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ABSTRACT

Dynamic structural causal models (SCMs) are a powerful framework for reasoning in dynamic sys-
tems about direct effects which measure how a change in one variable affects another variable while
holding all other variables constant. The causal relations in a dynamic structural causal model can
be qualitatively represented with a full-time causal graph. Assuming linearity and causal sufficiency
and given the full-time causal graph, the direct causal effect is always identifiable and can be esti-
mated from data by adjusting on any set of variables given by the so-called single-door criterion.
However, in many application such a graph is not available for various reasons but nevertheless ex-
perts have access to an abstraction of the full-time causal graph which represents causal relations
between time series while omitting temporal information. This paper presents a complete identifia-
bility result which characterizes all cases for which the direct effect is graphically identifiable from
summary causal graphs and gives two sound finite adjustment sets that can be used to estimate the
direct effect whenever it is identifiable.

Structural causal models (SCMs) are a powerful framework for representing and reasoning about causal relations
between variables with a long history in many fields such as genetics (Wright, 1920, 1921), econometrics (Haavelmo,
1943), social sciences (Duncan, 1975; Goldberger, 1972), and artificial intelligence (Pearl, 2000). In particular, SCMs
are useful for reasoning about direct effects which measure how a change in one variable affects another variable while
holding all other variables constant (Pearl, 2012). The identification and estimation of direct effects are important in
many application, e.g., epidemiologists are interested in measuring how smoking affects lung cancer risk without being
mediated by genetic susceptibility (Zhou et al., 2021); ecologists are usually focus on understanding direct effects such
as competition, herbivory, and predation (Connell, 1961); IT monitoring expert can localize the root cause of a system
failure or a performance issue by comparing the direct causal impact of different components on each other before and
after the failure (Assaad et al., 2023).

In the framework of (non-dynamic) SCMs, assuming linearity and causal sufficiency and given a causal graph which
qualitatively represents causal relations between different variables, the direct effect between two variables is always
identifiable and there exists a complete graphical tool, called the single-door criterion (Pearl, 1998; Spirtes et al.,
1998; Pearl, 2000) that finds all possible adjustment sets that allow to estimate the direct effect from data. These
results are directly applicable in dynamic SCMs given the full-time causal graph—which qualitatively represents all
causal relations between different temporal instants of the dynamic SCM—and assuming consistency throughout time
and that the full-time causal graph is acyclic. However, in many dynamic systems, experts have difficulties in building
a full-time causal graph (Aı̈t-Bachir et al., 2023), while they can usually build a summary causal graph (Assaad et al.,
2022) which is an abstraction of the full-time causal graph where temporal information is omitted.

So far, the problem of identifying direct effects has only been addressed for summary causal graphs under the as-
sumption that the summary causal graph is acyclic (while allowing self-loops). In particular, it has been shown that
direct effects are always identifiable in an acyclic summary causal graph with loops and a non-complete extension of
the single-door criterion has been proposed to find some adjustment sets that allow to estimate the direct effect from
data (Assaad et al., 2023).

In this work, we focus on the identifiability of direct effects from summary causal graphs without assuming that the
given summary causal graph is acyclic. Our main contribution is two-folds. First, we give a complete identifiability
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result which characterizes all cases for which a direct effect is graphically identifiable from a summary causal graph.
Then, we present two finite adjustment sets that can be used to estimate the direct effect from data whenever it is
identifiable.

The remainder of the paper is organized as follows: Section 1 gives the definitions of direct effect and summary
causal graph and recall all necessary graphical preliminaries. Section 2 presents the complete identifiability result
and Section 3 provides two finite adjustment sets that can be used to estimate the direct effect from data whenever it
is identifiable. Then, Section 4 discusses some interesting examples of other adjustments sets for specific summary
causal graphs which can be helpful for a future work that aims to develop a complete criterion for finding all possible
finite adjustments sets. Finally, Section 5 concludes the paper.

1 Problem setup

In this section, we first introduce some terminology, tools, and assumptions which are standard for the major part.
Then, we formalize the problem we are going to solve. Without any opposite mention, we refer to the variables as
capital letters and to the associated potential values as lower cases. Calligraphic letters correspond to vectors or sets.

In this work, we consider that a dynamic system can be represented by a linear dynamic structural causal model
(SCM).
Definition 1 (Linear dynamic SCM). Considering a finite set of times series V , a linear structural causal model (SCM)
is a set of equations in which each instant t ∈ Z of time serie (e.g., Yt) is defined as a linear function of past instants
of itself (e.g., Yt−γ , γ > 0), past or present instants of other times series (e.g., Xt−γ , X ̸= Y, γ ≥ 0) and of some
noise (e.g., ξYt ):

Yt :=

(∑
γ>0

αYt,Yt−γ
∗ Yt−γ

)
+

 ∑
X ̸=Y, γ≥0

αYt,Xt−γ
∗Xt−γ

+ ξYt
,

where the noise variables are assumed to be jointly independent (i.e., ∀X,Y ∀tX , tY , XtX ̸= YtY =⇒ ξXtX |= ξYtY
)

and any coefficient α can be zero.

In the following, we start by defining direct effects in general and then we give its definition in the case of linear
dynamic SCMs.
Definition 2 (Direct effect, adapted from Pearl (2000)). The direct effect of Xt−γxy

on Yt is given by:

P (yt|do(xt−γxy ), do(vXt−γxy ,Yt))− P (yt|do(x′
t−γxy

), do(vXt−γxy ,Yt)),

where VXt−γxy ,Yt is the set of all observed variables in the system except Xt−γxy and Yt and
P (yt|do(xt−γxy

), do(vXt−γxy ,Yt
)) is the distribution of Yt while Xt−γxy

and VXt−γxy ,Yt
are held constant respectively

at xt−γxy and vXt−γxy ,Yt . In the linear case, the direct effect corresponds to the structural coefficient1 αYt,Xt−γxy
.

In the following, we explicitly state further assumptions we make in this paper.
Assumption 1 (Causal Sufficiency, Spirtes et al. (2000)). No hidden confounding.
Assumption 2 (Stationarity of direct effects). The causal mechanisms of the system considered do not change and
therefore, ∀X ̸= Y ∈ V, ∀t− γ ≤ t ∈ Z, αYt,Xt−γ

= αYt+1,Xt−γ+1
, and ∀t− γ ≤ t ∈ Z, αYt,Yt−γ

= αYt+1,Yt−γ+1
.

There exists a maximum lag γmax of a SCM as γmax := max{γ ∈ N|∃X,Y ∈ V, αYt,Xt−γ
̸= 0}.

Definition 3 (Full-Time Causal Graph). Considering a finite set of times series and a SCM, one can define the full-time
causal graph (FTCG) Gf = (Vf , Ef ) associated to the SCM in the following way:

Vf :={Yt |∀Y ∈ V, ∀t ∈ Z},
Ef :={Xt−γ → Yt |∀Yt ∈ Vf , ∀Xt−γ such that αYt,Xt−γ

̸= 0}.
In addition, for every vertex Yt ∈ Vf we note:

Parents(Yt,Gf ) = {Ut′ ∈ Vf |Ut′ → Yt in Ef},
Children(Yt,Gf ) = {Ut′ ∈ Vf |Yt → Ut′ in Ef},

Ancestors(Yt,Gf ) =
⋃
n∈N

Pn where P0 = {Yt} and Pk+1 =
⋃

Ut′∈Pk

Parents(Ut′ ,Gf ), and

Descendants(Yt,Gf ) =
⋃
n∈N

Cn where C0 = {Yt} and Ck+1 =
⋃

Ut′∈Ck

Children(Ut′ ,Gf ).

1In Sewall Wright’s terminology the structural coefficient is called path coefficient (Wright, 1920, 1921).
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Yt−2 Yt−1 Yt

Xt−2 Xt−1 Xt

Wt−2 Wt−1 Wt

Zt−2 Zt−1 Zt

(a) Full-time causal graph

X

Z

W

Y

(b) Summary causal graph

Yt−2 Yt−1 Yt

Xt−2 Xt−1 Xt

Wt−2 Wt−1 Wt

Zt−2 Zt−1 Zt

(c) Another full-time causal graph

Figure 1: Two full time causal graph in (a) and (c) corresponding to the same summary causal graph in (b). Note that
full time causal graphs give more information about the dynamic SCM, whereas the summary causal graph one an
abstraction and can be deduced from the full time causal graph.

Assumption 3 (Acyclicity of the FTCG). Every FTCG is acyclic.

The FTCG is the most natural way to represent a SCM but it is unpractical as it is infinite. Of course, given Assump-
tion 2, it is possible to represent a FTCG in a finite graph, but even in this case sometimes, it is difficult to construct this
type of graphs from prior knowledge due to the uncertainty regarding temporal lags. Furthermore, causal discovery
methods are not always efficient (Aı̈t-Bachir et al., 2023) due to the strong assumptions they require that are not always
satisfied in real applications, so constructing this type of graphs from data is not always a valid option. Therefore, it
is much more reliable to construct an abstraction of this type of graphs which does not contain temporal information.
This abstraction is usually referred to as a summary causal graph (Assaad et al., 2022).

Definition 4 (Summary Causal Graph). Consider a FTCG Gf = (Vf , Ef ). One can define the summary causal graph
(SCG) Gs = (Vs, Es) in the following way:

Vs :=V,
Es :={X → Y |∀X,Y ∈ V, ∃t′ ≤ t ∈ Z such that Xt′ → Yt ∈ Ef}.

In addition, for every vertex Y ∈ Vs we note:

Parents(Y,Gs) = {U ∈ Vs|U → Y or U ⇄ Y in Es},
Children(Y,Gs) = {U ∈ Vs|Y → U or U ⇄ Y in Es},

Ancestors(Y,Gs) =
⋃
n∈N

Pn where P0 = {Y } and Pk+1 =
⋃

U∈Pk

Parents(U,Gs), and

Descendants(Y,Gs) =
⋃
n∈N

Cn where C0 = {Y } and Ck+1 =
⋃

U∈Ck

Children(U,Gs).

Notice that a SCG may have cycles and in particular two arrows in opposite directions, i.e., if in the FTCG we have
Xt′ → Yt and Yt′′ → Xt then in the SCG we have X ⇄ Y .

The abstraction of summary causal graphs entails that, even though there is exactly one SCG compatible with a given
FTCG, there are in general several FTCGs compatible with a given SCG.

For example, consider the following linear dynamic SCM, in which the coefficients α equal to zero are omitted:

Wt := αWt,Wt−1
∗Wt−1 + αWt,Xt

∗Xt + ξWt
,

Xt := αXt,Xt−1
∗Xt−1 + αXt,Zt−1

∗ Zt−1 + ξXt
,

Yt := αYt,Wt ∗Wt + αYt,Xt ∗Xt + αYt,Yt−1 ∗ Yt−1 + ξYt , and
Zt := αZt,Wt−1

∗Wt−1 + αZt,Zt−1
∗ Zt−1 + ξZt

.

The corresponding FTCG and the corresponding SCG of this linear dynamic SCM are respectively given in Fig-
ures 1a and 1b and another FTCG which is also compatible with the same SCG but does not correspond with the linear
dynamic SCM is given in Figures 1c.

Now that we have defined direct effects and summary causal graphs, we can formally define graphical identifiability.

3



Identifiability of Direct Effects from Summary Causal Graphs A PREPRINT

Definition 5 (Graphical identifiability of a direct effect). The direct effect of a time instant Xt−γ on another time
instant Yt, i.e., αYt,Xt−γxy

of a linear dynamic SCM is said to be identifiable from a SCG if the quantity αYt,Xt−γxy

can be computed uniquely from the observed distribution without any further assumption on the distribution.

Note that computing the direct effect uniquely from the observed distribution without any further assumption on
the distribution usually consists on removing all counfounding bias and non-direct effects by adjusting on a suitable
adjustment set that do not create any selection bias. Removing confounding bias usually necessitates adjusting on
some suitable ancestors of the cause or the effect, removing non-direct effects usually consists on adjusting on some
suitable ancestors of the effect that are not ancestors of the cause, and creating bias artificial consists on adjusting on
descendants of the effect.

In the following, we recall several preliminaries related to FTCGs and SCGs.
Definition 6 (Paths in FTCGs). A path between two vertices Xtx to Yty is an ordered sequence of vertices denoted
as πf =< V 1

t1 , . . . , V
n
tn > such that V 1

t1 = Xtx , V n
tn = Yty and ∀1 ≤ i < n, V i

ti and V i+1
ti+1 are adjacent (i.e.,

V i
ti → V i+1

ti+1 or V i
ti ← V i+1

ti+1 ) and ∀1 ≤ i < j ≤ n, V i
ti ̸= V j

tj . In this paper, a path πf between Xtx to Yty is said
to be non-direct if πf ̸=< Xtx → Yty > and we write tmin(πf =< V 1

t1 , . . . , V
n
tn >) = min{ti|1 ≤ i ≤ n} and

tmax(πf =< V 1
t1 , . . . , V

n
tn >) = max{ti|1 ≤ i ≤ n}.

Definition 7 (Walks and Paths in SCGs). A walk between two vertices X to Y is an ordered sequence of vertices
denoted as πs =< V 1, . . . , V n > such that V 1 = X , V n = Y and ∀1 ≤ i < n, V i and V i+1 are adjacent (i.e.,
V i → V i+1 or V i ← V i+1 or V i ⇄ V i+1). In this paper, a walk πs between X to Y is said to be non-direct if
πs ̸=< X → Y >. A path is a walk with no two identical vertices.
Definition 8 (Cycles in SCGs). A cycle is a directed walk from a vertex to itself with no repeated vertices except the
endpoints. i.e., in a SCG, a cycle is a walk πs =< V 1, . . . , V n > such that:

• V 1 = V n,

• ∀1 ≤ i < n, V i → V i+1 or V i ⇄ V i+1, and

• ∀1 ≤ i < j ≤ n, V i = V j =⇒ i = 1 and j = n.

The set of cycles with endpoints Y ∈ Vs in a SCG Gs is written Cycles(Y,Gs).

As SCGs represent FTCGs, the walks in a SCG can represent the paths of compatible FTCGs. This is gives rise to the
notion of compatible walk.
Definition 9 (Compatible Walk). Let Gf = (Vf , Ef ) be a FTCG and Gs = (Vs, Es) the compatible SCG. A path
πf =< V 1

t1 , . . . , V
n
tn > in Gf can be uniquely represented as a walk πs =< V 1, . . . , V n > in Gs in which the

temporal information has been removed. We refer to πs as πf ’s compatible walk and we write πs = ϕ(πf ). e.g.,
ϕ(< Xt−1, Xt, Yt, Zt, Zt+1, Xt+1 >) =< X,X, Y, Z, Z,X >.

An important graphical notion used in causal reasoning is the notion of blocked path (Pearl, 1998) for which the classi-
cal definition was introduced for directed acyclic graphs and thus can be directly used for FTCGs under Assumption 3.
Note that a suitable adjustment set that removes all confounding bias and non-direct effects and that do not create any
selection bias between Xt−γxy

and Yt consists on a set that block all non-direct paths between Xt−γxy
and Yt. In the

following, we firstly give the definition of blocked Path in FTCGs and then we give a similar notion for SCGs.
Definition 10 (Blocked Path in FTCGs). In a FTCG Gf = (Vf , Ef ), a path πf =< V 1

t1 , . . . , V
n
tn > is said to be

blocked by a set of vertices Zf ⊆ Vf if:

1. V 1
t1 ∈ Zf or V n

tn ∈ Zf , or

2. ∃1 < i < n such that V i−1
ti−1 ← V i

ti or V i
ti → V i+1

ti+1 and V i
ti ∈ Zf , or

3. ∃1 < i < n such that V i−1
ti−1 → V i

ti ← V i+1
ti+1 and Descendants(V i

ti ,Gf ) ∩ Zf = ∅.

A path which is not blocked is said to be active. When the setZf is not specified, it is implicit that we considerZf = ∅.
In the case of condition 2, we say that πf is manually Zf -blocked by V i

ti and in the case of condition 3 we say that πf

is passively Zf -blocked by V i
ti .

The classical definition of blocked path is usually used in directed acyclic graph and since the SCG compatible with
a FTCG can be cyclic, one needs to adapt it. Spirtes (1993) explains that under the linearity assumption the notion
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of blocked path is readily extended. Moreover, Forré and Mooij (2017) introduced a more recent and general (non-
parametric and allow for hidden confounding) adaptation called σ-block path. Here we will focus on the definition
used in Spirtes (1993) since we assume linearity but we adapt it to consider walks and such that in SCGs extremity
vertices of a path do not necessarily block the path.
Definition 11 (Blocked Walk in SCGs). In a SCG Gs = (Vs, Es), a walk πs =< V 1, . . . , V n > is said to be blocked
by a set of vertices Zs ⊆ Vs if:

1. ∃1 < i < n such that V i−1 ← V i or V i → V i+1 and V i ∈ Zs, or

2. ∃1 < i ≤ j < n such that V i−1 → V i ⇄ · · ·⇄ V j ← V j+1 and Descendants(V i,Gs) ∩ Zs = ∅.

A walk which is not blocked is said to be active. When the set Zs is not specified, it is implicit that we consider Zs = ∅.
In the case of condition 1, we say that πs is manually Zs-blocked by V i and in the case of condition 2 we say that πs

is passively Zs-blocked by {V k|i ≤ k ≤ j}.

Condition 1 in Definition 11 is a direct adaptation of condition 2 in Definition 10. Condition 2 of Definition 11 is
explained by the fact that for a walk πs =< V 1, . . . , V n > in a SCG Gs = (Vs, Es) and a set of vertices Zs ⊆ Vs, if
∃1 < i ≤ j < n such that V i−1 → V i ⇄ · · · ⇄ V j ← V j+1 and Descendants(V i,Gs) ∩ Zs = ∅ then ∀πf =<

V 1
t1 , . . . , V

n
tn >∈ ϕ−1(πs), ∃1 < i ≤ k ≤ j < n such that V k−1

tk−1 → V k
tk ← V k+1

tk+1 and Descendants(V k,Gs)∩Zs =

∅ so Descendants(V k
tk ,Gf ) ∩ Zf = ∅ where Zf ⊆ {Vt′ |V ∈ Zs, t′ ∈ Z}. Notice that there is no adaptation of

condition 1 as having V 1 ∈ Zs or V n ∈ Zs does not mean that instants of interests V 1
t1 or V n

tn which are endpoints
of compatible paths of interests are in Zf ⊆ {Vt′ |V ∈ Zs, t′ ∈ Z}. Moreover, in this paper we are interested in
the direct effect of V 1

t1 = Xt−γxy on V n
tn = Yt and therefore we cannot adjust on them and thus we will always have

V 1
t1 , V

n
tn /∈ Zf . However, having V 1 ∈ Zs or V n ∈ Zs can activate or block walks, e.g., < X ← W → X ← Z →

Y > and < X ←W → X → Z → Y >.

2 Graphical identifiability from SCGs

In this section, we present the identifiability result. We start by stating a trivial lemma that will be needed for the
general identifiability result.
Lemma 1. Let Gs = (Vs, Es) be a SCG, γmax ≥ 0 a maximum lag and αYt,Xt−γxy

the direct effect of Xt−γxy on Yt

such that X,Y ∈ Vs, X ̸= Y and 0 ≤ γxy ≤ γmax. If X /∈ Parents(Y,Gs) then αYt,Xt−γxy
is identifiable.

Proof. In Appendix.

The aim of this work is to identify direct effects that can be estimated from data. This implies that we are interested in
figuring out if for a given Xt−γxy

and a given Yt, it is possible to find at least some finite adjustment set that removes all
confounding bias and non-direct effects and that does not create any selection bias between Xt−γxy

and Yt. Therefore,
in the following lemma, we show that what we are trying to achieve is possible by pointing out that infinite sets are
not necessary to block paths between Xt−γxy

and Yt in a given FTCG.

Lemma 2. Let Gf = (Vf , Ef ) be a FTCG of maximal lag at most γmax ≥ 0 and αYt,Xt−γxy
the direct effect of

Xt−γxy
on Yt such that Xt−γxy

, Yt ∈ Vf , X ̸= Y and 0 ≤ γxy ≤ γmax. Let πf =< V 1
t1 , . . . , V

n
tn > a non-

direct path from Xt−γxy to Yt in Gf . If tmax(πf ) > t then πf is passively blocked by any Zf ⊆ Vf such that
Zf ∩ {Vt′ ∈ Vf |t′ > t} = ∅. If tmin(πf ) < t − γxy then πf is manually blocked by any Zf ⊆ Vf such that
{Vt′ ∈ Vf |t− γmax ≤ t′ < t} ⊆ Zf .

Proof. In Appendix.

Lemma 1 and Lemma 2 respectively show that the case where X /∈ Parents(Y,Gs) is trivial and that the cases where
tmin(πf ) < t − γxy and tmax(πf ) > t are trivial. Thus we will consider X ∈ Parents(Y,Gs) and t − γxy ≤
tmin(πf ) ≤ tmax(πf ) ≤ t in the following Lemmas. In these cases, one might think that to block all active non-direct
paths between Xt−γxy and Yt, it is simply sufficient to adjust on all vertices in the FTCG which do not temporally
succeed the effect Yt and have compatible vertices on an active path between X and Y in the SCGs. In Figure 2 we
give an example where this is not true. In particular, in the FTCG in Figure 2b which is compatible with the SCG in
Figure 2a, one can visually check that all gray vertices (Xt, Ut, Ut−1, Zt−1,Wt−1, Yt−1) block all active non-direct
paths between Xt and Yt and do not create any selection bias since none of the gray vertices is a descendant of Yt.
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X Y

WU

Z

(a) A SCG.

Xt

Ut

Wt

Zt

Yt

Xt−1

Ut−1

Wt−1

Zt−1

Yt−1

Xt−2

Ut−2

Wt−2

Zt−2

Yt−2

(b) A compatible FTCG.

Xt

Ut

Wt

Zt

Yt

Xt−1

Ut−1

Wt−1

Zt−1

Yt−1

Xt−2

Ut−2

Wt−2

Zt−2

Yt−2

(c) Another compatible FTCG.

Figure 2: An example of a SCG in (a) with two of its compatible FTCGs in (b) and (c) where red and blue vertices
respectively represent the cause and the effect we are interested in, the thick edge corresponds to the edge between

them, and the gray vertices in the FTCGs correspond to an adjustment set that is common for both FTCGs. In the first
FTCG, one could choose to add Zt and Wt to the adjustment set to block every non-direct path from Xt−γxy

to Yt.
However, in the second FTCG, Zt and Wt are descendants on Yt. Therefore, if only the SCG is known, Zt and Wt

should not be used in the adjustment set.

Notice that this adjustment set is still valid if any of the black edges is omitted and if the orientation of Wt → Yt

and Zt → Wt is inverted as in the FTCG in Figure 2c which is also compatible with the SCG in Figure 2a. One
might also notice that Zt and Wt do not create any selection bias in the FTCG in Figure 2b so they can be added to
the adjustment set. However, the general validity does not hold if we add Zt and Wt to the adjustment set because
there exists another FTCG compatible (for example the one in Figure 2c) such that Zt and Wt are descendants of
Yt. Therefore, if only the SCG is known, Zt and Wt should not be used in the adjustment set. It turns out that this
observation can be generalized. In the following we start, by formally defining an adjustment set for any SCGs that
share the same characteristics as the adjustment set of Figure 2 and then we give a lemma that shows the usefulness of
such a set.
Definition 12 (A first finite adjustment set). Consider a SCG Gs = (Vs, Es), a maximal lag γmax, two vertices X and
Y with X ∈ Parents(Y,Gs) and a lag γxy . Consider the following sets:

D<t = {Vt′ |V ∈ Descendants(Y,Gs), t− γmax ≤ t′ < t}\{Xt−γxy
} and

A≤t = {Vt′ |V ∈ Vs\Descendants(Y,Gs), t− γmax ≤ t′ ≤ t}\{Xt−γxy
}.

Zf = A≤t ∪ D<t is called an adjustment set relative to (Xt−γxy , Yt).

Lemma 3. Let Gs = (Vs, Es) be a SCG, γmax ≥ 0 a maximum lag and αYt,Xt−γxy
the direct effect of Xt−γxy

on Yt

such that X,Y ∈ Vs, X ̸= Y and 0 ≤ γxy ≤ γmax. For every non-direct walk πs =< V 1, . . . , V n > between X
and Y such that < V 2, . . . , V n−1 > ̸⊆ Descendants(Y,Gs)2, every compatible path πf ∈ ϕ−1(πs) from Xt−γxy to
Yt can be blocked by the adjustment set Zf = A≤t ∪ D<t defined in Definition 12.

Proof. In Appendix.

One important factor that we did not take into account until now is the value of γxy . Indeed, when γxy > 0 it is safe to
say that the problem should become easier as in this case we know that the parents of Xt−γxy cannot be descendants
of Yt. Therefore, distinguishing the case where γxy = 0 and the case where γxy = 0 is important to reach a general
identifiability result. In Figure 3 we give an example where it is possible to find a set that blocks all non-direct paths
between Xt−γx,y

and Yt if γxy > 0. In particular, consider the FTCG in Figure 3b compatible with the SCG in
Figure 3a, the adjustment set used in Figure 2 (Xt, Ut, Ut−1, Zt−1,Wt−1, Yt−1) is not valid in this case since there
exist another FTCG, for example the one in Figure 3b compatible with the same SCG such that Ut is also a descendant
of Yt. However, in this case, the vertices in gray (Ut−1, Zt−1,Wt−1, Yt−1) in Figure 3b and 3c are sufficient to block
all non-direct paths between Xt−1 and Yt. Notice that in the same example if we consider γxy = 0 then the the vertices
in gray will not longer be a valid adjustment set.

2For simplification, we sometimes abuse the notation of walks. Here < V 2, . . . , V n−1 >= {V i|2 ≤ i ≤ n− 1} can be empty
if n ≤ 2.
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(c) Another compatible FTCG.

Figure 3: An example of a SCG in (a) with two of its compatible FTCGs in (b) and (c) where red and blue vertices
respectively represent the cause and the effect we are interested in, the thick edge corresponds to the the edge

between them, and the gray vertices in the FTCGs correspond to an adjustment set that is common for both FTCGs.
In the first FTCG, one could choose to add Xt, Ut, Zt and Wt to the adjustment set to block every non-direct path
from Xt−γxy

to Yt. However, in the second FTCG, Xt, Ut, Zt and Wt are descendants of Yt. Therefore, if only the
SCG is known, Xt, Ut, Zt and Wt should not be used in the adjustment set.

Lemma 4. Let Gs = (Vs, Es) be a SCG, γmax ≥ 0 a maximum lag and αYt,Xt−γxy
the direct effect of Xt−γxy

on Yt

such that X,Y ∈ Vs, X ̸= Y and 0 < γxy ≤ γmax. For every non-direct walk πs =< V 1, . . . , V n > from X to Y
such that ∃1 ≤ i < n, V i ← V i+1 (i.e., not V i → V i+1 and not V i ⇄ V i+1), every compatible path πf ∈ ϕ−1(πs)
from Xt−γxy

to Yt can be blocked by Zf = A≤t ∪ D<t because Zf ∩ D≥t = ∅ where:

• A≤t, D<t are defined in Definition 12 and

• D≥t is the set of instants of descendants of Y greater or equal to t, i.e., D≥t = {Vt′ |V ∈
Descendants(Y,Gs), t′ ≥ t}.

Note that πs =< V 1, . . . , V n > from X to Y is non-direct, X ∈ Parents(Y,Gs) by Lemma 1 and ∃1 ≤ i <
n, V i ← V i+1 implies that n ≥ 3.

Proof. In Appendix.

Now we give the complementary of Lemma 4 in the case where X ⇄ Y .
Lemma 5. Let Gs = (Vs, Es) be a SCG, γmax ≥ 0 a maximum lag and αYt,Xt−γxy

the direct effect of Xt−γxy
on

Yt such that X,Y ∈ Vs, X ̸= Y and 0 < γxy ≤ γmax. For every non-direct walk πs =< V 1, . . . , V n > from
X to Y where ∃1 < i < n, V i = Y , every compatible path πf ∈ ϕ−1(πs) from Xt−γxy

to Yt can be blocked by
Zf = A≤t∪D<t (noticeZf ∩D≥t = ∅) whereA≤t, D<t are defined in Definition 12 andD≥t is defined in Lemma 4.

Proof. In Appendix.

In the following two lemmas, we show that the conditions given in Lemma 3 and 4 are not only sufficient for blocking
all non-direct active paths but they are also necessary.
Lemma 6. Let Gs = (Vs, Es) be a SCG, γmax ≥ 0 a maximum lag and αYt,Xt−γxy

the direct effect of Xt−γxy

on Yt such that X,Y ∈ Vs, X ̸= Y and 0 ≤ γxy ≤ γmax. If there exists a path πs =< V 1, . . . , V n > from
X to Y with < V 2, . . . , V n−1 >⊆ Descendants(Y,Gs) and ∄1 ≤ i < n, V i ← V i+1 and either n ≥ 3 or
X ∈ Descendants(Y,Gs) and ∃C ∈ Cycles(X,Gs) with Y /∈ C then αYt,Xt−γxy

is not identifiable.

Proof. In Appendix.

Lemma 7. Let Gs = (Vs, Es) be a SCG, γmax ≥ 0 a maximum lag and αYt,Xt−γxy
the direct effect of Xt−γxy

on Yt

such that X,Y ∈ Vs, X ̸= Y and γxy = 0. If there exists an active non-direct path πs =< V 1, . . . , V n > from X to
Y in Gs with < V 2, . . . , V n−1 >⊆ Descendants(Y,Gs) then αYt,Xt−γxy

is not identifiable.
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Figure 4: Examples of SCGs with 5 vertices where in (a),(b),(c),(d),(e),(f),(g),(h),(i),(j) αYt,Xt−γx,y
is identifiable for

all γx,y , in (k),(l),(m),(n) αYt,Xt−γx,y
is identifiable only for γx,y ̸= 0, and in (o),(p),(q),(r) αYt,Xt−γx,y

is non
identifiable for all γx,y . Red and blue vertices respectively represent the cause and the effect we are interested in and
the thick edge corresponds to the the edge between them. All SCGs share the same skeleton, the edges X → Y and

Y ⇆ W and the self loops on Y,W,Z, U .

Proof. In Appendix.

Since Lemmas 3,4 and 5 consider walks in SCGs while Lemma 6 and 7 consider paths in SCGs, in the following we
provide a list of properties to reconcile these two notions.

Definition 13 (Primary path). Let Gs = (Vs, Es) be a SCG and πs =< V 1, . . . , V n > a walk from X to Y . π′
s =<

U1, . . . , Um > such that U1 = V 1 and Uk+1 = V max{i|V i=Uk}+1 is called the primary path of πs.

Let πs be a walk and π′
s its primary path. They verify the following properties.

Property 1 If π′
s is passively blocked by U i then πs is passively blocked by at least a descendant of U i.

Property 2 If m = 2 then either n = 2 or ∃1 < i < n such that V i = X or V i = Y .

Property 3 If < U2, . . . , Um−1 > ̸⊆ Descendants(Y,Gs) then < V 2, . . . , V n−1 > ̸⊆ Descendants(Y,Gs).
Property 4 If ∃1 ≤ i < m, U i ← U i+1 then ∃1 ≤ i < n, V i ← V i+1.

Lemma 1 deals with the trivial case of identifiability, Lemma 2 shows that every path outside of the time slices of
Xt−γxy

and Yt are easily blocked, Property 1 shows that passively blocked paths are not problematic for identification,
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Lemma 3 together with Property 3 states that we will always be able to block paths in which some vertices are not
descendants of Y , Lemmas 4 and 5 together with Property 2 and Property 4 show that in the case of positive lag (i.e.,
γxy > 0) we can use this temporal information to block other specific paths, and lastly, Lemmas 6 and 7 prove that
these identifiability criteria are necessary. Together, these lemmas give a set of necessary and sufficient conditions for
the direct effect to be identifiable. This is summarized in the following theorem.

Theorem 1. Let Gs = (Vs, Es) be a SCG, γmax ≥ 0 a maximum lag and αYt,Xt−γxy
the direct effect of Xt−γxy

on Yt

such that X,Y ∈ Vs and X ̸= Y . αYt,Xt−γxy
is not identifiable if and only if X ∈ Parents(Y,Gs) and one of the

following conditions holds:

• X ∈ Descendants(Y,Gs) and ∃C ∈ Cycles(X,Gs) with Y /∈ C, or

• There exists an active non-direct path πs =< V 1, . . . , V n > from X to Y in Gs such that
< V 2, . . . , V n−1 >⊆ Descendants(Y,Gs), and one of the following conditions holds:

– γxy = 0, or
– γxy > 0 and ∄1 ≤ i < n, V i ← V i+1 (i.e., ∀i, V i → V i+1 or V i ⇄ V i+1).

Proof. The previous lemmas contain most of the proof, we will show here how to combine them to obtain Theorem 1.
Lemma 1 gives the first trivial condition αYt,Xt−γxy

not identifiable =⇒ X ∈ Parents(Y,Gs), so we assume in
the remaining of the proof X ∈ Parents(Y,Gs). The fact that X ∈ Descendants(Y,Gs) implies the existence of
an active non-direct πs =< V 1, . . . , V n > from X to Y in Gs such that < V 2, . . . , V n−1 >⊆ Descendants(Y,Gs)
together with Lemma 7 give the backward implication when γxy = 0 and Lemma 6 gives the backward implication
when γxy > 0. All what is left is to prove is the forward implication.

To prove the forward implication it suffices to prove that if we suppose that Gs does not contain any path as described
in Theorem 1, then there exists an adjustment set that:

1. does not contain any descendant of Yt in any FTCG that is compatible with Gs, and

2. blocks every non-direct path from Xt−γxy
to Yt in every FTCG that is compatible with Gs.

Consider Zf as defined in Definition 12. Condition 1 is satisfied since by construction Zf does not contain any
descendant of Yt. To prove condition 2, let us consider πf to be a path from Xt−γxy

to Yt in a FTCG Gf compatible
with Gs. Let ϕ(πf ) = πs =< V 1, . . . , V n > its compatible walk in Gs and π′

s =< U1, . . . , Um > the primary path
of πs. In the following, we consider all cases where π′

s violates one of the conditions of Theorem 1:

• if < U2, . . . , Um−1 ≯⊆ Descendants(Y,Gs) then < V 2, . . . , V n−1 > ̸⊆ Descendants(Y,Gs) by Property
3. Thus Lemma 3 shows that Zf blocks πf , or

• if γxy = 0 and π′
s is direct then either πs is direct and πf is direct or ∃1 < i < n such that V i = X or

V i = Y by Property 2. Then either πs and πf are direct, either V 1 = V i = X or V i = V n = Y , so since
πf is a path, ti ̸= t. Thus tmin(πf ) < t or tmax(πf ) > t and Lemma 2 shows that Zf blocks πf , or

• if < U2, . . . , Um−1 >⊆ Descendants(Y,Gs), π′
s is passively blocked by U i and γxy = 0 (the case γxy > 0

is treated in the following, with the case ∃1 ≤ i < m, U i ← U i+1) then πs is passively blocked by at least
a descendant of U i by Property 1. Then consider tmin(πf ) and tmax(πf ). If tmin(πf ) < t or tmax(πf ) > t
then Lemma 2 shows that Zf blocks πf . Else tmin(πf ) = tmax(πf ) = t, since πs is passively blocked by at
least a descendant of U i and Descendants(U i,G) ⊆ Descendants(Y,G), there exists V j

t ∈ D≥t such that
πf is passively blocked by V j

t . Therefore, Zf blocks πf , or

• if γxy > 0 and ∃1 ≤ i < m, U i ← U i+1 then ∃1 ≤ i < n, V i ← V i+1 by Property 4. Thus Lemma 4
shows that Zf blocks πf , or

• if γxy > 0, m = 2 and X /∈ Descendants(Y,Gs) or ∀C ∈ Cycles(X,Gs), Y ∈ C, either πs is direct
and πf is direct, or πs =< X ⇄ Y > and πf =< Xt−γxy → Yt > as γxy > 0 and πf is direct or
∃1 < i < n such that V i = X or V i = Y by Property 2. If V i = Y , then Lemma 5 shows that Zf

blocks πf . If V i = X , then if X /∈ Descendants(Y,Gs), V i = X /∈ Descendants(Y,Gs) and by
Lemma 3 Zf blocks πf . Lastly, suppose ∀C ∈ Cycles(X,Gs), Y ∈ C. If there exists 1 ≤ k < i such

9
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that V k ← V k+1, Lemma 4 shows that Zf blocks πf otherwise < V 1, . . . , V i >∈ Cycles(X,Gs) and thus
Y ∈< V 1, . . . , V i > and Lemma 5 shows that Zf blocks πf .

Thus, any violation of any condition Theorem 1 leads to πf becoming Zf -blocked. In conclusion, if the conditions of
Theorem 1 are verified then Zf defined in Definition 12 allows to identify αYt,Xt−γxy

.

We give some examples of SCGs with 5 vertices in Figure 4 that are categorized by whether the direct effect
αYt,Xt−γx,y

is always identifiable, identifiable if and only if γxy > 0 or never identifiable. Note that in Figure 4 ,
for any SCG, removing the self loops on the vertices Y,W,U and U would not affect the identifiability result and
and changing the edge type of W ⇄ Y would either keep the same identifiability result or make the causal effect
identifiable. However, changing the edge type of U → X would either keep the same identifiability result or make the
causal effect identifiable or make it non identifiable: if U ← X , the causal effect becomes identifiable for all SCGs
except the one in Figure 4r and if U ⇄ X then the causal effect becomes not identifiable in the SCGs in the Fig-
ures 4k,4l4m4n,4o,4p,4q,4r. Which means that at least for SCGs with the same skeleton as the skeletons of Figures 4,
the number of cases of non identifiability is fewer than the number of cases of identifiability.

3 Two adjustment sets

In this section we provide two finite adjustment sets that can be used to estimate the direct effect from data whenever
it is identifiable.

Theorem 1 gives a graphical criterion to determine whether the direct effect is identifiable from a SCG Gs. For a
FTCG Gf and two vertices Xt−γxy and Yt it is necessary and sufficient to know a finite set of vertices Zf such that
Zf ∩ (Descendants(Yt,Gf ) ∪ {Xt−γxy

, Yt}) = ∅ which blocks every non-direct path from Xt−γxy to Yt in order to
identify the direct effect of Xt−γxy

on Yt. Thus, for a SCG Gs, a maximal lag γmax, two vertices X and Y and a lag
γxy one needs to find a set of vertices Zf such that Zf ∩ (Descendants(Yt,Gf ) ∪ {Xt−γxy , Yt}) = ∅ which blocks
every non-direct path from Xt−γxy to Yt in every FTCG Gf compatible with Gs of maximal lag at most γmax.

The following proposition formally indicates the soundness of the finite adjustment set defined in Definition 12.
Corollary 1. Consider a SCG Gs = (Vs, Es), a maximal lag γmax, two vertices X and Y with X ∈ Parents(Y,Gs)
and a lag γxy . Suppose the direct effect of Xt−γxy

on Yt is identifiable following Theorem 1. Then Zf = A≤t ∪ D<t

as defined in Definition 12 verifies:

• Zf ∩ (Descendants(Yt,Gf ) ∪ {Xt−γxy
}) = ∅, and

• Zf blocks every non-direct path from Xt−γxy
to Yt in every compatible FTCG Gf of maximal lag at most

γmax.

Which means that Zf allows to estimate the direct effect αYt,Xt−γxy
.

Proof. The proof of the forward implication of Theorem 1 proves this corollary.

However, there may exist multiple such sets and in practice each one does not induce the same estimation error.
Therefore, it is interesting to search for other such set in order to optimize the identification of the direct effect. In
the following, we give another (smaller) adjustment set that is sufficient for estimating the direct effect when it is
identifiable.
Definition 14 (A second finite adjustment set). Consider a SCG Gs = (Vs, Es), a maximal lag γmax, two vertices X
and Y with X ∈ Parents(Y,Gs) and a lag γxy . Consider the following sets:

DAnc(Y )
<t = {Vt′ |V ∈ Ancestors(Y,Gs) ∩Descendants(Y,Gs), t− γmax ≤ t′ < t}\{Xt−γxy} and

AAnc(Y )
≤t = {Vt′ |V ∈ Ancestors(Y,Gs)\Descendants(Y,Gs), t− γmax ≤ t′ ≤ t}\{Xt−γxy

}.

Zf = DAnc(Y )
<t ∪ AAnc(Y )

≤t is called an adjustment set relative to (Xt−γxy
, Yt).

The following proposition formally indicates the soundness of the finite adjustment set defined in Definition 14.
Proposition 1. Consider a SCG Gs = (Vs, Es), a maximal lag γmax, two vertices X and Y with X ∈ Parents(Y,Gs)
and a lag γxy . Suppose the direct effect of Xt−γxy on Yt is identifiable following Theorem 1. The adjustment set Zf

relative to (Xt−γxy
, Yt) defined in Definition 14 verifies:

10
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• Zf ∩ (Descendants(Yt,Gf ) ∪ {Xt−γxy}) = ∅, and

• Zf blocks every non-direct path from Xt−γxy
to Yt in every compatible FTCG Gf of maximal lag at most

γmax.

which allows to estimate the direct effect αYt,Xt−γxy
.

Proof. In Appendix.

4 Discussion Towards a Complete Single-Door Criterion

In the previous section, we have introduced two sound finite adjustment sets that can be used to estimate the direct
effect from data whenever it is identifiable from a given SCG. However, the ultimate goal would be to obtain complete
criterion —similarly to the single-door criterion for directed acyclic graphs in the case non-dynamic SCMs —which
characterizes every finite set Zf ⊆ Vf which allow for the estimation of the direct effect of Xt−γxy

on Yt whenever it
is identifiable. Such a criterion would be useful as having all possible adjustment sets, we can opt to select the one that
induces the smallest estimation error, or the one that is optimal, i.e., the one which achieves the smallest asymptotic
estimation variance. Having all possible adjustment sets would also be useful to exclude the ones that contain variables
with missing values or measurement errors. Therefore, in this section we first give for two different SCGs an example
of adjustment sets different that the ones given by Definition 12 and 14 that can be used to estimate the direct effect and
then we give some insights that can be useful for developing a complete criterion that can find all possible adjustment
sets.

While having all possible adjustment sets would be the ideal result, since the SCGs offer very little information on
lags, in this work, we decided to firstly search for sets of the form Zf = ({Vt′ |V ∈ D, t′ ∈ τD} ∪ {Vt′ |V ∈ A, t′ ∈
τA})\{Xt−γxy

} with: D ⊆ Descendants(Y,Gs), τD = [tinf , t[ and A ⊆ Vs\Descendants(Y,Gs), τA = [tinf , t].

Indeed, one can notice that no Vt′ with t′ > t is necessary to block a path from Xt−γxy
to Yt as Lemma 2 shows

that every path πf in a compatible FTCG with tmax(πf ) > t has a collider→ Vtmax(πf ) ←∈ πf which will not be
activated if Zf ∩ {Vt′ |V ∈ Vs, t′ > t} = ∅. However, the set of this form are far from being the only adjustment sets.
To illustrate this, in Figures 5 and 6, we give examples where it is possible to find an adjustment set that is simpler
than the ones given in Definitions 12 and 14:

• Figure 5 shows that on an active path between X and Y in the SCG, if there exists a vertex that seems to
block the path when looking only at the SCG, then it is possible to block this path by adjusting on some finite
instants of this vertex in addition to some finite instants of vertices that are between the selected vertex and
X , and

• Figure 6 shows that sometimes in some special cases, it is possible to block a path by adjusting on some finite
instants of a single vertex without even taking into account vertices that are between the selected vertex and
X .

Even though these examples only focus on the vertices between the selected vertex and X , we think that the same
claims can be made for the vertices between the selected vertex and Y .

In the remaining figures, we give examples that highlights some characteristics that a complete criterion that can find
all possible adjustment sets should have:

• Figure 7 shows that if X → X in the SCG then it is mandatory to adjust on relevant time instant of X ,
• Figure 8 shows that if Y → Y in the SCG and γxy > 0 then it is mandatory to adjust on relevant time instant

of Y ,
• Figure 9 shows that parents of X in the SCG can induce an active path between Xt−γxy

and Yt in a FTCG
even if they are not on an active path between X and Y in the compatible SCG,

• Figure 10 is a complementary to Figure 9 which shows that parents of X and parents of Y in the SCG can
induce an active path between Xt−γxy

and Yt in a compatible FTCG even if they are not on an active path
between X and Y in the SCG, and

• Figure 11 shows that in the case of γxy > 0 and a path made of descendants of Y with a strict left arrow
(pointing toward X), one should surely block this path by adjusting on a vertex with an outgoing strict left
arrow. However, this example does not give any intuition on which such vertex one should choose if there
exist multiple ones.
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(b) A compatible FTCG.

Figure 5: Example of a SCG in (a) where the direct effect of Xt−γxy
to Yt is identifiable by Theorem 1 and one of its

compatible FTCGs in (b). Red and blue vertices respectively represent the cause and the effect we are interested in
and the thick edge corresponds to the the edge between them. Here, when looking at the SCG, one could choose to
adjust on relevant time instants of Z to block every non-direct path from Xt−γxy

to Yt. However, in the compatible
FCG, the path in red can go infinitely back in time which means that adjusting on a finite set of instances of Z is not

sufficient. Therefore, in addition to Z, either U or W and Y should belong to the adjustment set.
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(b) A compatible FTCG.

Figure 6: Example of a SCG in (a) where the direct effect of Xt−γxy to Yt for γxy > 0 is identifiable by Theorem 1
and one of its compatible FCTGs in (b). Red and blue vertices respectively represent the cause and the effect we are

interested in and the thick edge corresponds to the the edge between them. Here, when looking at the SCG, one could
choose to adjust on relevant time instants of W to block every non-direct path from Xt−γxy

to Yt. This does not
cause the same problem as in Figure 5 since in the compatible FCTG, the path in red can be blocked by relevant time
instants of W which can go back up to t− (|Vs| − 1) ∗ γmax. This gives the intuition that on an active path in a SCG,
if there exist at least one vertex W on the path that can block it such that all vertices on the subpath between X and

W do not belong to any cycle, then all compatible paths can be blocked by finite instances of that vertex.

X Y

(a) A SCG.
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Xt−1 Xt

(b) A compatible FTCG with γxy = 0

Yt−1 Yt

Xt−1 Xt

(c) A compatible FTCG with γxy > 0.

Figure 7: Example of a SCG in (a) where the direct effect of Xt−γxy
to Yt for γxy ≥ 0 is identifiable by Theorem 1

and two of its compatible FCTGs in (b) and (c). Red and blue vertices respectively represent the cause and the effect
we are interested in and the thick edge corresponds to the the edge between them. In the FTCG in (a) the active

non-direct path (in red) can be blocked by Xt−1 and in the FTCG in (b) the active non-direct path (in red) can be
blocked by Xt. This gives the intuition that in this simple case adjusting on instances of X is sufficient.
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(c) A compatible FTCG with γxy > 0.

Figure 8: Example of a SCG in (a) where the direct effect of Xt−γxy to Yt for γxy ≥ 0 is identifiable by Theorem 1
and one of its compatible FTCGs in (b). Red and blue vertices respectively represent the cause and the effect we are

interested in and the thick edge corresponds to the the edge between them. In the FTCG in (a) there is no active
non-direct path so no need to adjust on any vertex. However, adjusting on Yt−1 does not activate any path and so does
not harm identification. In the FTCG in (b) the active non-direct path (in red) can be blocked by Yt−1. This gives the

intuition that in this simple case adjusting on instances of Y is sufficient.
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Figure 9: Example of a SCG in (a) where the direct effect of Xt−γxy to Yt for γxy ≥ 0 is identifiable by Theorem 1
and two of its compatible FTCGs in (b) and (c). Red and blue vertices respectively represent the cause and the effect
we are interested in and the thick edge corresponds to the the edge between them. Here, when looking at the SCG,
one might think at there is no need to adjust on any vertex since there is not activated non-direct paths. However, in
the compatible FTCGs, it is obvious that this is not true. More specifically, in the FTCG in (b) the active non direct
path (in red) can be blocked by either Xt−1 or Ut−1 and in the in the FTCG in (c) the active non direct path (in red)
can be blocked by either Xt or Ut−1. This gives the intuition that parents of X in the SCG can induce an active path
between Xt−γxy

and Yt in a FTCG even if they are not on an active path between X and Y in the compatible SCG.

X Y

U W

(a) A SCG.

Wt−1 Wt

Yt−1 Yt

Ut−1 Ut

Xt−1 Xt

(b) A compatible FTCG.

Wt−1 Wt

Yt−1 Yt

Ut−1 Ut

Xt−1 Xt

(c) Another compatible FTCG.

Figure 10: Example of a SCG in (a) where the direct effect of Xt−γxy to Yt for γxy > 0 is identifiable by Theorem 1
and two of its compatible FTCGs in (b) and (c). Red and blue vertices respectively represent the cause and the effect
we are interested in and the thick edge corresponds to the the edge between them. Here, when looking at the SCG,
one might think that adjusting on U and V is not necessary since U and V are not on an active path between X and
Y . However, in the two compatible FTCGs, it is obvious that this is not true. More specifically, in the FCTG in (b)
the active non direct path (in red) can be blocked either by Ut−1 or Xt and the the active non direct path (in orange)

can be blocked either by Vt−1 or (Yt−1, Vt−1). Similarly, in the FCTG in (c) the active non direct path (in red) can be
blocked either by Ut−1 or (Xt, Ut−1) and the the active non direct path (in orange) can be blocked either by Vt−1 or
(Yt−1). This gives the intuition that parents of X and parents of Y in the SCG can induce an active path between

Xt−γxy
and Yt in a compatible FTCG even if they are not on an active path between X and Y in the SCG.

Furthermore in this case, it seems that instances of all parents should be adjusted on in order to block all active
non-direct paths between Xt−γxy to Yt for any FTCG compatible with the SCG.

13
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(a) A SCG.
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(b) Another compatible FTCG.
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(c) A compatible FTCG.

Figure 11: Example of a SCG in (a) where the direct effect of Xt−γxy
to Yt for γxy > 0 is identifiable by Theorem 1

and two of its compatible FTCGs in (b) and (c). Red and blue vertices respectively represent the cause and the effect
we are interested in and the thick edge corresponds to the the edge between them. Here, when looking at the SCG,

one might think that to block all active non-direct paths between X and Y one should either adjust on U or on
(W,Z). In addition since all vertices are descendants of Y then it is obvious that one should not adjust on vertices at
time t in order to prevent any selection bias. This claim is true for the compatible FTCG in (b) as in order to block the

active non-direct path (in red) it is necessary to adjust either on Ut−1 or on Wt−1 and adjusting on Zt−1 does not
activate any new path. However, for the same SCG, there exists another compatible FCTG given in (c) where it is

obvious that to block the active non-direct path (in red) it is necessary to adjust either Ut−1 or Wt. But as said before
adjusting on Wt is risky as the true FTCG might correspond to the one given in (b) where Wt is a descendant of Yt.
This gives the intuition that, in this case, one should adjust on relevant time instants (strictly smaller than t) of the

vertex with an outgoing strict left arrow (pointing toward X), here this is Ut−1.

Lastly, blocking every path at once while taking into account all the characteristics mentioned above can be a complex
task as respecting one of the characteristics for one path can violate another characteristic for another path. Therefore,
maybe it would be easier to consider an iterative procedure. For example, start by blocking all non activate paths
then proceed to blocking all paths that were activated during the previous step, and so on until all non-direct paths are
blocked.

5 Conclusion

In this paper, we developed new graphical criteria for the identifiability of direct effects in linear dynamic structural
causal models from summary causal graphs. Theorem 1 has important ramifications to the theory and practice of
observational studies in dynamic systems. It implies that the key to graphical identifiability of the direct effect of
Xt−γxy on Yt from summary causal graphs lies not only in finding a set of non-descendants of Y in the summary
causal graph that are able of blocking paths between X and Y but also in some descendants of Y in the case γxy > 0.
Furthermore, in case of identifiability, we presented two adjustments sets that can be used to estimate the direct effects
and we gave in Section 4 some insight on what to consider to find more adjustment sets.

The finding of this paper should be useful for many applications such as root cause identification in dynamic systems
and it should open new research questions. Namely, for future works, it would be interesting to have a single-door
criterion along with a completeness result describing every possible adjustment set. In addition, in this work, we
considered only linear dynamic SCMs, however in many real world applications causal relations can be nonlinear
so it would be interesting to extend this work to nonlinear SCMs and consider non parametric direct effect (Robins
and Greenland, 1992; Pearl, 2001). Finally, as many other works, we assumed that the FTCG is acyclic but we think
that this assumption can be relaxed, so it would be interesting to formally check the validity of our results for cyclic
FTCGs.
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A Proofs

In this section, we restate all lemmas and Proposition 1 and provide their corresponding proofs.

Lemma 1. Let Gs = (Vs, Es) be a SCG, γmax ≥ 0 a maximum lag and αYt,Xt−γxy
the direct effect of Xt−γxy

on Yt

such that X,Y ∈ Vs, X ̸= Y and 0 ≤ γxy ≤ γmax. If X /∈ Parents(Y,Gs) then αYt,Xt−γxy
is identifiable.

Proof. Suppose X /∈ Parents(Y,Gs). Then Xt−γxy
/∈ Parents(Yt,Gf ) and the direct effect is equal to zero (i.e.,

αYt,Xt−γxy
= 0).

Lemma 2. Let Gf = (Vf , Ef ) be a FTCG of maximal lag at most γmax ≥ 0 and αYt,Xt−γxy
the direct effect of

Xt−γxy on Yt such that Xt−γxy , Yt ∈ Vf , X ̸= Y and 0 ≤ γxy ≤ γmax. Let πf =< V 1
t1 , . . . , V

n
tn > a non-

direct path from Xt−γxy
to Yt in Gf . If tmax(πf ) > t then πf is passively blocked by any Zf ⊆ Vf such that

Zf ∩ {Vt′ ∈ Vf |t′ > t} = ∅. If tmin(πf ) < t − γxy then πf is manually blocked by any Zf ⊆ Vf such that
{Vt′ ∈ Vf |t− γmax ≤ t′ < t} ⊆ Zf .

Proof. Let Gf = (Vf , Ef ) be a FTCG, Xt−γxy ̸= Yt ∈ Vf and πf =< V 1
t1 , . . . , V

n
tn > a path from Xt−γxy to Yt in

Gf .

• Suppose tmax(πf ) > t. Since t − γxy ≤ t < tmax(πf ) there exists 1 < i ≤ j < n such that
ti−1 < ti = tmax(πf ) = tj > tj+1. Therefore, V i−1

ti−1 → V i
ti and V j

tj ← V j+1
tj+1 in πf . Thus, ∃i ≤ k ≤

j such that V k−1
tk−1 → V k

tk ← V k+1
tk+1 in πf and tk = tmax(πf ) > t. In conclusion, πf is passively blocked by

anyZf ⊆ Vf such that Descendants(V k
tk ,Gf )∩Zf = ∅ so by anyZf such that Zf ∩{Vt′ ∈ Vf |t′ > t} = ∅

• Suppose tmin(πf ) < t − γxy . Since tmin(πf ) < t − γxy < t and tn = t there exists 1 < i < n such
that ti < t ≤ ti+1. Therefore, V i

ti → V i+1
ti+1 in πf and t − γmax ≤ ti < t ≤ ti+1 so V i

ti ∈ {Vt′ ∈
Vf |t − γmax ≤ t′ < t}. In conclusion, πf is manually blocked by any Zf ⊆ Vf such that V i

ti ∈ Zf so by
any Zf such that {Vt′ ∈ Vf |t− γmax ≤ t′ < t} ⊆ Zf .

Lemma 3. Let Gs = (Vs, Es) be a SCG, γmax ≥ 0 a maximum lag and αYt,Xt−γxy
the direct effect of Xt−γxy on Yt

such that X,Y ∈ Vs, X ̸= Y and 0 ≤ γxy ≤ γmax. For every non-direct walk πs =< V 1, . . . , V n > between X
and Y such that < V 2, . . . , V n−1 > ̸⊆ Descendants(Y,Gs)3, every compatible path πf ∈ ϕ−1(πs) from Xt−γxy

to
Yt can be blocked by the adjustment set Zf = A≤t ∪ D<t defined in Definition 12.

Proof. Suppose there exists a non-direct walk πs =< V 1, . . . , V n > between X and Y such that <
V 2, . . . , V n−1 > ̸⊆ Descendants(Y,Gs). Then, take πf =< V 1

t1 , . . . , V
n
tn > from Xt−γxy to Yt compati-

ble with πs (i.e., πf ∈ ϕ−1(πs)). Take j = max{1 < i < n|V i /∈ Descendants(Y,Gs)}. Notice that
V j /∈ Descendants(Y,Gs) and V j+1 ∈ Descendants(Y,Gs) so V j

tj → V j+1
tj+1 ∈ πf . Therefore, since t − γxy ≤

tmin(πf ) ≤ tmax(πf ) ≤ t by Lemma 2, t− γxy ≤ tj ≤ t and thus πf is manually blocked by V j
tj ∈ A≤t ⊆ Zf .

Lemma 4. Let Gs = (Vs, Es) be a SCG, γmax ≥ 0 a maximum lag and αYt,Xt−γxy
the direct effect of Xt−γxy

on Yt

such that X,Y ∈ Vs, X ̸= Y and 0 < γxy ≤ γmax. For every non-direct walk πs =< V 1, . . . , V n > from X to Y
such that ∃1 ≤ i < n, V i ← V i+1 (i.e., not V i → V i+1 and not V i ⇄ V i+1), every compatible path πf ∈ ϕ−1(πs)
from Xt−γxy

to Yt can be blocked by Zf = A≤t ∪ D<t because Zf ∩ D≥t = ∅ where:

• A≤t, D<t are defined in Definition 12 and

• D≥t is the set of instants of descendants of Y greater or equal to t, i.e., D≥t = {Vt′ |V ∈
Descendants(Y,Gs), t′ ≥ t}.

Note that πs =< V 1, . . . , V n > from X to Y is non-direct, X ∈ Parents(Y,Gs) by Lemma 1 and ∃1 ≤ i <
n, V i ← V i+1 implies that n ≥ 3.

3For simplification, we sometimes abuse the notation of walks. Here < V 2, . . . , V n−1 >= {V i|2 ≤ i ≤ n− 1} can be empty
if n ≤ 2.
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Proof. Let πs =< V 1, . . . , V n > be a non-direct walk between X and Y such that < V 2, . . . , V n−1 >⊆
Descendants(Y,Gs) and γxy > 0 and ∃1 ≤ i < n, V i ← V i+1. Then, take πf =< V 1

t1 , . . . , V
n
tn > from

Xt−γxy to Yt compatible with πs (i.e., πf ∈ ϕ−1(πs)) and 1 ≤ i < n such that V i
ti ← V i+1

ti+1 . tmin(πf ) ≥ t− γxy and
tmax(πf ) ≤ t by Lemma 2.

If V i+1
ti+1 /∈ D≥t then since tmin(πf ) ≥ t−γxy and tmax(πf ) ≤ t, πf is manually blocked by V i+1

ti+1 ∈ Zf = A≤t∪D<t.

Else, V i+1
ti+1 ∈ D≥t, so since γxy > 0 and tmin(πf ) ≥ t − γxy and tmax(πf ) ≤ t, there exists j = max{1 < j ≤

i|V j−1
tj−1 → V j

tj}. Thus V j is a collider and V j ∈ D≥t so Descendants(V j
tj ,Gs) ⊆ D≥t. Therefore, πf is passively

blocked by V j
tj ∈ Zf = A≤t ∪ D<t.

In conclusion, πf is blocked by Zf .

Lemma 5. Let Gs = (Vs, Es) be a SCG, γmax ≥ 0 a maximum lag and αYt,Xt−γxy
the direct effect of Xt−γxy on

Yt such that X,Y ∈ Vs, X ̸= Y and 0 < γxy ≤ γmax. For every non-direct walk πs =< V 1, . . . , V n > from
X to Y where ∃1 < i < n, V i = Y , every compatible path πf ∈ ϕ−1(πs) from Xt−γxy to Yt can be blocked by
Zf = A≤t∪D<t (noticeZf ∩D≥t = ∅) whereA≤t, D<t are defined in Definition 12 andD≥t is defined in Lemma 4.

Proof. Let πs =< V 1, . . . , V n > be a non-direct walk between X and Y as described. Then, take πf =<
V 1
t1 , . . . , V

n
tn > non-direct from Xt−γxy

to Yt compatible with πs (i.e., πf ∈ ϕ−1(πs)). Since ∃1 < iy <

n such that V iy = Y and because πf is a path, tiy ̸= t so by Lemma 2 t − γxy ≤ tiy < t. If ← V
iy
tiy

or V iy
tiy
→

then πf is manually blocked by V
iy
tiy

. Since t − γxy ≤ tiy < t, V iy
tiy
∈ Zf and πf is manually blocked by Zf . If

→ V
iy
tiy
← V

iy+1

tiy+1 then πf is manually blocked by V
iy+1

tiy+1 . Using Lemma 2, t − γxy ≤ tiy+1 ≤ t. Moreover, since

t− γxy ≤ tiy < t and V
iy
tiy
← V

iy+1

tiy+1 , one can see that t− γxy ≤ tiy+1 < t. Lastly, πf is a path so V
iy+1

tiy+1 ̸= Xt−γxy
.

Thus πf is manually blocked by V
iy+1

tiy+1 ∈ Zf .

Lemma 6. Let Gs = (Vs, Es) be a SCG, γmax ≥ 0 a maximum lag and αYt,Xt−γxy
the direct effect of Xt−γxy

on Yt such that X,Y ∈ Vs, X ̸= Y and 0 ≤ γxy ≤ γmax. If there exists a path πs =< V 1, . . . , V n > from
X to Y with < V 2, . . . , V n−1 >⊆ Descendants(Y,Gs) and ∄1 ≤ i < n, V i ← V i+1 and either n ≥ 3 or
X ∈ Descendants(Y,Gs) and ∃C ∈ Cycles(X,Gs) with Y /∈ C then αYt,Xt−γxy

is not identifiable.

Proof. Let πs =< V 1, . . . , V n > be a path from X to Y with < V 2, . . . , V n−1 >⊆ Descendants(Y,Gs) and
∄1 ≤ i < n, V i ← V i+1 and either n ≥ 3 or X ∈ Descendants(Y,Gs) and ∃C ∈ Cycles(X,Gs) with Y /∈ C. If
n ≥ 3 take π′

s =< U1, . . . , Um+1 >= πs. If n = 2 and ∃C =< U1, . . . , Um >∈ Cycles(X,Gs) with Y /∈ C, then
take π′

s = C + πs in order to have a walk π′
s =< U1, . . . , Um+1 >.

• Firstly,

– if n ≥ 3 then < V 2, . . . , V n−1 >⊆ Descendants(Y,Gs) and π′
s =< U1, . . . , Um+1 >= πs give

< U2, . . . , Um >⊆ Descendants(Y,Gs), and
– if n = 2 since X ∈ Descendants(Y,Gs), C ⊆ Descendants(X,Gs) ⊆ Descendants(Y,Gs) so

π′
s = C + πs =< U2, . . . , Um >⊆ Descendants(Y,Gs).

Therefore, there exists a FTCG Gf compatible with Gs in which < U2
t , . . . , U

m+1
t >⊆

Descendants(Yt,Gf ).

• Secondly, since Y /∈ C, X and Y are not repeated in < U2, . . . , Um+1 > and because ∄1 ≤ i ≤ n, V i ←
V i+1 and Um = X ⇄ Y = Um+1, there exists a FTCG G′f compatible with Gs in which πf =< U1

t−γxy
→

U2
t → · · · → Um+1

t > is a path. In this case, πf is active and can only be blocked by a Zf such that
Zf∩ < U1

t−γxy
, U2

t , . . . , U
m+1
t > ̸= ∅.

Since adjusting on Xt−γxy
or descendants of Yt induces a bias, these two cases are irreconcilable and therefore

αYt,Xt−γxy
is not identifiable.

Lemma 7. Let Gs = (Vs, Es) be a SCG, γmax ≥ 0 a maximum lag and αYt,Xt−γxy
the direct effect of Xt−γxy

on Yt

such that X,Y ∈ Vs, X ̸= Y and γxy = 0. If there exists an active non-direct path πs =< V 1, . . . , V n > from X to
Y in Gs with < V 2, . . . , V n−1 >⊆ Descendants(Y,Gs) then αYt,Xt−γxy

is not identifiable.
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Proof. Let πs =< V 1, . . . , V n > be an active non-direct path from X to Y in Gs with < V 2, . . . , V n−1 >⊆
Descendants(Y,Gs) and γxy = 0. Since < V 2, . . . , V n−1 >⊆ Descendants(Y,Gs) there exists a FTCG Gf
compatible with Gs in which < V 2

t , . . . , V
n−1
t >⊆ Descendants(Yt,Gf ). Moreover, since πs is active there exists a

FTCG G′f compatible with Gs in which πf =< V 1
t , . . . , V

n
t > is an active path and can only be blocked by a Zf such

that Zf∩ < V 1
t , . . . , V

n
t > ̸= ∅. Since adjusting on Xt−γxy

or descendants of Yt induces a bias, these two cases are
irreconcilable and therefore αYt,Xt−γxy

is not identifiable.

Property 1 If π′
s is passively blocked by U i then πs is passively blocked by at least a descendant of U i.

Property 2 If m = 2 then either n = 2 or ∃1 < i < n such that V i = X or V i = Y .
Property 3 If < U2, . . . , Um−1 > ̸⊆ Descendants(Y,Gs) then < V 2, . . . , V n−1 > ̸⊆ Descendants(Y,Gs).
Property 4 If ∃1 ≤ i < m, U i ← U i+1 then ∃1 ≤ i < n, V i ← V i+1.

Proof. • Suppose π′
s is passively blocked by U i then π′

s =< · · · → U i ← · · · >. Thus exists j1 ≤ j2
such that V j1 = V j2 = U i and πs =< . . . V j1−1 → V j1 . . . V j2 ← V j2+1 · · · >. Let k = min{j1 ≤
j ≤ j2|V j ← V j+1}. Firstly, this minimum exists since V j2 ← V j2+1. Then, πs is passively blocked
by V k since V j1−1 → V j1 , V k ← V k+1 and ∀j1 ≤ j < k, V j → V j+1 or V j ⇄ V j+1. Lastly, since
∀j1 ≤ j < k, V j → V j+1 or V j ⇄ V j+1, V k ∈ Descendants(V j1 ,Gs) = Descendants(U i,Gs).

• If m = 2 then V max{i|V i=V 1}+1 = V n. Firstly, if max{i|V i = V 1} + 1 < n then 1 < max{i|V i =

V 1} + 1 < n with V max{i|V i=V 1}+1 = V n = Y . Secondly, if max{i|V i = V 1} + 1 = n then 1 ≤
max{i|V i = V 1} < n with V max{i|V i=V 1} = V 1 = X . Thus, either max{i|V i = V 1} = 1 and n = 2 or
max{i|V i = V 1} > 1.

• Since {U1, . . . , Um} ⊆ {V 1, . . . , V n}, < U2, . . . , Um−1 > ̸⊆ Descendants(Y,Gs) =⇒ <
V 2, . . . , V n−1 > ̸⊆ Descendants(Y,Gs).

• ∀1 ≤ i < m, ∃1 ≤ j < n such that V j = U i and V j+1 = U i+1, therefore ∃1 ≤ i < m, U i ← U i+1 =⇒
∃1 ≤ j < n, V j ← V j+1.

Proposition 1. Consider a SCG Gs = (Vs, Es), a maximal lag γmax, two vertices X and Y with X ∈ Parents(Y,Gs)
and a lag γxy . Suppose the direct effect of Xt−γxy on Yt is identifiable following Theorem 1. The adjustment set Zf

relative to (Xt−γxy
, Yt) defined in Definition 14 verifies:

• Zf ∩ (Descendants(Yt,Gf ) ∪ {Xt−γxy}) = ∅, and

• Zf blocks every non-direct path from Xt−γxy
to Yt in every compatible FTCG Gf of maximal lag at most

γmax.

which allows to estimate the direct effect αYt,Xt−γxy
.

Proof. Let Gs = (Vs, Es) be a SCG, X,Y ∈ Vs with X ∈ Parents(Y,Gs) and γxy be a lag. Suppose the direct effect
of Xt−γxy

on Yt is identifiable following Theorem 1. Let Zf be the adjustment set relative to (Xt−γxy
, Yt) defined in

Definition 14. Let Gf = (Vf , Ef ) be a compatible FTCG of maximal lag at most γmax compatible with Gs.

• Firstly, using the decomposition Zf = DAnc(Y )
<t ∪ AAnc(Y )

≤t as in Definition 14, and because
Descendants(Yt,Gf ) ⊆ {Vt′ |V ∈ Descendants(Y,Gs), t′ ≥ t} it is clear that Zf ∩
(Descendants(Yt,Gf ) ∪ {Xt−γxy

}) = ∅.

• Secondly, let πf =< V 1
t1 , . . . , V

n
tn > be a non-direct path from Xt−γxy to Yt in FTCG Gf and πs =<

V 1, . . . , V n >= ϕ(πf ) its compatible walk. If tmax(πf ) > t then ∃1 < k < n such that → V k
tmax(πf )

← in
πf with Descendants(V k

tmax(πf )
,Gf ) ∩ Zf = ∅ and thus πf is passively blocked by Zf . Therefore, for the

following we can suppose tmax(πf ) ≤ t.

Because the direct effect of Xt−γxy
on Yt is identifiable following Theorem 1 we know that πf ̸=<

V 1
t1 ← · · · ← V n

tn >. Therefore, ∃1 < k ≤ n such that → V k
tk ← · · · ← V n

tn with tk ≥ t and
V k ∈ Descendants(Y,Gs) and since πf is non-direct this forces n > 2.

18



Identifiability of Direct Effects from Summary Causal Graphs A PREPRINT

– If k < n then Descendants(V k
tk ,Gf ) ∩ Zf = ∅ and thus πf is passively blocked by Zf .

– If k = n (i.e., V n−1
tn−1 → V n

tn ) and πf =< V 1
t1 → · · · → V n

tn > then because the direct effect of Xt−γxy

on Yt is identifiable following Theorem 1 we know that ∃dmax = max{1 < d < n such that V d /∈
Descendants(Y,Gs)}. This forces either t − γmax ≤ tdmax ≤ t or ∃dmax < d < n such that t −
γmax ≤ td < t so since V dmax , V d ∈ Ancestors(Y,Gs), we have either V dmax

tdmax
∈ AAnc(Y )

≤t or

V d
td ∈ D

Anc(Y )
<t and thus πf is manually blocked by Zf .

– If k = n (i.e., V n−1
tn−1 → V n

tn ) and ∃lmax = max{1 < l < n|V l−1
tl−1 ← V l

tl} then V lmax ∈
Ancestors(Y,Gs)
* If tlmax < t then ∃lmax ≤ i such that V i

ti → V i+1
ti+1 and t − γmax ≤ ti < ti+1 = t and since

V i ∈ Ancestors(Y,Gs), V i
ti ∈ Zf and thus πf is manually blocked by Zf .

* If V lmax /∈ Descendants(Y,Gs) and tlmax = t then, since V lmax ∈ Ancestors(Y,Gs), V lmax

tlmax
∈

AAnc(Y )
≤t and thus πf is manually blocked by Zf .

* If V lmax ∈ Descendants(Y,Gs) and tlmax = t then we can distinguish the cases γxy = 0 and
γxy > 0:
· If γxy = 0 then, because the direct effect of Xt−γxy

on Yt is identifiable following Theorem 1 we
know that ϕ(πf ) is blocked so ∃rmax = max{1 < r < lmax|V r−1

tr−1 → V r
tr}.

· Similarly, if γxy > 0 since V lmax−1
tlmax−1 ← V lmax

tlmax
, then t = tlmax ≤ tlmax−1 ≤ t and there must

exists 1 < r < lmax such that V r−1
tr−1 → V r

tr with tr < tr+1 = t so ∃rmax = max{1 < r <

lmax|V r−1
tr−1 → V r

tr}.
Therefore, we have → V r

tr ← and since V lmax ∈ Descendants(Y,Gs) and
V rmax ∈ Descendants(V lmax ,Gs) we have V rmax ∈ Descendants(Y,Gs) so
Zf ∩Descendants(V rmax

trmax ,Gf ) = ∅ and therefore πf is passively blocked by Zf .

In conclusion, πf is blocked by Zf .
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