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Abstract

In this paper, we widen the naming problem studies to the rule-based graph 3D transformation mod-
eling systems. We propose a persistent naming method taking advantage of the generalized maps’ and
graph transformation rules’ formalization of simple operations. It enables a unique and homogeneous
characterisation of entities in all dimensions. Most existing methods require tracking numerous topo-
logical entities and consider the persistent naming problem only from the parameters’ modifications
of a parametric specification standpoint. With our solution, not only the naming problem is tackled
within the usual framework of parameters edition, but we also take the specification edition into ac-
count (addition, deletion and displacement of operations). Moreover, our solution makes use of directed
acyclic graphs to represent the histories of topological entities and to track only the entities used in
the parametric specification and the ones they originate from.

Keywords
Topology-based modeling; Graph transformation rules; Persistent Naming; Reevaluation; Generalized
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1 Introduction
The ability to generate multiple variants of an
object during a construction process is becoming
increasingly frequent in many application areas.
Most of the time, tools and operations used to cre-
ate those variants are dedicated to specific fields
and the construction process is often both tedious
and time-consuming.

For example, in the field of Archaeology, remain-
ing data found on the working field often represent
only vestiges of ancients buildings. By means of
3D reproduction, archaeologists painstakingly de-

Accepted at WSCG 2024. The definitive version is avail-
able at http://wscg.zcu.cz/wscg2024/papers/2024_B17-f
ull.pdf

velop a number of hypotheses they expect to test
while being able to quickly model and visualize
them [QB15]. CAD uses parametric history-based
systems; such systems can be thought as dual struc-
tures with, on the one hand, the geometric model
corresponding to the modelled object and, on the
other hand, the successive operations (and their pa-
rameters) recorded during the construction process.
This process can then be reevaluated after some
slight modifications upon the operations, without
starting all over again from the beginning. Nev-
ertheless, creating complex objects always requires
a substantial amount of time. Modeling buildings
is also of interests for architects. Grammar-based
procedural methods are commonly used to gener-
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ate variations of constructions [HMV09; Mül+06].
But those grammars are based on a specific cor-
pus of information which is difficult to transpose to
other case studies.

In this paper, we propose to use a rule-based
graph 3D transformation formalism, and more
specifically the Jerboa software [Bel+14], to make
the development of dedicated modelers for specific
applications easier. Rule-based languages for mod-
eling are commonly used in a number of fields such
as plant growth with L-systems [Lin74; BTG15],
wood’s internal structure [Ter+09], or virtual cities
3D models [ESR; Bei+10]. Contrary to other ap-
proaches, Jerboa is independent from any specific
application field and does not require ad hoc opera-
tions to be manually coded. Simple operations are
formally defined as rules within the Jerboa inter-
face, thereby facilitating their rapid development.
Furthermore, it guarantees the topological consis-
tency of the underlying geometric model, regardless
of the applied operations [Arn+22].

Jerboa is based on the generalized maps (or G-
maps) topological model [Lie91; DL14]. This model
represents a specific class of labelled graph and al-
lows the homogeneous modeling of quasi-manifolds
in any dimension. Number of applications already
make use of Jerboa and/or G-maps in fields such
as plant growth [BTG15], architecture [Hor+09;
ALS15], geology [HH00] or physics-based modeling
[Ben+17].

Despite its advantages, Jerboa does not provide
the mechanisms required to quickly reevaluate vari-
ations from a base model. Conversely, history-
based parametric systems take advantage of the
construction process recording to make reevalua-
tions as fast and accurate as possible. Thus, our
objective is to extend the capabilities of Jerboa by
incorporating the mechanisms inherent in paramet-
ric systems.

Any reevaluation of the parametric specifica-
tion entails modifying the parameters of the op-
erations. Those parameters are either geometric
(such as the length of a groove) or references topo-
logical entities (vertices, edges, faces and so on)
defined at an earlier stage of the modeling pro-
cess. Modifying some operation parameters re-
quires ensuring that the subsequent operations are
still valid, even if their own parameters have been
updated. This issue, known as persistent nam-
ing, is illustrated in Fig. 1. The initial paramet-

(a) Initial evaluation

(b) Reevaluation

Figure 1: Parametric specification

ric specification consists of three constructive op-
erations (Fig. 1a): 1-CreateCylinder(geo_param1);
2-RoundedGroove(f1, geo_param2); 3-Cylindrical-
Protrusion(f2, geo_param3). When identifiers or
pointers (i.e. concrete names) to the topologi-
cal parameters of a geometric model (e.g. the
identifier of the face f2 as a parameter of the
CylindricalProtrusion operation) are used as
topological parameters, the issue of the persistence
of these references at reevaluation comes up. For
example, in Fig. 1b, the rounded groove’s length is
reduced. The face f1 is not split anymore, unlike
during the initial evaluation. Thus, neither face
f2 nor face f3 are created: identifiers and pointers
to the entities are obviously different and, there-
fore, the cylindrical protrusion can no longer be
re-applied onto f2. Hence the necessity to use per-
sistent identifiers as operations parameters, which
make possible to unambiguously characterize enti-
ties and find their match at reevaluation. In Fig. 1,
using a persistent name to characterize f2 during
the initial evaluation allows matching it with the
face fx at reevaluation. Although persistent nam-
ing has been studied for decades in the CAD’s field
[Wu+01; MH05; Mar06; Bab10; Xue+16; FH18;
Saf+20; CBS23; DZ24], to our knowledge two pre-
liminary approaches have attempted to use graph
transformation rules to tackle this issue [Car+19;
Gai+23b]. In [Car+19], the authors propose to
use History Records (HRs) to represent the history
of any topological entity designated in parametric
specification and Matching Trees (MT) to match
this entity during reevaluation. This is an inter-
esting initial theoretical approach based on graph
transformation, but the history represented in HR
is limited. In particular, no distinction is made be-
tween the entities at the origin of the designated
entity and the evolution of the designated entity
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itself. Furthermore, some elements are omitted in
HRs (such as the history of entities at the origin
of the designated entity), which can lead to mis-
matches during reevaluation. In the concise poster
paper [Gai+23b], the authors propose a full persis-
tent naming mechanism based on graph transfor-
mation rules. They also propose to complete the
histories of topological entities by taking their ori-
gins into account and integrate them in a reevalu-
ation mechanism. In this paper, we base our work
on [Gai+23b] to integrate the complete history of
topological entities. Our contribution is twofold.
First, we widen the naming problem studies to the
rule-based graph transformation modeling systems.
Second, we integrate the mechanisms of reevalua-
tion for parametric systems into Jerboa.

We propose a persistent naming method taking
advantage of the rule-based formalization of oper-
ations and their ability to precisely describe the
history of topological entities, such that these enti-
ties are uniquely and homogeneously characterized
for all dimensions. Most existing methods require
tracking numerous topological entities and consider
the persistent naming problem only through the
prism of parameters modifications from a paramet-
ric specification standpoint[CH95; Wu+01]. Our
solution tracks only the entities used in the para-
metric specification and the ones they originate
from. Moreover, not only the naming problem is
tackled within the usual framework of parameter
edition, but we also take the specification edition
(i.e. adding, deleting and reordering of operations)
into account.

In section 2, we present the necessary concepts
to carry out persistent naming mechanisms within
the framework making use of graph transforma-
tion rules. We focus on G-maps, Jerboa’s rules,
and on how to automatically detect topological
changes (creation, deletion, split, merging, modifi-
cation) that may occur upon any rule application.
Section 3 is dedicated to the data structures used
by parametric specifications and persistent naming.
Section 4 describes how a parametric specification
is evaluated or reevaluated through directed acyclic
graphs which track the evolutions of topological en-
tities and the ones they originate from. Section 5
presents the matching process between evaluated
and reevaluated entities. We conclude in section 6
and present the main directions of our future works.

2 Main concepts

In this section, we present the generalized maps,
graph transformation rules and their subsequent
concepts which are necessary to the understanding
of our contribution.

2.1 Generalized maps

Generalized maps (or G-maps) [Lie91; DL14] al-
low the representation of manifold geometric ob-
jects (with or without boundaries), based on a cel-
lular n-dimensional topological structure. The rep-
resentation of an object as a G-map comes intu-
itively from its decomposition into topological cells
(vertices, edges, faces, volumes, and so on). For
example, the 3D topological object (Fig. 2a) can
be decomposed into two volumes (Fig. 2b): a cube
and a pyramid. These volumes are linked along
their common faces with a 3-link, drawn in green.
The index "3" means that the link connects two 3-
dimensional (possibly a single one) volumes. In the
same way, volumes are split into faces connected
with blue 2-links (Fig. 2c). Then, faces are split
into edges connected with red 1-links (Fig. 2d).
Lastly, edges themselves are split into vertices with
black 0-links (Fig. 2e) to produce the 3-G-map de-
scribing the objects shown in Fig. 2a. A G-map is
therefore a graph, the nodes (named darts) are ver-
tices of edges of faces of volumes and the arcs are
i-links. By convention, border darts have 3 loops
which are not represented to make the figures easier
to read. G-maps have conditions guaranteeing ob-
jects consistency, for example, two faces are always
linked along an edge.

Topological cells are not explicitly represented in
G-maps but only implicitly defined as subgraphs
named orbits. They can be computed using graph
traversals defined by an originating dart and by a
given set of link labels. For example, the 0-cell
(or the object’s vertex) incident to some dart a
(Fig. 3a) is the subgraph which contains a and all
darts reachable from a, using links labelled by 1, 2
or 3 and the links themselves. This subgraph is de-
noted by G⟨1, 2, 3⟩(a) where ⟨1, 2, 3⟩ is the type of
the orbit and models a vertex. The 1-cell (or edge)
incident to a (Fig. 3b) is the subgraph G⟨0, 2, 3⟩(a)
which contains a and all the reachable darts using
links labelled by 0, 2 or 3 and the corresponding
links. The 2-cell (or face) incident to a (Fig. 3c) is
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(a) (b) (c) (d) (e)

Figure 2: Cell decomposition of a geometric 3D object
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Figure 3: Orbit decomposition of a geometric 3D object

the orbit G⟨0, 1, 3⟩(a). The 3-cell (or volume) inci-
dent to a (Fig. 3d) is the orbit G⟨0, 1, 2⟩(a). Note
that orbits are more general than cells. For ex-
ample, the volume edge G⟨0, 2⟩(a) (Fig. 3e) is the
⟨0, 2⟩-orbit incident to a.

2.2 Graph transformation rules

Jerboas’s [Bel+14; Arn+22] graph transformation
rules allow the formalization of operations over G-
maps. In a few words, a rule r : L −→ R and
a match m : L → G to a G-map G, describe the
transformation G −→r,m H from G to H. The
match m allows the replacement of a subgraph of
G described by the left-hand side of the rule L with
another one described by the right-hand side R, in
order to produce H.

Informally, in the extrusion rule (Fig. 4), the left-
hand side is made of only one node n1 (orange)
labelled with the ⟨0, 1⟩ face type: this way, it can
match any face. For the match m : n1 7→ 6 from
L to G (Fig. 5a), the node n1 matches the whole
face G⟨0, 1⟩(6). On the right side, the node n1 label
remains ⟨0, 1⟩. This means that, after applying the
rule, the matched face ⟨0, 1⟩(6) has been preserved,
in other words G⟨0, 1⟩(6) = H⟨0, 1⟩(6) (Fig. 5). In
R, the new node n2 (blue) creates, a copy of the
matched face in H. However, n2’s label is ⟨0,_⟩
meaning that 0-links are preserved and 1-links are

deleted. Therefore, n2 creates face edges ⟨0⟩ from
the edges of the matched face. In a similar way, n3

(pink) creates another copy of the matched face.
Because it is labelled ⟨_, 2⟩, 0-links are deleted, 1-
links relabelled with 2, n3 creates edge vertices ⟨2⟩
from the matched face’s vertices. Finally, the nodes
n4, n5, n6 create the same orbits than nodes n3,
n2 and n1, respectively. The nodes’ labels, called
implicit arcs, match the highlighted links (Fig. 5b).

The arc between n1 and n2, called explicit arc,
is 2-labelled in the extrusion rule (Fig.4) and 2-
links one-to-one the preserved orange darts and the
created blue darts (Fig. 5). Similarly, the explicit
arc between n2 and n3, 1-links one-to-one the blue
and pink darts.

The node n1 (Fig. 4) is a preserved node because
it belongs to both the left and right-hand sides of
the rule. Nodes n2 to n6 are created nodes because
they belong only to the right-hand side. Deleted
nodes belong only to the left-hand side. Note that
the extrusion rule does not have any deleted node.

The orbit notion is extended to patterns of rules.

Jerboa’s rules provide syntactic properties which
guarantee the preservation of the consistency of G-
maps [Arn+22].
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Figure 4: Rule extruding a face into a volume
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(b) Graph H : a cube

Figure 5: Extrusion of a face into a cube (rule
Fig. 4)

<0, 1, 3>

n0

<1, 2, 3>

n2

<0, _, 3>

n0

<_, 2, 3>

n1

1 0

Figure 6: Rule triangulating a face

33

(a) Graph H: front face
matched by n0

127

(b) Graph I: triangu-
lated front face

Figure 7: Triangulation of a face (rule Fig. 6)

2.3 Orbit tracking

Rules contain the necessary information charac-
terizing the topological changes affecting an orbit
throughout an application [Gai+23a]. Thus, the
tracking of an orbit is automatically made without
any addition other than the rules’ syntactic analy-
sis.

Consider the example of the triangulation
(Fig. 6) and its application on H’s dart 33 (Fig. 7a).
The left-hand side of the rule matches the whole
green square face H⟨0, 1, 3⟩(33) while its right-hand
side splits it into four green triangles in graph I
(Fig. 7b).

Similarly to G-maps’ orbits, in the left-hand side

of the rule, the ⟨0, 1, 3⟩-orbit incident to n0 is the
orbit containing the node reachable through arcs
labelled in ⟨0, 1, 3⟩ and those same arcs. This left-
hand side orbit is written L⟨0, 1, 3⟩(n0). Therefore,
L⟨0, 1, 3⟩(n0) is the orbit matching the green face.

In green (Fig. 6), an 1-arc connects the nodes n0

and n1 and a 0-arc connects n1 and n2, thus form-
ing the ⟨0, 1, 3⟩-orbit (face) incident to n0. This
orbit matches the four faces resulting from the ap-
plication of the rule (Fig. 7b). The syntactic analy-
sis of the rule allows us to deduce that the face orbit
is split along its implicit 1-arcs because the second
implicit 1-arc of n0 in the left-hand side is rela-
belled outside of the face ⟨0, 1, 3⟩-orbit type in the
right-hand side. Consequently, the matched face of
graph H is split along its vertices’ 1-links and into
four faces in graph I. Similarly, a rule merges two
or more ⟨o⟩-orbits when a k-th implicit arc is rela-
belled from i to j, where i ̸∈ ⟨o⟩ and j ∈ ⟨o⟩, while
there was no such k-th implicit arc in any node of
the left-hand side.

In red, the vertex orbit R⟨1, 2, 3⟩(n2) incident
to n2, matches the vertex I⟨1, 2, 3⟩(127). Since
R⟨1, 2, 3⟩(n2) only contains n2 which has been cre-
ated, thus the orbit itself is created and the appli-
cation of the rule creates the vertex I⟨1, 2, 3⟩(127).

In blue, the face vertex ⟨1, 2⟩-orbit incident to
the preserved node n0 matches the face vertices of
the green face such as the vertex orbit H⟨1, 2⟩(33).
The node n1 is added to the orbit through a 1-arc,
R⟨1, 2⟩(n0), thus modifying it. Consequently, the
matched face’s vertices of graph H are modified in
graph I.

Finally, the face edge ⟨0⟩-orbit incident to the
preserved node n0 matches the green face’s edges
in H. Since no node is added nor deleted from the
orbit nor any arc is relabelled, thus the orbit is not
modified.

Through this analysis, topological changes can be
logged within bulletin boards which are automati-
cally computed without requiring any other inter-
vention.
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Figure 8: Evaluation (a) 1-square(pos); (b) 2-extrude(PN1,vec); (c) 3-insert(PN2); (d) 4-
extrude(PN3,vec); (e) 5-triangulate(PN4); (f) 6-collapse(PN5); (g) 7-chamfer(PN6); (h) 8-colour(PN7)
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(b)
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(e)
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Figure 9: Reevaluation (a) 1-square(pos); (b) ADD1-insert(3); (c) 2-extrude(PN1,vec); (d) DELETE 3-
insert(PN2); (e) 4-extrude(PN3,vec); (f) 5-triangulate(PN4); (g) 6-collapse(PN5); (h) 7-chamfer(PN6);
(i) 8-colour(PN7)

3 Parametric specification

During an object’s construction, a parametric spec-
ification records both the rules representing the ap-
plied operations and their parameters (both topo-
logical and geometric) in order to describe the mod-
eling process. Editing a parametric specification
means that rules may be added, deleted, moved,
and their parameters can be changed. With such
changes, the topological parameters may have dif-
ferent concrete names, be deleted and so on. As a
result, using the parameters’ concrete names even-
tually lead to unexpected results (at best) or failure
at runtime. To this end, persistent names are re-
quired to robustly identify topological parameters
across an object reevaluation.

This section will follow the evaluation (Fig. 8)
of a modeling process as an example in order to
illustrate the creation of a parametric specification
and its persistent names. Its reevaluation (Fig. 9)
illustrates a variant modeling process where a rule
is added between applications 1 and 2, and where
the application 3 is deleted.

In this paper, all the figures were generated using

Jerboa and the software overlay developed to im-
plement the concepts presented in this section and
the following ones. An overview of the results can
be found here: http://xlim-sic.labo.univ-poiti
ers.fr/jerboa/doc/model-reevaluation-based-o
n-graph-transformation-rules/

3.1 Persistent name

Since rules use darts as topological parameters, it
follows that each persistent name must represent a
unique dart. As it happens, rules make it possi-
ble to determine unambiguously, which node filters
or creates any dart. For example, the square rule
(Fig. 10) creates 8 darts ex nihilo (Fig. 8a), one per
node. Thus, dart 3 is created during the first ap-
plication, by the square’s node n3. The history of
dart 3 is noted [1n3]. Similarly, since dart 5 (resp.)
6 is created by node n5 (resp. n6), its history is
[1n5] (resp. [1n6]).

The second application (Fig. 8b and for more de-
tails Fig. 5) of the face extrusion rule (Fig. 4), cre-
ates darts from the matched darts. This rule is
applied on the square face created during the first

6
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Figure 10: Rule creating a square face

application. Since this face contains 8 darts, each
of them is matched by node n1 of the extrusion rule
(Fig 5). As a consequence, nodes n2 to n6 create
darts copied from the 8 matched darts. Therefore,
dart 6’s history is now [1n6; 2n1], its copy 8’s his-
tory is [1n6; 2n2], its copy 9’s history is [1n6; 2n3],
its copy 10’s history is [1n6; 2n4] and so on. Simi-
larly, histories of darts 46 and 47 are [1n5; 2n5] and
[1n5; 2n6], respectively.

For the same reason, histories of darts 33 and 35
are [1n3; 2n2] and [1n3; 2n4], respectively. It follows
that the cube’s 48 darts all have a different history.

<0, 2, 3>

n0

<1, 2, 3>

n1

<_, 2, 3>

n0

0

Figure 11: Rule inserting a vertex on an edge

The third application (Fig. 8c) uses the rule in-
serting a vertex on an edge. Both darts 46 and
47 are matched by node n0 of the insertion rule.
Their respective histories are [1n5; 2n5; 3n0] and
[1n5; 2n6; 3n0] now. Conversely, darts 33 and 35
have not been not matched during the vertex inser-
tion and their respective histories remain [1n3; 2n2]
and [1n3; 2n4]. The object’s 52 darts, again, have
each a different history.

In short, the history of any dart of the topological
model is entirely defined by the rules applied during
the evaluation process. This process guarantees to
associate each dart with a unique history; hence,
we use this history as the persistent name of the
dart. Therefore, PN1 = [1n6], PN2 = [1n5; 2n5],
PN3 = [1n5; 2n6; 3n0] and so on.

3.2 Parametric Specification syntax
A number of fields are used to describe an appli-
cation within a parametric specification, namely
an application number, a rule application with the
topological parameters and the geometric parame-
ters.

Listing 1: Initial parametric specification
1-square(pos)
2-extrude(PN1 =[1n6], vec)
3-insert(PN2=[1n5;2n5])
4-extrude(PN3 =[1n5;2n6;3n0], vec)
5-triangulate(PN4 =[1n3;2n2])
6-collapse(PN5=[1n4;2n6;4n6])
7-chamfer(PN6 =[1n5;2n6;3n0;4n4;6n2])
8-colour(PN7=[1n3;2n4;5n0])

The parametric specification above represents
the modeling process of an initial evaluation
(Fig. 8) where each persistent name uses the his-
tory of the dart’s number displayed in the previous
construction step (dart 6 for PN1, 46 for PN2, 47
for PN3, 33 for PN4 and so on.).

Furthermore, a set of tags are used to describe
an application whenever it is either added (ADD),
deleted (DELETE) or moved (MOVE) at reevalua-
tion. Thus, the initial parametric specification,
once edited as shown in List 2 produces the reeval-
uation process shown in Fig. 9.

Listing 2: Edited parametric specification
1-square(pos)
ADD1 -insert (3)
2-extrude(PN1 =[1n6], vec)
DELETE 3-insert(PN2=[1n5;2n4])
...
8-colour(PN7=[1n3;2n4;5n0])

4 Evaluation
Although a persistent name represents the history
of a dart, an orbit is subject to topological changes
and, thus, requires the construction of its own his-
tory in order to be accurately matched at reevalu-
ation. Once the initial evaluation (Fig. 8) is done
and its parametric specification ( 1) has been built,
an evaluation’s Directed Acyclic Graph (or DAG)
must be issued for each persistent name before any
parametric specification can be reevaluated. An
evaluation DAG traces the history of each topo-
logical parameter back to the first created orbits
it originates from, thus allowing the matching of
the corresponding topological parameter at reeval-
uation time.

7



4.1 Evaluation DAG
An evaluation DAG is built parsing the applica-
tions and nodes of a persistent name from end to
start. It is sorted by levels representing the differ-
ent applications inside a history. Each level is made
of an orbit level and an event level. The orbit level
contains a node’s name and some orbits. The event
level contains a rule’s application number and some
events.

For example, let us consider PN3 =
[1n5; 2n6; 3n0] (Fig. 8d). PN3 represents the
topological parameter upon which the face extru-
sion rule is applied. This rule is filtered by hook
n1, matching the face ⟨0, 1⟩(47) (Fig. 8c). The
matched orbit’s history is built from its dart’s
history (i.e. its persistent name). The DAG is
built bottom-up by a backward traversal through
the persistent name. Since PN3 is made of 3
parts, its evaluation DAG contains 3 levels. The
last part of PN3 is 3n0, meaning that the dart
of interest is filtered by the node n0 of the third
operation in the initial parametric specification.
Therefore, the Orbit level 3 contains both n0 and
the matched orbit ⟨0, 1⟩. As shown in (List. 1), the
third operation is the vertex insertion on an edge
(Fig. 11). The right side of this rule has modified
the orbit ⟨0, 1⟩(n0). We infer that the Event level
3 contains the third operation (3-insert) and the
event’s name MODIFICATION.

Continuing through the persistent name’s back-
ward traversal, the previous element 2n6 allows de-
termining the DAG’s second level in a similar way.
Finally, 1n5 allows computing the first level. At

CREATION

⟨0, 1⟩

CREATION

1

⟨0, 1⟩

n5

MODIFICATION

2-extrusion

⟨0, 1⟩

n6

3-insert

n0

1-square Event level 1

Orbit level 1

Event level 2

Orbit level 2

Event level 3

Orbit level 3

Figure 12: PN3’s evaluation DAG

last, the produced evaluation DAG (Fig 12) repre-

sents the volume face ⟨0, 1, 3⟩-orbit’s history result-
ing from applying 4-extrusion. This DAG can be
read top-down:

Level 1 The application 1-square creates the
volume face ⟨0, 1⟩(n5).

Level 2 From this volume face, 2-extrusion
creates the volume face ⟨0, 1⟩(n6).

Level 3 Finally, this latter volume face is modi-
fied by 3-insert, inserting a vertex on its edge.

The application of the extrusion rule matches
face ⟨0, 1⟩(n5). Then, the extrusion creates the face
⟨0, 1⟩(n6) (Fig. 8b). Finally, applying the vertex in-
sertion rule modifies the face ⟨0, 1⟩(n0) (Fig. 8c).

The syntactic analysis of the rules enables events
to be computed only once. These events can be
stored in cache to automatically build other evalu-
ation DAGs.

4.2 Traces and origins

In order to accurately represent the history of an
orbit, two types of arrows are used in an evaluation
DAG (and later in the reevaluation DAG): black
trace arrows and red origin arrows.

A black trace arrow allows orbit evolution trac-
ing. For example, the triangulation rule splits an
initial face into multiple subfaces. If one of these
subfaces is referenced in the DAG, it is connected
by a trace arrow to the initial face. Therefore, a
trace arrow connects two orbits of the same dimen-
sion. A red origin arrow allows linking an orbit
with the orbit that generated it, thereby connect-
ing two orbits of potentially different dimensions.
For example, continuing with the triangulation rule
(Fig. 6), we observe that upon applying this rule,
each edge of the initial face generates a different
subface. If any of these subfaces is referenced in
the DAG, it is then connected by an origin arrow
to the edge that generated it. This is what can be
observed considering again the example in Fig. 8
and more precisely the colour rule’s PN7 parame-
ter. PN7 represents dart 35’s history and PN7’s
evaluation DAG (Fig. 13) represents the history of
the volume face that needs to be colored (the vol-
ume face adjacent to dart 35). This volume face
⟨0, 1⟩(n0) is the result of operation 5-triangulate
which splits the volume face ⟨0, 1⟩(n4) and has the
face edge ⟨0⟩(n4) as its origin (respectively repre-
sented by a black and red arrow between orbit level
2 and event level 3).
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As explained in section 4.1, this DAG is built
using a traversal of PN7 and a bottom-up con-
struction. This process is done in a similar way
for both traces and origins, allowing for an efficient
persistent naming mechanism that also takes into
account the impact of origin modifications during
reevaluation. To illustrate this, let us consider the
previous face edge ⟨0⟩(n4), which is the origin of
the volume face ⟨0, 1⟩(n0) that needs to be colored.
Suppose that, due to the addition of an operation in
the edited specification, this origin may be split into
two face edges. Upon applying 5-triangulate,
these two face edges will generate two volume faces,
which can then be matched during reevaluation to
the face to be colored, leveraging on the origin orbit
recorded in the DAG.

In a formal way, an origin orbit can be automat-
ically deduced through the syntactic analysis of a
rule. More precisely, if n is a hook and n′ is not
a preserved node different from n, the origin of an
orbit R⟨o⟩(n′) is the suborbit L⟨o′⟩(n) consisting of
the set of n’s implicit arcs which are:

• rewritten on R⟨o⟩(n′);

• not rewritten on R⟨o⟩(n′) and belonging to
⟨o⟩.

For example, let us calculate the origin of a vol-
ume face (⟨0, 1⟩-orbit) resulting from a split in the
triangulation rule (Fig. 6). Only the implicit arc
0 in the L⟨0, 1⟩-orbit incident to the hook n0 is
rewritten on R⟨0, 1⟩(n0)). Hence, the origin or-
bit of a volume face split by the triangulation rule
is a face edge (⟨0⟩-orbit). When the orbit is ei-
ther split or merged, the syntactic analysis allows
the deduction of an origin in addition to a traced
orbit. When the orbit is created, if the left-hand
side of the rule is empty (meaning the orbit is cre-
ated from scratch), there is neither trace nor origin
(event level 1 in Fig. 13 where the 1-square rule
creates the edge face ⟨0⟩(n3) from scratch). Other-
wise, there is no trace but an origin (event level 2 in
Fig. 13 where the 2-extrusion rule creates the front
face ⟨0, 1⟩(n4) of the cube from the origin previous
face edge ⟨0⟩(n3)). When the orbit is just modified
or not modified, there is only a traced orbit (event
level 3 in Fig. 12 where the 3-insert rule modifies
the top face ⟨0, 1⟩(n6) of the cube inserting a vertex
on its boundary).

CREATION

⟨⟩

CREATION

CREATION

⟨0⟩

CREATION

1-square

⟨0⟩⟨0, 1⟩

n3

SPLIT

2-extrusion

⟨0, 1⟩

n4

5-triangulation

n0

Event level 1

Orbit level 1

Event level 2

Orbit level 2

Event level 3

Orbit level 3

Figure 13: PN7’s evaluation DAG

<0, 1, 3>

n0

<0, _, 3>

n1

<_, 2, 3>

n2

12
<1, 2, 3>

n2

Figure 14: Rule collapsing a face into a vertex

4.3 Paths to origins

We have defined the origin of an orbit R⟨o⟩(n′)
when n′ is not a preserved node different from the
hook. In the opposite case, it is necessary to add to
the origin the path that allows reaching the implicit
arcs of the hook from n′, because the implicit arcs
of an origin are those of the hook, not those of n′.

For example, in the face collapse rule (Fig. 14),
node n2 is a preserved node different from the hook.
Assume we want to define the origin of the volume
vertex ⟨1, 2⟩(n2). A path represents the traversal in
the right-hand side of the rule from the node n2 to
the hook node n0. The traversed explicit arcs from
n2 to n0 are, in the following order, 1 and 2 (writ-
ten @1.@2 in the evaluation DAG). This can be
seen in the PN6’s evaluation DAG (Fig. 15), where
applying 6-collapse generates a merge of vertices
and the origin of the volume vertex ⟨1, 2⟩(n2) is
the volume face @1.@2.⟨0, 1⟩(n4). Actually, node
n4 of the extrusion rule (Fig. 4) used at the pre-
vious level of the DAG (level 4) matches dart 55
on the lateral faces of the cube (Fig. 5) because
it is the dart matching the history stored in PN6

DAG (1-square creates the initial bottom volu-
me face ⟨0, 1⟩(n5). Then, 2-extrusion applied on
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CREATION
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⟨1⟩

CREATION

⟨0, 1⟩⟨1⟩

n5

MODIFICATIONNOMODIF

⟨0, 1⟩⟨1⟩

n6

CREATIONCREATION

3-insert

@1.@2.⟨0, 1⟩⟨1, 2⟩

n0

MERGE

4-extrusion

⟨1, 2⟩

n4
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n2

2-extrusion

Event level 1

Orbit level 1

Event level 2

Orbit level 2

Event level 3

Orbit level 3

Event level 4

Orbit level 4

Event level 5

Orbit level 5

1-square

Figure 15: PN6’s evaluation DAG

this bottom face creates the volume face ⟨0, 1⟩(n6)
which is then modified by 3-insert in ⟨0, 1⟩(n0).
Finally, 4-extrusion applied on this modified vol-
ume face creates node n4, which matched dart 55).
The volume face @1.@2.⟨0, 1⟩(n4) reached starting
from dart 55 and following links 1 and 2 is indeed
the top face expected to be collapsed.

5 Reevaluation

Each evaluation DAG represents an orbit’s history
which is valid with regards to the initial evaluation.
When reevaluating, editing the parametric specifi-
cation makes the topological parameters subject to
changes. Thus, it is necessary to build reevaluation
DAGs from the evaluation DAGs in order to up-
date topological parameters. Once built, a reeval-
uation DAG can designate one, several, or no orbit
depending on the editing of the parametric specifi-
cation.

In this section, we keep using the previous exam-
ple (Fig. 8 and 9) and its edited parametric specifi-
cation (Lists 1 and 2), containing an added vertex
insertion on the square’s edge right after its cre-
ation and the deletion of the vertex insertion on

the cube’s edge.

5.1 Reevaluation DAG

CREATION

⟨0, 1⟩

CREATION

1

⟨0, 1⟩

5

NOMODIF

2-extrusion

⟨0, 1⟩

59

DELETE 3-insert

59

1-square Event level 1

Orbit level 1

Event level 2

Orbit level 2

Event level 3

Orbit level 3

Event level 4

Orbit level 4

MODIFICATION

⟨0, 1⟩

ADD1-insert

5

Figure 16: PN3’s reevaluation DAG

Contrary to the related evaluation DAG, a
reevaluation DAG is built top-down throughout the
reevaluation process. While an evaluation DAG
represents the orbit’s history of a topological pa-
rameter, the reevaluation DAG represents the his-
tory of this very same orbit after editing the para-
metric specification.

For example, let us consider PN3 being the topo-
logical parameter of 4-extrusion, which extrudes
the cube’s top face to produce a second cube.
The reevaluation process builds PN3’s reevaluation
DAG (Fig. 16 step-by-step from its evaluation DAG
(Fig. 12):

Level 1 The application 1-square has no topo-
logical parameter and, thus, is identically reeval-
uated. Once again, its node n5 creates a single
dart 5 and the volume face ⟨0, 1⟩(5) is identically
reevaluated. This is why the orbit level 1 of the
reevaluation DAG references dart 5.

Level 2 The second application is an added one.
ADD1-insert does match an edge of the tracked
volume face ⟨0, 1⟩(5) and modifies it, as deduced
from the rule. Therefore, the event level 2 contains
MODIFICATION and the orbit level 2 contains the
same dart 5 and orbit ⟨0, 1⟩.

Level 3 The third application is the extrusion of
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the square face into a cube. During its application,
dart 5 is matched by the hook n1 (Fig. 4). From
the evaluation DAG, the tracked dart is the copy
of dart 5 created by node n6. Applying the rule
allows finding out this dart, numbered 59.

Level 4 Finally, the last application of PN3 is
deleted. Consequently, the modification that oc-
curred during the initial evaluation does not occur
at reevaluation. Therefore, the event level 4 con-
tains NOMODIF and the orbit level 4 contains the
same dart 59.

The reevaluation DAG identifies the concrete
name using its persistent name. PN3’s concrete
name is 59 (cf. Fig. 9c and 9e). We now study a

CREATION

⟨0, 1⟩

CREATION

CREATION

⟨1⟩

CREATION

⟨0, 1⟩⟨1⟩

5

NOMODIFNOMODIF

⟨0, 1⟩⟨1⟩

59

CREATIONCREATION

DELETE 3-insert

@1.@2.⟨0, 1⟩⟨1, 2⟩

59

MERGE

4-extrusion

⟨1, 2⟩

63

6-collapse

63

2-extrusion

Event level 1

Orbit level 1

Event level 2

Orbit level 2

Event level 3

Orbit level 3

Event level 4

Orbit level 4

Event level 5

Orbit level 5

Event level 6

Orbit level 6

1-square

MODIFICATION

⟨0,1⟩

NOMODIF

⟨1⟩

ADD1-insert

5

Figure 17: PN6 reevaluation DAG

more complex example with the reevaluation DAG
of PN6 (Fig. 17),which represents the pyramid’s
top vertex (Fig. 8f):

Level 1 to 4 These three levels are similar to
PN3’s reevaluation DAG (Fig. 16), with the track-
ing of the volume face vertex ⟨1⟩-orbit in addition
to the ⟨0, 1⟩-orbit one. The ⟨1⟩(5)-orbit is cre-
ated by the 1-square application. ADD1-insert
matches and preserves one dart of this orbit with
the node n0 of the insertion rule (Fig. 11). Thus,

the event level 2 contains NOMODIF. Then, this or-
bit is copied to create a new volume face vertex by
2-extrusion. Again, DELETE 3-insert does not
modify the orbits.

Level 5 The fifth application 4-extrusion of
the extrusion rule (Fig. 4) matches the volume face
⟨0, 1⟩ with its hook n1 and creates a copy of dart 59
dart 63. As in the initial evaluation, it creates a vol-
ume vertex and a face. Then, the event level con-
tains two CREATION. The orbit level references dart
63 and contains both orbits ⟨1, 2⟩ and @1.@2.⟨0, 1⟩.

Level 6 Finally, while the tracking of
5-collapse shows that the application keeps merg-
ing the volume vertices incident to the matched
face, it preserves dart 63 which is matched by node
n2. Therefore, the event level contains one MERGE
and the orbit level references dart 63 and contains
the volume vertex ⟨1, 2⟩.

At last, PN6’s concrete name is dart 63 (cf
Fig. 9g).

These two examples here are quite straightfor-
ward as there was only one possible candidate dart
each time. However, in some complex specifica-
tions, there can be more than a single dart to choose
between.

5.2 Parameter matching strategies

The editing of the parametric specification leads
to having a different DAG at reevaluation (with
event levels and/or branches being added, deleted
or both). For example, an orbit split present in the
evaluation DAG may disappear during the reeval-
uation, a merging can be added and so on. Several
matching strategies can then be considered depend-
ing on the application’s context. This can be illus-
trated with PN7’s example which designates the
face that must be coloured (Fig. 8h). The addition
of ADD1-insert application at reevaluation splits
the origin of designated face, resulting in the ad-
dition of a branch in the reevaluation DAG. Let’s
work through PN7’s reevaluation DAG shown in
Fig. 18:

Level 1 As seen previously, 1-square creates the
tracked orbits traced in the evaluation DAG.

Level 2 ADD1-insert matches dart 3. Since the
vertex insertion rule (Fig. 11) splits the volume face
edge ⟨0⟩(3), its history is also split and there are
two concrete names to consider. It follows that the
event level contains two SPLIT, one for each volume
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Figure 18: PN7 reevaluation DAG

face edge suborbit, and two NOMODIF, one for each
dart 3 and 4.

Level 3 2-extrusion extrudes the square face
into a cube. The extrusion rule (Fig. 4) matches
dart 3 with its hook n1. It extrudes the face edge
⟨0⟩(3) into a volume face, the dart ⟨⟩(3) into a face
edge and its node n2 creates the dart 37 as a copy
of dart 3. The same goes for the history on the
right. The rule matches dart 4, it creates the same
two orbits and a dart 52 as a copy of dart 4. both
event levels contain two CREATION. Both orbit levels
contain orbits ⟨0, 1⟩ and ⟨0⟩.

Level 4 5-triangulation triangulates the faces
designated by the level above. Both darts 37 and
52 are matched and preserved by the rule.

Upon reevaluation, PN7’s DAG matches to dif-
ferent darts. An option would be to colour only
one face (either ⟨0, 1⟩(37) or ⟨0, 1⟩(52)). Another
option would be to apply 8-colour two times, one
for dart 37 and one for dart 52 (as shown in Fig. 9i
which represent our default strategy). In case the
reevaluation DAG has two or more leaves, it shows
all the possible entities that can be matched for a
specific persistent name and to set a strategy up.
Either way, such a strategy allows users to have a
choice and best fit their modeling intents, depend-
ing on the application’s context.

6 Conclusion
In this paper, we widen the naming problem stud-
ies to the rule-based graph transformation mod-
eling systems. We take advantage of the formal-
ism of both generalized maps and graph transfor-
mation rules to tackle the reevaluation mechanism
task. Generalized maps offer an homogeneous rep-
resentation of an object in all dimensions while Jer-
boa’s rules define geometric modeling operations on
which it is actually possible to perform syntactical
analysis. We implement: a persistent name scheme
where each persistent name represents a unique
dart’s history through the successive applications of
rules and their matching nodes. Then, for each per-
sistent name, an evaluation DAG is built in order
to trace an orbit’s history from the bottom and up
to the orbits it originates from. To our knowledge,
unlike other methods, our solution tracks only the
entities used in the parametric specification and the
ones they originate from. Representing the com-
plete history of an orbit in an evaluation DAG al-
lows for an efficient persistent naming mechanism
that takes into account the impact of both origins
and traces modifications during reevaluation. Fi-
nally, reevaluation DAGs are built from a top-down
traversal of evaluation DAGs and allow matching
each topological parameter on one or more, some-
times none, values depending on the editing of the
parametric specification. Thanks to our method,
not only the naming problem is tackled within the
usual framework of parameters edition, but we also
take the specification edition into account (opera-
tion addition, deletion or move). Moreover, this
approach provides all the possible updated values
of the parameters and, thus, enables implementing
different strategies.

More complex operations can make use of several
rules brought together in a script. Later works will
revolve around widening this reevaluation mecha-
nism to scripts.
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