
HAL Id: hal-04607396
https://hal.science/hal-04607396v1

Submitted on 11 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Hardware Implementation of Soft Mapper/Demappers
in Iterative EP-based Receivers

Ian Fischer Schilling, Serdar Sahin, Camille Leroux, Antonio Maria Cipriano,
Christophe Jego

To cite this version:
Ian Fischer Schilling, Serdar Sahin, Camille Leroux, Antonio Maria Cipriano, Christophe Jego. Hard-
ware Implementation of Soft Mapper/Demappers in Iterative EP-based Receivers. (SiPS 2024) 2024
IEEE International Workshop on Signal Processing Systems, Nov 2024, Cambridge, United States.
�hal-04607396�

https://hal.science/hal-04607396v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Hardware Implementation of Soft
Mapper/Demappers in Iterative EP-based Receivers

Ian Fischer Schilling*, Serdar Şahin†, Camille Leroux*, Antonio Maria Cipriano†, Christophe Jégo*

*University of Bordeaux, Bordeaux INP
IMS Lab, UMR CNRS 5218, France
firstname.last-name@ims-bordeaux.fr

†Thales
Gennevilliers, France

firstname.last-name@thalesgroup.com

Abstract—This paper presents a comprehensive study and im-
plementations onto FPGA device of an Expectation Propagation
(EP)-based receiver for QPSK, 8-PSK, and 16-QAM. To the
best of our knowledge, this is the first for this kind of receiver.
The receiver implements a Frequency Domain (FD) Self-Iterated
Linear Equalizer (SILE), where EP is used to approximate
the true posterior distribution of the transmitted symbols with
a simpler distribution. Analytical approximations for the EP
feedback generation process and the three constellations are
applied to lessen the complexity of the soft mapper/demapper
architectures. The simulation results demonstrate that the fixed-
point version performs comparably to the floating-point. More-
over, implementation results show the efficiency in terms of FPGA
resource usage of the proposed architecture.

Index Terms—Expectation Propagation, Frequency Domain
Self-Iterated Linear Equalizer, Analytical approximations, archi-
tecture design, FPGA prototyping

I. INTRODUCTION

In digital communication systems, achieving minimal error
rates in data detection and/or decoding requires the resolution
of a Maximum A Posteriori (MAP) or Maximum Likelihood
(ML) problem [1]. However, the computational complexity
of resolving such criteria is often prohibitive, particularly in
real-world frequency selective channels, where the number of
computations increases exponentially with factors such as data
length, modulation order, and channel memory. As a result,
practical receiver design often involves applying simplifying
hypotheses and approximations. One promising approach in
the context of Frequency Domain (FD) Linear Equalization
(LE) is equalizers designed with Expectation Propagation
(EP). Indeed, they have demonstrated an appealing trade-off
between performance and computational complexity [2].

In this paper, a comprehensive study and implementation
of an EP-based receiver for communications over frequency
selective channels using standard Phase Shift Keying (PSK)
or Quadrature Amplitude Modulation (QAM) constellations is
presented. The receiver implements an FD Self-Iterated Linear
Equalizer (SILE), where EP is applied to approximate the
true posterior distribution of the transmitted symbols with a
simpler distribution that can be easily manipulated. Previously,
the implementation of a simplified EP receiver for multiple

This work has been funded by the French National Research Agency
under grant number ANR-20-CE25-0008-01 (EVASION Project: https://anr-
evasion.ims-bordeaux.fr/).

antenna receivers has been reported in [3]. A low complexity
EP detector for sparse code multiple access was also proposed
in [4]. However, the authors only study the impact of simpli-
fications on the performance and estimate the computational
cost of their proposal per operation type. Simplified EP-based
FD equalization is studied in [5]. Similar to the previous case,
only a computational complexity assessment was provided.
To the best of our knowledge, we propose the first hardware
implementation of an EP-based FD SILE receiver.

The contributions of this paper are the following:

1) Methods to reduce the complexity of the EP-based FD-
SILE algorithm are proposed, which are different from
the ones in [5]. They include a new way to generate the
EP soft feedback and also a new method to calculate
extrinsic Log-Likelihood Ratios (LLR) for 8-PSK.

2) A fixed-point version of the model enables to verify that
the degradation in terms of performance due to these
new algorithmic simplifications is limited.

3) The implementation of soft mapper/demapper architec-
tures is carried out on a Field Programmable Gate Array
(FPGA), specifically the PYNQ Z2 board.

The PYNQ Z2 board contains a device that combines an
ARM processor and an FPGA, which enables easier Ethernet
communication. The implementation was done in a Hardware
in the Loop (HIL) configuration, with the EP parts imple-
mented onto the FPGA, while the others run on a computer
thanks to py-AFF3CT, a Python wrapper for the Forward
Error Correction Toolbox AFF3CT [6]. The analysis of FPGA
resource usage shows very low complexity overhead for three
different and widely used constellations. These results confirm
that the proposed EP equalizer is potentially a good candidate
for practical implementation even on cost- and complexity-
constrained digital communication equipment.

The paper is organized as follows. A description of the
FD SILE receiver with EP is provided in Section II. The
simplifications and analytical approximations applied to the
soft mapper/demapper to decrease its complexity are presented
in Section III. The fixed-point conversion analysis to facilitate
the soft mapper/demapper architecture design is presented in
Section IV. The architecture implementation and FPGA pro-
totyping, with the experimental setup and resource usage, are
detailed in Section V. The paper is concluded in Section VI.

Fig. 1: FD SILE functional structure.

II. EP-BASED FD-SILE ALGORITHM

Expectation Propagation (EP) is a powerful technique ex-
ploited in statistical inference for approximating complex
probability distributions by simpler distributions from the
exponential family through moment matching. The FD self-
iterated linear equalizer (SILE) algorithm derived in [2] is
based on EP to compute extrinsic soft decision feedback.

The functional structure of the iterative receiver is illus-
trated in Fig. 1. The received signal is first mapped to the
frequency domain thanks to an FFT function. Then, a linear
Minimum Mean Square Error (MMSE) filter with interference
cancellation is used for equalization. In addition to the channel
frequency response and noise statistics, the filter computation
requires the statistics of the soft decision feedback [2].

The receiver performs S self-iterations which go through the
equalizer, the soft demapper, and the EP-based soft mapper.
At self-iteration s = 0, . . . , S, after the filtering stage, the
equalized symbols in the time-domain x

e(s)
k are fed into

the soft demapper, along with an estimate of the residual
post-equalization noise and interference variance v

e(s)
x . The

soft demapper then estimates the unnormalized log-likelihood
distribution ℓ

(s)
D,k(α) with

ℓ
(s)
D,k(α) = −|xe(s)

k − α|2/ve(s)x ,∀k, ∀α ∈ X, (1)

where X is the symbol constellation and K is the equalized
block length.

If s < S, the EP soft mapper computes the feedback for the
next iteration by first computing the normalized a posteriori
distribution in the linear domain, with ∀k, ∀α ∈ X ,

D
(s)
k (α) = exp (ℓ

(s)
D,k(α))/

∑
α′∈X exp(ℓ

(s)
D,k(α

′)). (2)

Next, the soft a posteriori symbol estimates µd(s)
k and variances

γ
d(s)
x can be computed with the moments of D(s)

k :

µ
d(s)
k =

∑
α∈X αD

(s)
k (α),∀k, (3)

γ
d(s)
x,k =

∑
α∈X |α|2D(s)

k (α)− |µd(s)
k |2,∀k, (4)

γd(s)
x =K−1

∑K

k=1
γ
d(s)
x,k , (5)

The average variance γ
d(s)
x enables the proper use of EP for

FD equalization. Finally, the extrinsic soft feedbacks based on
EP are obtained by performing a Gaussian PDF division:

x
d(s+1)
k =

µ
d(s)
k v

e(s)
x − x

e(s)
k γ

d(s)
x

v
e(s)
x − γ

d(s)
x

, vd(s+1)
x =

v
e(s)
x γ

d(s)
x

v
e(s)
x − γ

d(s)
x

. (6)

(a) QPSK. (b) 8-PSK. (c) 16-QAM.

Fig. 2: Constellation bit values.

Exponential smoothing could be applied across self-
iterations, as done in [5], for stabilizing convergence. But, in
order to simplify this initial work, it is not considered.

At the last self-iteration s = S, only bit-wise extrinsic LLRs
for soft decoding are computed [5]:

Le(dk,q) = log
∑

α∈X0
q
eℓ

(s)
D,k(α) − log

∑
α′∈X1

q
eℓ

(s)
D,k(α

′). (7)

It is important to note that the FD SILE algorithm is
considerably less computationally intensive than alternative
iterative equalizers in the time domain [2]. Nevertheless, log-
arithmic and exponential operations within soft mapping and
demapping still pose a significant implementation challenge
and scale poorly with the constellation size. To illustrate
this point, the number of floating-point operations (FLOP)
involved in the exact equalization, soft mapping, and soft
demapping are provided in Table I. These numbers mostly
depend on the constellation size and the number of self-
iterations. They are obtained through the same approach as
in [2], where operations such as addition, multiplication, and
division operation are counted with weights.

III. ANALYTICAL APPROXIMATIONS

In this section, we discuss further simplifications of the
complexity of EP-based soft feedback computation for practi-
cal constellations of QPSK, 8-PSK, and 16-QAM.

A. Simplified EP-based feedback computation

In [5], the use of the asymptotic a posteriori mean-square
error (MSE) γ̃d

x, as a function of vex, instead of γd
x, is

shown to reduce soft mapping complexity. Moreover, it also
improves receiver robustness. In particular, when tabulating the
auxiliary quantity CEP (v

e
x) = γ̃d

x/(v
e
x−γ̃d

x), the computational
complexity can be further reduced through

vd(s+1)
x = ve(s)x CEP (v

e(s)
x), (8)

x
d(s+1)
k =µ

d(s)
k + CEP (v

e(s)
x)(µ

d(s)
k − x

e(s)
k),∀k. (9)

Although this alleviates part of the soft mapping complexity
issue, the computation of a posteriori estimates µd

k and extrin-
sic LLRs Le(dk,q) still remains computationally intensive.

B. Simplified soft demapping

In [5], piece-wise linear approximations of µd(s)
k as a func-

tion of xe(s)
k were proposed to lower the computational com-

plexity of µd(s)
k with small performance degradation. However,

Const. S Equ. Exact Simplified
Demap. Map. Demap. Map.

QPSK
0 74 58 0 3 0
1 153 58 105 6 26
2 231 58 210 9 53

8-PSK
0 74 195 0 12 0
1 153 195 185 24 33
2 231 195 370 36 67

16-
QAM

0 74 548 0 14 0
1 153 548 345 28 40
2 231 548 690 42 81

Table I: Computational complexity of components of FD SILE
in FLOP/symbol.

Bitwise Soft
Mapper

Bitwise Max-log MAP
Demapper

C_EP LUT

EP-based
Soft Est.

Fig. 3: Simplified bitwise soft demapper.

this approach is limited to square QAM constellations, and
it is too complex for turbo-equalization. In this work, a
new simplified computation of EP-based feedback is proposed
based on bitwise soft demapping, followed by bitwise soft
mapping, for computing both Le(dq) and µd. This structure
is illustrated in Fig. 3. The symbol index k and the iteration
index s have been dropped for the sake of readability.

A widespread means of carrying out soft demapping with
reasonable complexity is through the simplification of the log-
sum-exp, twice used in eq. (7). Indeed, one can replace this
function with a maximum (max-log-MAP) [7], and remains
optimal for the QPSK constellation. However, some perfor-
mance loss can be expected for higher-order constellations.

Besides, the max-log-MAP demapper remains prohibitive
for high-order constellations. With M being the constellation
size, for each symbol, it requires computing M squared-
distances and performing M comparisons for each of the
Q = log2M bits. Various proposals in the literature provide
direct linear approximations of max-log-MAP LLRs Le(dq)
as a function of xe and vex for each q, computed through
the geometric properties of each constellation. Indeed, some
practical implementations in the literature [8] rely on analytical
expressions of the extrinsic max-log MAP LLRs. In particular,
there are closed-form analytical equations for Gray-mapped
QAM constellations [9]. Proposed expressions for the QPSK
and 16-QAM constellations are provided in Table II.

But regarding non-square constellations, as the 8-PSK, the
geometric characterization of max-log MAP LLRs does not
systematically have closed-form expressions. For such Gray-
mapped PSK constellations, [10] exploits labeling properties
of the constellation, and the hard decision on the equalized
symbol to compute only two distances per LLR. This method
performs exact max-log-MAP by exploiting the properties of

Constellation Bitwise Log-Likelihood Ratios
QPSK Le(d1) = 2

√
2R(xe)/vex, Le(d2) = 2

√
2I(xe)/vex

16-QAM

Le(d1) = 4d(2d− |I(xe)|)/vex
Le(d2) = 4d(2d− |R(xe)|)/vex

Le(d3) =

4dI(xe)/vex, |I(xe)| < 2d

8d(I(xe)− d)/vex, I(xe) > 2d

8d(I(xe) + d)/vex, I(xe) < −2d

Le(d4) =

4dR(xe)/vex, |R(xe)| < 2d

8d(R(xe)− d)/vex, R(xe) > 2d

8d(R(xe) + d)/vex, R(xe) < −2d

Table II: Bitwise soft demapping expressions.

LUT8PSK ∆α∗,1 ∆α∗,2 ∆α∗,3
α0 1.0824 - 1.0824j 2.6131 - 1.0824j 0.0000 + 1.5307j
α1 1.0824 - 1.0824j 1.5307 - 0.0000j -1.0824 + 2.6131j
α2 -1.0824 - 1.0824j 2.6131 + 1.0824j 0.0000 + 1.5307j
α3 -1.0824 - 1.0824j 1.5307 - 0.0000j 1.0824 + 2.6131j
α4 1.0824 + 1.0824j 2.6131 + 1.0824j 0.0000 + 1.5307j
α5 1.0824 + 1.0824j 1.5307 - 0.0000j 1.0824 + 2.6131j
α6 -1.0824 + 1.0824j 2.6131 - 1.0824j 0.0000 + 1.5307j
α7 -1.0824 + 1.0824j 1.5307 - 0.0000j -1.0824 + 2.6131

Table III: Look-up-table content for 8-PSK demapping.

Gray labeling for finding the likely closest symbol from the
set opposite to the hard decision. However, the arithmetic
computation of the opposite symbol and the computation of
the formula with Euclidean distances still have a significant
weight within the overall computational complexity.

Here we propose to further simplify the computation of 8-
PSK LLRs in [10], by applying a semi-analytical approach
[11]. Indeed, the max-log-MAP LLR is given by

Le(dq) = −(1− 2d̂∗q)(|xe − α∗|2 − |xe − α∗
q̄ |2)/vex, (10)

where α∗ is the closest constellation point to xe, with qth bit
of the α∗’s label being denoted d̂∗q . Furthermore, α∗

q̄ is the
constellation point that corresponds to the closest symbol to
α∗ that has the opposite value on the qth bit.

Instead of computing α∗
q̄ ,∀q with Q2 additions as in [10],

we rewrite the expression of the max-log-MAP LLR as

Le(dq) = (R(xe)R(∆α∗,q) + I(xe)I(∆α∗,q))/v
e
x, (11)

where ∆α∗,q = 2(1 − 2d̂∗q)(α
∗ − α∗

q̄). Hence, ∆α∗,q can be
precomputed and stored in a LUT, as shown in Table III, for
each α∗ ∈ X and q = 1, . . . , Q:

(∆α,1,∆α,2,∆α,3) = LUT8PSK(α), α ∈ X. (12)

To access the LUT, a hard decision has to be made through
comparisons on xe, to compute the symbol label m in decimal:

m = 4(I(xe) < 0) + 2(R(xe) < 0) + (|R(xe)| < |I(xe)|). (13)

C. Simplified soft mapping
To simplify the computation of the soft symbol estimate

µd from (3), analytical bitwise soft mapping can be applied.
This enables to take into account probabilities on symbols
through bitwise LLRs L(dq) and also to compute µd without
an intermediate step. Thanks to Gray mapping, assuming that
bits within a symbol are independent, we obtain

P(x = α) =
∏Q

q=1 P(dq = ϕ−1
q (α)), (14)

Constel. Soft Estimates
QPSK R(µd) = p1/

√
2 I(µd) = p2/

√
2

8-PSK R(µd) = (b8 + a8p1)p2 I(µd) = (b8 − a8p1)p3
16-QAM R(µd) = (2− p2)p4/

√
10 I(µd) = (2− p1)p3/

√
10

Params. a8 =
√

(2−
√
2)/8, b8 =

√
(2 +

√
2)/8

Table IV: Bitwise soft mapping expressions.

where ϕ−1
q (·) yields the qth bit of α ∈ X . In addition, as

P(dq = b) = (1+(1−2b)pq)/2, where pq = tanh(L(dq))/2),
one can exploit the geometry of the constellations with respect
to real and imaginary parts and the labeling, to derive expres-
sions for µd(s)

k as a function of soft bits pq . Note that, in our
case, LLRs for soft mapping are extrinsic L(dq) = Le(dq).
Nevertheless, this approach can be readily generalized to a
turbo-equalizer if a priori LLRs La(dq) from a soft output
decoder are available with L(dq) = Le(dq) + La(dq).

Such soft mapping techniques have been previously applied
in [12] and [3] for APP-based and EP-based soft feedback,
respectively. However, in this study, these formulas are only
required for the mean of soft APP estimates, as the EP-based
variance is handled through the tabulation technique of [5],
with CEP as stated earlier in Section III-A.

In addition, for the mean estimates, the computation of the
hyperbolic tangent could be further simplified, by a piece-wise
linear approximation, where all the slope and bias coefficients
are powers of two. This enables a more efficient fixed-point
implementation, as expressed below:

tanh(x) =

x, |x| < 0.5,

0.5x+ 0.25sign(x), 0.5 ≤ |x| < 1.0,

0.25x+ 0.5sign(x), 1.0 ≤ |x| < 2.0,

sign(x), otherwise.

(15)

The complete expressions of soft estimates for constella-
tions of interest are provided in Table IV. This concludes the
algorithmic simplifications in soft mapping and demapping,
and the resulting algorithmic complexity is given in Table I.

IV. FIXED-POINT CONVERSION ANALYSIS

Fixed-point conversion of the soft mapping/demapping algo-
rithms was done using Fxpmath [13], a Python library for frac-
tional fixed-point (base 2) arithmetic and binary manipulation
with Numpy [14] compatibility. The focus of the conversion
was on the calculations for bitwise max-log MAP demapper,
bitwise soft mapper, and EP-based soft estimates (see Fig. 3),
to facilitate the soft mapper/demapper architecture design.

For each variable of the different functions, we determined
whether the variable is signed (QS = 0 or 1), the number
of integer bits QI , and the number of fractional bits QF .
The number of integer bits was determined by analyzing the
maximum absolute value of the variable while operating in
different Signal-to-Noise Ratios (SNRs) and scenarios. Then,
an empirical approach was applied thanks to the py-AFF3CT
environment. Indeed, this toolbox enables to rapidly estimate
if reducing the number of bits would impact the Bit Error Rate
(BER). A similar process was carried out for the fractional bits,

comparing the impact on BER of different sizes of fractional
parts to achieve the minimum size with negligible loss. The
total bit size of a variable is given by QT = QS +QI +QF .

As an example, consider the equalized symbol estimates
x
e(s)
k , which are used in the simplified soft demapping

(Sect. III-B). For the case of the Proakis-C channel with
AWGN for QPSK, this variable has a maximum value of
around 6.3 at 0dB, 3 at 10dB, and 2.2 at 20dB. Therefore, the
performances were compared for the cases of having many
bits for the fractional part QF (16 bits) while having 3, 2, 1,
and 0 bits for the integer part QI .

The tests showed that with QI = 0, a loss of around 0.5dB
at BER 10−3 is introduced. For the other values, there is
negligible loss when using 1 integer bit compared to 2 and 3.
This is due to noise amplitude having a more important range
than the normalized signals at low SNRs. As for the fractional
part, for QPSK, there is not a clear loss introduced with 3
bits. However, for 8-PSK, the use of only 3 fractional bits
introduces a loss of around 1dB at BER 10−3. With QF = 4,
there is a smaller but still perceptible loss of around 0.1dB.

Considering these empirical observations, 2 bits were allo-
cated for the integer part and 5 bits for the fractional part,
as a safe margin for other channels and scenarios, and 1 bit
for the sign. In the end, QT = 8 bits were assigned to the
representation of the symbol estimates. The sizes of all the
other variables were chosen with a similar process. All the
named variables were successfully converted to QT = 8, while
some internal calculations need up to 10 bits.

The performances in terms of Bit Error Rate (BER) for
the original algorithm, the simplified algorithm, and its fixed-
point version are shown in Fig. 4. The examined channel
was the challenging Proakis-C. We focused on six different
Modulation and Coding Schemes (MCS): the three presented
constellations, using the LTE turbo code and rate matching
with code rates 1/2 and 3/4. All the simulations were done
considering one self-iteration (S = 1). The standard linear
MMSE equalizer performance (given for S = 0) is provided
for reference. For all cases, the fixed-point version performs
very similarly to the simplified floating-point one. For Proakis-
C MCS 2, 5, and 6, the original algorithm performs signifi-
cantly worse than the simplified version at high SNR. In fact,
bad interference patterns can make some observations close to
wrong constellation points. In such situations, the original EP
receiver generates an over-optimistic EP variance, and the EP
feedback will be considered as correct while it is not. On the
other hand, the simplified receiver calculates the EP variance
independently of (possibly wrong) observations, through the
CEP LUT. This generates a more conservative feedback, thus
avoiding the BER degradations.

As for the small gain of the fixed-point version, this ob-
served behavior can be attributed to the inherent quantization
noise introduced by the fixed-point representation. Interest-
ingly, this noise can induce perturbations that effectively
reduce the occurrence of unfavorable interference patterns,
thereby enhancing the robustness of the algorithm in chal-
lenging scenarios.

5 10 15 20 25
10−5

10−4

10−3

10−2

10−1

100

SNR [dB]

B
E

R

(a) MCS1 (QPSK, CR = 1/2)

5 10 15 20 25 30 35
10−5

10−4

10−3

10−2

10−1

100

SNR [dB]

B
E

R

(b) MCS2 (QPSK, CR = 3/4)

5 10 15 20 25 30 35
10−5

10−4

10−3

10−2

10−1

100

SNR [dB]

B
E

R

(c) MCS3 (8-PSK, CR = 1/2)

10 15 20 25 30 35 40 45 50
10−5

10−4

10−3

10−2

10−1

100

SNR [dB]

B
E

R

(d) MCS4 (8-PSK, CR = 3/4)

10 15 20 25 30 35 40 45 50
10−5

10−4

10−3

10−2

10−1

100

SNR [dB]

B
E

R

(e) MCS5 (16-QAM, CR = 1/2)

10 15 20 25 30 35 40 45 50
10−5

10−4

10−3

10−2

10−1

100

SNR [dB]

B
E

R

Original S=0
Original S=1

Simplified S=1
Fixed-Point S=1

(f) MCS6 (16-QAM, CR = 3/4)

Fig. 4: Impact in terms of performance of simplification and fixed-point conversion.

V. FPGA IMPLEMENTATION AND PROTOTYPING

A. Experimental Setup

The experimental setup employs a Hardware in the Loop
(HIL) configuration, involving a computer and a PYNQ Z2
board [15]. The computer runs py-AFF3CT, a Python wrapper
for the Forward Error Correction Toolbox AFF3CT. The
PYNQ Z2 board is a prototyping board based on the Xilinx
Zynq System on Chip (SoC) with an ARM processor and
an FPGA ZYNQ XC7Z020-1CLG400C. In our experimental
setup, the board is connected to the computer via an Ethernet
cable. The board’s ARM processor forwards the data to the
FPGA device via a Direct Memory Access (DMA). Moreover,
it facilitates the Ethernet connection between the computer and
the SoC device, acting as a passthrough.

Fig. 5: Simplified EP-based FD-SILE FPGA and HIL Block
Diagram.

Fig. 5 shows the block diagram of simplified EP-based
FD-SILE with the HIL configuration. Within the FPGA, the
three parts of the algorithm with analytical simplifications have
been implemented: bitwise max-log MAP demapper (eq. (11)
and Table II), bitwise soft mapper (Table IV) and LUT-based
variance parameter (CEP in section III-A), and EP-based
soft estimates (eq. (8-9)). These implemented blocks of the
algorithm perform essential computation for the Expectation
Propagation-based receiver and are the focus of the presented
work. The remaining parts of the receiver are executed thanks
to AFF3CT on the associated computer. These software blocks
encompass filtering, equalization, FFT and IFFT operations,
rate dematching, and Forward Error Correction (FEC) decod-
ing. This HIL setup is used to obtain the previously discussed
fixed-point simulation results.

B. FPGA Implementation Results

Table V shows the total available and allocated FPGA re-
sources for each of the three constellations that are considered
in this article: QPSK, 8-PSK, and 16-QAM. The first row for
each constellation is for the implementation of only FD-SILE
without the HIL configuration, while the second row is for
the FD-SILE with the HIL configuration, including the data
exchanges to the ZYNQ Processing System and the DMA.
The implemented architectures use a data width of 32 bits for
the DMA connection, enabling to exchange two symbols with
8-bit real and imaginary parts.

Given the low resource usage for the analytical blocks,
several calculations can be carried out in parallel in the
proposed architectures. For QPSK and 16-QAM, the archi-
tectures are composed of four independent bitwise max-log
MAP demapper blocks, as the real and imaginary parts are
independent, and generates respectively one and two LLRs for
each value. For 8-PSK, the proposed architecture processes
two values (one symbol) to produce three LLRs, using two
demapper blocks in parallel for the four values.

The process for the bitwise soft mapper is the inverse of
this, using two LLRs per symbol for the QPSK, three for 8-
PSK, and four for 16-QAM. The calculation of the EP-based
soft estimates is the same for the three constellations, using
four of these blocks in parallel.

XC7Z020- LUTs Flip-Flops BRAMs Critical
Path (ns)1CLG400C № % № % № %

Resources 53200 106400 140 -

QPSK A 1035 1.95 198 0.19 0.5 0.36 9.418B 4204 7.90 5373 5.05 2.5 1.79

8-PSK A 1805 3.39 346 0.33 0.5 0.36 9.648B 4968 9.34 5521 5.19 2.5 1.79
16-
QAM

A 1448 2.72 340 0.32 0.5 0.36 9.738B 4654 8.75 5515 5.18 2.5 1.79
A: FD-SILE without HIL configuration.
B: FD-SILE with HIL configuration.

Table V: FPGA Resources Table.

The FPGA implementation demonstrates efficient resource
usage, as shown in Table V, with very limited occupation
in terms of Look-Up Tables (LUTs) and Flip-Flops (FFs).
The implementation of the analytical blocks consumes fewer
resources than other resources that are necessary to communi-
cate with the ARM processor. It is important to note that the
implementation with the highest resource usage is the one for
8-PSK mapping. Indeed, this mapping uses a LUT-aided semi-
analytical implementation instead of an analytical implemen-
tation. One can note that no DSP resources are assigned in the
FPGA. This is due to the fact that all the arithmetic operations
are applied on data represented by a limited number of bits,
thanks to the proposed fixed-point analysis. Furthermore, all
implementations achieve an execution frequency of 100MHz,
given the critical paths below 10 ns.

VI. CONCLUSION

This paper has presented a comprehensive study and, to
the best of our knowledge, the first hardware implementation
of an EP-based FD-SILE for QPSK, 8-PSK, and 16-QAM
constellations on an FPGA platform.

The results demonstrated that the fixed-point version per-
formed comparably to the floating-point one, even helping to
mitigate the negative impacts of bad interference patterns in
the challenging Proakis-C test channel.The resource utilization
for the analytical blocks was low, allowing the remaining
resources to be used for other blocks of the receiver if
necessary.

In future works, there are several promising possibilities.
One such direction is the implementation of a flexible receiver

that can adapt to the mapping constellation. Another possibility
is the integration of turbo iterations into the receiver design,
which could further enhance its performance.

REFERENCES

[1] L. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal
decoding of linear codes for minimizing symbol error
rate”, IEEE Trans. on Information Theory, Mar. 1974.

[2] S. Şahin, A. M. Cipriano, C. Poulliat, M.-L. Boucheret,
”A framework for iterative frequency domain EP-based
receiver design”, IEEE Trans. on Communications, Dec.
2018.

[3] D. Auras, R. Leupers and G. Ascheid, ”A Novel Class of
Linear MIMO Detectors with Boosted Communications
Performance: Algorithm and VLSI Architecture,” 2014
IEEE Computer Society Annual Symposium on VLSI,
2014.

[4] J. Xiao, J. Hu, and K. Han, “Low complexity expec-
tation propagation detection for SCMA using approx-
imate computing”, 2019 IEEE Global Commun. Conf.
(GLOBECOM), 2019.

[5] A. M. Cipriano, S. Şahin, C. Poulliat, ”Practi-
cal Frequency-Domain Decision Feedback Equalization
Based on Expectation Propagation”, IEEE Communica-
tions Letters, Oct. 2023.

[6] A. Cassagne et al., “AFF3CT: A Fast Forward Error
Correction Toolbox!,“ SoftwareX, 2019.

[7] J. Erfanian, S. Pasupathy and G. Gulak, ”Reduced
complexity symbol detectors with parallel structure for
ISI channels,” in IEEE Trans. on Communications,
Feb./Mar./Apr. 1994.

[8] I. Ali, U. Wasenmüller and N. Wehn, “A high throughput
architecture for a low complexity soft-output demapping
algorithm”, Advances in Radio Science, 2015.

[9] F. Tosato and P. Bisaglia, “Simplified Soft-Output
Demapper for Binary Interleaved COFDM with Applica-
tion to HIPERLAN/2”, Proceedings of IEEE ICC 2002,
Apr./May 2002.

[10] Q. Wang, Q. Xie, Z. Wang, S. Chen and L. Hanzo, “A
Universal Low-Complexity Symbol-to-Bit Soft Demap-
per”, IEEE Trans. on Vehicular Technology, Jan. 2014.

[11] S. Şahin, A. M. Cipriano, “Méthode de démodulation
souple max-log MAP semi-analytique”, Application
number: FR2310929, filing date: 12/10/2023.

[12] A. Tomasoni, M. Ferrari, D. Gatti, F. Osnato, and S.
Bellini, “A low complexity turbo MMSE receiver for
W-LAN MIMO systems,” in Proc.2006 IEEE Int. Conf.
Commun. (ICC), Jun. 2006.

[13] Alcaraz, F., 2020. ”Fxpmath”. Available at:
https://github.com/francof2a/fxpmath.

[14] Harris, C.R., Millman, K.J., van der Walt, S.J. et al.
”Array programming with NumPy”. Nature 585, 2020.

[15] AMD, 2024. AUP PYNQ-Z2. Available at:
https://www.amd.com/en/corporate/university-
program/aup-boards/pynq-z2.html.

