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ABSTRACT

Accurate segmentation of stroke lesions from paediatric brain
MRI scans is a challenging task due to the heterogeneity in
size, shape and texture of the injuries. Deep learning and
atlas-based techniques developed for adult patients may lead
to a reduced segmentation performance when applied to chil-
dren because they do not account for the changes in brain
shape that occur during childhood development. The objec-
tives of this work are 2-folds: to investigate the learning trans-
ferability of stroke lesion segmentation models trained on the
adult domain and applied to the children domain, and to iden-
tify the deep learning architecture that produces the most ac-
curate segmentation results.

Index Terms— Stroke lesion, segmentation, deep learn-
ing

1. INTRODUCTION

Perinatal ischemic stroke constitutes the leading cause of
unilateral cerebral palsy (CP) in term-born children [1]. The
umbrella term CP regroups a large range of heterogeneous
disorders of the development of movement and posture oc-
curring early in brain development and persisting through
the lifespan [2]. The arrival of non-invasive neuro-imaging
techniques considerably improved the diagnostic, etiologi-
cal elucidation and individualization of treatment of cerebral
palsy [3]. Magnetic resonance imaging (MRI) is a power-
ful qualitiative tool that provide detailed information about
the location and extent of brain injuries. On a voxel-by-
voxel basis, MRI scans can quantify the structural changes
in the brain. Voxel-based morphometry (VBM) is an auto-
matic technique that relies on statistical tests performed at

every voxel of the image to assess volumetric changes [4].
Surface-based morphometry (SBM) transforms volumetric
tissue segmentation into surface meshes, to extract morpho-
logical shape metrics such as cortical thickness, gyrifaction
indices, or sulcal depths [5]. Both methods allowed many
studies to reveal that the brain undergoes a structural reor-
ganization of the intact contra-lesional and the ipsi-lesional
hemispheres after ischemic stroke [6].

Reliable extraction of these bio-markers depends on prior
accurate segmentation. However, most automated morphom-
etry tools are developed for healthy adult brains, and fail to
consider the distortions caused by the lesion, their variability,
and the overall morphological differences in children’s brains.
Pagnozzi et al. [7] highlighted the need for an effective tool
for stroke lesion segmentation on preschool children brains,
showing that commonly used morphometric analysis methods
suffers a significant decrease in accuracy as the severity of the
injury increases. A crucial aspect of morphometric studies on
children’s brains with stroke lesions is the segmentation (or
delineation) of the lesion. To date, the gold standard remains
the manual lesion tracing by experts. However, this is a time-
consuming, tedious and expensive task requiring domain ex-
pertise. For the brain tumor segmentation task, [8] reported
an average intra-rater variability of 20% ± 15% (conditioned
to the time spent on the segmentation), and an average inter-
rater variability of 28% ± 12%. With large cohorts of sub-
jects, manual labelling can become a bottleneck in the image
processing pipeline. Therefore, to reduce both workload and
variability, and to speed up the image analysis, there is a clear
need for easy and accurate automatic brain lesion labelling
technique in children.

Typical deep learning models for stroke lesion segmen-
tation are generally based on fully-convolutionnal networks



(FCN), such as U-Nets [9], with some variations of the archi-
tecture. U-Net models consist of an encoder, which extracts
the features of the image, and a decoder, which reconstructs
the image to its original size to output a segmentation map.
Isensee et al. [10] introduced the nnU-Net, a deep learning
framework that has been successfully tested on different bio-
medical imaging segmentation tasks, gaining in robustness,
performance and generalizability, and is now considered the
state of the art for bio-medical imaging. Given the lack of
biomedical pediatric data, transferring knowledge from adult
data is an alternative approach, yet challenging. Drai et al.
[11] have shown that models trained on adult data can achieve
good tumor segmentation results on children data.

To our knowledge, the ATLAS database [12] is the
largest publicly available database of stroke patients with
T1-weighted images manually delineated into lesion/non-
lesion mask, and there is no dedicated learning base for
children stroke lesion segmentation. Our aim is to vali-
date existing stroke lesion segmentation methods based on
deep learning for pediatric MRI. We studied different mod-
els performances in learning transferability from adult data
to children data, and compared their results to a traditional,
non-deep learning-based method results. We evaluated the
impact of different factors (lesion size, training data sampling
strategy, in-domain training and fine-tuning) on the segmen-
tation results. Our secondary aim is to identify the method
that produces the best accuracy.

2. MATERIALS AND METHODS

2.1. Datasets

2.1.1. ATLAS dataset

ATLAS v2.0 is composed of 955 T1-weighted brain MRI of
adults patients presenting acute to chronic stroke lesions. The
dataset was previously separated into test images (n=300) and
training images (n=655) with lesion masks traced by two spe-
cialists, using ITKsnap (Yushkevich et al., 2006). The images
are all defaced, their intensity normalized, and registered into
standard space (MNI-152 template). The data comes from
33 different cohorts and the lesions ranges from 0.003mL to
469mL, with an average of 26.8mL.

2.1.2. CAP dataset

The CAP brain MRI dataset comes from a cohort of 110
children aged 1 to 4 with cerebral palsy resulting from vari-
ous pathologies [13]. The dataset, with images acquired on
4 different sites, should provide a better understanding of
pathological brain development during childhood and evalu-
ate emerging developmental interventions for children. The
children underwent MRI scans before and after intensive mo-
tor therapy, with a 90-day interval between the two sessions.
In our study, we recovered the two images of the children

with a stroke lesion, and whose images that did not show
excessive artifacts, for a total of 40 images (8 boys and 12
girls, mean age : 37.15 month +- 12.94). The 20 images from
the session 1 were manually segmented by a medical expert,
using ITKsnap. They were then registered to the session 2
to get the corresponding transformation matrix. The matrix
was used to register the manually traced mask from the first
session to the second session image, to get its corresponding
mask. All the registered masks were visually checked. The
registration steps were achieved using FSL FLIRT[14]. The
lesions sizes from the CAP dataset ranges from 2.5mL to
172mL, with an average of 50.6mL.

2.2. Models

2.2.1. U-Net

U-Nets [9] are widely used in the field of bio-medical imag-
ing segmentation, therefore, we evaluated the performance of
this architecture for our task. We relied on the Monai [15]
implementation of a 3D U-Net with 5 layers with the sum of
cross-entropy and DICE as loss function, a fixed learning rate
at 0.01 and an Adam optimizer, implemented using PyTorch
(https://pytorch.org/) with the default parameters.

2.2.2. Pre-trained Res-U-Net

Transfer learning uses data from other domains, generally
differing in data distribution or modality, to rely on a large
amount of training data for models that can then be refined
for specific tasks. Chen et al [16] aggregated datasets from
several medical challenges to build the 3DSeg-8 dataset, com-
posed of diverse modalities, target organs, and pathologies.
3D residual networks were trained on this dataset to create
publicly available pre-trained models reusable as encoders
for multiple segmentation tasks. We used a ResNet-10 pre-
trained on the 3DSeg-8 dataset as an encoder of our network.

2.2.3. nnU-Net

We compared U-Net architectures with the nnU-Net [10]
framework. nnU-Net is an entire pipeline based on U-Net
models, that automatically configures pre-processing, net-
work architecture, training and post-processing for any new
task, basing itself on the data fingerprint and network capacity
(e.g. GPU limit memory). We used the standard parameters
of nnU-Net.

2.3. Baseline

Deep learning methods were compared with LesionGnb
[17], a toolbox for stroke lesion segmentation based on a
gaussian bayesian classifier trained on images transformed
into feature maps. The maps encode information about



the probability that the voxel belongs to missing or ab-
normal tissue. LesionGnb can be implemented within the
SPM (Statistical Parametric Mapping) software package
(http://www.fil.ion.ucl.ac.uk/spm/). We first segmented and
normalized the images into standard space using SPM12 and
then transformed the images into feature maps.

2.4. Implementation

To evaluate the performance of existing methods used in the
adult domain when inferred to the paediatric domain, we
trained all of our models on the full ATLAS dataset. The
U-Net and pre-trained Res-U-Net were trained separating the
ATLAS training data into 80% (n=524) training and 20%
(n=131) validation, for 200 epochs. The ATLAS dataset
contains a large range of lesions sizes, including very small
lesions (<1mL). In contrast, the lesions of the CAP dataset
are more evenly distributed between 2.5mL and 172mL. The
distribution of the ATLAS dataset towards small lesions in-
corporates a bias in the data. Given the sensitivity of the deep
learning models on the data distribution, we hypothesized
that a more precise sampling strategy of the training data
would improve the segmentation on the target data. We tested
our hypothesis setting a threshold on the ATLAS data, that
excludes lesions with a volume inferior to 2.5mL, as well as
cerebellum lesions. Our initial ATLAS dataset is therefore
reduced to 305 cases with an average lesion size of 42.2mL.
All of our models were trained on the ATLAS subset.

We hypothesize that deep learning models performs better
when they are trained on the same domain as the target. Our
hypothesis was tested by training our models on 5 randomly
selected CAP images, with the same settings as for adult data.
In this context of limited paediatric data available, we evalu-
ated the performance of in-domain training with models rely-
ing on much less data. Transferring knowledge from the AT-
LAS adult data and fine-tuning to the CAP paediatric data has
the advantage of exploiting the strengths of both datasets : us-
ing the amount of data available in the ATLAS dataset while
learning the domain specificities of the CAP data. To assess
whether fine-tuning the weights of the models on the target
domain can be used to refine segmentation maps, we used the
above-mentioned models initialized with the weights learnt
on the ATLAS full dataset and subset, and then fine-tuned
with an additional training on 5 images of the CAP dataset
for 100 epochs.

For all training procedures, the data was preprocessed and
randomly augmented, with elastic deformations and addition
of Gaussian noise, bias field artefacts, or motion artefacts on
the images.

The segmentation masks were evaluated using DICE sim-
ilarity coefficient (DSC) and Hausdorff distance (HD), with
the manually traced masks as ground truth. The DSC mea-
sures the overlap between two segmentation maps and ranges
from 0 (no overlap) to 1 (complete overlap). The HD mea-

sures the maximum Euclidean distance between the predic-
tion and the GT and is, hence, especially sensitive to outliers.
A smaller HD indicates a better prediction.

3. RESULTS

Table 1 shows the different average DSC and HD obtained
with the 4 methods on the ATLAS validation dataset and the
CAP dataset.

Table 1. Average DSCs ↑ and HDs ↓ of lesion masks of adult
(ATLAS) and children (CAP) datasets. * Obtained from [18]

ATLAS
CAP

no fine-tuning fine-tuning
DSC HD DSC HD DSC HD

LesionGnb 0.42* 58.19* 0.34 63.52
Training on full ATLAS

U-Net 0.45 75.10 0.43 96.88 0.63 85.80
Res-U-Net 0.44 100.47 0.40 90.24 0.67 26.75
nnU-Net 0.61 43.17 0.49 63.18 0.73 27.17

Training on subset of ATLAS
U-Net 0.54 40.04 0.40 107.22 0.70 46.62

Res-U-Net 0.68 62.18 0.48 65.09 0.63 26.15
nnU-Net 0.79 27.41 0.57 37.95 0.71 30.23

The best results are obtained with the nnU-Net model,
meaning that a robust pre-processing of the training images,
with data augmentation, and a fine choice of model parame-
ters can have a large impact on the segmentation results. We
observe a global reduced performance of models trained on
adult data when applied to children data, and high HD for the
U-Net and Res-U-Net which indicates the presence of out-
liers. These scores highlight the differences in intensity dis-
tribution or shape between children and adult brain images,
which makes the features extraction task and voxel classifi-
cation difficult for the models. The DSCs obtained from the
models on the ATLAS dataset are consistent with those found
in the literature for more complex architectures, where the
scores generally ranges from 0.47 to 0.67 on ATLAS v1.2
[12]. nnU-Net DSC is located at the high end of the range,
even though it is based on a classic U-Net model. All of the
models trained on the ATLAS subset increase their perfor-
mance on adult and children data segmentation (except for the
U-Net), but we still observe a reduced performance when we
infer the models on children data. These results demonstrate
that a selection of the training data according to the target do-
main data distribution is a good strategy to improve segmen-
tation performance, especially in a context of limited amount
of data.

The training on a few CAP images did not improve the
segmentation scores of the U-Net, as indicated in Table 2.



Table 2. Comparison of the mean DSCs and HDs of lesion
masks from CAP dataset with models trained on CAP dataset.

DICE HD
U-Net 0.42 44.97

Res-U-Net 0.50 84.00
nnU-Net 0.70 25.5

The Res-U-Net, being pre-trained on a large amount of med-
ical data, is not impacted by the small training sample, com-
pared to the U-Net, that learnt the segmentation from scratch.
It shows that the U-Net needs more training data to learn from
diverse lesions and brains. However, the HD decreases which
indicates less outliers and more precise lesion localisation.
nnU-Net is not impacted by the small training sample and
can extract precise features from only 5 training images. The
Table 1 shows that the fine-tuning phase on the CAP dataset
as a strong positive impact on the segmentation results for all
methods. These results demonstrate that the models can ex-
tract good foundational knowledge from adult data, but still
need to learn specific target domain features to perform best.

Fig. 1. Segmentation maps obtained from models trained on
the full ATLAS datset, overlaid on brain MRI axial slices,
with corresponding DSC. (A) : low DSCs (lesion of 2.9mL)
and (B) high DSCs (lesion of 94.1mL). FT : Finetuning.

Figure 1 shows examples of segmentation of low and high
DSCs. LesionGnb, U-Net and Res-U-Net methods have a ten-
dency to segment outside of the lesion, yet, they can localise
the lesion in the brain. nnU-Net seems more robust and pre-
cise to delineate the lesion, but often under-estimates its size,
missing some parts of large lesions. These results show that
stroke lesions complicate neural network learning due to their
heterogeneity in size, shape and location.

We studied the impact of the lesion size on the segmenta-
tion performance, comparing DSC with the size of the lesion.
The results can be found on Figure 2. We notice a major de-
crease in performance for the small lesions for all methods,
which might have been biased by the sensitivity of the DSC.
However, the nnU-Net is more robust to the lesion size.

Fig. 2. Effect of the lesion sizes on the CAP images DSC.

4. CONCLUSION

We evaluated methods to transfer stroke segmentation knowl-
edge acquired from adult data to children data, according to
the DSC and HD metrics. A characteristic of stroke lesions
being their heterogeneity, it remains difficult for segmentation
methods to generalize within a single domain. The difficulty
increases when transferred to another domain, i.e. children
data imaging. Experimental results show that the best perfor-
mance is obtained with nnU-Net, thanks to its robust prepro-
cessing steps. We revealed that extracting features from adult
data may yield acceptable results on pediatric stroke segmen-
tation tasks, and manually segmenting a few images from the
target domains to fine-tune the models can considerably im-
prove the segmentation results.
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Bailly, Sandra Bouvier, Josselin Demas, Inma Riquelme,
Enora Trahmel.

7. REFERENCES

[1] Adam Kirton and Gabrielle Deveber, “Life after peri-
natal stroke,” Stroke, vol. 44, no. 11, pp. 3265–3271,
2013.

[2] Peter Rosenbaum, Nigel Paneth, Alan Leviton, Murray
Goldstein, Martin Bax, Diane Damiano, Bernard Dan,
Bo Jacobsson, et al., “A report: the definition and clas-
sification of cerebral palsy april 2006,” Dev Med Child
Neurol Suppl, vol. 109, no. suppl 109, pp. 8–14, 2007.

[3] Martin Bax, Clare Tydeman, and Olof Flodmark, “Clin-
ical and mri correlates of cerebral palsy: the european
cerebral palsy study,” JAMA, vol. 296, no. 13, pp. 1602–
1608, 2006.

[4] John Ashburner and Karl J Friston, “Voxel-based mor-
phometry—the methods,” Neuroimage, vol. 11, no. 6,
pp. 805–821, 2000.

[5] Robert Dahnke, Rachel Aine Yotter, and Christian
Gaser, “Cortical thickness and central surface estima-
tion,” Neuroimage, vol. 65, pp. 336–348, 2013.

[6] Karan Shinde, Brandon T Craig, Jordan Hassett, No-
mazulu Dlamini, Brian L Brooks, Adam Kirton, and He-
len L Carlson, “Alterations in cortical morphometry of
the contralesional hemisphere in children, adolescents,
and young adults with perinatal stroke,” Scientific Re-
ports, vol. 13, no. 1, pp. 11391, 2023.

[7] Alex M Pagnozzi, Yaniv Gal, Roslyn N Boyd, Simona
Fiori, Jurgen Fripp, Stephen Rose, and Nicholas Dow-
son, “The need for improved brain lesion segmentation
techniques for children with cerebral palsy: a review,”
International Journal of Developmental Neuroscience,
vol. 47, pp. 229–246, 2015.

[8] Gloria P Mazzara, Robert P Velthuizen, James L
Pearlman, Harvey M Greenberg, and Henry Wagner,
“Brain tumor target volume determination for radia-
tion treatment planning through automated mri seg-
mentation,” International Journal of Radiation Oncol-
ogy*Biology*Physics, vol. 59, no. 1, pp. 300–312, 2004.

[9] Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-net: Convolutional networks for biomedical im-
age segmentation,” in Medical Image Computing and
Computer-Assisted Intervention, 2015, pp. 234–241.

[10] Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens
Petersen, and Klaus H Maier-Hein, “nnu-net: a self-
configuring method for deep learning-based biomedical

image segmentation,” Nature Methods, vol. 18, no. 2,
pp. 203–211, 2021.

[11] Maxime Drai, Benoit Testud, Gilles Brun, Jean-François
Hak, Didier Scavarda, Nadine Girard, and Jan-Patrick
Stellmann, “Borrowing strength from adults: Trans-
ferability of ai algorithms for paediatric brain and tu-
mour segmentation,” European Journal of Radiology,
vol. 151, pp. 110291, 2022.

[12] Sook-Lei Liew, Bethany P Lo, Miranda R Don-
nelly, Artemis Zavaliangos-Petropulu, Jessica N Jeong,
Giuseppe Barisano, Alexandre Hutton, Julia P Simon,
Julia M Juliano, Anisha Suri, et al., “A large, curated,
open-source stroke neuroimaging dataset to improve le-
sion segmentation algorithms,” Scientific Data, vol. 9,
no. 1, pp. 320, 2022.

[13] R Araneda, SV Sizonenko, CJ Newman, Mickaël Di-
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