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Abstract

Microchannel cooling is often the preferred choice for compact heat sinks.
However, widely adopted topology optimisation (TO) techniques, such as
density-based and level-set methods, often struggle to generate very thin
channel strips without imposing maximum length scale constraints. To
address this limitation, multi-scale design methodologies have emerged.
This paper builds upon recent advances in de-homogenisation techniques
to contribute to the multi-scale design of microchannels for cooling appli-
cations. We start by selecting a single-class microstructure and employ
numerical homogenisation to build an offline library. This library is then
fed in online macro-scale topology optimisation, where both microstruc-
ture parameters and local orientation fields are optimised. By using a
sawtooth-function-based mapping, the de-homogenised results capture fine
details across different length scales through a unique homogenised design.
Our findings show that the generated microchannels outperform conven-
tional pillar arrays, offering valuable insights for heat sink designers. Addi-
tionally, imperfections observed in the de-homogenised results serve as
benchmarks for future improvements, addressing concerns related to mod-
elling accuracy, manufacturability, and overall performance enhancements.

Keywords: homogenisation method, topology optimisation, de-homogenisation,
multi-scale design, microchannel, heat sink
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1 Introduction

Topology optimisation (TO) is a promising numerical method that integrates sim-
ulations with mathematical optimisation algorithms to produce conceptual designs
offering very high degree of design freedom. Originating from structural optimisa-
tion, TO technique draws its roots from the seminal work of Bendsøe and Kikuchi
(1988). They introduced the concept of homogenisation, which involves represent-
ing a heterogeneous material as an equivalent homogeneous material with effective
properties. However, it was considered rather complex and always resulted in solu-
tions that could not be clearly interpreted. Therefore, after the simpler approaches
such as density-based approach (Zhou and Rozvany, 1991; Rozvany et al., 1992;
Bendsøe and Sigmund, 1999) and level-set method (Wang et al., 2003; Allaire et al.,
2004) were popularised, the homogenisation-based design approach was somewhat
lost.

On the other hand, through decades of development, TO techniques have been
applied to many other complicated multiphysics problems, one of which is the
fluid-related problems. Since the seminal work by Borrvall and Petersson (2003),
extensive research efforts have been dedicated to improving the hydrodynamic
performance by using the above-mentioned popular TO techniques (Alexander-
sen and Andreasen, 2020). In the meantime, motivated by the growing trend
towards miniaturisation in thermal-fluid devices, microchannels are often consid-
ered as the first choice for the compact heat sinks (Adham et al., 2013) and heat
exchangers (Mohammed et al., 2011). However, the authors’ experience suggests
that these popular TO techniques often fail to generate very thin channel strips
(microchannels) unless a maximum length scale constraint is imposed. Further-
more, high-resolution TO requires using very fine meshes since the design variable
(i.e., pseudo density) is defined for each pixel to represent fluid/solid phases. Con-
sequently, the forward problem becomes rather computationally intensive, and
solving the inverse design problem can be even more challenging. Therefore, multi-
scale topology optimisation techniques may be necessary to mitigate these issues.
For more comprehensive insights into multi-scale design methodologies, readers are
referred in the review papers by Wu et al. (2021) and Lee et al. (2024).

Conventional concurrent multi-scale topology optimisation is known to be computa-
tionally intensive because it requires online homogenisation of evolving microstruc-
tures at each optimisation iteration. In stark contrast to this, de-homogenisation
techniques have emerged as a promising subfield within multi-scale TO, since the
pioneering work by Pantz and Trabelsi (2008). The main idea is to reconstruct
the optimised microstructure at a specified length scale to achieve a thorough and
detailed picture of the microstructure after obtaining an optimised composite struc-
ture. During recent years, numerous research efforts have focused on developing
more efficient methods that preserve homogenised properties as well as ensure good
manufacturability (Allaire et al., 2019a,b; Groen et al., 2020).

According to the guidelines in the review paper by Lee et al. (2024), multi-scale
design methods, in a broad sense, can be further categorised into top-down and
bottom-up strategies. The top-down strategy involves first identifying the optimal
distribution of properties within the design space. Subsequently, the database of
unit cells is retrieved, and they are assembled together in a process called tiling
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to ensure compatibility. The bottom-up approach begins with a dataset compris-
ing parametrised microstructures, which are then fed into the optimisation process
at the macroscopic level. During this process, it is essential to ensure compati-
bility in geometric property mapping and, ultimately, manufacturing feasibility.
This approach is more practical when dealing with problems featuring higher
dimensional property space.

To date, numerous research works have successfully applied de-homogenisation
techniques in the design of compliant mechanical systems including projection-
based method (Geoffroy-Donders et al., 2020; Lee et al., 2021; Jensen et al.,
2022), streamline-based approach (Wang et al., 2023), convolutional neural net-
works assisted method (Elingaard et al., 2022), and phasor-noise driven technique
(Woldseth et al., 2024), among others. However, for many other more complicated
multiphysics problems, de-homogenisation is still in its infancy stages.

In the context of multi-scale design of fluid-related problems, we summarise in
Table 1 the state-of-the-art works, clarifying the design strategies, the selected
optimisers, and the choice of microstructures in the literature. Hence, we clar-
ify the positioning of the present work. Additionally, the categorisation of these
representative works is illustrated in Fig. 1.

Table 1: The state-of-the-art works on the multi-scale design of fluid-related prob-
lems (listed in chronological order).

Ref. Scale Design strategies Optimiser Unit-cell orientation Microstructure 2D/3D Application

Guest and Prévost (2007) Micro-scale - MMA No Class-free 2D/3D Maximal permeability
Wu (2019) Multi-scale Concurrent GCMMA Yes Class-free 2D Minimal dissipation
Takezawa et al. (2019b,a) Multi-scale Bottom-up MMA No Single-class 3D Heat sink
Dede et al. (2020) Multi-scale Bottom-up MMA Yes Single-class 2D Flow distribution
Ozguc et al. (2021) Multi-scale Bottom-up MMA - - 2D Heat sink
Geng et al. (2022) Multi-scale Bottom-up MMA No Single-class 2D Heat sink
Zhou et al. (2022) Multi-scale Bottom-up MMA Yes Single-class 2D Microreactor
Hankins et al. (2023) Multi-scale Bottom-up MMA Yes Single-class 2D Microreactor
Padhy et al. (2023a) Multi-scale Bottom-up Neural networks Yes Diversified-class 2D Minimal dissipation
Padhy et al. (2023b) Multi-scale Bottom-up Neural networks Yes Super-shaped 2D Minimal dissipation
Feppon (2024b) Multi-scale Bottom-up Null-space optimiser Yes Single-class 2D Flow uniformity

This work Multi-scale Bottom-up MMA Yes Single-class 2D Heat sink

Guest and Prévost (2007) pioneered the idea in designing periodic porous material
microstructures that maximise permeability and achieve prescribed flow symmetries
in bulk materials. They computed permeability through numerical homogenisation
of the base cell using finite elements, but their work was limited to the micro-scale
design. Wu (2019) is known as the first who conducted the true sense of multi-scale
TO of fluid mechanics problems, utilising a concurrent optimisation technique to
design optimised micro pillar arrays, aiming to minimize energy loss due to local
fluid drag forces. However, as mentioned earlier, the concurrent TO necessitates
on-the-fly homogenisation, which requires expensive computational cost.

Ozguc et al. (2021) developed a homogenisation-based method where the so-called
partial densities are physically represented as porous microstructures, enabling
the design of thermofluidic structures with sub-grid features represented by ”grey
regions” but without providing the de-homogenised cooling channels.

Takezawa et al. (2019a,b) were among the pioneers in introducing the bottom-up
design strategy to multi-scale fluid-flow designs. They employed a typical lattice
structure comprising pillars, with the lattice shape parametrised by pillar diameter.
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Fig. 1: Categorisation of the 11 representative existing works summarised in
Table 1 and their correlations.

Fluid flow was approximated by deriving effective properties from the Darcy–
Forchheimer law, and at the macro-scale, the Brinkman–Forchheimer equation was
applied. The lattice density, namely, the pillar diameter was carefully designed for
coolant flow. A similar design workflow can be found in the work by Geng et al.
Geng et al. (2022) who employed a lattice structure consisting of crosses. Numeri-
cal homogenisation was conducted to calculate effective permeability and thermal
conductivity, followed by the construction of a surrogate model. They success-
fully demonstrated concurrent topology optimisation for multi-scale fluid channels,
inlets, and outlets. However, the inability to rotate the unit-cell limits the degree
of design freedom to some extent.

Alternatively, in the work by Dede et al. (2020), a reaction-diffusion equation driven
de-homogenisation approach was proposed to built Turing pattern microchannel
flow structures that fill space based on the porous media field obtained by a
gradient-based optimiser. They showcased precise control over fluid flow distri-
bution across numerous microchannels, typically numbering in the hundreds. In
their subsequent works, they integrated an anisotropic porous medium rotated by
the orientation tensor and showcased the effectiveness of their de-homogenisation
framework in microreactor design (Zhou et al., 2022). Later in their work, they
presented design cases with zones identified based on different physical objectives
and made a record of 200 unique and distinctly different microreactor flow chan-
nels (Hankins et al., 2023). They also presented an experimental investigation
of airflow from a Turing pattern microchannel array, with channel sizes ranging
from 0.6 to 1.5 mm, emanated into an open atmosphere at very low Reynolds
numbers (Dede et al., 2022).

More recently, motivated by the need for fluid-flow devices with large contact
areas, Padhy et al. (2023a) introduced a neural networks-assisted bottom-up design
framework. In this approach, various pre-selected classes of microstructures are
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parametrised to construct an offline library using numerical homogenisation. Dur-
ing macro-scale topology optimisation, their algorithm permits seamless transition
between different classes. Leveraging the automatic differentiation capability pro-
vided by the neural networks, manual sensitivity analysis can be eliminated. In
a recent preprint (Padhy et al., 2023b), they further investigated the potential of
using super-shapes as microstructures, enabling the generation of new microstruc-
tures not present in the pre-built offline library. Most recently, Feppon (2024b)
derived Darcy’s law asymptotically, often referred to as a “poor man’s approach” in
the fluid TO community (Zhao et al., 2018; Pollini et al., 2020; Geng et al., 2022),
for a periodically porous medium deformed by a diffeomorphism. He demonstrated
that the homogenised permeability matrix depends not only on the local orienta-
tion but also on the local dilation of the deformed periodic medium. He built upon
the existing de-homogenisation technique from compliant mechanical systems to
the design of flow uniformity. Full-scale simulation results showed that the proposed
designs achieved satisfactory flow uniformity but exhibited noticeable deviations
from the homogenized model.

As mentioned above, multi-scale design of fluid-related problems are relatively
recent topics that have been explored in only a few research works. Their potential
application to microchannel cooling designs remains largely unexplored. The main
contribution of this paper is to showcase that a bottom-up homogenisation-based
TO and de-homogenisation techniques can be effectively applied to the context of
cooling channel design considering conjugate heat transfer. As for the fluid dynam-
ics modelling, we rely on the Darcy model for simulating fluid-flow behaviour in
porous media. This model involves simplifications such as the ignorance of bound-
ary layer effects. The thermal modelling assumes a two-dimensional setup without
considering the thermal interaction between base plate and the thermofluidic
design layer. Regardless of those simplification, we demonstrate that the generated
microchannels can outperform conventional micro-pillar arrays through full-scale
simulations with upsampled structures, offering valuable insight for heat sink
designers. Moreover, the imperfections observed in those de-homogenised designs
such as disconnected branches and limitations in pre-selected microstructures,
triggers future research prospects and offer a benchmark for comparison.

The remainder of this paper is structured as follows: in Section 2, we outline
the homogenisation problem for fluid flow and conjugate heat transfer, the unit-
cell problems for computing homogenized permeability and thermal conductivity,
the filtering and projection schemes used, the optimisation mathematical model,
and the projection-based de-homogenisation techniques. In Section 3, we provide
details of the implementation, including weak formulations for the partial differen-
tial equations (PDEs) and optimisation algorithms. In Section 4, we demonstrate
several numerical examples to validate the current design procedure. Finally, we
draw the conclusions, outline the limitations and future work in Section 5.

2 Formulation

In this section, we start by presenting the homogenized problems for fluid flow
and conjugate heat transfer in Section 2.1. Subsequently, we outline the unit-cell
problems utilized for computing the homogenized properties, namely the effective
inverse permeability and thermal conductivity, in Section 2.2. Following this, we
present the filtering and projection schemes in Section 2.3. Subsequent to that, we
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formulate the optimal design problem for a thermal-fluid system in Section 2.4.
Finally, in Section 2.5, we provide an overview of the de-homogenisation procedure.
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Fig. 2: Schematic diagram of the homogenisation procedure.

2.1 Homogenised problem

Consider a a fixed and bounded domain Ωϵ in Rd, where d = 2 or 3, comprising
periodic heterogeneous media consisting of a series of microscopic unit cells with a
characteristic length ϵ, as illustrated in the left sub-figure of Fig. 2. Each unit cell
comprises two homogeneous and isotropic material phases: the fluid phase and the
solid phase, as shown in the middle sub-figure of Fig. 2. Assuming the microstruc-
ture is a square with its width denoted by m1 and height denoted by m2, and the
unit cell is rotated by an angle θ within the global coordinate system. The represen-
tation of such heterogeneous media can be achieved through a homogeneous media
with the effective material properties (also referred to as homogenised properties)
as illustrated in the right sub-figure of Fig. 2. Utilizing the homogenisation pro-
cedure enables us to potentially mitigate the considerable computational expense
associated with solving the governing equations on a fine mesh, transforming it into
a computationally efficient model on a relatively coarse mesh with acceptable accu-
racy. In other words, rather than computing the detailed behaviour of fluid velocity
uϵ, pressure pϵ, and temperature Tϵ on a fine mesh, we compute their homoge-
nized counterparts u, p, and T on a coarse mesh. This approach is particularly
advantageous for the conceptual design stage of multi-scale structures.

2.1.1 Fluid flow

A slow fluid flow (characterized by the Reynolds number Re ≪ 1) enters domain
composed of multi-scale channels via an inlet Γin with a prescribed velocity uϵ = u0

which exhibits a parabolic profile, and the fluid flow exits the domain through the
outlet boundary Γout with a zero normal-stress boundary condition. The full-scale
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fluid-flow velocity uϵ and pressure pϵ are governed by the Stokes equations in Ωϵ,
which are as follows:

−∆uϵ + ∇pϵ = −αϵ (x)uϵ in Ωϵ,

div (uϵ) = 0 in Ωϵ,

uϵ = u0 on Γin,(
−pϵI +

(
∇uϵ + ∇uTϵ

))
· n = 0 on Γout,

uϵ = 0 on ∂Ωϵ\ (Γin ∪ Γout) ,

(1)

where a fictitious body-force term −αϵ (x)uϵ is introduced to represent the presence
or absence of solid phase, where the inverse permeability αϵ (x) is varied with space
defined as follows:

αϵ(x) :=

{
0 if x ∈ Ωϵ,f,

αmax if x ∈ Ωϵ,s,
(2)

where αmax represents the maximum effective permeability. It is a positive value,
sufficiently large to prevent fluid flow penetration and approximate solid regions.
We assume that the solution for fluid velocity and pressure, denoted as (uϵ, pϵ) in
the Stokes equation shown in Eq. (1) may be approximated by the effective (or
homogenised) velocity and pressure (u, p) to the Darcy potential flow model. The
mathematical proof and numerical validations supporting this asymptotic expan-
sion are detailed in the recent preprint (Feppon, 2024a). Thus, the homogenized
problem can be characterized as follows:

u = −ϵ2X ∗ (m1,m2, θ)∇p in D,

div(u) = 0 in D,

u · n = u0 · n on Γin,

p = 0 on Γout,

(3)

where the normalization factor ϵ2 is multiplied to render the homogenisation
equation approximately independent of ϵ. X ∗ (m1,m2, θ) is the global permeability
matrix, which can be expressed as follows:

X ∗ (m1,m2, θ) = R(θ)XH (m1,m2)R(θ)T , (4)

where R is the well-known rotation matrix defined as follows:

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (5)

XH represents the permeability tensor of the undeformed unit cell Y , defined as:

XH =

[
X11 X12

X21 X22

]
=

1

|Y |

[ ∫
Y
X1,y1 dy

∫
Y
X2,y1 dy∫

Y
X1,y2 dy

∫
Y
X2,y2 dy

]
, (6)

where X 1 = [χ1,y1 , χ1,y2 ]
T

and X 2 = [χ2,y1, χ2,y2]
T

are the solution to the unit-
cell problem which will be given in Section 2.2.1. Moreover, due to the symmetric
nature of the microstructure employed in this paper, X12 = X21 = 0.
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Note that the homogenised problem given in Eq. (3) is rewritten in the form used
in practise as an equivalent Laplacian equation, expressed as follows:

−div (X ∗ (m1,m2, θ)∇p) = 0 in D,

nTX ∗ (m1,m2, θ)∇p = −ϵ−2u0 · n on Γin,

p = 0 on Γout.

(7)

2.1.2 Heat transfer

A cold fluid enters the domain via an inlet Γin with a prescribe temperature Tϵ =
T0, and the remaining boundaries hold adiabatic boundary conditions. With the
knowledge of velocity uϵ as the solution of Eq. (1), it is then weakly coupled to the
convection-diffusion equation in Ωϵ, as follows:

uϵ · ∇Tϵ − div (Kϵ∇Tϵ) = Q (x) in Ωϵ,

Tϵ = T0 on Γin,

Kϵ∇Tϵ · n = 0 on ∂Ωϵ\Γin,

(8)

where uϵ is the solution to the Stokes equations Eq. (1), and the thermal
conductivity and heat source is given by:

Kϵ(x) =

{
κf if x ∈ Ωϵ,f,

κs if x ∈ Ωϵ,s.
, Q(x) =

{
0 if x ∈ Ωϵ,f,

Q̇ if x ∈ Ωϵ,s.
, (9)

with the thermal conductivity ratio between fluid and solid phases κf/κs = 1/50.
The volumetric heat source is assumed to be design-dependent with a heat gen-
eration rate Q̇ = 1.0. Applying a volumetric heat source exclusively to the solid
phase in a two-dimensional conjugate heat transfer problem is justified by the
observation that, in numerous practical situations like electronic devices or solid
structures subjected to external heating, heat generation predominantly occurs
within the solid material. Consequently, disregarding heat generation in the fluid
phase is reasonable, as the primary function of the fluid is to facilitate heat
transport rather than generate it. Then, the solution for temperature Tϵ in the
full-scale convection-diffusion equation can be approximated by the effective (or
homogenised) temperature T obtained by solving the following the homogenised
problem (Allaire and Habibi, 2013):

u · ∇T − div (K∗ (m1,m2, θ)∇T ) = Q (m1,m2) in D,

T = T0 on Γin,

K∗ (m1,m2, θ)∇T · n = 0 on ∂D\Γin,

(10)

where K∗ (m1,m2, θ) is the global thermal conductivity matrix, which can be
expressed as follows:

K∗ (m1,m2, θ) = R(θ)KH (m1,m2)R(θ)T , (11)
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where KH represents the thermal conductivity tensor of the undeformed unit cell
Y , defined as:

KH =

[
K11 K12

K21 K22

]
=

1

|Y |

[ ∫
Y
κ(y) (1 − ∂w1/∂y1) dy

∫
Y
κ(y) (−∂w2/∂y1) dy∫

Y
κ(y) (−∂w1/∂y2) dy

∫
Y
κ(y) (1 − ∂w2/∂y2) dy

]
,

(12)

where κ(y) is the local thermal conductivity within the unit cell which varies with
local space, and w1 and w2 are the solutions to the unit-cell problem which will
be introduced in Section 2.2.2. Furthermore, due to the symmetric nature of the
microstructure employed in this paper, the off-diagonal K12 = K21 = 0.

Given that u = −ϵ2X ∗ (m1,m2, θ)∇p, Eq. (10) can be rewritten as follows:
−ϵ2X ∗ (m1,m2, θ)∇p · ∇T − div (K∗ (m1,m2, θ)∇T ) = Q (m1,m2) in D,

T = T0 on Γin,

K∗ (m1,m2, θ)∇T · n = 0 on ∂D\Γin,

(13)
where the design-dependent volumetric heat source is given as Q (m1,m2) =
m1m2Q̇.

2.2 Unit cell problem

To determine the effective permeability matrix XH (m1,m2) and thermal conduc-
tivity KH (m1,m2), we parametrise the microstructure of the unit cell. In this
study, the microstructure is represented as a square with side lengths m1 and m2,
as depicted in the middle sub-figure of Fig. 2. Subsequently, the unit-cell problems
are solved, and their formulations will be outlined below for clarity.

2.2.1 Fluid permeability

The homogenised permeability XH
ij is determined by computing the volumet-

ric average of the fluid velocity for the incompressible Stokes flow within the
unit cell (Andreassen and Andreasen, 2014; Sanchez-Palencia, 1980). This can be
represented in tensor form as follows:

XH
ij =

1

|Y |

∫
Y (m1,m2)

X j(y)ei dy, 1 ≤ i, j ≤ 2, (14)

where ei denotes the unit vector. (X i(y), ψi) represent the velocity and pres-
sure, respectively to the unit-cell problem governed by the Stokes equation, where
X i(y) satisfies periodic boundary conditions. Additionally, a mean value of ψi(y)
is imposed to ensure solution uniqueness. The unit-cell problem can be formulated
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as follows: 

∆X i(y) + ∇ψi(y) = ei − α(y)X i(y) in Y (m1,m2) ,

div (X i(y)) = 0 in Y (m1,m2) ,∫
Y (m1,m2)

ψi(y) dy = 0,

y → X i(y) Y -periodic.

(15)

We present the solution to Eq. (15) on Fig. 3, considering the case where m1 = 0.4
and m2 = 0.6. It is worth noting that, for simplicity in implementation, we employ
a structured mesh instead of a body-fitted one. Therefore, we adopt a fictitious
body-force term within the Stokes equation to represent both the fluid and solid
phases.
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Fig. 3: Solution to the unit-cell problem defined in Eq. (15) for the case where
m1 = 0.4 and m2 = 0.6.

To construct the offline library, we solve the aforementioned unit-cell problem for
all the possible parameter combinations (m1,m2) distributed across a grid dis-
cretizing the domain (0, 1)

2
into 100 × 100 points, eliminating 0 and 1 to avoid

deterioration (a cell full of fluid and solid, respectively). Finite differences are then
employed to estimate the partial derivatives ∂X11/∂m1, ∂X11/∂m2, ∂X22/∂m1,
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and ∂X22/∂m2. Subsequently, a linear interpolation is utilized to approximate the
entire unit square. The linear interpolations of X11 and X22 are illustrated in Fig. 4.

(a) X11 (m1,m2). (b) X22 (m1,m2).

Fig. 4: Linear interpolation of X11 and X22.

2.2.2 Thermal conductivity

The homogenised thermal conductivity tensor KH
ij in Eq. (12) can be written in

tensor form as follows:

KH
ij =

1

|Y |

∫
Y (m1,m2)

κ(y)

(
δij −

∂wj(y)

∂yi

)
dy, 1 ≤ i, j ≤ 2, (16)

where wi(y) can be obtained by solving the unit-cell problem governed by the
Laplacian, with wi(y) subject to periodic boundary conditions. Additionally, a
mean value of wi(y) is enforced to guarantee the uniqueness of the solution. The
unit-cell problem is formulated as follows:

− div (κ(y) (ei + ∇wi(y))) = 0 in Y (m1,m2) ,∫
Y (m1,m2)

wi(y) dy = 0,

y → wi(y) Y -periodic.

(17)

We showcase the solution to Eq. (17) on Fig. 5, with m1 = 0.4 and m2 = 0.6.
Following what has been discussed in Section 2.2.1, we construct an offline library
for effective thermal conductivity, as can be seen in Fig. 6.

2.3 Filtering and projection

To mitigate the well-known checkerboard phenomenon, filtering techniques are
employed (Lazarov and Sigmund, 2011; Kawamoto et al., 2011). The design vari-
ables d = (m1,m2, θ) are smoothened by solving the following PDE with r the
regularisation parameter: {

−r2∆d̃i + d̃i = di in Ω,

∇d̃i · n = 0 on ∂Ω.
(18)



Springer Nature 2021 LATEX template

12 Preprint submitted to Springer

1.0e-06

1.0e+00

0.2
0.3
0.4
0.5
0.6
0.7
0.8

C
h

a
ra

c
te

ri
s
ti
c
 f
u
n
c
ti
o
n

(a) Characteristic function.

-2.4e-01

2.4e-01

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

w
1

(b) w1.

-1.6e-01

1.6e-01

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

w
2

(c) w2.

Fig. 5: Solution to the unit cell problem defined in Eq. (17) for the case where
m1 = 0.4, m2 = 0.6.

(a) K11 (m1,m2). (b) K22 (m1,m2).

Fig. 6: Linear interpolation of K11 and K22.

To improve the subsequent de-homogenised designs, it is crucial to avoid
microstructures characterised by values of m1 and m2 that are close to, but not
exactly equal to 0 or 1. Such values represent structures with extremely narrow
solid or fluid strips, which are not ideal for manufacturing when projected on a
fine-scale mesh. To address this issue, a projection technique, as described in Groen
and Sigmund (2018), is employed. This projects the intermediate values of m1 and
m2 to 0 or 1 outside the range (η, 1−η), with the threshold η and projection sharp-
ness β. Thus, the filtered design variables m̃ = (m̃1, m̃2) are projected to yield

ˆ̃m =
(

ˆ̃m1, ˆ̃m2

)
as follows:

ˆ̃mi (m̃i, β, η) := m̃i (1 −H (β, 1 − η, m̃i))H (β, η, m̃i)+

(
β − 1

β
+
m̃i

β

)
H (β, 1 − η, m̃i) ,

(19)
where H represents a smoothed Heaviside function that is widely used in the
density-based topology optimisation, defined as follows:

H(m̃i, β, η) :=
tanh(βη) + tanh(β(m̃i − η))

tanh(βη) + tanh(β(1 − η))
, (20)

To enhance clarity for the reader, we illustrate the projection function with various
settings of η and β in Fig. 7. In this paper, we set η = 0.05 and β = 100.
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(a) η = 0.3. (b) β = 100.

Fig. 7: Projection function ˆ̃mi (m̃i, β, η), cf. Eq. (19).

In addition, the filtered orientation angle θ̃ ∈ [0, 1] is linearly rescaled to make it

in radians
ˆ̃
θ ∈ [−π, π].

2.4 Optimisation problem

1.0

𝐷

𝒏!𝒳∗∇𝑝 = −𝜖#$𝒖% ⋅ 𝒏
𝑇 = 𝑇%

𝑝 = 0
∇𝑇 ⋅ 𝒏 = 0

∇𝑇 ⋅ 𝒏 = 0

𝒖% Γ!"#Γ$%

Fig. 8: Schematic diagram of a symmetric microchannel cooling design case.

In the context of a two-dimensional conjugate heat transfer problem with a design-
dependent heat source applied within the solid phase, the considered objective is to
minimize the temperature in the solid regions where heat generation occurs. Lower
temperatures signify reduced heat accumulation and better cooling. Concurrently,
we aim to adhere to a maximum volume fraction constraint for the fluid phase and a
maximum allowable pressure drop. The schematic diagram of the design settings is
illustrated in Fig. 8. The optimization mathematical model is formulated as follows:
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min
m1,m2,θ∈D

J (Ω) =

∫
D

ˆ̃m1
ˆ̃m2T dΩ, (21a)

s.t.



Eqs. (7) and (13),

G1 = ϵ2
1/DP0

|Γin|

∫
Γin

p dΓ − CDP ≤ 0,

G2 =

∫
D

1 − ˆ̃m1
ˆ̃m2 dΩ∫

D
dΩ

− Vmax ≤ 0,

0 ≤ m1 (x) ,m2 (x) , θ (x) ≤ 1 ∀x ∈ D,

(21b)

where G1 and G2 denote the pressure drop constraint and volume constraint,
respectively, DP0 signifies the pressure drop at the initial iteration, CDP indicates
the maximum permitted pressure drop fraction, and Vmax represents the maximum
allowable volume fraction for the fluid phase. The sensitivity analysis is conducted
using the continuous adjoint method and it is detailed in Appendix A.

2.5 Reconstruction of microchannels

To reconstruct the fine-scale microchannels within Ωϵ using the optimised projected

design fields
ˆ̃
d =

(
ˆ̃m1, ˆ̃m2,

ˆ̃
θ
)

, which are continuously varying within the design

domain D, we follow the lead of existing de-homogenisation techniques (Groen
and Sigmund, 2018; Feppon, 2024b), based on the observation that the orientation
field is free of singularities, as evidenced in Fig. 10a, where we solve a pressure
drop minimisation benchmark problem as illustrated in the schematic diagram in
Fig. 9. However, it is important to note that there is no guarantee of singularity-free
orientation field. In case singularities are observed, one can consider employing the
regularisation algorithm proposed in Allaire et al. (2019b) to achieve more regular
mapped designs. In this subsection, we briefly outline the formulation employed for
this procedure to make this paper self-contained.

The unit cells are arranged in a locally-periodic manner on a regular grid in Carte-
sian coordinates and undergo a nonlinear transformation Φ to become a curved grid
in distorted coordinates. Assuming this transformation Φ is conformal, meaning

that ∇Φ (ϕ1, ϕ2) ≃ R
(

ˆ̃
θ
)

, the problem yields to find appropriate functions ϕ1 and

ϕ2 such that ∇ϕ1 ≃ e1

(
ˆ̃
θ
)

and ∇ϕ2 ≃ e2

(
ˆ̃
θ
)

, where e1

(
ˆ̃
θ
)

and e2

(
ˆ̃
θ
)

represent

the local orientation vectors as illustrated in Fig. 10b, which are defined as follows:

e1

(
ˆ̃
θ
)

:=

 cos
(

ˆ̃
θ
)

sin
(

ˆ̃
θ
)  , e2

(
ˆ̃
θ
)

:=

− sin
(

ˆ̃
θ
)

cos
(

ˆ̃
θ
)  . (22)

Taking ϕ1 as an example, the constrained least-squares minimisation problem is
then formulated as follows (Groen and Sigmund, 2018):

min
ϕ1∈D

I (ϕ1(x)) =
1

2

∫
Ω

a1(x)
∥∥∥∇ϕ1(x) − e1

(
ˆ̃
θ
)∥∥∥2 dΩ,

s.t. a2(x)∇ϕ1(x) · e2
(

ˆ̃
θ
)

= 0,

(23)
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Fig. 9: Schematic diagram illustrating a benchmark test case for minimising pres-
sure drop, intended for demonstrating de-homogenisation.
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Fig. 10: Optimised orientation field obtained through homogenisation-based topol-
ogy optimisation for minimising pressure drop.

The introduction of weighting factor a1 aims to ease the projection of ϕ1 within
Ωϵ,f and Ωϵ,s, while maintaining regularization for lattice spacing. Additionally,
a2 is employed to disable strict angular enforcement in these regions (Groen and
Sigmund, 2018). The weighting factors a1(x) and a2(x) are defined as follows:

a1(x) :=

 10−3 if x ∈ Ωf,
10−3 if x ∈ Ωs,
1 if x ∈ Ω\ (Ωs ∪ Ωf) ,

a2(x) :=

 0 if x ∈ Ωf,
0 if x ∈ Ωs,
10 if x ∈ Ω\ (Ωs ∪ Ωf) .

(24)
The domain Ω comprises three parts: a fluid domain Ωf, a solid domain Ωϵ,s, and a
porous medium domain Ω\ (Ωs ∪ Ωf), which can be determined by the correlation
between the local volume fraction and the threshold value η used in the projection
scheme given in Eq. (19), as follows:

x ∈


Ωf if 1 − ˆ̃m1

ˆ̃m2 ≤ η,

Ωs if 1 − ˆ̃m1
ˆ̃m2 ≥ 1 − η,

Ω\ (Ωs ∪ Ωf) if η < 1 − ˆ̃m1
ˆ̃m2 < 1 − η.

(25)
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Then, the constrained least-squares minimisation problem defined in Eq. (23) is
rewritten as an unconstrained minimisation problem as follows:

min
ϕ1∈D

I (ϕ1(x)) =

∫
Ω

a1(x)
∥∥∥∇ϕ1(x) − e1

(
ˆ̃
θ
)∥∥∥2 dΩ+

∫
Ω

a2(x)
∥∥∥∇ϕ1 · e2 ( ˆ̃

θ
)∥∥∥2 dΩ.

(26)
ϕ2 can be determined by solving the above-mentioned minimisation problem

wherein e1

(
ˆ̃
θ
)

and e2

(
ˆ̃
θ
)

should be interchanged. The resulting level-set func-

tions, corresponding to the orientation field depicted in Fig. 10a, are illustrated in
Fig. 11.
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Fig. 11: The level-set functions as the solution of the least-squares minimisation
problem given in Eq. (26).
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Fig. 12: Optimised fields of ˆ̃m1 and ˆ̃m2 obtained through homogenisation-based
topology optimisation for minimising pressure drop.

Subsequently, given distributions of ˆ̃m1 and ˆ̃m2 illustrated in Fig. 12 alongside the
transformation Φ delineated by the level-set functions ϕ1 and ϕ2, we can charac-
terise the fluid domain on the curved grid with periodicity ϵ utilising the negative



Springer Nature 2021 LATEX template

Preprint submitted to Springer 17

subdomain of the following pseudo-density functions (Feppon, 2024b):

γϵ (x) = −max

(∣∣∣∣Saw(ϕ1 (x)

ϵ
, T

)∣∣∣∣− ˆ̃m1 (x)

2
,

∣∣∣∣Saw(ϕ2 (x)

ϵ
, T

)∣∣∣∣− ˆ̃m2 (x)

2

)
,

(27)
in which the sawtooth-function-based mapping ensures effective connections
between oriented microstructures and maintain the original homogenised properties
thanks to its conformality (Wang et al., 2022; Groen et al., 2019; Feppon, 2024b). It
allows extending a function defining an implicit domain in the range (−1/2, 1/2)

2

through periodicity, defined as follows:

Saw (t, T ) :=
t

T
−
⌊
t

T
+ 0.5

⌋
, (28)

with the periodicity T = 1. The de-homogenised (or upsampled) structure is
illustrated in Fig. 13a, where the fluid subdomain Ωϵ,f is defined as the negative
subdomain of γϵ as shown in Fig. 13b. It can be observed that “pin fins” for the
minimal pressure drop problem only occur due to the filter and that the underlying
problem prefers 1/0 binary structure.
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(a) Upsampled structure.
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Fig. 13: Interpretation of the homogenised design fields for a minimal pressure drop
problem, where black regions represent solid material and white regions represent
fluid.

3 Implementation details

In this paper, the finite element method is used to solve the PDEs presented
in Section 2. First-order elements are employed for all state variables. We use
FreeFEM (Hecht, 2012; Jolivet et al., 2012), an open-source finite element software,
for discretizing the PDEs, with PETSc (Balay et al., 2023) serving as the dis-
tributed linear algebra backend. It is worth noting that the homogenisation-based
topology optimisation is conducted using a single-core code, while the validation of
upsampled structures is executed in a distributed fashion. All the numerical exper-
iments are conducted on an Apple MacBook Pro with a 10-core M2 processor. In
the subsequent part of this section, a detailed explanation of the weak form for the
PDEs utilized in this workflow will be provided.
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3.1 Offline library

As has been discussed in Section 2.2, the first step of this workflow is to construct
the offline library by solving the unit-cell problems. Here, we define the Hilbert
spaces Uper for X i and vi, R for ψi and qi, and Hper for wi and vi, where vi, qi,
and vi are the test functions, as follows:

Uper :=
{
v ∈ H1

per

(
Y,Rd

)
; Y = [0, 1]

2
}
,

R :=
{
p ∈ L2(Y ); MY (p) = 0; Y = [0, 1]

2
}
,

Hper :=
{
u ∈ H1

per(Y ); MY (u) = 0; Y = [0, 1]
2
}
.

The unit-cell problem for the Stokes flow defined in Eq. (15) can be rewritten in
the weak form as:
Find (X i, ψi, λ) ∈ Uper × R × R, such that:

a (X i,vi) + b (vi, ψi) = l (vi) ∀vi ∈ Uper,

b (X i, qi) − τd(ψi, qi) + λm(qi) = 0 ∀qi ∈ R,

m(ψi) = 0,

where we define the bilinear form a (X i,vi) and b (vi, ψi), linear form l (vi), pres-
sure stabilisation term τd(ψi, qi), with the element size hK and Lagrange multiplier
λ, as follows:

a (X i,vi) =

∫
Y

∇X i : ∇vi dy +

∫
Y

α (y)X i · vi dy,

b (vi, ψi) = −
∫
Y

∇ · viψi dy

l (vi) =

∫
Y

ei · vi dy,

τ > 0, d(ψi, qi) =
∑
K∈T

h2K

∫
Ye

∇ψi · ∇qi dye,

m(ψi) =

∫
Y

ψi dy.

In our implementation, the discretisation of the above weak form is stored in the
block matrix as follows:

AStokes =

 A B 0

BT S h

0 hT 0

 , (29)

where A is the matrix discretising the bilinear form of a (X i,vi), B the diver-
gence operator b (vi, ψi), S the pressure stabilisation term −τd(ψi, qi). h is the
discretisation of the linear form associated with the Lagrange multiplier term
λm(qi), imposing a zero-mean value for ψi such that the solution can be uniquely
determined.
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The unit cell problem for the heat transfer defined in Eq. (17) can be rewritten in
the weak form as:
Find (wi, λ) ∈ Hper × R, such that:

a (wi, vi) + λm(vi) = l (vi) ∀vi ∈ Hper,

m(wi) = 0,

where we define the bilinear form a (wi, vi), linear form l (vi), with the Lagrange
multiplier λ, as follows:

a (wi, vi) =

∫
Y

κ(y)∇wi · ∇vi dy,

l (vi) =

∫
Y

κ(y)ei · ∇vi dy,

m(wi) =

∫
Y

wi dy.

The discretisation of the above weak form is stored in the block matrix as follows:

ALaplacian =

[
A h

hT 0

]
, (30)

where A is the matrix discretising the bilinear form a (wi, vi). h is the discretisation
of the linear form associated with the Lagrange multiplier term λm (vi), imposing
a zero-mean value for wi, such that the solution can be uniquely determined.

3.2 Homogenisation-based topology optimisation

Now, we proceed with the homogenisation-based topology optimisation to solve
the optimum design problem formulated in Section 2.4. Here, we define the Hilbert
spaces P for the homogenised pressure p and homogenised temperature T , their
adjoint variables pa and Ta, as well as the test functions q and S, as follows:

P :=
{
p̃ ∈ H1(Ω) | p̃ = 0 on ∂ΩDp

}
.

First, the Laplacian defined in Eq. (7) can be expressed in the following weak form:
Find p ∈ P with p = 0 on Γout such that:∫

D

X ∗
(

ˆ̃m1, ˆ̃m2,
ˆ̃
θ
)
∇p · ∇q dΩ = −ϵ−2

∫
Γin

(u0 · n) q dΓ ∀q ∈ P, p ∈ P. (31)

Next, the convection-diffusion equation defined in Eq. (13) can be written in weak
form as:
Find T ∈ P with T = 0 on Γin such that:∫

D

−ϵ2X ∗
(

ˆ̃m1, ˆ̃m2,
ˆ̃
θ
)
∇p · ∇TS dΩ +

∫
D

K∗
(

ˆ̃m1, ˆ̃m2,
ˆ̃
θ
)
∇T · ∇S dΩ

=

∫
D

Q
(

ˆ̃m1, ˆ̃m2

)
S dΩ ∀S ∈ P, T ∈ P.

(32)
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The weak form of the adjoint equations can be found in Appendix A.

Additionally, the weak form for the reaction-diffusion equation (PDE filter) defined
in Eq. (18) is as follows:
Find d̃i ∈ P such that:∫

D

r2∇d̃i · ∇v + d̃iv dΩ =

∫
D

div dΩ ∀δv ∈ P, d̃i ∈ P. (33)

The homogenisation-based optimisation algorithm, summarised in Algorithm 1,
is briefed as follows: it begins by initializing finite element spaces, declaring
unknowns, and defining variational formulations, followed by linear interpolation
of homogenised properties from an offline library described in Section 3.1. Within
a main loop, the optimisation algorithm iterates until convergence or a maximum
number of iterations, solving homogenisation equations to obtain velocity, pressure,
and temperature fields, and computing objective and constraint functions. Adjoint
equations are then solved to obtain adjoint variables, and sensitivities are com-
puted. The design variables are updated using the method of moving asymptotes
(MMA) (Svanberg, 1987).

Algorithm 1 Homogenisation-based topology optimisation.

Input: offline library: X11(m1,m2), X22(m1,m2), K11(m1,m2), K22(m1,m2),
∂X11/∂m1, ∂X11/∂m2, ∂X22/∂m1, ∂X22/∂m2, ∂K11/∂m1, ∂K11/∂m2, ∂K22/∂m1,
∂K22/∂m2

Initialization
create finite element spaces, declare unknowns, define variational formulations
initialise design fields (m1,m2, θ)
linear interpolation of the homogenised properties using the offline library, cf.
Section 3.1

for it = 0; it < 2000; it = it + 1 do
solve homogenisation equation Eqs. (31) and (32) to obtain p and T
compute J , G1, and G2, cf. Eq. (21)
if ∥Jit+1 − Jit∥ < ε, ∥Git+1 −Git∥ < ε then

break
else

solve adjoint equations to obtain pa and Ta, cf. Eqs. (A.9) and (A.10)
compute sensitivities w.r.t. the projected design variables, δ ˆ̃mL, cf.

Eq. (A.7)
PDE-filter sensitivities w.r.t. the design variables, cf. Eq. (33)
update design variable (m1,m2, θ) using MMA
do the PDE-filtering, cf. Eq. (33), and projection, cf. Eq. (19), to get(

ˆ̃m1, ˆ̃m2,
ˆ̃
θ
)

linear interpolation of homogenised properties, cf. Section 3.1
end if

end for



Springer Nature 2021 LATEX template

Preprint submitted to Springer 21

3.3 Reconstruction of fine-scale structure

The least-squares minimisation problem defined in Eq. (26) can be solved using the
variational method, given as:
Find ϕ1 ∈ P such that:∫

Ω

a1(x)∇ϕ1 · ∇v + a2(x)
(
∇ϕ1 · e2

(
ˆ̃
θ
))(

∇v · e2
(

ˆ̃
θ
))

+ τϕ1v dΩ

=

∫
Ω

a1(x)∇v · e1
(

ˆ̃
θ
)

dΩ ∀v ∈ P, ϕ1 ∈ P.

(34)

3.4 Validation for the upsampled structure

As previously noted, validating the upsampling outcomes requires conducting full-
scale simulations. Here, we define the Hibert space Uu,p for (uϵ, pϵ) and test
functions (vϵ, qϵ), and P for Tϵ and test function Sϵ, as follows:

Uu,p :=
{

(ũ, p̃) ∈ H1
(
Ωf ,Rd

)
× L2 (Ωf) | ũ = 0 on ∂ΩDf

}
,

P :=
{
p̃ ∈ H1(Ω) | p̃ = 0 on ∂ΩDp

}
.

The weak form for the Stokes equations in Eq. (1) is as follows:
Find (uϵ, pϵ) ∈ Uu,p with uϵ = u0 on Γin and uϵ = 0 on ∂Ωϵ\ (Γin ∪ Γout) such
that: ∫

Ωϵ

∇uϵ : ∇vϵ dΩ −
∫
Ωϵ

∇ · vϵpϵ dΩ −
∫
Ωϵ

∇ · uϵqϵ dΩ

+

∫
Ωϵ

αϵ (x)uϵ · vϵ dΩ −
∑
K∈T

h2K

∫
Ωe

∇pϵ · ∇qϵ dΩe = 0

∀(vϵ, qϵ) ∈ Uu,p, (uϵ, pϵ) ∈ Uu,p,

(35)

where the inverse permeability value in the solid phase is set to αmax = 109.
The convection-diffusion equation in Eq. (8) can be written in weak form as follows:
Find Tϵ ∈ P with Tϵ = 0 on Γin such that:∫

Ωϵ

(uϵ · ∇Tϵ)Sϵ dΩ +

∫
Ωϵ

Kϵ∇Tϵ · ∇Sϵ dΩ = Q (x)Sϵ ∀Sϵ ∈ P, Tϵ ∈ P. (36)

4 Numerical examples

In this section, we present two test cases: a symmetric design case in Section 4.1,
and an asymmetric design case in Section 4.2. For both cases, we initialise the design
field by setting m1 = 0.5, m2 = 0.5, and θ = 0.5. We set the maximum allowed vol-
ume fraction for the fluid phase to Vmax = 60% and the maximum allowed pressure
drop coefficient to CDP = 1.0, ensuring that the pressure drop for the optimised
design does not exceed that for the initial guess. For the homogenisation-based
topology optimisation, we use a 50×50 coarse mesh, while for the reconstruction of
the de-homogenised designs, a 2000×2000 fine mesh is used. Based on the numerical
examples presented later in this section, we verify that the narrowest microchannel
spans at least a 5-element width. Increasing the mesh resolution could potentially
enhance the accuracy of the simulations even further. The PDE-filter radius is set
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to r = 0.05 which is r ≈ 2.4h where h is the edge size of the mesh. The optimiza-
tion solver is terminated after 2000 iterations since suboptimal pin-fins take a long
time to develop into straight connected fins.

Prior to conducting any optimisation, we first run the simulation solver to
evaluate the de-homogenised initial designs across different values of ϵ ∈
{0.05, 0.025, 0.0125}, as illustrated in Fig. 14 for the symmetric design case (see the
design schematic in Fig. 8).

We utilise two different types of meshes in the simulation solver. Firstly, we solve
the governing equations on a 2000 × 2000 mesh employing a Brinkmann term to
represent the solid/fluid phases. The velocity, pressure, and temperature fields are
illustrated in the first three columns of Fig. 15, with those obtained from the
homogenised model presented in the fourth column for comparison.

Secondly, we generate a body-fitted mesh, as shown in Fig. 16. This mesh enables
disjoint-reunion subdomains Ωϵ,f and Ωϵ,s divided by an explicit interface Γs,f. In
this setup, we only need to solve the Stokes equation within the fluid domain
Ωϵ,f without incorporating any Brinkmann term. And the no-slip boundary con-
dition uϵ = 0 is imposed on the fluid-solid interface Γs,f. The velocity, pressure,
and temperature fields are displayed in the first three columns of Fig. 17, while
those obtained from the homogenised model are depicted in the fourth column for
comparison.

We summarise the objective values obtained from the homogenised and deho-
mogenised structures in Table 2. The relative difference of the objective values
obtained by the full-scale Stokes solution w.r.t. the homogenised Darcy solution is
less than 1.0%. In the subsequent design examples, we will validate the performance
of upsampled structures on body-fitted meshes.

(a) ϵ = 0.05. (b) ϵ = 0.025. (c) ϵ = 0.0125.

Fig. 14: de-homogenised initial designs for various values of ϵ for the optimisation
design case, where black regions represent solid material and white regions represent
fluid.

4.1 A symmetric test case

Now, we run Algorithm 1 to solve the symmetric test case illustrated in Fig. 8.
After 2000 iterations, we obtain the optimised design fields showcased in Fig. 18.
Notably, the m1 field, as depicted in Fig. 18a, exhibits a uniform value of 1.0,
suggesting streamline-oriented continuous fins in the design domain. Furthermore,
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(a) u, ϵ = 0.05. (b) u, ϵ = 0.025. (c) u, ϵ = 0.0125. (d) uϵ.

(e) p, ϵ = 0.05. (f) p, ϵ = 0.025. (g) p, ϵ = 0.0125. (h) pϵ.

(i) T , ϵ = 0.05. (j) T , ϵ = 0.05. (k) T , ϵ = 0.05. (l) Tϵ.

Fig. 15: The first three columns, from left to right, depict the velocity, pressure,
and temperature fields obtained by solving the Stokes equations on a 2000 × 2000
fine mesh for the upsampled initial structures with various ϵ, cf. Fig. 14. The fourth
column displays the homogenised velocity, pressure, and temperature fields acquired
by solving the homogenised equation on a 50 × 50 coarse mesh. For comparison,
the legend bar range is rescaled based on the homogenised model.

(a) Overview. (b) Zoom view.

Fig. 16: A snapshot of the body-fitted mesh representing the fluid subdomain Ωϵ,f,
derived from the initial guess where ϵ = 0.05.

the optimized θ field, presented in Fig. 18c, illustrates that the fluid channel is
directed towards the far-end corners, while the channel network converges towards
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(a) u, ϵ = 0.05. (b) u, ϵ = 0.025. (c) u, ϵ = 0.0125. (d) uϵ.

(e) p, ϵ = 0.05. (f) p, ϵ = 0.025. (g) p, ϵ = 0.0125. (h) pϵ.

(i) T , ϵ = 0.05. (j) T , ϵ = 0.05. (k) T , ϵ = 0.05. (l) Tϵ.

Fig. 17: The first three columns, from left to right, depict the velocity, pressure, and
temperature fields obtained by solving the Stokes equations on body-fitted meshes
for the upsampled initial structures with various ϵ, cf. Fig. 14. The fourth column
displays the homogenised velocity, pressure, and temperature fields acquired by
solving the homogenised equation on a 50 × 50 coarse mesh. For comparison, the
legend bar range is rescaled based on the homogenised model.

Table 2: The objective values for the homogenised model and de-homogenised
structures with various values of ϵ = {0.05, 0.025, 0.125} for the initial guess.

Case Objective value Relative difference

Homogenised, cf. Fig. 15l 1.89 · 10−2 -

ϵ = 0.05
Brinkmann, cf. Fig. 15i 1.88 · 10−2 0.74%
Body-fitted, cf. Fig. 17i 1.89 · 10−2 0.29%

ϵ = 0.025
Brinkmann, cf. Fig. 15j 1.89 · 10−2 0.02%
Body-fitted, cf. Fig. 17j 1.9 · 10−2 0.30%

ϵ = 0.0125
Brinkmann, cf. Fig. 15k 1.88 · 10−2 0.30%
Body-fitted, cf. Fig. 17k 1.88 · 10−2 0.56%

the outlet. The convergence histories of the objective values, volume fraction of the
fluid phase, and pressure drop constraint value are depicted in Fig. 19. The initial
decrease/increase in cost functions is due to an infeasible initial guess and the
MMA optimiser focuses on satisfying the volume constraint. After approximately
500 iterations, the functions largely stabilise, but the objective increases slightly
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while the pressure drop becomes lower. Despite some slight oscillations due to its
sensitivity to small changes in design fields, a trade-off is eventually reached.

(a) ˆ̃m1. (b) ˆ̃m2. (c)
ˆ̃
θ.

Fig. 18: Optimised design fields obtained after 2000 iterations for the symmetric
design case, cf. Fig. 8.
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Fig. 19: Convergence histories of (a) objective value, (b) volume fraction of the
fluid phase, and (c) pressure drop constraint value for the symmetric design case.

Next, with the optimised orientation fields, we solve the least-squares minimisa-
tion problem for computing the level-set functions, as illustrated in Fig. 20. Then,
we reconstruct the fine-scale microchannels using various ϵ values from the set
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{0.05, 0.025, 0.0125}, as depicted in Fig. 21. Following that, we validate these de-
homogenised designs on the body-fitted meshes, showcasing the velocity, pressure,
and temperature fields in the first three columns of Fig. 22, with corresponding
results from the homogenised model presented in the fourth column for comparison.
The computed objective values are summarized in Table 3.

The main observations can be summarised as follows:

1. In Fig. 21, it is evident that the de-homogenised designs feature some fluid chan-
nels connected to the wall but not connected to inlet/outlet, which is not ideal
in practical applications. This phenomenon may be attributed to the absence
of the no-slip boundary condition in the homogenised model, which is crucial
for accurately modelling fluid motion. Consequently, in the homogenised model,
we observe non-zero velocities at the boundary. This limitation warrants further
investigation.

2. The thinner fins towards the right make sense from a heat transfer perspective.
This might be explained by the fact that there is less solid material and, con-
sequently, less heat generation near the outlet. Additionally, the fluid near the
outlet will be hotter and less effective at cooling.

3. From a quantitative perspective, there is a notable discrepancy in the full-scale
velocity magnitude compared to the homogenised one. However, such a devia-
tion is expected as the homogenized model provides a locally averaged velocity,
whereas the upsampled structure contains narrow microchannels with higher
velocity magnitudes.

4. Upon computing the objective values (see Table 3), we also notice a slightly
more noticeable discrepancy compared to that of the initial designs. The relative
difference reaches up to 1.8%. This can be attributed to the varying microstruc-
tures within the design domain in the optimised design, unlike the initial designs
which feature entirely periodic porous media.

By employing an intuitive post-processing strategy, we remove those microchannels
in which the velocity magnitude is less than 0.1% of the maximum velocity magni-
tude within the entire domain based on the full-scale body-fitted simulation. This
process effectively removes channels located at the far-end corners, as illustrated
in Fig. 23. However, this may also lead to a larger discrepancy in the objective
values. This is mainly due to the utilization of a design-dependent heat source.
However, we argue that the proposed designs offer valuable insight for designers as
they showcase a considerable improvement in heat transfer performance compared
to the initial designs.

Table 3: The objective values for the homogenised design and de-homogenised
designs with various values of ϵ = {0.05, 0.025, 0.0125}, for the symmetric design
case in Section 4.1.

Case Objective value Relative difference

Homogenised, cf. Fig. 18 2.98 · 10−3 -
ϵ = 0.05, cf. Fig. 21a 2.94 · 10−3 1.5%
ϵ = 0.025, cf. Fig. 21b 3 · 10−3 0.52%
ϵ = 0.0125, cf. Fig. 21c 2.93 · 10−3 1.8%
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(a) ϕ1. (b) ϕ2.

Fig. 20: The level-set functions obtained by solving the least-squares minimisation
problem for the symmetric design case.

(a) ϵ = 0.05. (b) ϵ = 0.025. (c) ϵ = 0.0125.

Fig. 21: de-homogenised designs for various values of ϵ for the symmetric opti-
misation design case, cf. Fig. 8, where black regions represent solid material and
white regions represent fluid.

4.2 An asymmetric test case

Finally, we present results for an asymmetric design case illustrated in Fig. 24. After
2000 iterations, we obtain the optimised design fields as shown in Fig. 25. Similar
to the observations made in the symmetric test case, within the m1 field (as shown
in Fig. 25a), regions with a value of 1.0 indicate a diagonally streamlined fluid
channel design within the domain. Additionally, the optimized θ field (depicted in
Fig. 25c) indicates that the fluid flow is directed towards the far-end corners after
entering the inlet, while the channel network converges towards the outlet.

The level-set functions, obtained as the solution of the least-squares minimization
problem, are displayed in Fig. 26. The upsampled microchannels with various ϵ
values are illustrated in Fig. 27. The validation results on body-fitted meshes are
presented in the first three columns of Fig. 28, while corresponding results from
the homogenized model are provided in the fourth column for comparison. The
computed objective values are summarized in Table 4. Higher deviations (relative
differences) can be observed compared to the one in the symmetric test case. This
may be due to the proximity of the inlet and outlet to the wall. The absence
of the no-slip boundary condition in the homogenised model may exacerbate this
deviation. Other than that, similar observations to those made in the symmetric
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(a) u, ϵ = 0.05. (b) u, ϵ = 0.025. (c) u, ϵ = 0.0125. (d) uϵ.

(e) p, ϵ = 0.05. (f) p, ϵ = 0.025. (g) p, ϵ = 0.0125. (h) pϵ.

(i) T , ϵ = 0.05. (j) T , ϵ = 0.05. (k) T , ϵ = 0.05. (l) Tϵ.

Fig. 22: The first three columns, from left to right, depict the velocity, pressure, and
temperature fields obtained by solving the Stokes equations on a 2000 × 2000 fine
mesh for the upsampled structures with various ϵ, cf. Fig. 21. The fourth column
displays the homogenised velocity, pressure, and temperature fields acquired by
solving the homogenisation equation on a 50×50 coarse mesh. For comparison, the
legend bar range is rescaled based on the homogenised model.

(a) ϵ = 0.05. (b) ϵ = 0.025. (c) ϵ = 0.0125.

Fig. 23: Post-processed design achieved through the removal of minuscule channels
(cf. Fig. 21) exhibiting very low velocity for the asymmetric design case.

case outlined in Section 4.1 can be drawn from the results, highlighting both the
favourable aspects and limitations of the proposed approach.
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Fig. 24: Schematic diagram of an asymmetric microchannel cooling design case.

(a) ˆ̃m1. (b) ˆ̃m2. (c)
ˆ̃
θ.

Fig. 25: Optimised design fields obtained after 2000 iterations for the asymmetric
design case, cf. Fig. 24.

(a) ϕ1. (b) ϕ2.

Fig. 26: The level-set functions obtained by solving the least-squares minimisation
problem for the asymmetric design case.

5 Conclusions

To conclude, the present work leverages recent advancements in de-homogenisation
techniques to contribute to the multi-scale microchannel cooling designs. Beginning
with the selection of a single-class microstructure–a square hole in this case–we
employ numerical homogenisation to construct an offline library. This library feeds
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(a) ϵ = 0.05. (b) ϵ = 0.025. (c) ϵ = 0.0125.

Fig. 27: de-homogenised designs for various values of ϵ for the asymmetric opti-
misation design case, cf. Fig. 24, where black regions represent solid material and
white regions represent fluid.

(a) u, ϵ = 0.05. (b) u, ϵ = 0.025. (c) u, ϵ = 0.015. (d) uϵ.

(e) p, ϵ = 0.05. (f) p, ϵ = 0.025. (g) p, ϵ = 0.0125. (h) pϵ.

(i) T , ϵ = 0.05. (j) T , ϵ = 0.05. (k) T , ϵ = 0.05. (l) Tϵ.

Fig. 28: The first three columns, from left to right, depict the velocity, pressure, and
temperature fields obtained by solving the Stokes equations on a 2000 × 2000 fine
mesh for the upsampled structures with various ϵ, cf. Fig. 27. The fourth column
displays the homogenised velocity, pressure, and temperature fields acquired by
solving the homogenisation equation on a 50×50 coarse mesh. For comparison, the
legend bar range is rescaled based on the homogenised model.

into online macro-scale topology optimisation, where both microstructure param-
eters and local orientation fields are optimised. Post-processing of the homogeni-
sation results in the convergence towards optimal micro-fluid channels, capturing
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Table 4: The objective values for the homogenised design and de-homogenised
designs with various values of ϵ = {0.05, 0.025, 0.0125}, for the asymmetric design
case in Section 4.2.

Case Objective value Relative difference

Homogenised, cf. Fig. 25 4.02 · 10−3 -
ϵ = 0.05, cf. Fig. 27a 4.22 · 10−3 4.8%
ϵ = 0.025, cf. Fig. 27b 4.26 · 10−3 5.9%
ϵ = 0.0125, cf. Fig. 27c 4.15 · 10−3 3.1%

(a) ϵ = 0.05. (b) ϵ = 0.025. (c) ϵ = 0.0125.

Fig. 29: Post-processed design achieved through the removal of minuscule channels
(cf. Fig. 27) exhibiting very low velocity for the asymmetric design case.

fine details through a unique computation for all. The de-homogenised outcomes
showcase streamlined designs that are different from periodic arrangements of
micro-pillar arrays exhibiting locally varying shapes. Through full-scale simulations
with upsampled structures, we demonstrate that these generated microchannel
cooling designs can outperform conventional micro-pillar arrays, providing valu-
able insights for heat sink designers. Additionally, imperfections observed in these
de-homogenised designs serve as benchmarks for future improvements, addressing
issues such as modelling accuracy, manufacturability of de-homogenised designs,
and overall performance enhancements.

We note that although only m1 = 1 solutions are observed in the presented exam-
ples, the methodology is capable of producing pin-fins if the underlying physics
requires it. This renders the methodology ready for problems where breaking the
boundary layer is captured in the physics and beneficial to the cooling performance.
But the current model does not capture this due to the instantaneous development
of the boundary layer in Stokes flow.

Below are the primary limitations of the current work, along with prospectives
aimed at addressing these challenging issues:

1. The homogenised model for the fluid flow essentially overlooks the boundary
layers near the wall and disregards the transition to the Stokes regime in regions
with large portion of fluid phase. Introducing a high-order homogenisation of
Stokes could potentially enhance the accuracy of the homogenized model by
integrating the Stokes system, the Brinkman model, and Darcy’s law (Feppon,
2021).
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2. The de-homogenised designs feature some fluid channels which are not connected
to those belong to inlet or outlet. The straightforward post-processing strategy
demonstrated in this paper is not satisfying to resolve this issue. A potential solu-
tion is to employ a phasor noise de-homogenisation technique where an image
morphology-based method was proposed to close these branches, ensuring struc-
tural connectivity while minimising the deviations in prescribed orientations,
periodicity, and homogenised properties (Woldseth et al., 2024).

3. In this paper, we limit ourselves to use the simple square hole as the pre-
selected microstructure. More diversified parametrised microstructure such as
bar groups (Wang et al., 2022) and super-shapes (Padhy et al., 2023b) may
provide a broader spectrum of properties, which is a focus of our future work.
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Grégoire Allaire and Zakaria Habibi. Homogenization of a conductive, convective,
and radiative heat transfer problem in a heterogeneous domain. SIAM Journal
on Mathematical Analysis, 45(3):1136–1178, 2013.
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A Sensitivity analysis

The sensitivity analysis is conducted to derive the sensitivity of objective function
J , and pressure drop constraint function G1 w.r.t. the projected design variable
ˆ̃
d =

(
ˆ̃m1, ˆ̃m2,

ˆ̃
θ
)

. For conciseness, throughout the remainder of this appendix, we

utilize X ∗ and K∗ for brevity.

Now, the sensitivity analysis is performed. First, the Lagrange function L is
constructed as follows:

L := J + ⟨pa,−div (X ∗∇p)⟩ +
〈
Ta,−ϵ2X ∗∇p · ∇T − div (K∗∇T ) −Q

〉
, (A.1)

where pa and Ta are the adjoint pressure and adjoint temperature, respectively.
According to the Karush–Kuhn–Tucker (KKT) conditions for PDE constrained
optimisation problems, {

δTL = 0,

δpL = 0.
(A.2)

The variation of the Lagrange function w.r.t. the state variables T and p are derived
as follows:

δTL = δTJ+

∫
D

−ϵ2X ∗∇p·∇δTTa dΩ+

∫
D

K∗∇δT ·∇Ta dΩ = 0 ∀δT ∈ P, Ta ∈ P,

(A.3a)

δpL = δpJ +

∫
D

X ∗∇pa · ∇δp dΩ −
∫
D

ϵ2X ∗∇δp · ∇TTa = 0 ∀δp ∈ P, pa ∈ P.

(A.3b)

As for the optimum design problem given in Eq. (21), the variation of the cost
functions w.r.t. the state variables are derived as follows:δTJ =

∫
D

ˆ̃m1
ˆ̃m2δT dΩ,

δpJ = 0,

(A.4a)


δTG1 = 0,

δpG1 = ϵ2
1/DP0

|Γin|

∫
Γin

δp dΓ.
(A.4b)

Substituting Eqs. (A.3) and (A.4) into Eq. (A.2), the adjoint system can be
obtained, see the corresponding weak forms Eqs. (A.9) and (A.10).
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Finally, the functional derivative of the Lagrange function w.r.t. design variables,
δdL, can be derived using the chain rule as follows:

δL
δm1

=
δL
δm̂1

∂m̂1

∂m̃1

δm̃1

δm1
,

δL
δm2

=
δL
δm̂2

∂m̂2

∂m̃2

δm̃2

δm2
,

δL
δθ

=
δL
δθ̂

∂θ̂

∂θ̃

δθ̃

δθ
,

(A.5)

where the derivative of the projected variable w.r.t. the (m̃1, m̃2) is expressed as
follows:

∂m̂i

∂m̃i
:=

(
1 − tanh(β(1 − η)) + tanh(β(m̃i − 1 + η))

tanh(βη) + tanh(β(1 − η))

)
(tanh(βη) + tanh(β(m̃i − η)))

tanh(βη) + tanh(β(1 − η))

−
m̃iβ

(
1 − tanh(β(m̃i − 1 + η))2

)
(tanh(βη) + tanh(β(m̃i − η)))

(tanh(βη) + tanh(β(1 − η)))2

+

m̃i

(
1 − tanh(β(1 − η)) + tanh(β(m̃i − 1 + η))

tanh(βη) + tanh(β(1 − η))

)
β
(
1 − tanh(β(m̃i − η))2

)
tanh(βη) + tanh(β(1 − η))

+
tanh(β(1 − η)) + tanh(β(m̃i − 1 + η))

β(tanh(βη) + tanh(β(1 − η)))

+

(
β − 1

β
+
m̃i

β

)
β
(
1 − tanh(β(m̃i − 1 + η))2

)
tanh(βη) + tanh(β(1 − η))

.

(A.6)

Therefore, δ ˆ̃
di
L reads:

δ ˆ̃
di
L =

∂J

∂
ˆ̃
di

+
∂X ∗

∂
ˆ̃
di

∇p·∇pa−ϵ2
∂X ∗

∂
ˆ̃
di

∇p·∇TTa+ϵ2
∂K∗

∂
ˆ̃
di

∇T ·∇Ta+
∂Q
(

ˆ̃m1, ˆ̃m2

)
∂

ˆ̃
di

in D,

(A.7)

where
∂X ∗

∂
ˆ̃
di

can be expanded as follows:

∂X ∗

∂ ˆ̃m1

:=


∂X11

∂ ˆ̃m1

cos2
(

ˆ̃
θ
)

+
∂X22

∂ ˆ̃m1

sin2
(

ˆ̃
θ
) (

∂X11

∂ ˆ̃m1

− ∂X22

∂ ˆ̃m1

)
sin
(

ˆ̃
θ
)

cos
(

ˆ̃
θ
)

(
∂X11

∂ ˆ̃m1

− ∂X22

∂ ˆ̃m1

)
sin
(

ˆ̃
θ
)

cos
(

ˆ̃
θ
) ∂X22

∂ ˆ̃m1

cos2
(

ˆ̃
θ
)

+
∂X11

∂ ˆ̃m1

sin2
(

ˆ̃
θ
)
 ,

(A.8a)

∂X ∗

∂ ˆ̃m2

:=


∂X11

∂ ˆ̃m2

cos2
(

ˆ̃
θ
)

+
∂X22

∂ ˆ̃m2

sin2
(

ˆ̃
θ
) (

∂X11

∂ ˆ̃m2

− ∂X22

∂ ˆ̃m2

)
sin
(

ˆ̃
θ
)

cos
(

ˆ̃
θ
)

(
∂X11

∂ ˆ̃m2

− ∂X22

∂ ˆ̃m2

)
sin
(

ˆ̃
θ
)

cos
(

ˆ̃
θ
) ∂X22

∂ ˆ̃m2

cos2
(

ˆ̃
θ
)

+
∂X11

∂ ˆ̃m2

sin2
(

ˆ̃
θ
)
 ,

(A.8b)
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∂X ∗

∂
ˆ̃
θ

:=

 sin
(

ˆ̃
θ
)

cos
(

ˆ̃
θ
)

(2X22 − 2X11) (X22 −X11)
(

sin2
(

ˆ̃
θ
)
− cos2

(
ˆ̃
θ
))

(X22 −X11)
(

sin2
(

ˆ̃
θ
)
− cos2

(
ˆ̃
θ
))

sin
(

ˆ̃
θ
)

cos
(

ˆ̃
θ
)

(2X11 − 2X22)

 .
(A.8c)

Likewise,
∂K∗

∂
ˆ̃
di

can be expanded using the same formulation as described above,

and will be elaborated on here.

The weak form of the adjoint equations derived above are given here. As for the
objective function, the adjoint equations are as follows:
Find Ta ∈ P with Ta = 0 on Γin such that:∫

D

−
(
ϵ2X ∗∇p · ∇δT

)
Ta dΩ +

∫
D

K∗∇δT · ∇Ta dΩ

= −
∫
D

ˆ̃m1, ˆ̃m2δT dΩ ∀δT ∈ P, Ta ∈ P,

(A.9a)

Find pa ∈ P with pa = 0 on Γout such that:∫
D

X ∗∇pa · ∇δp dΩ =

∫
D

(
ϵ2X ∗∇δp · ∇T

)
Ta dΩ ∀δp ∈ P, pa ∈ P. (A.9b)

As for the pressure drop constraint, Ta = 0 in D. Thus, the adjoint system reads:
Find pa ∈ P with pa = 0 on Γout such that:∫

D

X ∗∇pa · ∇δp dΩ = −ϵ2 1/DP0

|Γin|

∫
Γin

δp dΓ ∀δp ∈ P, pa ∈ P. (A.10)
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