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Abstract
Precision medicine research benefits from machine learning in the creation of robust models adapted to the processing of 
patient data. This applies both to pathology identification in images, i.e., annotation or segmentation, and to computer-aided 
diagnostic for classification or prediction. It comes with the strong need to exploit and visualize large volumes of images 
and associated medical data. The work carried out in this paper follows on from a main case study piloted in a cancer center. 
It proposes an analysis pipeline for patients with osteosarcoma through segmentation, feature extraction and application of 
a deep learning model to predict response to treatment. The main aim of the AWESOMME project is to leverage this work 
and implement the pipeline on an easy-to-access, secure web platform. The proposed WEB application is based on a three-
component architecture: a data server, a heavy computation and authentication server and a medical imaging web-framework 
with a user interface. These existing components have been enhanced to meet the needs of security and traceability for the 
continuous production of expert data. It innovates by covering all steps of medical imaging processing (visualization and 
segmentation, feature extraction and aided diagnostic) and enables the test and use of machine learning models. The infra-
structure is operational, deployed in internal production and is currently being installed in the hospital environment. The 
extension of the case study and user feedback enabled us to fine-tune functionalities and proved that AWESOMME is a 
modular solution capable to analyze medical data and share research algorithms with in-house clinicians.
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Introduction

Precision medicine (PM) seeks to offer patients a treat-
ment adapted to the characteristics of their disease. In other 
words, it can be described as the process that enables the 
identification and classification of individuals into sub-
groups whose responses to a specific treatment will differ 
for the same disease [1]. PM is becoming more and more 
widespread, and can be applied to various diseases, from 
the prediction of treatment response for different types of 
cancers [2], especially in radiology [3, 4], to the prevention 
and management of diabetes [5]. PM has an increasing need 
of large well-annotated volumes of data in order to allow 
the development of sufficiently complex, robust, relevant 
and generalizable models, in particular in statistical learning 
and deep learning.

Medical imaging processing involves several stages. 
They are described in Fig. 1. Insights from experts help 
to ensure the quality of the analysis and of the generated 
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models. The first stage in the process is data acquisition 
and gathering. A number of problems can be encountered 
at this first stage, particularly in the case of multicentric 
studies (data collection from several hospitals), where 
the different MR systems and acquisition parameters 
have a major impact on the quality and appearance of the 
image, even on associated metadata [6]. Pre-processing 
algorithms or techniques can be applied to acquired data 
to remove noise, re-scaling data or enhance contrast at 
stage two. The third stage is visualization, enabling clini-
cians to clearly identify the pathology through a shared 
taxonomy [7]. At this stage, the clinician can choose to 
annotate the anomalies detected, for example, by delimit-
ing them as for tumor segmentation. The fourth part of the 
process, as shown in Fig. 1, is optional. It corresponds to 
features extraction; this can be the application of more or 
less sophisticated processing to extract and exploit hidden 
information as radiomics [8]. Data mining is the last step 
of the image processing and exploits the data previously 
acquired (raw or obtained during segmentation and/or fea-
tures extraction phases). Usually associated with machine 
learning or deep learning, this phase produces models to 
discriminate pattern in the data (classification or predic-
tion to treatment).

All these steps and the interpretation of the result depend 
on the quality of execution of the different tasks and the qual-
ity of the process evaluation [9]. Clinician’s involvement is of 
major importance to obtain good quality labels. Image anno-
tation and quantitative analysis of large mass of data are how-
ever time-consuming tasks, especially with non-ergonomic 
tools, and require to take in hand the adapted tools.

Related Works A wide range of tools and functionality 
in medical image processing exists. In the present work, 
the focus was made on open-source tools, summarized 
in Table 1.

Many applications currently use locally installed desktop 
software. Among the most widespread software, ITK-Snap 
[10] and MITK [11] both propose segmentation tools for 
medical imaging. More recently, the latter offers fully auto-
mated segmentation tools, but is still limited to the Linux 
operating system. XNAT [12], an advanced data manage-
ment and segmentation platform, offers a semi-automatic 
tool to interpolate segmentation between two pre-segmented 
slices. Much less widespread, IBEX [13] has features for 
editing regions of interest for radiomics extraction. It has 
been tested as a proof of concept by researchers with a vari-
ety of skills sets [14]. One of the most comprehensive and 
complex solutions available is 3DSlicer [15]. Its broad func-
tionalities allow to manage most of the phase of the analysis 
and can be enhanced by plugins.

While these tools serve many clinician needs, they also 
have significant limitations. Indeed, special authorizations 
are required to install such software for secure reasons in 
hospital environment, and it might be complicated to install 

Fig. 1  Illustration of the processing stages of medical image analysis: from acquisition to data mining for computer-aided diagnosis

Table 1  Overview of the previous comparable tools mentioned by 
analysis stage. SEG means segmentation, FEATS for feature extrac-
tion and DIAG for diagnosis. Extendable refers to the tool’s ability to 
be enhanced by third-party plugins

Name Type Actions in analysis Extendable

ITK-Snap Desktop SEG (manual) No
MITK Desktop SEG (manual+auto) Yes
XNAT Hybrid SEG (auto) Yes
IBEX Desktop SEG + FEATS Yes
3DSlicer Desktop SEG (manual+auto) Yes
ISB-CGC Web SEG + FEATS Partially
MonaiLabel Server Web SEG (manual+auto) Yes
CIRCUS Web SEG + DIAG No
ePAD Web SEG + FEATS Yes
Studierfenster Web SEG + FEATS Partially
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on institutional computers due to access restriction. The cli-
nician may then be reduced to a single point of access to the 
software, which is generally not accessible remotely, limit-
ing its use in everyday clinical routine [16].

In parallel, another type of platform has emerged: web 
viewers. Some of them focus on a single application case 
[17, 18], while others seek to have a more global range of 
functions. The simplest ones propose a platform dedicated 
to visualization only [19, 20]. Others, more accomplished, 
are interested in the following steps of the processing chain. 
Starting with annotation and segmentation, notably with 
the Open Health Imaging Foundation (OHIF) platform [16] 
which is a zero-footprint web architecture offering a few 
simple tools. This platform has the advantage of being able 
to be enriched, and has been widely used as a building block 
in other projects. It was, for example, used in the Crowds 
Cure Cancer project1 for the collaborative annotation of can-
cer patient data cohorts or again in the ISB-CGC initiative 
[21] for the analysis of cancer-related data too. MonaiLabel 
Server [22], which adds a computational server to OHIF, 
offers more complete and advanced functionalities for seg-
mentation with semi and fully automatic models. This solu-
tion can also be plugged into 3D Slicer, making it a hybrid 
approach for both local and web-based use. The Clinical 
Infrastructure for Radiologic Computation of United Solu-
tions (CIRCUS) [23] provides a web-based solution for 
computer-assisted detection and diagnosis. It also focuses 
on models for annotation. It was successfully deployed in 
two hospitals. Next, the ePAD [24] and Studierfenster [25] 
platforms are designed for the fourth processing stage. The 
former includes bio-markers visualization. The latter offers 
the possibility to use machine learning models and to extract 
radiomics for several cases.

From all the software mentioned, it appears that none of 
them allow to perform every single step of the processing 
stages in one ergonomic interface. Moreover, regulation 
and protection of personal data, especially in the context of 
medical imaging is increasing. The overall objective of this 
project is to provide a secure platform to facilitate transfer 
between research and clinical application with a web-based 

software solution for image processing. The AWESOMME 
platform, presented in this paper, innovates by offering 
visualization, annotation and feature extraction tools and links 
data to computer-aided diagnostic models (classification, 
prediction...) generated during data mining projects. This 
platform aims to enhance available tools in place, without loss 
of previous works and in a distant future replace those tools.

The following section presents the different datasets 
used in this project, the components of the infrastructure 
to develop and the associated tools to implement different 
stages modules. Each chosen module focuses on a specific 
concept or need. The “Results” section describes usage and 
implementation of plugins and modules to create this soft-
ware. The generic aspect and efficiency of the platform are 
tested in this “Results” section. The action perimeter, its 
limitations and its comparisons with other platforms are dis-
cussed in the fourth and last section of this paper.

Materials and Methods

AWESOMME was developed as part of a cross-disciplinary 
research project. It was born from a collaboration with the 
Léon Bérard Cancer Centre (CLB) in Lyon (France) look-
ing for a tool to centralize the use of tools created during an 
anterior project. The use case was completed by examples 
of data collected in two other datasets.

This platform is based on a three-component architecture 
(Fig. 2). It relies on a data storage system using the inter-
national standard format for storing medical data Digital 
Imaging and Communication in Medicine (DICOM) [23], 
a computational server also used as a storage for other data 
format (such as radiomic files) and a web interface used as 
a single access point for all processing steps. This type of 
architecture is the most common existing solutions but had 
to be improved to meet the requirement of this project.

Those requirements can be articulated around four 
notions, security and user authentication, segmentation 
(manual and automatic), feature extraction and classifica-
tion for computer-aided diagnosis.

Vocabulary specific for each component is used in the fol-
lowing sections; Table 2 proposes descriptions for ambigu-
ous terms.

Table 2  Definitions of technical 
terms

Vocabulary Definition

Model Machine learning term, algorithm trained on data to realize a specific action 
(segmentation or classification)

Module Refers to the plugin created for each stage of the processing chain
Mode Specific term used in OHIF. Designs a specific viewer for a dedicated application
Plugin An extension to an existing element, implements new functionalities and 

installed directly on the base element

1 https:// crowds- cure. org.

https://crowds-cure.org
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Datasets

Use Case Study

Led by the CLB, an Osteosarcoma cohort [26] was set up 
with 177 patients from 3 multi-centers (site gathering data 
from several sub-centers in a region). The data were collected 
anonymized after institutional review board approval, from 
the two external centers and extracted from the CLB’s Picture 
Archiving Communication System (PACS) [27] in the stand-
ard DICOM format. The entire dataset was segmented by the 
source provider, and the segmentations obtained were trans-
mitted and integrated into the database in The Neuroimaging 
Informatics Technology Initiative (NIfTI) format.

Models This cohort has been exploited in two previous 
research works. Each produced a machine learning model, 
one for 2D automatic segmentation (collaboration with 
Altran-Capgemini during an internship) and the other for 
outcome prediction classification based on the patient 
radiomic signature. The prediction model used ReliefF 
technique to analyze redundancy and reduce the number 
of features, and train a SVM classifier. Details about the 
training and the validation can be found in the article [3]. 
These models were to be integrated on the platform for 
inference and not for performance evaluation.

Other Datasets

To complete the main study use case, two other independent 
datasets were introduced inside the platform. The first one is a 
subset of the LIDC-IDRI dataset [34]. A lung tumors segmen-
tation model has been trained on it. The architecture of the net-
work is a 3D iUnet [35] to cope with the large GPU memory 
such large images require. The network was first trained on 
patches centered on the tumors, then random patches all over 
the images were used.

The second subset is extracted from a single-center ancil-
lary study of patients in acute respiratory distress syndrome 
(ARDS). The study was approved by their institutional eth-
ics committee (CSE HCL20 [36]). The model was trained 
with 316 CT volumes from 97 patients (yielding a Dice 
similarity coefficient of 0.972 on the training set). The lung 
segmentation model is a deep 3D convolutional neural net-
work using a modified version of the 3D U-net architecture, 
optimized with the Adam optimizer through a Dice-based 
loss function [37].

Models Two models produced during these works were 
integrated in the platform: the lung volume segmentation 
model and the lungs tumors segmentation model for infer-
ence, only as a proof of concept and not to assess the validity 
of the models.

Fig. 2  Overview of the architecture of the AWESOMME Platform. Three main components are visible, for each new plugins and communica-
tion protocol for user traceability were developed
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Architecture

The infrastructure was deployed on the CPU on a dedicated 
virtual machine with a 10Tb.

Image Data Server: Orthanc

Orthanc Server is an open-source, small footprint light-
weighted vendor neutral archive that can act as a PACS. 
It comes with its own database engine based and assures 
DICOM interoperability using the DICOMTK Toolkit. This 
makes Orthanc Server a robust DICOM store. It is expend-
able by internal plugins, some existing plugins are already 
developed and can be modified. Since Orthanc Server pro-
vides a full programmatic access to its core features through 
a REST API [28], higher-level applications can also be built 
on top of it by driving the REST API.

This service can be reached at: https:// covid. creat is. insa- 
lyon. fr/ aweso mme- ortha nc/.

Web‑Services Server: Girder

Girder is a free open-source platform [29]. It is developed 
by Kitware and allows transparent data management func-
tionalities, as storage and serve data from back-end stor-
age engine (such as MongoDB databases). It is divided in 
a server (Python) client (JavaScript) architecture, the web 
interface act as the client and interacts with the server part 
thanks to a single and expandable RESTful web API, that 
can be used in other applications to interact with Girder. 
Girder provides a flexible architecture that allows users to 
extend its functionality through plugins. These plugins ena-
ble developers to add custom features, tools, and integration 
to Girder without modifying its core codebase. Plugins are 
implemented as Python packages, and this mechanism can 
be used to add new custom routes and endpoints. It provides 
also a hooks system that can be used to extend or modify 
native Girder behaviors and events.

Girder also provides authentication and user management 
methods, and most importantly it enables access control to 
its resources through an authorization system. With the cus-
tomization of routes, Girder was extended with new plugins 
to act as a centralized authentication system and to modify 
Girder behavior to be a computational web-services launcher 
(to extract radiomic and start docker image applications).

One can access the Girder interface at: https:// covid. creat is. 
insa- lyon. fr/ aweso mme- girder/.

Web Viewer: OHIF

The OHIF viewer is an open-source, zero-footprint web-
based viewer [16]. OHIF has been widely adopted by the 
developer community as evidenced by the large number of 

projects based on it. It can connect to Image Archives using 
the DICOMweb standard web service. It is based on Cor-
nerstone to decode and render DICOM images.

It includes a few interactive tools, such as windowing or 
leveling, and offers measurement and limited manual seg-
mentation tools. Still, OHIF natively lacks semi-automatic 
of fully segmentation tools that will allow clinicians and 
researchers to quickly annotate large amounts of data. It 
lacks the functionality to save corrections made on exist-
ing segmentation. Furthermore, OHIF does not offer feature 
extraction or machine learning classification models.

Version 2.0 of OHIF introduces a side panel system for 
a unique expendable viewer, into which items can easily 
be added. The latest version benefits from a more complex 
architecture, as it also uses a system of modes, allowing 
access to viewers that do not have the same tools or the same 
analysis objectives. This project was based on the version 
3.3, the improvements were initially implemented in version 
2.0 of OHIF and then re-integrated into version 3.3 using 
both mode and panel extension.

The web viewer service is available at: https:// covid. creat is. 
insa- lyon. fr/ aweso mme- ohif/.

Modules Methods

Authentication

The three components described above have their own 
authentication system. The challenge is to offer a single 
system for the entire infrastructure.

Orthanc can simply contain identification pairs in its 
configuration file, or rely on plugins to link up with Key-
Cloack, for example. The Girder authentication system is 
comprehensive, secure and autonomous. It can be connected 
remotely via API routes. Girder’s system was found to be 
the most robust and expandable. Thus, the next step is to 
connect the Orthanc and OHIF components to the Girder 
authentication system. Orthanc’s plugins (Python Plugin and 
Orthanc-Explorer-2) were used to connect Orthanc to the 
Girder API Routes and simple requests were used in OHIF.

Segmentation

The segmentation module addresses several needs.
Firstly, in the osteosarcoma case study, segmentation files 

were already available. They were done manually or with 
a semi-automatic tool with corrections. It corresponds to 
a long and painstaking process done by a clinician. It was 
particularly important to preserve the work already done and 
re-integrate it into the platform. For that purpose, an import 
module was needed in the infrastructure. Our case study 
contained images and segmentations in The Neuroimaging 
Informatics Technology Initiative (Nifti) format but the data 

https://covid.creatis.insa-lyon.fr/awesomme-orthanc/
https://covid.creatis.insa-lyon.fr/awesomme-orthanc/
https://covid.creatis.insa-lyon.fr/awesomme-girder/
https://covid.creatis.insa-lyon.fr/awesomme-girder/
https://covid.creatis.insa-lyon.fr/awesomme-ohif/
https://covid.creatis.insa-lyon.fr/awesomme-ohif/
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server Orthanc only supports DICOM format. Several con-
version tools exist and the following list is not an exhaustive: 
dcm-js (javascript), pydicom (python).

Secondly, the developed module integrates different 
aspects of manual segmentation. An important requirement 
was to propose tools familiar to the clinicians to create 
detailed annotation on the image. To this end, AWESOMME 
strongly relies on tools proposed by OHIF with the Corner-
stone suite.

Finally, pre-trained segmentation models were made 
available on the platform. To integrate those models easily, 
Docker was used in order to wrap the development envi-
ronment of the model. That way, all needed modules and 
weights of models were put inside a Docker image that is 
called by a script. As OHIF is the entry point for the clini-
cians, it sends a request of execution of a specific model 
and its inputs. The instruction is transmitted to the Girder 
server, which can as a coordinator then launch the execution 
commands via Docker using python-on-whales library in 
Girder’s python side.

Feature Extraction

The feature extraction module focuses on radiomic 
extraction since this was the initial subject of our case 
study. The implementation of the extraction and storage 
were done on the Girder Server as for segmentation using 
API Routes.

As the use of radiomic features is expanding rapidly, a 
few concerns have emerged such as lack of reproducibil-
ity. Two initiatives were taken into account to answer those 
challenges. Concerning the extraction, the PyRadiomics [30] 
library was used to respect the Image Biomarker Standardi-
sation Initiative (IBSI) [31].

Radiomic features and additional information storage 
are critical to share clinical and omics data in oncology 
research. As the results, the methodology to conserve infor-
mation of extraction followed the recommendations of the 
French GrOup inter-SIRIC sur le paRtage et l’Intégration 
des donnéeS clinico-biologiques en cancérologie initiative 
(OSIRIS) [32].

Classification

The classification module is based on the same method-
ology as the previous two modules. In the same way as 
for the automatic segmenting models, each classifica-
tion model used for prognosis or diagnosis must also be 
integrated into a docker system. The results files must be 
accessible via the platform in a text file, or a file read-
able by the clinicians. In the main use case, the inputs 
for the predictive model were a single radiomic file in 
the CSV format.

Results

This section describes the main implementations made to 
improve and upgrade the 3 components to address the spe-
cific needs mentioned earlier and to offer diverse function-
alities with a section dedicated to deployment phase results.

Several plugins were developed to meet different needs 
and were divided into two main categories: security includ-
ing user management and data protection, and data analysis.

Deployment Phase Results

A first deployment phase was carried out in our laboratory. 
AWESOMME was deployed on a server and could be avail-
able for registration.

A public account has been set up for demonstrations. 
The aim of this launch was to obtain initial feedback on the 
platform before deploying a corrected, robust and extended 
version inside the hospital.

A demonstration of the platform and the different func-
tionalities described in this article is available at: https:// 
covid. creat is. insa- lyon. fr/ aweso mme- demo/.

Security: User Management and Data Protection

The precise workflow for user verification and access con-
trol is presented in Fig. 3.

User Management

Link Girder Credentials to Other Components The first 
plugin created auth_ohif enabled two links: Orthanc-
Girder and OHIF-Girder. It retrieved encrypted user cre-
dentials and sent an encrypted token back to OHIF, which 
stores it and then interacts with Girder for processing. This 
plugin is called when a function with an encrypted token 
is used (either from OHIF or Orthanc). Each time a data 
is accessed by OHIF modules, the token is verified, for 
example, to check if a user has access to the data (accessing 
the link between user groups and Orthanc data saved in the 
resources_ohif plugin described below).

Orthanc-Girder link was built on already existing plugins: 
Orthanc-Explorer-2 and Orthanc-Python. The original 
plugins, OrthancExplorer2 used Keycloack authorization, 
if both installed, provided an authentication mechanism 
through a modern and user-friendly interface. Meanwhile, 
OrthancExplorer2 was enhanced to restrict access only to 
those registered in the Girder database and without need-
ing Keycloack authorization plugin. This development 
ensured a well-controlled access to a unique and secure 

https://covid.creatis.insa-lyon.fr/awesomme-demo/
https://covid.creatis.insa-lyon.fr/awesomme-demo/


Journal of Imaging Informatics in Medicine 

system, facilitating its management while also suppressing 
all unsecured URLs provided by Orthanc’s default UI. This 
advancement strengthened the confidentiality and sharing 
of medical data.

OHIF-Girder link required a new user interface on 
OHIF side to enter credentials. This was added and sim-
ply used the API routes with the encrypted credentials to 
save the encrypted token in as a state in an authentication 
React service.

Advanced Management The advanced_management plugin 
was created to ease clinicians’ registration. New API Routes 
were created for administrators enabling them to generate 
random codes in the Girder interface (or in OHIF). The 
codes were divided in admin codes and member codes, 
meaning that an administrator can decide to open the data 
collection to other user with administrator rights. New users 
registering on the OHIF platform can then enter such a code. 
The code used determined the user rights and automatically 
granted them to the user.

A new user interface was implemented in OHIF to ena-
ble the use of the plugin by clinicians directly on the web-
viewer. This functionality is available on the page under the 
user profile top-right button (Fig. 4).

Actions are made available depending on the current user 
access rights. An admin could add another user in a group 
of data or generate codes to share to several other users. A 
non-admin user in a group could request membership by 
providing such a code.

Data Protection

Data Collections The resources_ohif plugin was imple-
mented to create two new data models, series and derived 
objects from series (SEG, RTStruct, SR...). These mod-
els kept track of which cohort(s) each data file (DICOM 
images on the Orthanc Server or radiomics/diagnostics on 
the Girder Server) belongs to.

It enabled filtering, granting or prohibiting access to spe-
cific data for a group of user via the auth_ohif plugin. The 
cohort filter is called from OHIF using new API Routes.

Corresponding developments were then been imple-
mented in OHIF to render access rights saved in Girder, as 
highlighted in the middle of Fig. 4. New filtering criteria 
allowed to focus on a specific group of all the data avail-
able on the server and to reduce the number of patient data 
displayed in the list. In addition, name in which the data is 
included and a visual indicator for permission access were 
added for the sake of readability for each data item.

Traceability The traceability plugin provided an interface for 
tracking the activities of each user on the platform. It was 
made only accessible for administrators. A list of action of 
interest was compiled, including both internal Girder actions 
and new actions created by the developed plugins.

For every action of this list, an event is generated, and 
these events are then monitored by the traceability plugin. 
For some actions, events were already triggered. For new 
developed actions, event triggers were added in the code, but 

Fig. 3  Check-in workflow to access data
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native Girder code which did not include events, the plugin 
listened to API Route request end notification. Every event 
triggered the apparition of a new log in the journal stored in 
the Girder’s database. A log entry includes the name of the 
action, parameters, the user who triggered it and the date. 
As part of the actions listed, creation of a cohort’s access 
code or request for automatic segmentation can be named.

This plugin did not need a counterpart in OHIF since it 
was only created for administrator and developers of AWE-
SOMME and it was not relevant to access those information 
in the medical viewer.

Data Import Module This OHIF module was created to 
upload data on the Orthanc server from local data or from a 
temporary connection to a PACS. The user can choose the 
data group to which the import is added, a user can only add 
data to a group for which they are an administrator.

From the PACS, the transfer of data for a specific patient 
to the Orthanc Server of AWESOMME went through an 
anonymization script. A form should be filled to get only 
very specific data from the PACS and not huge data collec-
tion. The correspondence between the patient on the PACS 
and the patient on the platform is transmitted only to the user 
so that only the user keeps this information.

Local import functionality was achieved to support 
either DICOM or NiFti format. As data is saved in the Ort-
hanc Server via the DICOM API Routes, NiFti were to be 
converted to DICOM format. The conversion was made 
directly in OHIF thanks to JavaScript modules. However, 

the converted DICOM did not contain automatically perti-
nent information as Patient ID or modality of the image etc... 
So, the user must provide the NiFti file with a specific file 
name to complete information on the DICOM after conver-
sion. Nifti files could also be paired to an Excel file with 
additional metadata fields to inject in the DICOM file.

Data Analysis Implementations

This part presents the new features implemented on the web-
viewer. Most of the modifications were first made on OHIF 
version 2.0, then transposed and completed on version 3.3. 
The figures below show the final platform, i.e., the enhanced 
version 3.3. In OHIF version V2, all modifications were 
made in the only viewer available, so all data had access 
to the same interface and functions. In OHIF version V3, 
the mode system was leveraged to offer a new mode with 
the new functionalities without affecting the existing mode. 
OHIF enables access to the different modes in the patient 
expanded rows of the home view. The internal functions 
from OHIF were used to add a new mode which appeared 
automatically next to the others. This mode access was 
restrained with specific mode function that verifies if the 
mode is valid for each patient. In this paper case, the mode 
was made valid for all data collection.

Data analysis included segmentation or delineation 
(manual or automatic), feature extraction and computer-
aided diagnosis (as classification). These actions should be 

Fig. 4  New functionalities on the page. Two modification categories are displayed: the new filtering selector shown in red and new buttons in the 
header part to access new functionalities forms shown in green at the top
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performed by expert in the user interface, but OHIF could 
not support intensive calculation thus a plugin was created 
for the most computationally intensive function (such as run-
ning a segmentation model).

Batch Analysis Module

Some steps of the processing chain could be made by batch. 
Batch analysis, made available directly on the home page, 
was limited to one cohort at a time.

Currently, the batch analysis system is enabled for fully 
autonomous processes such as automatic segmentation and 
radiomics extraction. Figure 5 shows pieces of informa-
tion displayed and the form to be filled in by the user. Data 
belonging to a group were not necessarily homogeneous, 
i.e., the relevant acquisition for each patient may differ. They 
were then identified by their acquisition type (MR/CT...) and 
number or by their description for segmentation files. The 
indications at the top of the form were added to guide the 
user through the choice of inputs for analysis. The “Enter 
Description” and “Tag for reference” fields, for automatic 
segmentation and for feature extraction respectively, were 
built to identify outputs.

The batch analysis module relies on the same implemen-
tations as described below, the request can be transmitted 
as a list instead.

Segmentation

Manual Tools and New Functions This part was proper to the 
OHIF interface, as it included only light computation functions.

Whether in version v2 or v3, OHIF offers default tools, 
using an external Cornerstone library, including specifically 
manual segmentation and annotation tools. However, one of 
the default tool in OHIF version 2.0 did not have its equiv-
alent in the version 3.3: the Freehand ROI Tool, because 
of the switch between the CornerstoneTools in the version 
2.0 to Cornerstone3D library in the latest version. This tool 

provides greater precision compared to the rest of the ROI 
tools. Thus it was manually added to the list. The complete 
list of tools available is displayed in Fig. 6 at the top.

Then a custom segmentation panel, in which new func-
tionalities are implemented in the top part of the panel, was 
created with the default mode segmentation panel as a base. 
This default panel was activated when segmentation was 
loaded into the viewer.

The default panel already authorized a few actions as 
renaming segments but for other actions, such as creating a 
new segment in a segmentation (which corresponds to the 
file and segments to the delimited content — one segmenta-
tion should be able to have one or several delimited zones), 
there was an existence but no user interface was available to 
use them. The first enhancement made was enabling those 
interactions in the default segmentation panel. Figure 6 pre-
sents the new functionalities created to improve the clini-
cians’ experience on the platform.

Then, an import functionality has been implemented 
directly in the home page. A similar function was 
designed in the panel to make for segmentation import. 
It was conceived to import previous masks (DICOM 
of NiFti) made on local tools. From NiFti, conversion 
relies on the same method as for the home view import 
data functionality. Though, a specific file name was not 
required as the converted file is linked to the current dis-
played series. A few check-ups were made on the size 
of the data and the spacing. The user was asked to enter 
information to complete the metadata of the segmenta-
tion file as the description. It was necessary for a better 
tracking of actions to describe the segment and indicate 
its nature (automatic or manual) as well as the person or 
model who created it.

Also, an interpolation tool was created: it is particularly 
useful to reduce the cost of the manual segmentation task 
by clinicians as it offered the possibility to interpolate a 
segment data between only two segmented slices ensuring 
shapes coherence.

Fig. 5  Batch analysis forms for segmentation (left) and radiomics extraction (right)
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Automatic Segmentation Trained automatic segmentation 
models were also made available in the panel (middle part 
selector). Since it required more computer resources, they 
were accessible via a request system to the heavy computa-
tion server.

The aimodules_ohif plugin in Girder allowed the retrieval 
of requests and instructions sent by the web viewer for the 
launch of automatic models or the launch of radiomics 
extraction (also thanks to new API Routes). Appropriate data 
are retrieved via a communication link to Orthanc before 
launching the appropriate processing and sending back the 
result to the viewer. For the first step of analysis, three auto-
matic segmentation models have been added. 

1. Osteosarcoma: The original study case model which is 
used to delineate bone tumor

2. Lungs: A model to delineate abnormalities in the lungs
3. Lungs: A model to delineate volume of the lungs

Models are linked to different application cases, using 
the cohort implemented. Thus, an automatic segmentation 
model can only be called up on data belonging to a specific 
group (information retained by the previous plugin). The 
Girder API Route system did not allow to return file, so 
only the pixel array in NIfTI format was sent back to OHIF. 
Conversion back to DICOM was achieved in the OHIF part 
using the library dcmjs.

A preliminary analysis about time cost of inference of a 
model was made on the Osteosarcoma segmentation model. 

Table 3 presents two criteria investigated to have an impact 
on the total time of the model. In this case, the number of 
slices had a significant impact on the model temporal cost 
but for the communication temporal cost, total file size was 
the most critical point. Transfer of data from Orthanc to 
Girder and conversion temporal cost are not significant.

As models could be part of very different application cases 
(here osteosarcoma or lungs segmentation), they should not be 
called on every data. A filter was directly built in this panel to 
ensure that all models were retrieved but only models linked 
to the collection of the current data were available in the 
selector. Information as time cost or confidence was added. 
If necessary, metadata should be entered in the form. Only 
segmentation with a unique segment is fully supported (load-
ing, saving, import) in the current version.

Feature Extraction

On Girder’s side, feature extraction was implemented in the 
aimodules_ohif plugin as well. For radiomics, the instruc-
tions should follow the same strategy: the request should 
contain the information about the series and segmentation 
to retrieve from the data server before launching extraction. 
Pre-saved parameters files are saved in Girder but the request 
could also contain new sets of parameters in the JSON for-
mat. In order to comply with the OSIRIS initiative, those 
parameters and the version of the module used to extract 
radiomics were saved in the same file as the radiomics in 
Girder, allowing future communication with OSIRIS server.

Fig. 6  Enhanced OHIF: shows the global view with data visualization and tools with the new segmentation panel
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Figure 7 (left) shows how the panel is organized in two 
parts on OHIF’s side. Top part of the panel is to start the 
extraction, containing segmentation input, tag reference 
and parameter window. The bottom part lists the radiomic 

files downloable for the series. After each launch and 
except if an error occurred (signaled by a notification), 
a file should be added to the list without further action 
from the user.

Table 3  Temporal cost of automatic model request depending on some data characteristics

Values in bold are there to clearly identify problematic values in processing time
a Number of slices or instances contained in the series sample
b Resolution is expressed in pixels
c Size refers to the total of MB for all instances combined
d Temporal cost are in seconds
e Model temporal cost designates the time during which the model is running on the data to produce the result
f Data handling includes data download from Orthanc to Girder’s local folder, data conversion and results upload to Girder
g Communication describe the response of the request sending data back to OHIF from Girder

Sample info Time per  phased Ratio phase over total

Criteria Slicesa Resolutionb Sizec Modeld Data  handlinge Communicationf Total Model Data handling Communication

Sample 1 16 512*512 8.6 11.75 0.46 6.79 19 0.63 0.02 0.36
Sample 2 60 352*352 15.1 22.18 0.96 11.8 34 0.65 0.03 0.29
Sample 3 26 1024*1024 54.6 13 2.21 42.79 58 0.22 0.04 0.55

Fig. 7  Enhanced OHIF: (left) only shows the radiomics panel, it is 
accessible the same way as the segmentation panel on the side on 
the window. (middle) shows the side panel for launching diagnostic. 
(right) Presentation of the scoring panel. One can select a type of 

score, and then the chosen score. Here it uses a scale of pre-defined 
values but for other cases a text box can display. A physician can 
enter the confidence in their scoring and add a comment before sav-
ing it to the Girder server
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Computer‑Aided Classification and Prognostic

As the two previous actions, automatic computer-aided clas-
sification for prognostic was also implemented in the same 
Girder plugin. For the moment, one model to predict patient 
treatment response for Osteosarcoma was integrated. This 
model required a radiomic file as an input. that should be 
passed as an argument to the API request. The reference to 
this file is part of the request parameters and then mounted 
from the Girder data storage to the docker volume.

The automatic models from data mining were imple-
mented in a third panel. It was built as a two-part panel, 
the first part for launching the automatic models and the 
second part for the results files. Number and type of inputs 
were stored with the model information in Girder and were 
transmitted to OHIF to create a custom and generic input 
form for each model. Figure 7 (middle) presents the form 
for the osteosarcoma treatment response prediction model.

Other Panel

An emerging need was to be able to score or evaluate data. 
This involved either scoring a piece of data according to a 
specific criterion, or giving a confidence index to a segmen-
tation, an image or a value. This scoring module was built 
for the Modified Rankin Scale. It was designed with general-
ization in mind. Figure 7 (right) shows how a user can select 
the type and enter the score either from pre-defined choices 
or a text box. The scores are then recorded and associated 
with the data (primary or derived) for subsequent statistical 
analysis or evaluation.

Discussion

The medical viewer AWESOMME has been designed to help 
clinicians and radiologists to easily create research cohorts of 
data including metadata and annotation in a setting designed 
to fit in with their daily hospital routine. It was created with 
security of access and traceability in mind, while promot-
ing ease of access and use. Meaning, the platform should be 
accessible on any machine in the hospital network and should 
include familiar analysis tools. Three different actions were 
implemented in the platform, segmentation, feature extraction 
and classification for computer-aided diagnosis.

To answer the first requirement, the decision was made to 
develop the solution as web-based platform. Desktop soft-
ware solutions such as original Slicer 3D require independ-
ent multi-installations for multi-machine use. A single instal-
lation, accessible on all Internet-connected machines in the 
hospital environment, ensures the same controlled, secure 
and homogeneous environment across all hospital machines.

The architecture generally encountered in the implemen-
tation of a medical web viewer is a set of at least three com-
ponents: a data server, a computational server and a web 
interface. This is the architecture on which both the Monai-
Label solution and the XNAT software are based. XNAT 
uses the web viewer as a plugin rather than the main com-
ponent of its solution while our solution uses it as the main 
interface for the user.

The choice of data server is a keypoint question. The 
component chosen for the web interface, OHIF, is based on 
a DICOMweb communication protocol. In our hospital case, 
PACS uses a similar system, so the platform connection to 
the hospital database should be straightforward. However, 
this raises a few questions. Uploading research data to PACS 
from the platform, particularly DICOM segmentation files, 
is currently prohibited to avoid overloading clinical PACS. 
That’s why the choice was made in favor of the Orthanc data 
server, which can also be enhanced. On the other hand, it 
was necessary to maintain a link to PACS for ongoing data 
import. This has justified the need of a PACS import mod-
ule. OHIF used as the main interface was chosen as it is an 
ergonomic, web-based viewer. From literature and develop-
ments made during this project, OHIF has appeared as an 
easily expendable and ergonomic tool. In spite of that, these 
two components (Orthanc and OHIF) do not allow the user 
to run heavy calculations such as machine learning models. 
The third component in the architecture was used for this 
purpose. Girder was chosen because it is a modular compo-
nent that also serves as a data repository for non-DICOM 
files. Girder does not use the protocol required for OHIF 
justifying the user of the Orthanc data server. Girder’s native 
features as users and groups management have been used 
to offer a strong cohort filter for data. It relies on matching 
data on the data server Orthanc and a list of references in 
Girder. References should be manually added on Girder’s 
interface or using the requests. In our case, the requests are 
sent by OHIF which have the import module for users. It 
meets security requirement by restricting access to data 
regarding user’s right.

In the AWESOMME infrastructure, computational ser-
vices and management of user rights are associated in one 
web-services server. This coupling implies that comput-
ing resources are directly linked to the deployment envi-
ronment. In our case, AWESOMME is offered on a server 
with dedicated GPU resources. These resources are more 
than sufficient for the proof of concept. On the other hand, 
in the event of an increase in data use and computational 
demands, the computational part could easily be deported to 
a possible computational cluster. Unfortunately, having sev-
eral components also brings the disadvantage to have more 
parts to maintain, in different programming languages. The 
evolution from OHIF version 2 to version 3.3 is a perfect 
example of the difficulties that can be encountered: changes 
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to sub-modules imply the deletion/modification of function-
alities in the interface.

Another major limitation of this architecture is also the 
regular exchange of information between the different com-
ponents. It appears from preliminary results of a time cost 
analysis that the characteristics of the data (number of slices 
and resolution) have an impact on the time it takes to com-
plete the request. Two aspects are taken into consideration: 
the time of the model and the time during the communica-
tion of the results between Girder and OHIF. The first is 
part of the optimization of the model, but the latter should 
be decreased as much as possible as it is strongly dependent 
on the quality of the network connection. In the study case 
of this article, emergency and fast response is not a key point 
but it can be in other circumstances. Limitations surround-
ing temporal costs should be the subject of a specific and 
more complete analysis to fully comprehend their impact on 
machine learning models’ uses during clinical routine. The 
possibilities for optimizing models do not fall within the 
scope of this manuscript, although the use of GPUs for infer-
ence could perhaps improve model calculation times. We are 
currently studying strategies for optimizing data exchanges 
but we have yet not concluded. For example, by avoiding 
going through the results of the query and directly uploading 
the results from Girder by transmitting only the information 
from the segmentation series to OHIF so that it can reload 
this data specifically.

To the best of our knowledge, no other web-based plat-
form included a complete workflow of analysis: segmenta-
tion, feature extraction and diagnostic support. MonaiLabel 
offers a comprehensive solution for segmentation including 
functionalities for continuous learning. Both MonaiLabel 
and XNAT solutions rely on the component OHIF that the 
platform AWESOMME uses as well since OHIF already 
offers manual tools for segmentation. The segmentation 
panel for these solutions does not satisfy all the function-
alities required, notably the import of previous segmenta-
tion done on a desktop software or feature extraction. The 
recent version of the plugin XNAT-OHIF based its current 
interface for the segmentation panel on MonaiLabel and 
does not include feature extraction. One of the key points of 
this project was to be able to re-inject segmentation made 
on desktop software. As manual segmentation is very time-
consuming, it was important that the platform was able to 
continue to use previously performed segmentation, thus 
saving clinicians the trouble of having to do it all over 
again. This functionality is not implemented in MonaiLabel 
and not available in the web-viewer access point of XNAT 
(but in the data management interface). AWESOMME ena-
bles it, for both DICOM (SEG) and NiFti. Other formats 
are widely used for segmentation, as DICOM RTStruct 
and NRRD for example, import function for these formats 
should be made available shortly.

Integration of the main use case model was completed by 
the addition of other models extending possible case studies. 
It was the opportunity to analyze the process of automatic 
model integration into the platform. Although the Docker 
system is quite useful to connect easily Girder to new model, 
models themselves can be harder to handle. As they are 
developed by different researchers in different study cases, 
inputs are not homogeneous from one model to another. The 
types of the inputs can change, from DICOM to NiFti for 
image input format and models can even be based on dif-
ferent type of data (radiomic) or image for classification. It 
highlights the need of specific guidelines for future models, 
all pre-processing and post-processing should be included 
in the docker system. Data could be provided in a specific 
format, initiatives as Brain Imaging Data Structure (BIDS) 
[33] are example of data structures that could be replicated 
in AWESOMME. New automatic model should rely on the 
same data structure or change it directly in pre-processing 
steps in their docker image. The same strategy should apply 
to outputs. Integration of automatic models was successful 
as model trained for research were used on new incoming 
data. As previously mentioned, it is important to notice that 
analysis of the automatic models results is outside of the 
scope of this project and should be further evaluated in a 
follow-up study.

Regarding feature extraction, AWESOMME offers radi-
omics extraction based on a specific python module. The 
extraction of radiomics in the platform environment is 
intended to be reproducible as the choice of the module was 
made to ensure the compliance with international initiatives 
on radiomics guidelines. It could be relevant to add more 
compliant modules for radiomic extraction. The platform 
could also be used in other cases of computer-aided diagno-
sis, with the extraction of non-radiomics features. It has been 
designed to integrate the addition of other feature extraction 
approaches with minimal effort.

The laboratory instance is already successfully deployed 
and the hospital instance is currently being deployed. The 
operating system available in the laboratory is different from 
that in the hospital, so a test phase was first necessary to 
check that all the components were working properly. The 
final ongoing step is the provision of a dedicated machine 
from the hospital.

Initial user’s feedback from within the laboratory and 
from the radiologists was promising. The possibility of add-
ing new data and functionalities specific to research projects 
was mentioned. For example, the import module has been 
created at the request of clinicians and colleagues. The plat-
form has then demonstrated to be modular and adaptable to 
different study cases. Teams which provided data samples 
are eager to use the platform, naming the scoring project and 
the lungs volume segmentation. It leads to new functionality 
development enabling, for example, visualization of scores 
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or adding new computer-aided diagnosis model. A new need 
also arose to enable inter-expert evaluation, especially in the 
case of multi-center cohorts. It means that analysis done by 
an expert (either scoring, annotation etc...) could be com-
pared to another expert inputs.

Conclusion

The purpose of this platform is to provide a direct link 
between machine learning algorithms and clinical research 
and diagnosis for the analysis of large volumes of patient 
data while ensuring protection and traceability of sensitive 
data. As several tools already exist for specific applications 
or actions, this solution aims to centralize all processing 
steps to visualize and produce expert data more efficiency.

Based on a three-component architecture, enhancements 
of the basic elements have been proposed allowing the 
implementation of secure and generic use of AWESOMME. 
Import of data on the platform has been facilitated with 
anonymization and upload functionalities in a data collection 
system. Users access and data restriction were implemented 
through a filter on these cohorts. Regarding the actions 
available, automatic models for both segmentation and clas-
sification (computer-aided diagnosis) were wrapped inde-
pendently in Docker images callable from one on the major 
architecture component. Feature extraction was developed 
to comply with existing initiative and ensure repeatability.

Thanks to the authentication and user access control, patient 
data and information are secured and user actions are tracked 
down at any time. Different types of data and application have 
been considered to demonstrate scalability and generalization. 
AWESOMME’s simplified multi-expert management opens 
up the possibility of creating cohorts enriched with annotations 
and inter-expert variability at low cost. The platform AWE-
SOMME has then the capacity to provide a new approach 
for multi-sources data processing (images, radiomics etc...) 
helping to better understand patient outcomes classification 
and prediction thanks to machine learning research through a 
clinician-friendly interface.

Author Contributions All authors contributed to the study conception. 
Tiphaine Diot and Frederic Cervenansky contribute to the design of 
AWESOMME. Data collection and analysis were performed by Amine 
Bouhamama and Benjamin Leporq. The first draft of the manuscript was 
written by Tiphaine Diot and all authors commented on previous versions 
of the manuscript. All authors read and approved the final manuscript.

Funding This work was supported by the CNRS via the INS2I single call. 
This work was performed within the framework of the LABEX PRIMES 
(ANR-11-LABX-0063) of Université de Lyon, within the program "Inves-
tissements d'Avenir" operated by the French National Research Agency 
(ANR).

Data Availability The datasets used during and/or analyzed during the 
current study are not available; they belong to the producer/host center: 
CLB. The data used in this study adhere to the tenets of the Declara-
tion of Helsinki.

Declarations 

Ethics Approval This is a technical study. The CLB Research Ethics 
Committee has confirmed that no ethical approval is required.

Consent to Participate Informed consent was obtained from all indi-
vidual participants included in the study.

Consent to Publication The authors affirm that human research partici-
pants provided informed consent for publication of the images in Fig. 6.

Conflict of Interest The authors declare no competing interests.

References

 1. König, I.R., Fuchs, O., Hansen, G., al.: What is precision medi-
cine? Eur. [R]espir. [J]. 50 (2017) https:// doi. org/ 10. 1183/ 13993 003. 
00391- 2017

 2. Hingorani, A.D., Windt, D.A., Riley, R.D.e.a.: Prognosis research 
strategy (progress) 4: stratified medicine research. BMJ 346 
(2013) https:// doi. org/ 10. 1136/ bmj. e5793

 3. Bouhamama, A.: Can Radiomic Predict Response to Neoadjuvant 
Chemotherapy of Osteosarcomas? European Congress of Radiol-
ogy, (2019). https:// doi. org/ 10. 26044/ ECR20 19/C- 0930

 4. Sun, R., Lerousseau, M., Henry, T., Carré, A.e.a.: Intelligence arti-
ficielle en radiothérapie : radiomique, pathomique, et prédiction de 
la survie et de la réponse aux traitements. Cancer [R]ad. 25(6-7), 
630–637 (2021) https:// doi. org/ 10. 1016/j. canrad. 2021. 06. 027

 5. Xie, F., Chan, J.C., Ma, R.C.: Precision medicine in diabetes pre-
vention, classification and management. J. of [D]ia. [I]nv. 9(5), 
998–1015 (2018) https:// doi. org/ 10. 1111/ jdi. 12830

 6. Bleker, J., Kwee, T.C., Yakar, D.: Quality of multicenter studies 
using mri radiomics for diagnosing clinically significant prostate 
cancer: A systematic review. Life 12(7) (2022) https:// doi. org/ 10. 
3390/ life1 20709 46

 7. Zhang, Z., Xie, Y., Xing, F., McGough, M., Yang, L.: Mdnet: A 
semantically and visually interpretable medical image diagnosis 
network. In: 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 3549–3557 (2017)

 8. Lambin, P., Rios-Velazquez, E., Leijenaar, R.e.a.: Radiomics: 
extracting more information from medical images using advanced 
feature analysis. Eur. J. [C]ancer 48, 441–6 (2012) https:// doi. org/ 
10. 1016/j. ejca. 2011. 11. 036

 9. Haomin, C., Caalina, G., Chien-Ming, H., Mathias, U.: Explain-
able medical imaging ai needs human-centered design: guidelines 
and evidence from a systematic review. npj [D]ig. [M]ed. 5 (2022) 
https:// doi. org/ 10. 1038/ s41746- 022- 00699-2

 10. Yushkevich, P.A., Piven, J., Hazlett, H.C., Gimpel Smith, R.e.a.: 
User-guided 3d active contour segmentation of anatomical structures: 
Significantly improved efficiency and reliability. NeuroImage 31(3), 
1116–1128 (2006) https:// doi. org/ 10. 1016/j. neuro image. 2006. 01. 015

 11. Goch, C.J., Metzger, J., Nolden, M.: Abstract: Medical research data 
management using MITK and XNAT. In: Informatik Aktuell, pp. 
305–305 (2017). https:// doi. org/ 10. 1007/ 978-3- 662- 54345-0_ 68

 12. Doran, S., Sa’d, M.A., Petts, J., Darcy, J.e.a.: Integrating the OHIF 
viewer into XNAT: Achievements, challenges and prospects for 

https://doi.org/10.1183/13993003.00391-2017
https://doi.org/10.1183/13993003.00391-2017
https://doi.org/10.1136/bmj.e5793
https://doi.org/10.26044/ECR2019/C-0930
https://doi.org/10.1016/j.canrad.2021.06.027
https://doi.org/10.1111/jdi.12830
https://doi.org/10.3390/life12070946
https://doi.org/10.3390/life12070946
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1038/s41746-022-00699-2
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1007/978-3-662-54345-0_68


Journal of Imaging Informatics in Medicine 

quantitative imaging studies. Tomo. 8(1), 497–512 (2022) https:// 
doi. org/ 10. 3390/ tomog raphy 80100 40

 13. Zhang, L., Fried, D.V., Fave, X.J., Hunter, L.A., Yang, J., Court, 
L.E.: An open infrastructure software platform to facilitate collab-
orative work in radiomics. Med. [P]hy. 42(3), 1341–1353 (2015) 
https:// doi. org/ 10. 1118/1. 49082 10

 14. Korte, J.C., Cardenas, C., Hardcastle, N.e.a.: Radiomics feature 
stability of open-source software evaluated on apparent diffu-
sion coefficient maps in head and neck cancer. Scientific Reports 
11(17633) (2021) https:// doi. org/ 10. 1038/ s41598- 021- 96600-4

 15. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J.e.a.: 3d 
slicer as an image computing platform for the quantitative imaging 
network. Magn. [R]es. [I]mag. 30(9), 1323–1341 (2012) https:// 
doi. org/ 10. 1016/j. mri. 2012. 05. 001

 16. Ziegler, E., Urban, T., Brown, D., Petts, J., Pieper, S.D.e.a. : 
Open health imaging foundation viewer: An extensible open-
source framework for building web-based imaging applications 
to support cancer research. JCO [C]lin. [C]an. [I]nf. (4), 336–345 
(2020). https:// doi. org/ 10. 1016/j. mri. 2012. 05. 001

 17. Han, S., Shin, J., Jung, H., Ryu, J.e.a.: ADAS-viewer: web-based 
application for integrative analysis of multi-omics data in alzhei-
mer’s disease. npj [S]yst. [B]iol. [A]ppl. 7(1) (2021) https:// doi. 
org/ 10. 1038/ s41540- 021- 00177-7

 18. Keshavan, A., Datta, E., McDonough, I.M.e.a.: Mindcontrol: A 
web application for brain segmentation quality control. NeuroIm-
age 170, 365–372 (2018) https:// doi. org/ 10. 1016/j. neuro image. 
2017. 03. 055

 19. Lajara, N., Espinosa-Aranda, J.L., Deniz, O., Bueno, G.: Optimum 
web viewer application for DICOM whole slide image visualization 
in anatomical pathology. Comp. [M]eth. and [P]rog. [B]iomed. 179, 
104983 (2019) https:// doi. org/ 10. 1016/j. cmpb. 2019. 104983

 20. Gustafson, C., Bug, W.J., Nissanov, J. BMC Bioinformatics : 
a client-server system for browsing 3d biomedical image data 
sets. BMC Bioinformatics 8(1) (2007). https:// doi. org/ 10. 1186/ 
1471- 2105-8- 40

 21. Reynolds, S.M., Miller, M., Lee, P.e.a.: The ISB cancer genom-
ics cloud: A flexible cloud-based platform for cancer genomics 
research. Cancer [R]es. 77(21), 7–10 (2017) https:// doi. org/ 10. 
1158/ 0008- 5472. can- 17- 0617

 22. Diaz-Pinto, A., Alle, S., Ihsani, A., Asad, M.e.a.: Monai label: 
A framework for ai-assisted interactive labeling of 3d medical 
images (2022) arXiv: 2203. 12362

 23. Nomura, Y., Miki, S., Hayashi, N.e.a.: Novel platform for develop-
ment, training, and validation of computer-assisted detection/diag-
nosis software. Int. J. of [C]omp. [A]ss. Rad. [S]ur. 15, 661–672 
(2020) https:// doi. org/ 10. 1007/ s11548- 020- 02132-z

 24. Rubin, D.L., Akdogan, M.U., Altindag, C., Alkim, E.: ePAD: An 
image annotation and analysis platform for quantitative imaging. 
Tomography 5(1), 170–183 (2019) https:// doi. org/ 10. 18383/j. tom. 
2018. 00055

 25. Egger, J., Wild, D., Weber, M., Ramirez Bedoya, C.A.e.a.: Studi-
erfenster: an open science cloud-based medical imaging analysis 
platform. J. [D]ig. [I]ma. 35(2), 340–355 (2022) https:// doi. org/ 
10. 1007/ s10278- 021- 00574-8

 26. Bouhamama, A., Leporq, B., Khaled, W., Nemeth, A.e.a.: Predic-
tion of histologic neoadjuvant chemotherapy response in osteo-
sarcoma using pretherapeutic mri radiomics. Rad. [I]ma. [C]an. 
4(5) (2022) https:// doi. org/ 10. 1148/ rycan. 210107

 27. Bick, U., Lenzen, H.: PACS: the silent revolution. Eur. [R]ad. 9(6), 
1152–1160 (1999) https:// doi. org/ 10. 1007/ s0033 00050 811

 28. Richardson, L., S., R.: Restful Web Services, (2007)
 29. Grauer, M., Rose, L., Choudhury, R.: Understanding the resonant 

platform. Kitware (2016)
 30. Griethuysen, J.J.M., Fedorov, A., Parmar, C.e.a.: Computational 

radiomics system to decode the radiographic phenotype. Cancer 

[R]es. 77(21), 104–107 (2017) https:// doi. org/ 10. 1158/ 0008- 5472. 
can- 17- 0339

 31. Zwanenburg, A., Vallières, M., Abdalah, M., Aerts, H.e.a.: The 
image biomarker standardization initiative: Standardized quanti-
tative radiomics for high-throughput image-based phenotyping. 
Radiology 295(2), 328–338 (2020) https:// doi. org/ 10. 1148/ radiol. 
20201 91145

 32. Guérin, J., Laizet, Y., Le Texier, V., Chanas, L.e.a.: OSIRIS: A 
minimum data set for data sharing and interoperability in oncol-
ogy. JCO [C]lin. Cancer [I]nf. (5), 256–265 (2021) https:// doi. org/ 
10. 1200/ cci. 20. 00094

 33. Gorgolewski, K., Auer, T., Calhoun, V.e.a.: The brain imaging 
data structure, a format for organizing and describing outputs of 
neuroimaging experiments. Sci/ Data 3(160044) (2016) https:// 
doi. org/ 10. 1038/ sdata. 2016. 44

   34.  Samuel G., Armato Geoffrey, McLennan Luc, Bidaut Michael F., 
McNitt‐Gray Charles R., Meyer Anthony P., Reeves Binsheng, 
Zhao Denise R., Aberle Claudia I., Henschke Eric A., Hoffman 
Ella A., Kazerooni Heber, MacMahon Edwin J. R., van Beek 
David, Yankelevitz Alberto M., Biancardi Peyton H., Bland 
Matthew S., Brown Roger M., Engelmann Gary E., Laderach 
Daniel, Max Richard C., Pais David P.‐Y., Qing Rachael Y., 
Roberts Amanda R., Smith Adam, Starkey Poonam, Batra Philip, 
Caligiuri Ali, Farooqi Gregory W., Gladish C. Matilda, Jude 
Reginald F., Munden Iva, Petkovska Leslie E., Quint Lawrence H., 
Schwartz Baskaran, Sundaram Lori E., Dodd Charles, Fenimore 
David, Gur Nicholas, Petrick John, Freymann Justin, Kirby Brian, 
Hughes Alessi, Vande Casteele Sangeeta, Gupte Maha, Sallam 
Michael D., Heath Michael H., Kuhn Ekta, Dharaiya Richard, 
Burns David S., Fryd Marcos, Salganicoff Vikram, Anand Uri, 
Shreter Stephen, Vastagh Barbara Y., Croft Laurence P., Clarke 
(2011) The Lung Image Database Consortium (LIDC) and Image 
Database Resource Initiative (IDRI): A Completed Reference 
Database of Lung Nodules on CT Scans Medical Physics 38(2) 
915-931. https:// doi. org/ 10. 1118/1. 35282 04 

 35. Etmann C., K.R., -B., S.: iUNets: Learnable Invertible Up- and 
Downsam- pling for Large-Scale Inverse Problems, vol. 11 (2020)

   36.  Jean-Christophe, Richard Florian, Sigaud Maxime, Gaillet Maciej, 
Orkisz Sam, Bayat Emmanuel, Roux Touria, Ahaouari Eduardo, 
Davila Loic, Boussel Gilbert, Ferretti Hodane, Yonis Mehdi, 
Mezidi William, Danjou Alwin, Bazzani Francois, Dhelft Laure, 
Folliet Mehdi, Girard Matteo, Pozzi Nicolas, Terzi Laurent, Bit-
ker (2022) Response to PEEP in COVID-19 ARDS patients with 
and without extracorporeal membrane oxygenation. A multicenter 
case–control computed tomography study Abstract Critical Care 
26(1). https:// doi. org/ 10. 1186/ s13054- 022- 04076-z 

   37.  Ludmilla, Penarrubia Aude, Verstraete Maciej, Orkisz Eduardo, 
Davila Loic, Boussel Hodane, Yonis Mehdi, Mezidi Francois, 
Dhelft William, Danjou Alwin, Bazzani Florian, Sigaud Sam, 
Bayat Nicolas, Terzi Mehdi, Girard Laurent, Bitker Emmanuel, 
Roux Jean-Christophe, Richard (2023) Precision of CT-derived 
alveolar recruitment assessed by human observers and a machine 
learning algorithm in moderate and severe ARDS Abstract Inten-
sive Care Medicine Experimental 11(1). https:// doi. org/ 10. 1186/ 
s40635- 023- 00495-6 

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.3390/tomography8010040
https://doi.org/10.3390/tomography8010040
https://doi.org/10.1118/1.4908210
https://doi.org/10.1038/s41598-021-96600-4
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1038/s41540-021-00177-7
https://doi.org/10.1038/s41540-021-00177-7
https://doi.org/10.1016/j.neuroimage.2017.03.055
https://doi.org/10.1016/j.neuroimage.2017.03.055
https://doi.org/10.1016/j.cmpb.2019.104983
https://doi.org/10.1186/1471-2105-8-40
https://doi.org/10.1186/1471-2105-8-40
https://doi.org/10.1158/0008-5472.can-17-0617
https://doi.org/10.1158/0008-5472.can-17-0617
http://arxiv.org/abs/2203.12362
https://doi.org/10.1007/s11548-020-02132-z
https://doi.org/10.18383/j.tom.2018.00055
https://doi.org/10.18383/j.tom.2018.00055
https://doi.org/10.1007/s10278-021-00574-8
https://doi.org/10.1007/s10278-021-00574-8
https://doi.org/10.1148/rycan.210107
https://doi.org/10.1007/s003300050811
https://doi.org/10.1158/0008-5472.can-17-0339
https://doi.org/10.1158/0008-5472.can-17-0339
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1200/cci.20.00094
https://doi.org/10.1200/cci.20.00094
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1118/1.3528204
https://doi.org/10.1186/s13054-022-04076-z
https://doi.org/10.1186/s40635-023-00495-6
https://doi.org/10.1186/s40635-023-00495-6

	Development of a Secure Web-Based Medical Imaging Analysis Platform: The AWESOMME Project
	Abstract
	Introduction
	Materials and Methods
	Datasets
	Use Case Study
	Other Datasets

	Architecture
	Image Data Server: Orthanc
	Web-Services Server: Girder
	Web Viewer: OHIF

	Modules Methods
	Authentication
	Segmentation
	Feature Extraction
	Classification


	Results
	Deployment Phase Results
	Security: User Management and Data Protection
	User Management
	Data Protection

	Data Analysis Implementations
	Batch Analysis Module
	Segmentation
	Feature Extraction
	Computer-Aided Classification and Prognostic
	Other Panel


	Discussion
	Conclusion
	References


