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A B S T R A C T

Over the past two decades, machine analysis of medical imaging has advanced rapidly, opening up significant
potential for several important medical applications. As complicated diseases increase and the number of cases
rises, the role of machine-based imaging analysis has become indispensable. It serves as both a tool and an
assistant to medical experts, providing valuable insights and guidance. A particularly challenging task in this
area is lesion segmentation, a task that is challenging even for experienced radiologists. The complexity of this
task highlights the urgent need for robust machine learning approaches to support medical staff. In response,
we present our novel solution: the D-TrAttUnet architecture. This framework is based on the observation that
different diseases often target specific organs. Our architecture includes an encoder–decoder structure with
a composite Transformer-CNN encoder and dual decoders. The encoder includes two paths: the Transformer
path and the Encoders Fusion Module path. The Dual-Decoder configuration uses two identical decoders, each
with attention gates. This allows the model to simultaneously segment lesions and organs and integrate their
segmentation losses.

To validate our approach, we performed evaluations on the Covid-19 and Bone Metastasis segmentation
tasks. We also investigated the adaptability of the model by testing it without the second decoder in the
segmentation of glands and nuclei. The results confirmed the superiority of our approach, especially in Covid-
19 infections and the segmentation of bone metastases. In addition, the hybrid encoder showed exceptional
performance in the segmentation of glands and nuclei, solidifying its role in modern medical image analysis.
1. Introduction

The twenty-first century has witnessed a rise in both infectious
and non-infectious diseases which have led to an increased number
of cases and fatalities. This highlights the urgency for comprehensive
healthcare approaches and preventive measures to address the escalat-
ing health crisis [1,2]. Over the past two decades, medical imaging
has demonstrated its effectiveness in early diagnosis, treatment plan-
ning, monitoring, research, education, and healthcare collaboration. It
has transformed medical practice by providing insight into the inner
workings of the human body, enabling better patient outcomes, and
expanding medical knowledge. However, the increasing number of
cases shows that there is a high demand to explore automatic and
effective machine learning approaches to ease the burden on medical
staff.
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The emergence and advancement of cutting-edge computational
techniques, particularly within the realm of deep learning, have demon-
strated their efficiency when abundant and well-labeled data are avail-
able [3,4]. However, obtaining a sufficient amount of data with high
labeling quality is still a challenge in the medical field due to many
limitations. For example, the process of labeling medical images for
segmentation is still time and resource consuming and requires the
expertise of radiologists and physicians for accurate annotation [3,4].
To deal with this limitation, many approaches have been investigated
including, semi-supervised learning [5], self-supervised [6], and data
augmentation [7]. However, most of these approaches contain sev-
eral training stages, there is difficulty in choosing the proxy task
in self-supervising and the difficulty to select the appropriate data
augmentation techniques from one task to another, which requires
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extensive experiments [7]. In addition to the aforementioned tech-
niques, there have been many attempts to develop an efficient deep
learning architecture for medical imaging segmentation with dealing
with the shortcoming of learning from limited data and to have a
good generalization ability in different medical imaging segmentation
tasks [8–10].

In addressing the complex challenge of diseases affecting one or
multiple organs, current state-of-the-art approaches have primarily fo-
cused on segmenting infection regions without considering the specific
organ of interest [11–15,15,16,16]. Recognizing the limitations of such
approaches, we undertake an exploration to devise a more efficient
strategy for designing a highly effective deep learning architecture.
Our emphasis lies in developing a model that thoroughly explores the
segmentation of the tissues within the organ of interest to accurately
identify infection regions. Our approach aims to provide a more com-
prehensive and targeted solution to the intricate nature of organic
diseases.

Since the development of advanced deep learning approaches,
particularly Convolutional Neural Networks (CNNs), they have become
the dominant methods for medical imaging segmentation, including
architectures like U-Net, Attention U-Net (AttUnet), and U-Net++
(Unet++). In recent years, the tremendous success of Transformers
in natural language processing (NLP) tasks has spurred extensive in-
vestigations into their application for medical imaging segmentation,
demonstrating promising performances. This exploration has given
rise to Transformer-based segmentation architectures like Swin-UNet,
characterized by a U-Net structure with a ‘‘U’’ shape and fully multi-
head self-attention blocks, excluding convolutional blocks [3]. Con-
versely, several works have endeavored to propose hybrid architec-
tures, leveraging both Transformer and convolutional blocks, such as
TransBTS [17] and UNETR [18]. These efforts can be classified into
three categories: (i) utilizing only Transformer layers to reconstruct
the encoder [18], (ii) employing a CNN encoder to extract deep
representations, followed by the application of Transformer layers to
the embedded CNN features [8,17], and (iii) integrating Transformer
blocks in the skip connection phase to transmit encoder features to the
decoder layers [9,10]. Despite the variety of approaches that combine
CNN and Transformer blocks, there is still room for improvement.
Our approach aims to effectively merge both CNN and Transformer
blocks in the encoding phase to simultaneously extract local, global,
and long-range dependencies features. To achieve this, we propose
a Transformer Encoder path and combine it with the extracted CNN
features at different levels within a proposed Encoders Fusion Module.

In this paper, a new Transformer-CNN based approach is proposed
based on the observation that diseases usually affect one or more
human body organs. The proposed solution aims to direct training
to the object of interest (the organ) by using a second decoder for
organ segmentation as a secondary task. On the other hand, a hybrid
Transformer-CNN encoder is proposed to extract rich features in the
encoding phase, which plays a crucial role in avoiding the shortcut of
CNN and Transformer approaches. In fact, segmenting medical images
is challenging due to the inherent diversity of disease mechanisms,
characteristics, and effects. Our proposed approach is evaluated using
two tasks with Organ/Infection propriety which are: Bone Metastasis
Segmentation (BM), and Covid-19 Infection Segmentation (in both
binary and multi-class scenarios). For these two tasks, the hybrid CNN-
Transformer encoder and dual-decoder are exploited. Furthermore,
Gland and Nuclei Segmentation are evaluated to check the effectiveness
of the proposed hybrid CNN-Transformer approach for tasks that have
no Organ/Infection property. In summary, the main contributions of
this work are:

• We propose a novel hybrid CNN-Transformer architecture by
integrating multi-level Transformer features into the encoder.
This approach aims to capture higher-level local features while
2

maintaining long-range dependencies from diverse input patches.
• Our proposed decoder consists of dual identical decoders to si-
multaneously address lesion and organ segmentation. Leveraging
Attention Gates, Residual Blocks, and Upsampling layers, inspired
by the observation that many diseases affect one or multiple
human body organs.

• We evaluate our approach on challenging segmentation tasks,
including Bone Metastasis and Covid-19 infection in both bi-
nary and multiclass scenarios. Additionally, we assess the effec-
tiveness of the hybrid encoder in Gland and Nuclei segmenta-
tion, providing a comprehensive understanding of the model’s
versatility.

• Extensive comparisons with various segmentation methods, in-
cluding CNN and Transformer-based approaches, demonstrate the
superior performance of our D-TrAttUnet architecture in Bone
Metastasis and Covid-19 segmentation tasks. The hybrid Encoder
proves effective in Gland and Nuclei segmentation. The code for
D-TrAttUnet will be made publicly available at https://github.
com/faresbougourzi/D-TrAttUnet.

This paper is organized as follows: Section 2 presents some related
work on CNN-based and Transformer-based segmentation architec-
tures. In Section 3, we describe our proposed approach. Section 4 con-
sists of the description of the datasets used to evaluate the performance
of our approach. Section 5 presents and discusses the experiments
and results. Section 6 shows visualization comparison between the
prediction results of our approach and the best comparison approaches.
Finally, Section 7 concludes this paper.

2. Related work

In this section, we briefly review related work in the field of medical
image segmentation that includes both CNN (Convolutional Neural
Network) and Transformer-based approaches, then we will describe the
chosen tasks to evaluate the performance of the proposed approach,
with highlighting the importance and the challenges of each task.

2.1. CNN segmentation architectures

Since the great success of the first deep CNN architecture
‘‘Alexnet’’ [19] in ImageNet [20] challenge in 2012, CNNs have reached
the state of the art performance in many computer vision and machine
learning tasks [21,22]. Segmentation tasks have been influenced by
the great success of the CNNs and therefore many CNN architec-
tures have proved their ability to segment many complicated medical
imaging tasks [23–25]. Since Unet architecture [23] was proposed in
2017, great progress has been made and a lot of Unet variants have
been proposed such as Attenion Unet (Att-Unet) [26], Unet++ [27],
ResUnet [28].

Unet [23] is a CNN architecture with Encoder–Decoder structure.
Unet’s encoder consists of consecutive CNN layers. Each layer contains
convolutional and mapooling layers. On the other hand, the decoder
consists of consecutive decovolutional layers. The encoder and decoder
are connected by skip connections, where encoder feature maps are
concatenated with the decoder features to maintain fine-grained details
by passing them to the decoder. This forms the ‘‘U-shape’’. In [26],
O. Oktay et al. proposed Attention Gate (AT) to determine the salient
regions by using the encoder and decoder feature maps simultaneously.

2.2. Transformers in CV

Transformers are capable of capturing long-range dependencies be-
tween sequence elements. Therefore, Transformers are widely used in
the Natural Language Processing (NLP) domain [29]. Inspired by the
great success in the NLP domain, transformers have also been exten-
sively studied in the computer vision domain in the last two years [29].

Transformers have shown promising results in many computer vision
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tasks and many transformer-based architectures have been proposed
such as ViT [30], Swin-Transformer [31], and Deit [32].

Similarly, Transformers have got much interest in Medical imaging
domain [33]. Indeed, Transformers have shown promising performance
in many medical imaging tasks such as classification [34], detec-
tion [35] and segmentation [18]. Since the focus of this work is
segmentation task, some transformer-based segmentation approaches
will be described. The segmentation architectures can be classified as
2-D [9,36] or 3-D modalities [18,37].

In [36], H. Wu et al. proposed a CNN-Transformer architecture
called ‘‘Fat-Net’’, where two encoders (CNN and Transformer encoders)
are used. The feature maps of the two encoders were concatenated to
have richer features from the two encoders. The Squeeze and Exci-
tation (SE) module [38] was applied on the concatenated features to
identify the most important feature correlations from different feature
channels. Fat-Net was evaluated for skin lesion segmentation using four
public datasets. In the U-Transformer [9] architecture, Multi-Head Self-
Attention and Cross Attention modules were injected into the U-Net
architecture. These two modules were placed at the skip connection to
learn the global context information from the U-Net encoder and pass
them to its decoder [9]. The U-Transformer architecture performed well
in two abdominal CT-image datasets [9]. In [18], A. Hatamizadeh et al.
proposed a transformer-based architecture for multi-classes 3D segmen-
tation called ‘‘UNETR’’. The encoder of UNETR was constructed by a
transformer, from which four levels features are obtained and rescaled
by deconvolutional layers. The rescaled maps were connected to the
CNN decoder via skip connections at different resolutions, forming the
‘‘U-shape’’.

Several approaches have been proposed to integrate CNN and Trans-
former blocks into single architectures, with a focus on incorporating
Transformer architectures into the encoding block. The following en-
coder configurations have been suggested: constructing the encoder
solely using Transformer architecture [18,39]; employing two parallel
encoders, one based on Transformer and the other on CNN, and then
combining their outputs [36,40]; or implementing a CNN encoder fol-
lowed by Transformer blocks [8,17]. Despite the variety of approaches
that combine CNN and Transformer blocks, there is still room for
improvement. Our approach aims to effectively merge both CNN and
Transformer blocks in the encoding phase to simultaneously extract
local, global, and long-range dependencies features. To achieve this, we
propose a Transformer Encoder path and combine it with the extracted
CNN features at different levels within a proposed Encoders Fusion
block.

2.3. Introducing the evaluated medical imaging segmentation tasks

BM segmentation is exceptionally demanding, even for seasoned
radiologists, owing to several complexities. The omnipresence of bone
throughout the body makes allocating and tracking BM lesions arduous
and time-consuming [41,42]. Furthermore, BM exhibits significant ap-
pearance variability, contingent on lesion nature, bone location, and
infection progress and stage. Distinguishing BM from other benign
conditions, fractures, bone islands, and degenerative changes is often
confounding [41,42]. On the other hand, automatic segmentation of
Colon Glands from Histology Images is critical for cancer grading, a
crucial step in determining cancer progression and the appropriate
treatment plan to save lives [43]. Traditionally, cancer grading has
relied on subjective and time-consuming assessments by pathologists
that require manual quantification of tumor cell abnormalities. These
challenges underscore the compelling need for automated methods that
use machine learning approaches [44].

In addition to BM and Gland segmentation, our approach extends
to Covid-19 infection segmentation. This task encompasses both binary
segmentation, discerning infection presence or absence [11–14], and
multi-class segmentation, which provides a nuanced view by categoriz-
ing non-infection, Ground-Glass Opacities (GGO), or Consolidation [15,
3

Fig. 1. The summary of our proposed D-TrAttUnet approach.

16]. Binary segmentation quantifies infection spread in the lungs,
while multi-class segmentation offers insights into the infection’s stage,
progress, and severity [15,16,45]. However, the scarcity of data for
multi-class Covid-19 segmentation has limited research in this area [15,
16]. The main challenge in segmenting Covid-19 infections arises from
their high variability in intensity, shape, position, and type, further
complicated by factors such as infection stage, symptoms, and sever-
ity [46,47]. These challenges necessitate an efficient deep learning
approach for effectively segmenting Covid-19 infection to save the
patients live.

In this section, we emphasize the tasks chosen to evaluate our
proposed approach and compare it with other methods, known for their
challenging nature. The primary objective of this study is to assess the
generalization capabilities of various recently proposed approaches and
compare their performance with our own. Specifically, our aim here is
to study the generalization ability of our proposed approach across a
variety of tasks and compare it with the behavior of state-of-the-art
approaches. Our approach is specifically tailored to offer an efficient
solution for medical imaging segmentation tasks.

3. The proposed approach

Our proposed approach for Lesion-Organ segmentation is presented
in Fig. 1. We introduce the D-TrAttUnet architecture, a novel compound
CNN-Transformer architecture with a U-Net-like structure that lever-
ages Attention Gates (AG). In Fig. 2, we provide a detailed illustration
of the D-TrAttUnet’s architecture. The key feature of our D-TrAttUnet
lies in its encoder, which utilizes both transformer layers and ResBlocks
(ResB) to extract rich and diverse features. Given the high variability
in the shape, size, and position of medical imaging pathologies [46–
48], it is crucial to capture diverse features from the medical images.
To achieve this, our approach combines locally extracted features using
CNN filtering with globally aggregated features from the image patches
through transformer layers. This allows the model to effectively handle
the varying characteristics of medical pathologies and provide efficient
segmentation.

In our proposed D-TrAttUnet, the encoder has two paths: the Unet-
like path and the Transformer path. The input image 𝑥 ∈ R𝐻×𝑊 ×𝐶 ,
where 𝐻 , 𝑊 and 𝐶 are the height, the width and the input channels,
is fed into both paths.

3.1. Transformer encoder

In the Transformer Encoder, the input tensor 𝑥 is divided into
uniform, non-overlapping patches denoted as 𝑥𝑣 ∈ R𝑁×(𝑆2×𝐶), where
each patch has a size of 𝑆×𝑆×𝐶, and 𝑁 is the total number of patches
given by 𝑁 = 𝐻×𝑊

𝑆2 . These patches undergo linear transformation
denoted by 𝐸 ∈ R(𝑆2×𝐶)×𝐾 to project them into an embedding space
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Fig. 2. Detailed Structure of the proposed D-TrAttUnet architecture.
𝑧0, where 𝐾 represents the dimensionality of the embedding space. The
embedding 𝑧0 is computed as follows:

𝑧0 = [𝑥1𝑣𝐸; 𝑥
2
𝑣𝐸;………; 𝑥𝑁𝑣 𝐸] (1)

The embedded features 𝑧0 ∈ R𝑁×𝐾 are then fed into Transformer
layers, similar to previous works [30,49]. Each Transformer layer com-
prises two Layernorm (LN) blocks, a Multi-Head Self-Attention (MSA)
block, a multi-layer perceptron (MLP) block, and residual connections.
For the 𝑙th Transformer layer, the embedded input features 𝑧𝑙−1 are
processed as follows:

𝑧′𝑙 =𝑀𝑆𝐴( 𝐿𝑁(𝑧𝑙−1) ) + 𝑧𝑙−1 (2)

Here, LN(𝑧𝑙−1) represents the output of the Layernorm block and
MSA denotes the Multi-Head Self-Attention block. The MSA operation
is defined as:

MSA(𝑠) = ([𝑆𝐴1(𝑠), 𝑆𝐴2(𝑠),… , 𝑆𝐴ℎ(𝑠)])𝑈msa (3)

where 𝑆𝐴1, 𝑆𝐴2,… , 𝑆𝐴ℎ ∈ R𝑁× 𝐾
ℎ are Self-Attention heads, and 𝑈msa ∈

R𝐾×𝐾 is the weighting matrix for the SA features.
The output 𝑧′𝑙 is then further processed as follows:

𝑧𝑙 =𝑀𝐿𝑃 ( 𝐿𝑁(𝑧′𝑙) ) + 𝑧
′
𝑙 (4)

where 𝑀𝐿𝑃 consists of two Linear layers with a GELU non-linearity.
The first Linear layer (𝑀𝐿𝑃1 ∈ R𝐾×𝐾𝑀𝐿𝑃 ) projects 𝐿𝑁(𝑧′𝑙) into 𝐾𝑀𝐿𝑃 ,
then the second Linear layer (𝑀𝐿𝑃2 ∈ R𝐾𝑀𝐿𝑃 ×𝐾 ) projects the features
into a 𝐾-dimensional space.

In our approach, we set 𝐿 = 12, ℎ = 12, 𝐾 = 768, 𝐾MLP = 3072, and
𝑆 = 16 × 16 pixels. Thus, for an image resolution of 𝑊 = 𝐻 = 224, the
number of patches is 𝑁 = 196.

3.2. Encoders fusion module

To harness multi-scale features from different Transformer layers
(stages), we meticulously selected embedded features from layers 4, 7,
10, and 12, denoted as 𝑇 𝑟1, 𝑇 𝑟2, 𝑇 𝑟3, and 𝑇 𝑟4, respectively. The deci-
sion to choose Transformer features from different levels allows for the
extraction of diverse and informative features, instead of using features
from closely located layers, which might convey many similarities in
features. By focusing on these chosen layers, our aim is to capture a
4

spectrum of scales and complexities inherent in the input data. This
strategy aims to enhance the network’s capability to handle variations
in the medical imaging context effectively. The selected layers yield
embeddings with a consistent shape of 196 × 768. Before being fed
into the decoders, these features undergo filtering and fusion using
CNN-based operations, as detailed below.

To obtain a 3D shape for the intermediate results of the transformer
(a sequence of vectors), 𝑧𝑙 is reshaped to 14×14×768, since 14×14 = 196.
These reshaped features for 𝑇 𝑟1, 𝑇 𝑟2, 𝑇 𝑟3 and 𝑇 𝑟4 are denoted by
𝑧1, 𝑧2, 𝑧3 and 𝑧4, respectively. To inject the transformer features into
different layers of D-TrAttUnet and combine them with the CNN layers,
UpResBlock (UpR) is introduced as depicted in Fig. 3-b. UpR consists
of linear upsampling followed by ResBlock (ResB) as depicted in Fig. 3-
a. ResB consists of two 3 by 3 convolutional block, each followed by
Batch Normalization and ReLU activation function. In addition, the
output of the two convolutional layers are summed with the input
passed to residual connection, which consists of 1 by 1 convolutional
block, followed by Batch Normalization and ReLU activation function,
as shown in Eqs. (5) and (22):

𝑥𝑜𝑢𝑡1 = 𝑅𝑒𝐿𝑈 ( 𝐵𝑁(𝐶𝑜𝑛𝑣3 × 31(𝑥𝑖𝑛) )) (5)

𝑥𝑜𝑢𝑡 = 𝑅𝑒𝐿𝑈 ( 𝐵𝑁(𝐶𝑜𝑛𝑣3 × 32(𝑥𝑜𝑢𝑡1 ))) +

𝑅𝑒𝐿𝑈 ( 𝐵𝑁(𝐶𝑜𝑛𝑣1 × 1(𝑥𝑖𝑛)))
(6)

where 𝐶𝑜𝑛𝑣3 × 31 ∈ R3×3×𝐶𝑜𝑢𝑡 , 𝐶𝑜𝑛𝑣3 × 32 ∈ R3×3×𝐶𝑜𝑢𝑡 and 𝐶𝑜𝑛𝑣1 × 1 ∈
R1×1×𝐶𝑜𝑢𝑡 .

As shown in Fig. 2, the Encoders Fusion Module has four layers. The
first layer uses ResB on the input image 𝑥 ∈ R𝐻×𝑊 ×𝐶 to obtain the first
feature maps as shown in Eq. (7).

𝑥0 = 𝑅𝑒𝑠𝐵(𝑥) (7)

The Encoders Fusion Module consists of feature extraction and
fusion processes at four layers, resulting in feature sets denoted as
𝑥1, 𝑥2, 𝑥3, and 𝑥4. These features are obtained through extraction
and fusion of both CNN and Transformer features. To elaborate, the
first Encoders Fusion features (𝑥1) are created by combining the CNN
features (𝑥0) with the features from the first Transformer layer (𝑧1),
as shown in Eq. (23). This process entails passing 𝑥0 through a max-
pooling layer (MP) and sending 𝑧 through three consecutive UpR
1
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Fig. 3. Description of ResBlock (ResB), UpResBlock (UpR) and TransformerLayer.
Fig. 4. Attention Gate block, where 𝑔𝑖 is the gating signal and the 𝑥𝑖 is the input feature maps. 𝑀𝑎𝑡𝑡(ℎ,𝑤) is the obtained spatial attention, which is applied for all channels of
the input feature maps (𝑥𝑖).
blocks (𝑈𝑝𝑅3) to capture higher-level features that align with the max-
pooled 𝑥0 features. The resulting CNN and Transformer features are
concatenated and then processed through a ResB block, to extract richer
features containing both features types.

𝑥1 = 𝑅𝑒𝑠𝐵 (𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑈𝑝𝑅 3(𝑧1),𝑀𝑃 (𝑥0)) ) (8)

Subsequently, the second Encoders Fusion features (𝑥2) are gen-
erated by fusing the previous Encoders Fusion features (𝑥1) with the
features from the second Transformer layer (𝑧2), as detailed in Eq. (24).
This involves applying two UpR blocks to the Transformer features (𝑧2),
max-pooling 𝑥1, then concatenating the results before passing them
through a ResB block. Similarly, 𝑥3 is obtained by fusing 𝑥2 and the
features from the third Transformer layer (𝑧3) using a combination
of max-pooling, an UpR block, concatenation, and a ResB block, as
illustrated in Eq. (10). Finally, the ultimate Encoders Fusion features
(𝑥4) are formed by merging 𝑥3 with the features from the fourth
Transformer layer (𝑧4), involving two ResB blocks, max-pooling, and
concatenation, as demonstrated in Eq. (11). In summary, this process
outlines how each set of features (𝑥1, 𝑥2, 𝑥3, and 𝑥4) is obtained through
a sequence of fusion and transformation operations, leveraging both
CNN and Transformer features at different stages.

𝑥2 = 𝑅𝑒𝑠𝐵 (𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑈𝑝𝑅 2(𝑧2),𝑀𝑃 (𝑥1)) ) (9)

𝑥3 = 𝑅𝑒𝑠𝐵 (𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑈𝑝𝑅 (𝑧3),𝑀𝑃 (𝑥2)) ) (10)

𝑥4 = 𝑅𝑒𝑠𝐵 (𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑅𝑒𝑠𝐵 (𝑧4),𝑀𝑃 (𝑥3)) ) (11)

3.3. Dual-decoders

In our proposed D-TrAttUnet architecture, we employ dual de-
coders. As illustrated in Fig. 2, the primary objective of the first decoder
5

is to segment the lesion, whether it is Bone-Metastasis or Covid-19
infection. Meanwhile, the second decoder focuses on segmenting the
organ of interest, such as the Lung in the case of Covid-19 and the
Bone in the context of Bone Metastasis (BM). The rationale behind
incorporating a dedicated decoder for organ segmentation is twofold:
firstly, this design facilitates the encoder’s concentration within the or-
gans, which are the primary locations of infections, where the two tasks
losses affect the common encoder. Secondly, it compels the model to
distinguish between various tissues in CT-scans, a critical consideration
given that tissues outside the organs may exhibit visual similarities
to infection. This strategic inclusion of multi-tasking in the decoding
phase, with a secondary task for organ segmentation, is intended to en-
courage the encoder to learn more diverse features, thereby enhancing
the efficiency of the segmentation task.

The bottleneck feature maps (𝑥5) of the encoder are fed into the
first expansion layer of the two decoders. First, 𝑥5 is Upsampled using a
linear transformation to obtain 𝑑5, and then passed to the two decoders
as shown in Eq. (12). On the other hand, the encoder feature maps
𝑥1, 𝑥2, 𝑥3 and 𝑥4 are fed to the two decoders layers of D-TrAttUnet
through skip connections, as shown in Fig. 2. Following the Att-Unet
architecture [26], three linear upsampling layers (US), four decoder
layers, four attention gates, and four ResBlocks are used for each
decoder, as shown in the following equations:

𝑑4 = 𝑈𝑆(𝑥4) (12)

𝑑31 = 𝑅𝑒𝑠𝐵( 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 [𝐴𝑡𝑡𝐺𝑎𝑡𝑒(𝑥3, 𝑈𝑆(𝑥4)), 𝑈𝑆(𝑥4])) (13)

𝑑21 = 𝑅𝑒𝑠𝐵( 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 [𝐴𝑡𝑡𝐺𝑎𝑡𝑒(𝑥2, 𝑈𝑆(𝑑31)), 𝑈𝑆(𝑑31])) (14)

𝑑 = 𝑅𝑒𝑠𝐵( 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 [𝐴𝑡𝑡𝐺𝑎𝑡𝑒(𝑥 , 𝑈𝑆(𝑑 )), 𝑈𝑆(𝑑 ])) (15)
11 1 21 21
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𝑑01 = 𝑅𝑒𝑠𝐵( 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 [𝐴𝑡𝑡𝐺𝑎𝑡𝑒(𝑥0, 𝑈𝑆(𝑑11)), 𝑈𝑆(𝑑11])) (16)

Similarly, 𝑑32, 𝑑22, 𝑑12 and 𝑑02 are obtained for the organ segmen-
tation decoder. Finally, two convolutional 1 by 1 layers are used to
match the feature map dimension of 𝑑01 and 𝑑02 to the lesion and organ
masks prediction, which consist of a single channel for the organ and
binary segmentation and three channels for the multi-classes Covid-19
segmentation.

The Attention Gate (AG) is depicted in Fig. 4 [26], and it is defined
as follows:

𝑀𝑎𝑡𝑡 = 𝜓𝑖 (𝑅𝑒𝐿𝑈 (𝐵𝑁( 𝑊𝑥 𝑥𝑖) + 𝐵𝑁(𝑊𝑔 𝑔𝑖))) (17)

where 𝑊𝑥 ∈ R1×1×𝐶𝑖𝑛𝑡 and 𝑊𝑔 ∈ R1×1×𝐶𝑖𝑛𝑡 are two linear transformations
that transform the channels 𝑐𝑥 and 𝑐𝑔 from 𝑥𝑖 and 𝑔𝑖, respectively, to
𝑐𝑖𝑛𝑡. 𝜓𝑖 consists of 𝑊𝜓𝑖 ∈ R1×1×1 followed by BatchNormalization (BN)
and sigmoid activation function to learn the spatial attention coefficient
𝑀𝑎𝑡𝑡𝑝 for each pixel. The obtained spatial coefficients 𝑀𝑎𝑡𝑡 are applied
to the skip feature maps of the encoder 𝑥𝑖.

𝑥𝑎𝑡𝑡 =𝑀𝑎𝑡𝑡 ⊗ 𝑥𝑖 (18)

Since our approach exploits multi-tasks approach with dual-
decoders, the used loss function is defined by:

𝐻𝑦𝑏𝑟𝑖𝑑 = 𝛼𝐿𝐸𝑆−𝐶𝐸 + 𝛽 𝐿𝐸𝑆−𝐷𝑖𝑐𝑒 + 𝛾 𝑂−𝐶𝐸 (19)

where 𝐿𝐸𝑆−𝐶𝐸 and 𝐿𝐸𝑆−𝐷𝑖𝑐𝑒 are the CE and Dice losses of the lesion
branch and 𝑂−𝐶𝐸 is the loss associated with organ segmentation
branch using CE loss function. The weights 𝛼 and 𝛽 are set to 0.5 and
0.5, respectively, and 𝛾 is set to 0.3 for the secondary task loss (organ
segmentation).

4. Datasets

Three tasks have been used to evaluate the performance of our ap-
proach. First, for BM segmentation, we utilized the BM-Seg dataset [42].
This dataset comprises data from 23 CT scans of 23 patients diagnosed
with bone metastasis. A total of 1517 slices were confirmed to exhibit
bone metastasis infections by three expert radiologists and were labeled
for bone metastasis and bone regions masks. We followed the same
splits as described in [42], where five-fold cross-validation evaluation
scenario were introduced.

For the Covid-19 infection segmentation task, we evaluated both
binary and multi-class segmentation tasks, as summarized in Table 1.
Dataset_1 [50] consists of 100 slices showing Covid-19 infection, in-
cluding lungs and multi-class infection masks (GGO and Consolida-
tion). Dataset_2 [50] comprises nine 3D CT scans, totaling 829 slices,
with 373 slices indicating Covid-19 infection. Expert radiologists la-
beled this dataset, providing masks for lungs, binary infection (non-
infected and infected), and multi-class labels (non-infected, GGO, and
Consolidation).

For the binary segmentation task, we divided Dataset_2 into 70%–
30% splits for training and testing, respectively. For the multi-class
segmentation task, we used Dataset_2 and 50% of Dataset_1 (50 slices)
for training, while the remaining 50 slices of Dataset_1 were used for
testing. Table 2 summarizes the number of slices for the GGO and
Consolidation classes in both the training and testing splits. As shown
in the table, the limited number of slices for each class presents a
significant challenge for multi-class segmentation.

For Gland and Nuclear segmentation tasks, we employed the Gland
segmentation dataset (GlaS) [51] and the MoNuSeg dataset [52],
respectively. The Gland segmentation dataset (GlaS) has consists of
165 images, and the MoNuSeg dataset consists of 44 images. Follow-
ing [10], three times five-fold cross-validation is performed for each
task, and the mean and std results are considered.
6

r

Table 1
The Summary of the used Covid-19 datasets. In which, we highlighted the number of
CT-scans and slices for each dataset.

Name Dataset #CT-Scans #Slices

Dataset_1 COVID-19 CT segmentation [50] 40 100
Dataset_2 Segmentation dataset nr. 2 [50] 9 829

5. Experiments and results

5.1. Experimental setup

To produce our experiments, we mainly used PyTorch [53] library
for deep learning. Each architecture is trained for 100 epochs with an
initial learning rate of 0.1 and Adam optimizer. The batch size is set
to 16 images. The used machine has NVIDIA RTX A5000 GPU with
24 GB of memory, 11th Gen Intel(R) Core(TM) i9-11900KF (3.50 GHz)
CPU and 64 of RAM. Three types of active data augmentation are used;
random rotate with an angle between −35◦ and 35◦ with a probability
of 10% and random Horizontal and vertical Flipping with probability
of 20% for each.

5.2. Evaluation measurements

In order to compare the performance of our approach with the state-
of-the-art approaches, the following evaluation metrics have been used:
F1-score (F1-S), Dice score (D-S), Intersection Over Union (IoU), and
HD95, which are defined as follows:

F1-score = 100 ⋅ 2 ⋅ 𝑇𝑃
2 ⋅ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(20)

IoU = 100 ⋅ 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(21)

where 𝑇𝑃 is True Positives, 𝑇𝑁 is True Negatives, 𝐹𝑃 is False Positives,
and 𝐹𝑁 is False Negatives, all associated with the segmentation classes
of the test images.

The Dice score is a macro metric, which is calculated for 𝑁 testing
mages as follow:

ice score = 100 ⋅ 1
𝑁

𝑁
∑

𝑖=1

2 ⋅ 𝑇𝑃𝑖
2 ⋅ 𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

(22)

here 𝑇𝑃𝑖, 𝑇𝑁𝑖, 𝐹𝑃𝑖 and 𝐹𝑁𝑖 are True Positives, True Negatives, False
ositives and False Negative for the 𝑖th image, respectively.

Finally, the HD95 metric is the 95th percentile of the set of distances
alculated using the Hausdorff Distance. For the ground-truth mask (G)
nd the corresponding predicted mask (M), HD95 is defined by:

D95(𝐺,𝑀) = percentile(ℎ(𝐺,𝑀), 95) (23)

where the Hausdorff Distance ℎ(𝐺,𝑀) is defined by:

ℎ(𝐺,𝑀) = max
(

sup
𝑎∈𝐺

inf
𝑏∈𝑀

𝑑(𝑎, 𝑏), sup
𝑏∈𝑀

inf
𝑎∈𝐺

𝑑(𝑎, 𝑏)
)

(24)

here 𝑑(𝑎, 𝑏) is the distance metric between elements 𝑎 and 𝑏 in sets
and 𝑀 , respectively. sup is the supremum (least upper bound)

peration, and inf is the infimum (greatest lower bound) operation.
For COVID-19 tasks, the four metrics are used for evaluation, as

ll results are obtained from our experiments. On the other hand,
e followed the same metrics used in [10,42] for BM segmentation
nd Gland and Nucleus Segmentation, respectively, as the comparison

esults are obtained from these two papers for these tasks.
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Table 2
Data splitting of Covid-19 datasets for Multi-classes Covid-19 infection segmentation task. In which, the number of slices (in brackets the number of CT-scans), infected slices
among the total, slices with GGO infection, and slices with consolidation specified for each split (Train and Test).

Split Involved dataset Total # Slices # Infected Slices #Slices with GGO #Slices with consolidation

Train Dataset_2
50% of Dataset_1

879 (9+20 CT-scans) 422 345 272

Test 50% of Dataset_1 50 (20 CT-scans) 50 50 40
Table 3
Comparison with state-of-the-art segmentation methods on BM-Seg dataset. F1-S, D-S
and IoU indicators for 5 folds cross-validation are considered following [42].

Model F1-S D-S IoU

U-Net [42] 79.46 72.26 65.93
AttUnet [42] 79.41 71.76 65.86
Unet++ [42] 79.74 71.99 66.31
AttUnet++ [42] 80.28 72.36 67.06
SwinUnet [54] 61.09 39.17 44.01
MTUnet [8] 58.59 44.30 41.45
MISSFormer [55] 81.44 70.42 68.73
UCTransNet [10] 83.62 73.88 71.85
Hybrid-AttUnet++ [42] 82.27 75.70 69.89
EDAUnet++ [42] 83.67 77.05 71.92
D-TrAttUnet (Ours) 84.78 78.49 73.58

Table 4
F1-score of 5-fold cross-validation experiments for BM segmentation.

Model Fold1 Fold2 Fold3 Fold4 Fold5 Mean

U-Net [42] 80.41 77.52 79.27 80.65 79.44 79.46
AttUnet [42] 79.17 77.79 79.04 80.63 80.39 79.41
Unet++ [42] 80.12 80.21 78.44 80.27 79.67 79.74
AttUnet++ [42] 80.45 80.35 79.61 80.31 80.67 80.28
SwinUnet [54] 60.69 60.24 60.79 59.88 63.86 61.09
MTUnet [8] 58.86 56.04 59.32 58.15 60.57 58.59
MISSFormer [55] 81.91 82.17 78.46 81.16 83.51 81.44
UCTransNet [10] 84.39 83.03 82.82 83.78 84.07 83.62
EDAUnet++ [42] 84.19 83.49 83 83.96 83.69 83.67
D-TrAttUnet (Ours) 84.99 84.64 84.40 85.01 84.86 84.78

5.3. Bone-metastasis segmentation

In line with the study by Afnouch et al. [42], we present a com-
prehensive performance analysis of our approach alongside a compar-
ison to existing methodologies. Notably, the original study did not
explore transformer-based models. Our investigation extend into the
performance of four transformer architectures, namely SwinUnet [54],
MTUnet [8], MISSFormer [55], and UCTransNet [10]. Table 3 sum-
marizes the results of five-fold cross-validation, showcasing F1-score,
Dice, and IoU indicators. Our approach demonstrates clear superiority
across these metrics, even when compared to EDAUnet++ [42], an
ensemble of five models. Our approach outperforms EDAUnet++ by
margins of 1.11% for F1-score, 1.44% for Dice, and 1.66% for IoU,
underlining our approach’s enhanced performance and computational
efficiency. When contrasted with transformer-based architectures, our
method consistently outshines them, with UCTransNet emerging as the
strongest contender. However, SwinUnet and MTUnet exhibit relatively
weaker performance, raising concerns about the generalization capabil-
ities of certain transformer architectures. Further insights are detailed
in Table 4, which presents fold-wise F1-score results and their averages,
reaffirming our approach’s consistent superiority.

5.4. Covid-19 segmentation

For Covid-19 segmentation, both binary and multi-classes tasks are
investigated.

5.4.1. Binary segmentation
In this section, we evaluate the performance of the proposed D-

TrAttUnet and compare its performance with U-Net [23], Att-Unet [26],
7

Table 5
Performance Evaluation of the Proposed D-TrAttUnet and Different State-of-the-Art
Approaches, Including Baseline CNN Architectures (U-Net [23], Att-Unet [26], Unet++
[27]), State-of-the-Art Approaches for Covid-19 Infection Segmentation (CopleNet
[12], AnamNet [13], and SCOATNet [15]), and Recent Transformer-Based Approaches
(SwinUnet [54], MTUnet [8], MISSFormer [55], and UCTransNet [10]) for Binary
Covid-19 Infection Segmentation on Dataset_2.

Model F1-S D-S IoU HD95

U-Net 47.36 ± 14.54 22.23 ± 6.51 32.24 ± 12.76 3.24 ± 0.11
Att-Unet 50.61 ± 12.41 23.83 ± 5.16 34.82 ± 11.45 2.89 ± 0.09
UNet++ 55.20 ± 12.14 27.01 ± 5.75 39.05 ± 10.96 3.12 ± 0.08
CopleNet 60.92 ± 9.16 26.09 ± 4.11 44.42 ± 9.44 2.45 ± 0.12
AnamNet 38.87 ± 3.8 20.13 ± 1.66 27.20 ± 2.91 5.87 ± 0.27
SCOATNet 45.28 ± 18.46 19.87 ± 7.52 31.12 ± 15.56 2.13 ± 0.16
SwinUnet 57.75 ± 4.35 29.22 ± 3.05 41.32 ± 3.98 1.22 ± 0.12
MTUnet 51.83 ± 9.20 26.48 ± 4.85 35.53 ± 8.81 1.27 ± 0.08
MISSFormer 58.12 ± 1.86 27.90 ± 0.14 40.98 ± 1.85 0.97 ± 0.06
UCTransUnet 57.83 ± 4.08 26.40 ± 2.34 40.79 ± 4.13 0.95 ± 0.05
D-TrAttUnet 74.44 ± 2.38 36.86 ± 2.63 59.34 ± 3.01 0.88 ± 0.03

Unet++ [27], CopleNet [12], AnamNet [13], and SCOATNet [15] and
four recent Transformer-based architectures (SwinUnet [54],
MTUnet [8], MISSFormer [55], and UCTransNet [10]). It should be
noted that each experiment was repeated five times. The results shown
represent the average ± the standard deviation of the five runs.

Table 5 depicts the obtained results of binary Covid-19 segmen-
tation on Dataset_2, where F1-score, Dice, IoU and HD95 indicators
are considered. The comparison shows the superiority of the proposed
approach compared with the Baseline architectures, the state-of-the-art
approaches and the Transformer-based architectures. In more details,
our proposed D-TrAttUnet approach outperforms the best compari-
son method by 13.5% for F1-score (CopleNet), 7.64% for Dice-score
(SwinUnet), and 14.9 for IoU (CopleNet). By looking at the standard
deviation of the five experiments, we notice that U-Net, Unet++, Att-
Unet, SCOATNet, CopleNet, MTUnet and SwinUnet do not have a
stable performance. Only AnamNet and MISSFormer approaches have
reasonable standard deviation, however, the performance of AnamNet
is the lowest in Dataset_2. From the results of Dataset_2, we find that
D-TrAttUnet achieves the best performance with stable behavior during
different runs.

From these remarks, we conclude that the proposed Dual-Decoders
Transformer-CNN based architecture is able to learn from few data,
since both CNN and Transformer based features are extracted and fused
in the encoding phase, which provides richer global and local features
about the infection. The ability to learn from few data is very crucial
especially in pandemic, which is the case in Covid-19 disease.

5.4.2. Multi-classes segmentation
Table 6 summarizes the obtained results of our proposed

D-TrAttUnet architecture and the comparison methods for multi-class
Covid-19 segmentation. For the GGO infection type, our approach
outperforms the comparison architectures. It is worth noting that many
of the comparison architectures achieved similar results, with a slight
advantage for the UCTransNet architecture. Our architecture achieves
better results than the best comparison architecture (UCTransNet)
with improvements of 3.15% for the F1-score, 4.89% for the Dice
score, and 3.61% for the IoU. For the Consolidation infection type,
it is evident that the performance of all approaches drops compared

to GGO. This is mainly because Consolidation infection type is less
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Table 6
Performance Evaluation of the Proposed D-TrAttUnet and Different State-of-the-Art Approaches, Including Baseline CNN Architectures (U-Net [23], Att-Unet [26], Unet++ [27]),
State-of-the-Art Approaches for Covid-19 Infection Segmentation (CopleNet [12], AnamNet [13], and SCOATNet [15]), and Recent Transformer-Based Approaches (SwinUnet [54],
MTUnet [8], MISSFormer [55], and UCTransNet [10]) for multi-classes Covid-19 Infection segmentation (No-infection, GGO and Consolidation).

Ex Architecture GGO Consolidation

F1-S D-S IoU HD95 F1-S D-S IoU HD95

1 U-Net [23] 65.81 ± 1.26 50.13 ± 1.31 49.06 ± 1.41 33.58 ± 2.33 31.35 ± 12.96 15.45 ± 5.66 19.26 ± 8.76 37.81 ± 6.81
2 Att-Unet [26] 64.81 ± 1.89 50.44 ± 1.35 47.97 ± 2.06 34.51 ± 3.64 39.04 ± 6.81 19.26 ± 3.55 24.48 ± 5.31 37.18 ± 5.14
3 Unet++ [27] 65.69 ± 1.29 51.65 ± 4.12 48.92 ± 14.2 28.51 ± 2.94 31.31 ± 6.67 16.86 ± 4.48 18.75 ± 4.73 39.20 ± 7.12
4 CopleNet [12] 60.44 ± 1.54 46.25 ± 3.13 43.33 ± 1.61 37.15 ± 7.12 29.70 ± 10.29 16.46 ± 4.76 17.90 ± 7.52 40.93 ± 5.46
5 AnamNet [13] 65.10 ± 3.56 51.69 ± 4.81 48.36 ± 3.82 31.11 ± 4.95 31.97 ± 6.12 18.06 ± 4.61 19.18 ± 4.36 38.46 ± 6.17
6 SCOATNET [15] 65.77 ± 3.28 50.80 ± 4.63 49.09 ± 3.56 34.16 ± 3.75 43.52 ± 1.67 23.32 ± 2.07 27.83 ± 1.38 36.47 ± 4.44
7 SwinUnet [54] 62.74 ± 2.63 42.46 ± 2.61 45.77 ± 2.83 37.54 ± 4.91 32.2 ± 6.68 19.77 ± 3.87 19.37 ± 4.60 41.30 ± 7.17
8 MTUnet [8] 57.83 ± 2.57 42.97 ± 2.78 40.72 ± 2.52 36.13 ± 7.35 26.78 ± 7.39 18.24 ± 4.56 15.66 ± 4.74 38.88 ± 7.01
9 MISSFormer [55] 65.66 ± 3.06 51.57 ± 4.01 48.95 ± 3.37 24.31 ± 1.33 47.75 ± 4.77 28.02 ± 2.72 31.50 ± 4.26 35.21 ± 4.06
10 UCTransNet [10] 67.46 ± 2.97 53.42 ± 4.24 50.97 ± 3.39 31.65 ± 3.50 49.21 ± 4.27 29.41 ± 3.48 32.74 ± 3.66 37.69 ± 5.69
11 D-TrAttUnet (Ours) 70.61 ± 1.01 58.31 ± 1.37 54.58 ± 1.21 21.14 ± 1.65 57.94 ± 2.30 34.01 ± 1.40 40.82 ± 2.28 33.31 ± 1.89
Table 7
Hybrid encoder performance evaluation on Gland Segmentation dataset (GlaS) [51] and the MoNuSeg dataset [52]. It should be noted that we
followed the same evaluation protocol in [10].

Ex Architecture GlaS MoNuSeg

D-S IoU D-S IoU

1 U-Net 84.87 ± 1.1 74.47 ± 1.6 77.12 ± 1.9 63.45 ± 2.1
2 Unet++ 88.01 ± 1.1 79.03 ± 1.4 75.14 ± 1.1 64.05 ± 1.4
3 AttUNet 88.10 ± 1 79.35 ± 1.2 76.14 ± 1.2 63.47 ± 1.1
4 MRUNet 88.43 ± 1.1 80.14 ± 1.3 77.59 ± 2.1 65.01 ± 2.1
5 TransUNet 87.88 ± 0.8 79.99 ± 0.9 77.93 ± 1.2 64.75 ± 1.2
6 MedT 86.02 ± 2.4 76.45 ± 3.5 76.77 ± 1.9 64.38 ± 2.9
7 Swin-Unet 89.79 ± 0.7 82.01 ± 0.8 78.01 ± 0.8 63.79 ± 0.9
8 UCTransNet 90.17 ± 0.5 82.85 ± 1 79.01 ± 0.7 64.90 ± 0.8
9 TrAttUnet (Ours) 92.14 ± 0.11 85.96 ± 0.17 79.21 ± 0.11 65.81 ± 0.12
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frequent, as shown in Table 2. Additionally, it can be challenging to
distinguish between consolidation and non-lung tissue, especially when
the infection has a peripheral or posterior distribution, which is often
the case in Consolidation infection type [46,47]. The results in Table 6
demonstrate that our approach also excels in consolidation segmenta-
tion. Specifically, the proposed D-TrAttUnet architecture outperforms
the best comparison architecture, UCTransNet, by 8.73%, 4.6%, and
8.08% for F1-score, Dice score, and IoU, respectively. These results
underscore the effectiveness of our approach in addressing imbalanced
class distribution and the challenge of limited training data, which
accurately reflects the real-world scenario of Covid-19 infection.

5.5. Gland and nucleus segmentation

We conducted an evaluation of our proposed hybrid encoder, TrAt-
tUnet, on two distinct tasks: gland segmentation using the GlaS dataset
and nuclear segmentation using the MoNuSeg dataset. In this assess-
ment, we focused solely on the proposed encoder, omitting organ
segmentation, and employed a loss function comprising only the cross-
entropy loss (𝐿𝐸𝑆−𝐶𝐸) and the Dice loss (𝐿𝐸𝑆−𝐷𝑖𝑐𝑒) for the lesion
ranch. Our results, summarized in Table 7, showcase D-TrAttUnet’s
uperior performance when compared to state-of-the-art architectures,
s reported in [10]. These findings underscore the efficiency and gen-
ralization capability of our approach across various medical imaging
asks.

.6. Ablation study

This section delves into a detailed analysis of the significance of
arious components within the proposed D-TrAttUnet approach. To this
nd, we have chosen to investigate the ablation study to Covid-19 seg-
entation tasks, encompassing both binary and multi-class scenarios,

n order to validate the importance of each component. Table 8 serves
s a concise summary of the results obtained on Dataset_2 for binary
egmentation. Specifically, we focus on assessing the contributions of
he Attention Gate (AG), Dual Decoders (DD), and Transformer Encoder
8

TrEc). Upon examining Experiments 1 and 2, it becomes evident that
he inclusion of the attention gate enhances the performance of the U-
et architecture when applied to Dataset_2. Subsequently, Experiment
involves the removal of the attention gate from our approach. Com-

aring the results between Experiment 3 and our proposed D-TrAttUnet
rchitecture reveals the paramount importance of the attention gate
n our framework. Notably, the results on Dataset_2 exhibit improve-
ents of 4.07% for F1-score, 0.4% for Dice-score, and 4.91% for IoU,
nderscoring its substantial role in enhancing segmentation outcomes.
urthermore, the incorporation of the transformer component within
he encoding phase contributes to more robust feature extraction.
hese enriched features are subsequently channeled through skip con-
ections to the attention gate. Consequently, the attention gate can
ake more informed selections from the encoder’s features and the
psampled features from the previous decoder layer, further enhancing
he segmentation process.

In Experiment 4 (refer to Table 8), we explore the outcomes when
he transformer encoder component is omitted from the architecture.
his investigation reveals a noticeable decline in results, highlighting
he substantial impact of the transformer encoder. To elaborate fur-
her, without the transformer encoder, the performance on Dataset_2
egisters a decrease, with metrics such as F1-score, Dice-score, and IoU
eteriorating by 11%, 6.47%, and 12.58%, respectively. This depicts
he effectiveness of the proposed hybrid encoder, which combines
ransformer and convolutional layers in the encoding phase, particu-
arly in scenarios with limited data availability, such as during pan-
emics. Furthermore, the comparison between Experiment 5 and 6 (as
utlined in Table 8) shows the importance of utilizing Dual-Decoders.
ntroducing the second decoder for lung segmentation concurrently
ith infection segmentation results in noticeable improvements in
erformance, further highlighting the significance of this architectural
hoice.

Table 9 provides insight into the ablation experiments conducted
or multi-class Covid-19 segmentation. Similar to our previous ablation
tudies in binary segmentation, we examine the significance of three
ey components: the Attention Gate (AG), Dual Decoders (DD), and
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Table 8
Ablation study of Binary Segmentation scenario. The experimental results of Dataset_2 are summarized with investigating the effectiveness of
the following components: Attention Gate (AG), Dual-Decoder (DD) and Transformer Encoder (TrEc).

Ex Architecture Ablation Dataset_2

AG DD TrEc F1-S D-S IoU

1 U-Net (baseline) ✗ ✗ ✗ 47.36 ± 14.54 22.23 ± 6.51 32.24 ± 12.76
2 AttUnet (baseline) ✓ ✗ ✗ 50.61 ± 12.41 23.83 ± 5.16 34.82 ± 11.45
3 D-TrUnet ✗ ✓ ✓ 70.37 ± 3.98 36.46 ± 2.56 54.43 ± 4.80
4 D-AttUnet ✓ ✓ ✗ 63.43 ± 6.35 30.39 ± 4.08 46.76 ± 6.81
5 TrAttUnet ✓ ✗ ✓ 67.33 ± 6.72 32.52 ± 3.46 51.14 ± 7.76
6 D-TrAttUnet ✓ ✓ ✓ 74.44 ± 2.38 36.86 ± 2.63 59.34 ± 3.01
Table 9
Ablation study of Multi-classes Covid-19 Infection Segmentation scenario. The experimental results are summarized with investigating the effectiveness of the following components:
Attention Gate (AG), Dual-Decoder (DD) and Transformer Encoder (TrEc).

Ex Architecture Ablation GGO Consolidation

AG DD TrEc F1-S D-S IoU F1-S D-S IoU

1 U-Net (baseline) ✗ ✗ ✗ 65.81 ± 1.26 50.13 ± 1.31 49.06 ± 1.41 31.35 ± 12.96 15.45 ± 5.66 19.26 ± 8.76
2 AttUnet (baseline) ✓ ✗ ✗ 64.81 ± 1.89 50.44 ± 1.35 47.97 ± 2.06 39.04 ± 6.81 19.26 ± 3.55 24.48 ± 5.31
3 D-TrUnet ✗ ✓ ✓ 63.77 ± 1.69 49.80 ± 2.97 46.83 ± 1.82 50.39 ± 2.08 29.19 ± 4.55 33.71 ± 1.84
4 D-AttUnet ✓ ✓ ✗ 65.20 ± 0.95 51.62 ± 1.42 48.38 ± 1.05 51.15 ± 2.16 29.02 ± 1.40 34.39 ± 1.98
5 TrAttUnet ✓ ✗ ✓ 65.69 ± 1.29 51.65 ± 4.12 48.92 ± 1.42 48.15 ± 1.75 27.23 ± 4.52 31.73 ± 1.50
6 D-TrAttUnet ✓ ✓ ✓ 70.61 ± 1.01 58.31 ± 1.37 54.58 ± 1.21 57.94 ± 2.31 34.01 ± 1.40 40.82 ± 2.28
Transformer Encoder (TrEc). Analyzing the results of U-Net and At-
tUnet (Experiments 1 and 2) for multi-class segmentation reveals the
varying impact of the Attention Gate on different classes (Consolidation
and GGO). For Consolidation segmentation, the Attention Gate proves
highly beneficial, leading to an 8.7% improvement in F1-score. How-
ever, for GGO segmentation, incorporating the Attention Gate results
in a slight decrease in performance for metrics like F1-score and IoU.

In contrast, our proposed approach consistently benefits from the
Attention Gate for both Consolidation and GGO segmentation (Experi-
ments 3 and 6). From these two experiments, it is noticed that including
the AG in our approach enhances the segmentation results for GGO,
with improvements of 6.84% for F1-score, 8.51% for Dice-score, and
7.75% for IoU. Similarly, for Consolidation, the Attention Gate leads
to improvements of 7.55%, 4.82%, and 7.11% for F1-score, Dice-score,
and IoU, respectively. This underscores the critical role of the Attention
Gate in identifying crucial features regions from the proposed Hybrid
encoder, especially in the complex task of multi-class segmentation.

Examining the fourth and fifth rows of Table 9, it becomes evident
that both the Transformer Encoder and the Dual-Decoders are pivotal
components in our proposed D-TrAttUnet architecture. Their inclusion
results in performance enhancements, with improvements observed
in both GGO and Consolidation segmentation. Adding Transformer
Encoder and the Dual-Decoders leads to substantial improvements in
F1-score, particularly notable in the case of Consolidation, where en-
hancements of about 9.11% and 12.11% are achieved, respectively.

Lastly, the final row demonstrates that combining all proposed
components in our approach yields the best performance, surpassing
the baseline results, particularly for Consolidation. This comprehensive
ablation study, encompassing both binary and multi-class Covid-19
segmentation in Tables 8 and 9, underscores the critical importance
of each component within our approach.

6. Qualitative evaluation and discussion

6.1. Visual comparison

In our study, we not only compared our approach to state-of-the-
art architectures but also provided visualizations of predicted masks
for three tasks: BM segmentation, Binary Covid-19 segmentation, and
Multi-class Covid-19 segmentation. These visualizations are available
in Figs. 5, 6, and 7.

For the BM segmentation task, we compared the predicted masks
generated by our approach with those from three competitive methods
9

(Fig. 5), which had proven to be the top performers, as shown in Ta-
ble 3. These competitors include MISSFormer [55], UCTransNet [10],
and EDAUnet++ [42]. In the first two examples, we examined cases
where Bone Metastasis had infected all bone regions within the slice. A
closer inspection of the predicted masks revealed that most approaches
were successful in highlighting the infected regions. However, it was
evident that MISSFormer and EDAUnet++ struggled to capture seg-
mentation details accurately. In contrast, our approach and UCTransNet
excelled in matching the details present in the ground-truth masks. The
remaining three examples represented slices where only a portion of the
bone was infected by BM, which is a particularly challenging aspect of
BM segmentation. In the third example, the comparison methods incor-
rectly segmented a part of the bone as a Bone Metastasis lesion. In con-
trast, our approach accurately matched the ground-truth mask in these
scenarios. The last two examples demonstrated our approach’s ability
to capture intricate lesion details effectively, showcasing the efficiency
of our proposed compound encoder, which integrates Transformer and
CNN features. In summary, the visualizations and comparisons reaffirm
the effectiveness of our approach in BM segmentation, particularly in
challenging cases, and highlight its ability to capture intricate lesion
details efficiently.

On the other hand, the visualized masks of the comparison methods
for the binary and multi-classes Covid-19 infection segmentation are:
Unet++ [27], CopleNet [12], MISSFormer [55] and UCTransUnet [10],
and for multi-classes segmentation task are Att-Unet [26], SCOAT-
Net [15], MISSFormer [55] and UCTransUnet [10], which showed a
competitive performance with our proposed approach (see Section 5.4).

The four visualized examples in Fig. 6 are from the binary segmenta-
tion experiments of Dataset_2. The first example shows a case in which
infection has spread to both lungs and appears as a GGO and small
consolidation region at the bottom of the right lung. The comparison
between the Unet++ mask and the ground truth (GT) shows that the
Unet++ architecture fails in segmenting most of the infection regions.
The CopleNet, MISSFormer and UCTransNet masks show improved
segmentation performance compared to Unet++. However, these ar-
chitectures still miss some infected regions or segment lung tissues as
infection instead. The mask of our proposed approach shows high simi-
larity with GT in term of the number of regions and their global shape.
Both examples 2 and 3 are cases where the infection has a peripheral
distribution. The visualized masks show that the proposed D-TrAttUnet
is the best architecture consistent with the ground truth. The fourth
example depicts a severe case where the infection has spread to most
of the lung regions. The visualized masks exhibit that our proposed
architecture performs better than the comparison architectures.
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Fig. 5. Visual comparison of bone metastasis segmentation models trained with different architectures.
Fig. 7 consists of the visualization of three examples masks using
our approach and the comparison architectures for multi-classes Covid-
19 segmentation. The first example shows a mixture case of GGO and
Consolidation, where most of the infected regions consist of consolida-
tion and small GGO regions are attached to the consolidation regions.
Unlike the masks of the comparison architectures, the mask of our
approach has a high similarity to the ground truth mask for both the
consolidation and GGO classes. The second and third examples also
represent a case where both GGO and consolidation are present in both
lungs. The infected regions with consolidation are mainly in the lower
lobes of both lungs and GGO spreads in both lungs with peripheral
and posterior distribution. The masks of these examples confirm the
observation in the first example, as the predicted masks of D-TrAttUnet
show a high similarity to the GT masks for both infection types GGO
and Consolidation.

Visual exploration has unequivocally demonstrated the robustness
and precision of our proposed approach in both BM and COVID-19
segmentation tasks, unequivocally showcasing its efficacy in capturing
critical details and surpassing competing state-of-the-art methods.

6.2. Model size and inference time comparison

In this section, we investigate the number of parameters, number
of FLOPs, and inference times of our approach in comparison with
others. Table 10 summarizes these comparisons. It is noteworthy that
our approach exhibits a similar number of parameters and FLOPs as
many state-of-the-art architectures. Compared to baseline architectures
such as U-Net and AttUnet, our proposed architecture has a higher
parameter count due to the inclusion of the Hybrid Encoder, which has
proven its efficiency in handling the complex task with very limited
training data.
10
Table 10
Number of parameters of different architectures and Testing Time for a batch size of
50 slices.

Architecture Number of FLOPs Number of parameters Inference time

U-Net 10.73 7.85 M 89 ms
AttUnet 11.05 7.98 M 102 ms
Unet++ 26.51 9.16 M 244 ms
CopleNet 12.58 10.52 M 95 ms
AnamNet 19.48 15.63 M 117 ms
SCOATNET 29.75 40.21 M 407 ms
SwinUnet 15.12 41.38 M 160 ms
MTUnet 44.73 79.07 M 629 ms
UCTransNet 32.94 66.43 M 423 ms
MISSFormer 7.21 42.46 M 223 ms
D-TrAttUnet 28.47 70.13 M 475 ms

Moreover, it is important to mention that the second decoder for
the Organ segmentation task could be omitted during the testing phase.
Since the two decoders operate in parallel and are entirely independent
of each other, removing the organ segmentation decoder does not
affect the overall functionality. Despite the larger parameter count,
our approach still delivers competitive inference times. In fact, the
inference time for a batch size of 50 slices is less than half a second,
making it suitable for real-time scenarios.

7. Conclusion

In this research paper, we introduce a novel approach for medi-
cal imaging segmentation tasks, blending the power of Convolutional
Neural Networks (CNNs) and Transformers. Our proposed D-TrAttUnet
Encoder merges CNN and Transformer layers to extract more com-
prehensive local, global, and long-range dependency features essential
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Fig. 6. Visual comparison of a segmentation model trained with different segmentation architectures for Binary Covid-19 segmentation using Dataset_2 and Dataset_3.
Fig. 7. Visual comparison of a segmentation model trained with different segmentation architectures for Multi-classes (No-infection, GGO and Consolidation) Covid-19 infection
segmentation using Dataset_2. GGO is presented by the Green color and Consolidation by the red color.
for precise medical imaging segmentation. Notably, many medical le-
sions target one or multiple body organs. Therefore, our D-TrAttUnet
architecture features a Dual-Decoder system, enabling simultaneous
segmentation of both the lesions and organ regions. Each decoder
includes attention gates, linear upsampling, and convolutional blocks.

To assess the performance of our approach, we tackled a range of
challenging medical imaging segmentation tasks. These included Bone
Metastasis, Binary and Multi-class COVID-19 infection segmentation, as
well as Gland and Nucleus Segmentation. Our proposed D-TrAttUnet
architecture consistently outperformed state-of-the-art methods in Bone
Metastasis and COVID-19 segmentation tasks. Furthermore, the hy-
brid encoder we introduced demonstrated remarkable efficiency in
11
Gland and Nucleus Segmentation, surpassing existing state-of-the-art
solutions.

Our experimental results underscore the significance of employing
attention gates within a compound CNN-Transformer encoder, show-
casing the advantages of our approach over a CNN-only encoder. An
ablation study emphasized the importance of each component within
our proposed approach, while the integration of all elements yielded
superior performance, marked by stability and consistent results across
both evaluated tasks. The visual explorations provided further evi-
dence of our approach’s robustness and precision, clearly highlighting
its efficacy in capturing crucial details and surpassing competitive
state-of-the-art methods.
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