbut are
limited to specific regions [34]. A recent study showed that
SMOS and SMAP surface SM data capture irrigation signals
that are not recognized in SMAP RZSM [35]. However, there
is a lack of global and comprehensive studies on SMOS
RZSM under varying climatic conditions and their relevance
in the context of irrigation.

The main objective of this study was to assess the quality
and accuracy of the SMOS RZSM with in-situ SM under
different climatic conditions and to compare it with other
RZSM products (ERA5, SMAP, and GLDAS) to evaluate
their capability to account for human-induced changes,
particularly irrigation. In this context, the SMOS RZSM
was evaluated using ground-based measurements collected
from ISMN networks for Amma Catch, HOBE, SCAN,
and SMOSMANIA from 2011 to 2017. The SMOS RZSM
was compared to other RZSM products (ERA5, SMAP,
and GLDAS) in 2017. Finally, the performance of RZSM
products was examined in dry- irrigated areas in Telangana,
India.

II. MATERIALS AND METHODS
A. IN-SITU MEASUREMENT FOR VALIDATION
In-situ RZSM measurements were selected from the ISMN
because they provide SM information at different depths
for several networks (Dorigo et al., 2011). Four networks
were selected from ISMN from 2011 to 2017: Amma
Catch, HOBE, SCAN, and SMOSMANIA. All in-situ
measurements selected from the ISMN underwent a quality
control procedure performed by the ISMN, and only the
highest quality in-situ measurements (described in the ISMN
criteria) were used for validation. The idea is to select
only four networks from the ISMN, as they show better
performance with surface SM [36], [37], [38] and fulfill the
quality criteria of RZSM. A brief description of each in-situ
network is presented below.

1) AMMA CATCH (LEBEL ET AL [39])
This observatory includes mesosites named Benin, Niger, and
Mali/Senegal. Benin has a Sudanian climate, with an average
rainfall of 1200 mm/yr, and is located at the southernmost site
of the observatory. Niger is situated southwest of Niger and
has a Sahelian climate, with an average rainfall of 450-600
mm/yr. Mali/Senegal has a semi-arid climate with an average
rainfall of 200-400mm/yr, and is located in the northeast.
In Benin, the land is covered by crops; Niger by crops and
pastoral land and Mali by pastoral land. The soil texture was
sandy clay loam in Benin and sandy loam in Niger.

2) HOBE (BIRCHER ET AL. [40])
The HOBE observatory is situated in the Skjern catchment
of Western Denmark. The area has temperate climatic
conditions, with an average rainfall of 1050 mm/yr. The land
is covered by agriculture. The soil texture was a sandy loam.
A Decagon 5TE sensor was used to measure volumetric SM
at depths of 0.05 m, 0.25 m, and 0.55 m.

3) SCAN (SCHAEFER ET AL. [41])
The SCAN network is located in the United States, and the
system focuses on covering the agricultural areas of the U.S.
The region is cold semi-arid in the west, humid continental in
the north, and humid temperate in the south, lower midwest,
and middle Atlantic states. The annual average rainfall is
between 710 mm/yr to 1600 mm/yr. The land was covered
by agriculture, shrubs, and pastures. The soil texture is
silty loam in the central northeast, northeast, south, and
central northwest; sandy loam in the center, northwest, and
southwest; clay loam in the southeast; and silt in the west.
Hydraprobe sensor used to measure soil moisture at a depth
range from 0.2m to 2.3 m.

4) SMOSMANIA (CALVET ET AL. [36])
The SMOSMANIA network is located in southern France.
The area has a Mediterranean climate, with average annual
rainfall ranging from 500 mm to 1734 mm. The land is
covered by croplands and grasslands. It consists of 21 sites.
The soil texture is sandy loam, clay loam and loam. A theta
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TABLE 1. Description of the in-situ data.

FIGURE 1. Rice irrigated map in dry season for 2016 and 2017 in
Telangana, South India.

probe sensor was used to measure the SM at different depths
ranging from 5 to 30m.

The different depths of the in-situ networks that contribute
to the deepest RZSM are listed in Table 1.

B. IRRIGATED AREA
Figure 1 illustrates the map of the Telangana region and rice
irrigation map from 2016 to 2017. As shown in Figure 1,
Telangana is highly irrigated area for rice production which
is approximately 20 percent, and the extent varies in
space (from 3 to 80 percent) and time from one year
to another depending on the availability of surface water
and groundwater. Flood irrigation has been used for rice
cultivation [35], [42]. A rice cover map was produced using
Sentinel-2 and ground measurements were performed using
a supervised classification algorithm at 10 m [42]. Note that
the rice cover map is presented here only for the dry seasons
from 2016 to 2019. A rice map for the wet season was not
produced because of the limited availability of Sentinel-2 data
owing to the cloud cover.

C. SMOS LEVEL-3 SM DATA
The SMOS is a L-band (1.4 GHz) radiometer that cov-
ers Earth continuously and globally. It was launched in
November 2009. It provides SM on a global scale and a
temporal revisit of three days at the equator with an ascending
(6 am)/descending (6 pm) overpass on the local solar time.
SMOS provides surface SM (0-5 cm) with an expected
accuracy of 0.04 m3/m3 over particular cases such as low
vegetated land with water content less than 5kgm-2 and
homogeneous observed scenes [43].

This study used the SMOS CATDS level-3 (CLS1A/D)
version 339 daily global SM product for the ascending and
descending overpasses. SMOS Level-3 SM products provide
SM in the Equal-Area Scalable Earth Grid, Version 2.0

(EASE-Grid 2.0) [44] with a grid sampling of 25 km in
netCDF format [45].

D. PRECIPITATION
The Integrated Multi-satellite Retrievals for Global Precip-
itation Measurement (IMERG) algorithm was developed
by the National Aeronautics and Space Administration
(NASA). The Global Precipitation Measurement (GPM)
satellite mission between NASA and the Japan Aerospace
Exploration Agency (JAXA) was launched in 2014. The
IMERG algorithm integrates GPM information to provide
global precipitation data. Monthly IMERG GPM precipita-
tion data were used to monitor precipitation.

E. NORMALIZED DIFFERENCE VEGETATION INDEX
The Normalized Difference Vegetation Index (NDVI) was
calculated from the red and infrared bands of the Moderate
Resolution Imaging Spectroradiometer (MODIS). This helps
to estimate the growth of vegetation. The monthly NDVI
level-3MOD13A3 version 6, with a spatial resolution of 1 km
was gridded using sinusoidal projection.

F. GLDAS RZSM DATA
GLDAS is a high-resolution land surface model that produces
optimal land surface states and fluxes by combining satellite
and ground observation data using data assimilation tech-
niques [46]. GLDAS was developed by the NASA and the
National Oceanic and Atmospheric Administration.

GLDAS version 2.2 uses the NASA Climatology Land
Surface Model (CLSM) and other input meteorological
parameters from the European Center for Medium-Range
Weather Forecasts (ECMWF) and Gravity Recovery and
Climate Experiment (GRACE) as satellite observation [25].
It provides a product with a spatial resolution of 0.25◦*0.25◦

at a 3-hour temporal period from February 2003 to the
present. The soil moisture depth (2-100) cm was considered
as the RZSM layer.

G. ERA5 RZSM DATA
ERA5 is a fifth-generation reanalysis product developed by
ECMWF to provide global climate and weather data from
January 1979 to the present. ERA5 combines models and
observation using 4-Dimensional variational data assimila-
tion to provide a reanalysis product [26].

ERA5 provides data at 0.25◦*0.25◦ spatial resolution for
3-hour temporal period. ERA5 provides SM information for
different soil water layers: 0-7 + 7-28 + 28-100 cm. Here, the
weighted average of SM at a depth of 7-100 cm is used.

H. SMAP LEVEL-4 RZSM DATA
The SMAP Level-4 RZSM was produced by assimilating
SMAP level-1 brightness temperature (Tb) data into the
NASA Catchment land surface model [47]. The assimilated
SMAP data include the horizontal and vertical polarizations
Tb from the ascending and descending half-orbits.
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SMAP Level-4 RZSM data are available at 9 km on
EASE-Grid 2.0 with a 3-hour temporal period at a global
scale. SMAP Level-4 provides SM estimates for the surface
(0-5 cm), RZSM (0-100 cm), and profile (0 cm to bedrock
depth) layers. SMAP Level-4 RZSM data are available from
March 31, 2015, to the present.

I. ESTIMATION OF LEVEL-4 SMOS RZSM
The SMOS Level-4 RZSM was calculated using the SMOS
Level-3 surface SM data. The SMOS surface SM undergoes
a quality control process, such as Chi-square and Radio
Frequency Interference (RFI) probability. The SMOS RZSM
was retrieved from the SMOS surface SM using a simple
water model [19]. The model was modified by a recursive
exponential filter [31], similar to that of Albergel et al. [32],
and incorporated soil texture and layer-specific information
to retrieve the RZSM globally [33]. The methodology used
to calculate SMOS RZSM is described below.

The soil profile was divided into three distinct layers:
the uppermost layer, L0, ranging from 0-5 cm (thickness
d0 = 5 cm); an intermediate layer, L1, ranging from 5-40 cm
(thickness d1 = 35 cm); and a deep layer, L2, ranging from
40-100 cm (thickness d1 = 60 cm).
In the following subscripts, i, is the time index (day) of

the time series and the superscript k is the layer index, where
k ∈ {0, 1, 2}; upper, intermediate, and deep. For a given grid
point, the time series of the satellite observed surface SM,
SM0

i , was the uppermost (0-5 cm) surface SM layer. The
deeper SM layer from the uppermost surface SM layer for
a given time series is computed as follows:

First, for a given time series, the process starts by
converting the surface SM SM0

i to a soil water index (SWI)
SWI0i using scaling Equation (1).

SWI0i = log(c ∗ SM0
i + a) + b (1)

where, the scaling coefficients, a, b are derived from the
minimum/maximum surface SM SM0

min and SM
0
max using (2)

and c=1.2 (logarithmic correction).

a = SM0
max

eSM
0
min − 1

1 − eSM
0
min − 1

(2)

b = 1 − log(SM0
max + a) (3)

where SM0
max (m3/m3) and SM0

min (m3/m3) are the SM
at saturation and field capacity, respectively, calculated
from the pseudo-transfer function using the soil texture
information [48].
Subsequently, a sequential filter was employed to calculate

the SWI at a given time index, i, and layer index, k > 0, using
Equations (4) and (5).

SWI ki+1=SWI ki=0+Kn
k
i+1 ∗ (SWI k−1

i − SWI ki ), i ≥ 0, k > 0

(4)

where, SWI ki=0 is initialized to previous SM value, where k ∈

{1, 2}

where, Knki+1 is computed as:

Knki+1 =
Knki

Knki + e
−DT
Tk

, i ≥ 0 (5)

where Tk is the time constant (days) represents the time
required to update SM from layer k − 1 to k . The DT (days)
is the time delay interval from the previous update.

According to Darcy’s law of conservation of mass in
saturated porous media, the time constant is logarithmically
related to hydraulic conductivity. Based on this analysis, Tk
is computed for a given layer index, k > 0 as follows:

Tk =
log(Ksat ) − log(max(Ksat ))

log(min(Ksat )) − log(max(Ksat ))
∗ Tk,int − Tk,min

(6)

where Ksat is the hydraulic conductivity at saturation, Tk,int
(days) is a constant representing the time interval at k layer
and Tk,min is the minimum value of T at layer k .
Ksat is computed as:

Ksat =a ∗ (b− c ∗ Xclay−d ∗ Xsand + e ∗ X2
clay + f ∗ X2

sand )

(7)

where, a, b, c, d, e and f are constant calculated from Noilhan
and Mahfouf [49] shown below: a = 10-6, b = 41.5661691,
c = 5.81989, d=0.0907123, e = 5.29268, f = 1.20332.

After calculating the SWI, the absolute SM for a layer k
>1 was derived from the SWI through linear scaling between
the minimum (SM k

min) and maximum (SM k
max) soil retention

capacity of the layer as follows:

SM k
i = (SM k

max − SM k
min) ∗ SWI ki + SM k

min (8)

A similar step was applied to retrieve the SM values for the
intermediate, L1 and deeper layers, L2.
Finally, the RZSM (5-100 cm depth) was computed using

Equation (9) as the weighted average of the SM values
from the two deepest layers, weighted by their respective
thicknesses d1 and d2:

RZSM5−100
i =

d1 ∗ SM1
i + d2 ∗ SM2

i

d1 + d2
(9)

The SMOS level-4 RZSM data provides RZSM at
5-100 cm depth with a spatial sampling of 25 km on EASE-
Grid 2 at a global scale. It provides RZSM data on a
daily temporal scale for both the ascending and descending
overpasses. The dataset was freely available on the CATDS
platform from 2010 to the present day.

III. RESULTS AND DISCUSSION
The results of this study are discussed in three different
sections: first, visual assessment of SMOS RZSM at a global
scale; second, evaluation of the SMOS RZSM product with
in-situ SM; and third, comparison of SMOSRZSMwith other
available SMAP, ERA-5, and GLDAS RZSM products.
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FIGURE 2. Global yearly average map of SMOS surface SM (a) and
SMOS-RZSM (b) of 2017 (top) and daily map (3-day average) for SMOS
surface SM (c) and SMOS level-4 RZSM (computed from 3 day average
surface SM)(d) (below) of April 1, 2017.

FIGURE 3. Standard deviation of SSM (a) and RZSM (b) for the year 2017.

A. VISUAL ASSESSMENT OF SMOS RZSM AT GLOBAL
SCALE
Figure 2 illustrates the annual average and daily maps
of SMOS surface SM and RZSM. Low SM values were
observed for dry regions, such as the southwestern United
States, South Africa, Central Africa, and Southwestern
Europe, and higher SM values were observed for wet areas
in the northeastern United States, northern Europe, and
Southeast Asia but the range of SM values differed in all
the maps. More variability was observed in the surface SM
in Figure 2(a,c) than in RZSM 2(b,d) for both the annual
and daily maps for Eastern Australia and Eastern Arizona,
as shown in Figure 3. The variability in surface SM is
attributed to climatic factors and anthropogenic activity [50].
On the other hand, RZSM (deeper soil layer) exhibits a
gradual response to short-term weather variations. Hence, the
SM in the root zone is more stable and preserves long-term
memory; this characteristic is not prominent in the surface
SM [51].

Figure 4 presents a Hovmoller plot of SMOS RZSM
anomalies over Australia from 2010 to 2022 to demonstrate
the usefulness of long-term RZSM information for identi-
fying extreme events. The plot illustrates the spatial and
temporal variability of the RZSM along latitude. RZSM
anomalies were calculated to remove seasonal effects that
occured at the regional scale. The SMOS RZSM anomalies
shown in the Hovmoller plot are calculated as follows:

RZSManom
i = RZSMi −

1
N

∑
year

RZSMi,year (10)

where, i (days) ∈ {1 . . . 365}. For the currently available
dataset, year ∈ {2010 . . . 2022} and N(length of the
dataset)=12

FIGURE 4. Hovmoller plot of SMOS RZSM anomaly for Australia region
for a period of 2010 to 2022.

The study mainly focused on the Australian continent
because of its diverse climates, ranging from tropical in the
north to temperate in the south. This region was selected
because of its increased vulnerability to extreme climatic
conditions, such as droughts and floods. The Hovmoller
plot (Figure 4) shows SM anomalies for different periods
such as, 2010-2011 and 2021-2022, where the areas shaded
in blue indicate high SM values corresponding to flood
events linked to La Niña, [52], [53]. Conversely, for 2014 to
2016 and 2018 to 2019, the regions shaded in red (indicating
drought) were aligned with the effects of El Niño [54]. This
indicates that the wetting and drying trends of RZSM capture
extreme climatic conditions and retain the integrated impact
of climatic conditions over an extended period [55].

B. EVALUATION OF SMOS RZSM WITH IN-SITU SM
Figure 5 provides a time series graph from 2011 to 2017 for
individual sites for Wankamma (Amma Catch) (a), 1.09
(HOBE) (b), Little River (SCAN) (c), and Mouthoumet
(SMOSMANIA)(d). At Wankamma site, SMOS RZSM
presents similar seasonal variation to in-situ SM, but SMOS
RZSM never reaches the minimum values with in-situ
SM, as shown in Figure 5(a) because of the sandier soil
texture [56], [57], [58], [59]. In the Little River, the SMOS
RZSM exhibited higher SM values than the in-situ SM,
as shown in Figure 5(c). This disparity might arise from
water percolation at a deeper level, which is affected
by the intensity and duration of water events, including
watershed characteristics, not captured by the depth of the
in-situ SM measurements [45]. In contrast, HOBE (5) and
Mouthoumet (Figure 5(d)) showed an increase in SM peak
during the growing season of each year, which may be due
to irrigation [40]. This is because, on average, these regions
receive substantial rainfall, and the monitoring stations do not
exhibit a significant response to these precipitation events.
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FIGURE 5. Time series graph of in-situ (weighted average) and SMOS
RZSM for individual site of Amma Catch (Wankamma site) (a), HOBE
(1.09) (b), SCAN (Little river) (c) and SMOSMANIA (Mouthoumet)
(d) from 2011 to 2017.

TABLE 2. Statistical results in terms of pearson correlation coefficient (R),
mean bias (MB), root mean square difference (RMSD) and unbiased root
mean square difference (ubRMSD) for the network Amma Catch, HOBE,
SCAN and SMOSMANIA for the period of 2011 to 2017.

Table 2 presents the statistical results between SMOS
RZSM and in-situ SM for Pearson correlation coefficient
(R), mean bias (MB), root mean square difference (RMSD)
and unbiased root mean square difference (ubRMSD). The
statistical results are presented for the Amma Catch, HOBE,
SCAN, and SMOSMANIA networks from 2010 to 2017.
Note that statistical analysis was performed only in terms of
temporal variability, as stated in Section III-A. The temporal
correlation coefficient between SMOS RZSM and in-situ SM
shows in the range (0.83-0.93) for Amma Catch, (0.14 to
0.71) for HOBE, (0.43 to 0.71) for SCAN, and (0.67 to
0.87) for SMOSMANIA. Fisher’s z- transform computes
the average correlation coefficient for each network [60].
The average correlation coefficients for Amma Catch,
HOBE, SCAN and SMOSMANIA are 0.92, 0.54, 0.56 and
0.80, respectively. The analysis shows better performance
for the Amma Catch, HOBE, and SMOSMANIA net-
work than for the SCAN network, which indicates the
limitation in representing wetlands or grasslands of the
selected in-situ sites [61]. The average unbiased root mean
square difference (ubRMSD) for all networks was almost
0.04 m3/m3, which satisfies the requirements of various
applications.

FIGURE 6. Global average root zone soil moisture maps of SMOS-RZSM
(a), SMAP-RZSM (b), GLDAS-RZSM (c) and ERA5-RZSM (d) for 2017.

FIGURE 7. Global temporal standard deviation of root zone soil moisture
maps of SMOS-RZSM (a), SMAP-RZSM (b), GLDAS-RZSM (c) and
ERA5-RZSM (d) for the period of 2017.

C. COMPARISON OF SMOS RZSM PRODUCT WITH ERA5,
GLDAS, AND SMAP RZSM PRODUCT
Figure 6 illustrates the temporal average of the global RZSM
map for SMOS, SMAP, ERA5, and GLDAS for 2017. The
range of SM varied from one RZSM to an other. The range
of the RZSM value for the 5 and 95 percentage quantile
ranges represents the value of SMOS in the range of 0.09 to
0.29 m3/m3, SMAP ranges from 0.04 to 0.41 m3/m3, GLDAS
ranges from 0.1 to 0.44 m3/m3 and ERA5 ranges from
0.0014 to 0.36 m3/m3. Comparatively, SMOS shows lower
RZSM values, attributed to its reliance on less surface SM
during the estimation process [62]. Distinct variations were
observed in the polar regions, where SMOS displayed lower
RZSM values, and moderate SMAP values, and ERA5 and
GLDAS exhibited higher RZSM values. Conversely, ERA5,
GLDAS, SMOS, and SMAP RZSM showed a wet bias in
tropical forests. The wet bias in ERA5 and GLDAS could
arise from modeling inaccuracies or meteorological input
variables, particularly precipitation, and sensing constraints
in SMOS and SMAP, which influence RZSM retrieval.
Figure 7 shows the temporal variability of SMOS, SMAP,
GLDAS, and ERA5 RZSM for 2017. Notably, the dry regions
exhibited less temporal variation than the wet regions (as seen
in Figure 6). For the 75 percent quantile, all RZSM products
showed a variability of less than 0.38, except for the SMOS
RZSM variability of 0.57. Higher variability in the SMOS
RZSM was observed in regions with challenging retrievals
such as forests and frozen or snowy areas.
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FIGURE 8. Time-series graph of in-situ SM (dotted blue), SMOS (red),
SMAP (green), ERA5 (yellow) and GLDAS (black) RZSM for the individual
network of Amma Catch(Wankamma site) (a), HOBE (1.01) (b), SCAN
(Little river)(c) and SMOSMANIA (Mejannes) (d) for 2017.

Figure 8 shows the time series graphs of the RZSM
products (SMOS, SMAP, ERA5, and GLDAS) with the in-
situ SM. A time series graph is shown for the four individual
sites: Wankamma (Amma Catch), 1.01 (HOBE), Little River
(SCAN), and Mejannes (SMOSMANIA) for each RZSM
in 2017. At the Wankamma site (Figure 8(a)), all RZSM
products with in-situ SM exhibited similar temporal dynam-
ics. However, at 1.01 (HOBE) site (Figure 8(c)), ERA5 was
overestimated with in-situ SM and showed minimal temporal
dynamics in the Little River (Figure 8(d)). This inaccuracy
is due to the inaccurate calibration of the precipitation
data due to the distance between the meteorological station
and the in-situ site. Overall, SMAP and GLDAS RZSM
with in situ-SM show similar temporal dynamics. However,
the GLDAS RZSM yielded higher SM values across all
sites. This demonstrates that the assimilation approach used
in the SMAP RZSM reduced the errors resulting from
precipitation, and improved the results in locations with
precise precipitation data. Nevertheless, SMAP and GLDAS
RZSM were unable to capture the variation in SM dynamics
during the growing season in the 1.01 site (HOBE). This
demonstrates that despite the advantage of data assimilation
in SMAP RZSM, the land surface model is unable to account
for shifts in SM dynamics that occurs due to irrigation,
which contributes to discrepancies. In contrast, the SMOS
and in-situ SM data showed better temporal dynamics than
the other RZSM products across all monitoring sites.

Table 3 shows the temporal results between the RZSM
and in-situ data for the SMOS, SMAP, GLDAS, and
ERA5 RZSM over the Amma Catch, HOBE, SCAN, and
SMOSMANIA networks separately for 2017. The statistical
results are presented as the Pearson correlation coefficient
(R), mean bias (MB), root mean square difference (RMSD)
and unbiased root mean square difference (ubRMSD). The
Amma Catch and SMOSMANIA networks show comparable
performance for all RZSM products, with an average corre-
lation coefficient between RZSM and in-situ SM between
0.62 and 0.97. GLDAS exhibited poor performance over
the HOBE network, and ERA5 across the SCAN network
displayed a correlation coefficient in the range of -0.03 to

TABLE 3. Statistical results in terms of pearson correlation coefficient (R),
mean bias (MB), root mean square difference (RMSD) and unbiased root
mean square difference (ubRMSD) for SMOS-RZSM, SMAP-RZSM,
GLDAS-RZSM and ERA5-RZSM product with in-situ measurements for
Amma Catch, HOBE, SCAN and SMOSMANIA networks.

0.79 and -0.13 to 0.60, respectively, as shown in Figure 8.
However, SMOS and SMAP showed marginally improved
results compared with GLDAS and ERA5, with correlation
coefficients in the range of 0.42-0.87. The results demonstrate
that the successful integration of satellite observations in
SMOS and SMAP RZSM captures the seasonal variability
more effectively at the temporal scale than model-based
approaches (ERA5 and GLDAS).

Figure 9 shows several Taylor diagrams of four RZSM
products (SMOS, SMAP, GLDAS, and ERA5) over the
in-situ SM networks Amma Catch, HOBE, SCAN, and
SMOSMANIA. It displays the quantitative analysis of four
RZSM products along with in-situ observations in terms of
the Pearson correlation coefficient (black line), root mean
square difference (green), and standard deviation (black).
ERA5 RZSM over SCAN Networks shows a negative
correlation in three in-situ networks with RMSD error above
0.06 and standard deviation less than 0.01 as shown in
Figure 5 (c). The GLDAS RZSM showed lower RMSD
and less spatial variability than other RZSM products across
all networks. The SMAP RZSM better captures the spatial
variability across all networks except HOBE, as shown in
Figure 5(b). However, in contrast to other RZSM products,
the SMOS RZSM better captured the spatial variability
observed in all networks.

D. APPLICATION OF RZSM TO DETECT IRRIGATION
SIGNALS
Figure 10 presents the RZSM averaged for the dry season
(December 2016 to March 2017) for SMOS, SMAP, ERA5,
and GLDAS products in the Telangana region. Actually, as
the season is marked by an absence of rainfall, the SM
spatial distribution is mainly affected by the distribution
of the inundated rice growing area extent. The latter was
derived using Sentinel-2 observations [42], which are driven
by surface and ground water availability [35]. ERA5 and
SMOS exhibit a higher and more realistic spatial variability
than SMAP and GLDAS, with wetter RZSM along the main
perennial rivers where rice driven areas are located (areas
covered by more than 60% of rice), and lower RZSM in rain-
fed crop dominant areas, where rice covered areas remain
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FIGURE 9. The Taylor diagram displays the statistical comparison
between RZSM products and in-situ SM over Amma Catch (a), HOBE (b),
SCAN (c), and SMOSMANIA (d) in terms of the Pearson correlation
coefficient (black line), root mean square difference (green), and
standard deviation (black). The RZSM products include the SMOS RZSM
(red circles),SMAP RZSM (blue triangles),GLDAS RZSM (green squares),
and ERA5 RZSM (brown diamonds).

FIGURE 10. Spatial representation of the seasonal RZSM average from
December-2016 to March-2017 for SMOS, SMAP, GLDAS and ERA5 RZSM
over Telangana region, India.

below 20%. SMOS RZSM is dryer in average compare to
ERA5. These results illustrate that assimilation schemes used
to retrieve RZSM from irrigated areas should reflect the
initial spatial variability of satellite observations used. In
other words, as shown by Pascal [45], the SM observation
shall correct or drive the model simulation rather than the
opposite.

Figure 11 presents the time series of monthly anomalies
of the RZSM data (SMOS, SMAP, ERA5, and GLDAS),
precipitation, NDVI and percentage of rice cover for irrigated
areas from 2016 to 2020. Each RZSM was presented
as a monthly anomaly to minimize uncertainties arising
from different climatic sources. The rice cover percentage
map was computed for the dry season (January-April)
[42]. This information helps us to understand the SM
dynamics attributed to rice cultivation and its associatedwater
management practices. Monthly NDVI data were used as
an indicator of crop or vegetation growth to observe the
change in SM due to irrigation. NDVI and SMOS RZSM

showed bimodal seasonal patterns associated with changes
in wet and dry growth seasons. During the monsoon season,
SM increases with precipitation; however, in the dry season,
only the SMOS RZSM exhibited an increase in SM peaks.
The increase in SMwas associated with the increase in NDVI
and the rice cover percentage peak, which was attributed to
irrigation. A noticeable increase in the percentage of rice
cover observed during 2016 and 2018 compared to 2017 was
attributed to abundant precipitation during the monsoon
season, which led to an increase in the water table level. The
increase in the groundwater level provided sufficient water
for dry season crops. This shows that model-based (ERA5,
GLDAS, and SMAP) RZSMproducts limit their applicability
for detecting irrigation signals with minimal precipitation.
This highlights the limitation of the model-based approach,
which does not include information regarding un-modeled
processes such as irrigation techniques [63]. This also shows
the inability of the SMAP RZSM to detect irrigation signals
despite using satellite observations for data assimilation.
This suggests that the indirect use of SM from temperature
brightness in the data-assimilation approach removes the
irrigation signal [64], [65].

E. DISCUSSION
This study analyzes the quality of the SMOS RZSM
in comparison to in-situ SM and other global RZSM
products. This study investigated the benefits of utilizing
remote sensing satellite data in conjunction with a simple
physical-based approach in estimating RZSM rather than
utilizing a more complex model-based approach. In this
context, we investigated different RZSM products, including
satellite-based (SMOS RZSM), model-based (GLDAS and
ERA5 RZSM), and assimilation-based (SMAP RZSM)
products.

Wagner et al. [19] first proposed a mathematical equation
to estimate an index for the RZSM based on satellite
observations, such as ERS scatterometer data, and using a
simple bucket model. Ford et al. [20] used this approach to
calculate the RZSM from the SMOS surface, demonstrating
the usefulness of this approach when the soil characteristics
are uniform throughout the soil column. This study used
a similar methodology to retrieve the RZSM from SMOS
satellite observations on a global scale. The main difference
is that this study extended their method to calculate the
absolute value of RZSM using a weighted average of RZSM
at different depths using soil texture information. SMOS
RZSM provides an absolute value of RZSM representing the
mean value at depths from 5 to 100 cm worldwide on the
EASE 2 grid at a spatial resolution of 25 km on a daily time
scale.

This study presents qualitative and quantitative analysis of
the SMOS RZSM with in-situ RZSM at a deeper layer to
account for the variability of SMOS RZSM over space and
time at a global scale. It has been noted that in certain in-situ
networks with sandier soil textures, SMOS RZSM exhibits
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FIGURE 11. Time series of monthly anomalies of SMOS, SMAP, GLDAS
and ERA5 RZSM between 2016 to 2019, GPM-IMERG monthly
precipitation, MODIS monthly NDVI for the irrigated areas of Telangana
region, India. First row: SMOS (blue), SMAP (orange), ERA5 (green),
GLDAS (red)in m3/m3; second row: precipitation (mm/month); third row:
NDVI (green); fourth row: dry season rice percentage.

significant RMSD values. This is because sandier soil is
highly permeable and has a low water retention capacity.
As a result, water from precipitation seeps into the deeper
layer, making the surface layer dryer due to evaporation. This
results in high variability in surface SM, which reduces the
direct influence of surface SM on the root zone and thus
weakens the coupling between the surface SM and the root
zone over this region [66].This decoupling is strengthened by
various factors including vegetation, climate conditions and
soil texture and varies regionally.When the coupling between
the surface and RZSM is weaker, SMOS RZSM does not
perform well [20].

A comparison of all the RZSM products shows their
advantages and disadvantages of each RZSM product. It can
be seen that the RZSM approaches based on complex models
(GLDAS and ERA5 RZSM) show smaller RMSD values but
are less able of accurately capturing spatial variability than
the SMAP and SMOS RZSM products. This demonstrates
the advantage of using a satellite-based approach (SMOS
and SMAP RZSM) over a model-based approach, as satellite
remote sensing data better captures spatial variability, which
is important for accurate estimation of RZSM on a global
scale. The other disadvantage of model-based methods
(GLDAS and ERA5 RZSM) is that they lack the ability to
detect irrigation signals because the land surface model lacks
information on anthropogenic processes such as irrigation.
A similar limitation is evident in the SMAP RZSM, as it
does not consider un-modeled processes such as irrigation in
flood-irrigated areas during the dry season. This weakness
of the SMAP RZSM algorithm is attributed to the data
assimilation method, which uses the re-scaling method to
reduce the large differences between the SM representation
in the model and satellite observation [65]. This re-scaling
method reduces the systematic differences between themodel

and the remote sensing satellite observations. Thus, when
the increase in SM due to irrigation is observed by the land
surface model, it is suppressed by the land surface model,
as the model lacks information on un-modeled processes
such as irrigation [63]. As a result, the SMAP RZSM model
cannot capture the change in SM dynamics that occurs due
to irrigation. However, SMOS RZSM has the advantage
of capturing changes in SM dynamics that occur due to
irrigation because it directly uses surface SM information to
estimate RZSM, preserving surface SM information that has
been affected by anthropogenic activities such as irrigation.
The main limitation of the SMOS RZSM is that it does
not accurately estimate the SM in a deeper layer when the
coupling between the surface SM and RZSM is weaker.
Another drawback of the SMOS RZSM is its dependence
on the surface SM, which means that any ambiguity in the
surface SM directly affects the RZSM. For example, if the
surface SM is extremely dry, the computed RZSM values will
likewise be dry, as indicated by the low range of SM values
from the SMOS RZSM compared to other products.

In the future, the coupling between the surface and RZSM
can be improved by incorporating evapo-transpiration and
runoff in the SMOS RZSM estimation, which will continue
under different climatic conditions and their effects on
different soil moisture depths in the RZSM.

IV. CONCLUSION AND PERSPECTIVE
The SMOS RZSM provides SM data at depths of 5-100 cm
globally with a spatial sampling resolution of 25 km on the
EASE grid 2. The SMOS RZSM was calculated from the
SMOS level-3 surface SM using a simple physical model
with the idea of a linear relationship between the surface
SM and the root zone. SMOS RZSM data from 2010 to
the present are available on the CATDS platform. However,
there is a lack of validation of the SMOS RZSM on a global
scale and its quality compared to other available model and
assimilation-based RZSM products such as ERA5, GLDAS,
and SMAP RZSM. In this context, the SMOS RZSM was
evaluated using in-situ SM to check the quality of the SMOS
RZSM under different climatic conditions. Then, the SMOS
RZSMand other RZSMproducts are evaluated in comparison
with in-situ SM to analyze the efficacy of the simple
model-based approach (SMOS RZSM) over the model and
data-assimilation-based approach (ERA5, GLDAS SMAP) in
the retrieval of RZSM. In-situ networks selected from the
ISMN were used for this analysis, such as Amma Catch,
HOBE, SMOSMANIA, and SCAN networks.

A visual comparison between the SMOS surface SM and
SMOS RZSM shows that the SMOS RZSM is less variable
in space and time and preserves long-term information. The
SMOS RZSM can in turn be used to identify climatic events
such as droughts and floods. In the future, this study can be
used to detect extreme climatic conditions on a continental
or regional scale and to investigate factors that influence
the occurrence of extreme events, such as human-induced or
climatic factors [67], [68]. Furthermore, the SMOS RZSM
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was evaluated using in-situ SM, and the average correlation
coefficient between the SMOSRZSM and in-situ SM showed
better performance for AMMA CATCH and SMOSMANIA
in the range (0.80-0.92). ubRMSD is less than 0.04 m3/m3

is observed for clayey soil (loamy, clay loam, clay) and
greater than 0.04 m3/m3 for sandier soil (loamy sand, sandy
loam, sandy clay loam). This shows that the SMOS RZSM
algorithm does not perform well over sandier soil because
of the weaker coupling between the surface and the RZSM.
In the future the estimation of the RZSM algorithm can
be improved by including evapo-transpiration and runoff
information [69].

A comparison of the complex model, data-assimilation
(complex model and satellite observation), or satellite-based
RZSM product (ERA5, GLDAS, SMAP, and SMOS RZSM)
with in-situ SM shows that themodel-based approach (ERA5,
GLDAS) does not fully capture the temporal dynamics
at the root zone as compared to the simple model- and
data- assimilation approach (SMOS and SMAP RZSM).
Further comparison in irrigated areas shows that the complex
model and data-assimilation-based RZSM products (ERA5,
GLDAS, and SMAP RZSM) do not capture the irrigation
signal, that is the change in SM dynamics during the
dry season, where irrigation depends on water resources.
In contrast, a simple model-based approach (SMOS RZSM)
with the direct inclusion of SM from satellite observations
detects irrigation signals during the dry season. It can be
concluded that SMOS RZSM shows a preferable outcome
with the explicit use of surface SMobservations. In the future,
this study will be further investigated at a regional scale
for the quantification of irrigation signals by retrieving the
RZSM at a kilometer or sub-kilometric scale using high-
resolution surface SM.
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