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ABSTRACT Malaria remains a global health problem, with 247 million cases and 619,000 
deaths in 2021. Diagnosis of Plasmodium species is important for administering the 
appropriate treatment. The gold-standard diagnosis for accurate species identification 
remains the thin blood smear. Nevertheless, this method is time-consuming and requires 
highly skilled and trained microscopists. To overcome these issues, new diagnostic tools 
based on deep learning are emerging. This study aimed to evaluate the performances 
of a real-time detection transformer (RT-DETR) object detection algorithm to discrim
inate Plasmodium species on thin blood smear images. The algorithm was trained 
and validated on a data set consisting in 24,720 images from 475 thin blood smears 
corresponding to 2,002,597 labels. Performances were calculated with a test data set 
of 4,508 images from 170 smears corresponding to 358,825 labels coming from six 
French university hospitals. At the patient level, the RT-DETR algorithm exhibited an 
overall accuracy of 79.4% (135/170) with a recall of 74% (40/54) and 81.9% (95/116) 
for negative and positive smears, respectively. Among Plasmodium-positive smears, the 
global accuracy was 82.7% (91/110) with a recall of 90% (38/42), 81.8% (18/22), and 
76.1% (35/46) for P. falciparum, P. malariae, and P. ovale/vivax, respectively. The RT-DETR 
model achieved a World Health Organization (WHO) competence level 2 for species 
identification. Besides, the RT-DETR algorithm may be run in real-time on low-cost 
devices such as a smartphone and could be suitable for deployment in low-resource 
setting areas lacking microscopy experts.

IMPORTANCE Malaria remains a global health problem, with 247 million cases and 
619,000 deaths in 2021. Diagnosis of Plasmodium species is important for administering 
the appropriate treatment. The gold-standard diagnosis for accurate species identifi
cation remains the thin blood smear. Nevertheless, this method is time-consuming 
and requires highly skilled and trained microscopists. To overcome these issues, new 
diagnostic tools based on deep learning are emerging. This study aimed to evaluate the 
performances of a real-time detection transformer (RT-DETR) object detection algorithm 
to discriminate Plasmodium species on thin blood smear images. Performances were 
calculated with a test data set of 4,508 images from 170 smears coming from six French 
university hospitals. The RT-DETR model achieved a World Health Organization (WHO) 
competence level 2 for species identification. Besides, the RT-DETR algorithm may be run 
in real-time on low-cost devices and could be suitable for deployment in low-resource 
setting areas.
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M alaria is a vector-borne disease caused by a protozoan parasite belonging to the 
Apicomplexa taxon called Plasmodium. This disease is a global health problem, 

with 247 million cases and 619,000 deaths worldwide in 2021—increasing since 2019 (1). 
Over the 2 peak years of the pandemic (2020–2021), COVID-related disruptions led to 
about 13 million more malaria cases and 63, 000 more malaria deaths (1). The diagno
sis can be made by microscopy, rapid diagnostic tests, and molecular biology tests. 
Nevertheless, thin blood smears remain the gold standard technique, enabling species 
identification and parasitaemia calculation (2). Yet they require highly skilled and trained 
microscopists and do not prevent frequent misidentification (3). Species misdiagnosis 
may lead to inappropriate treatment, like chloroquine for Plasmodium falciparum or lack 
of anti-relapse treatment for P. vivax and P. ovale (4). The lack of microscopic diagnostic 
skills often gives unacceptable results (5), requiring training sessions (6), which are not 
always easy to implement.

Another recent approach could be to develop diagnostic tools based on deep 
learning, aiming at intra-erythrocytic Plasmodium detection on images of thick and thin 
blood smears. These are currently an expanding field of research in the microbiology 
field (7). The usual process of training neural network algorithms involves several steps: 
blood smear image acquisition; segmentation of smear images to obtain cell-sized 
images; and labeling these cell-sized images as infected or uninfected, for example, 
dividing the database of cell-sized images into an 80% training set and a 20% validation 
set, training the neural network, and evaluating the performance on a test set consisting 
of previously unseen images (8).

Many studies (9, 10) aimed to compare different deep learning algorithms, mainly 
convolutional neural networks (CNN) or their derivates, using publicly available 
databases such as the National Institute of Health Malaria data set (11) or the Broad 
Bioimage Benchmark Collection (BBBC) (12). The more frequent drawbacks observed 
in these studies were the lack of a test data set, with the results calculated only on 
the validation data set; no patient-level results but only smear images or cell-sized 
results; too homogenous staining (not reflecting real diversity in routine practice); and 
issues related with the segmentation process. Segmentation of erythrocytes would be 
unsuccessful in real-life situations such as overlapping of red blood cells or differences 
in staining and slide preparation, especially if these cases are not included in the 
data set (13). To overcome these issues, object detection algorithm-based approaches 
including mask Regional-convolutional neural Nntwork (R-CNN) (14), faster R-CNN (12), 
and modified YOLOv3, v4, and v5 algorithms (15, 16) were developed, as they do not 
need a segmentation step and showed excellent results in terms of accuracy. Among 
them, YOLO-derived algorithms gave better results than the faster R-CNN (15, 17).

Current state of the art in malaria machine-learning-based detection is the EasyScan 
GO microscopy device, which reached the field evaluation stage using thick smears (18, 
19). The same device was used to develop an algorithm framework including multiple 
CNNs for thin smears (20) and was evaluated on a 55-slide set from the World Health 
Organization (WHO) with 82.9% species identification accuracy on both positive and 
negative samples and 60.0% accuracy on positive samples exclusively (21). Nevertheless, 
EasyScan Go used x400 magnification images, whereas for precise species identification, 
microscopists used ×1,000 magnification. Moreover, the EasyScan Go system runtime 
was 54.4 minutes per slide, which is above the threshold of 10 minutes per slide 
recommended by the WHO malaria microscopy quality assurance manual (21). Here, 
to try to overcome the aforementioned issues, a newly available real-time detection 
transformer (RT-DETR) object detection algorithm was trained and evaluated with a 
data set made of ×1,000 magnification images taken from thin blood smears. Thus, this 
study aimed to evaluate and compare the accuracy and performances of the object 
detection machine-learning algorithm RT-DETR in the species detection of the four main 
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Plasmodium species. We also included in our study two less frequently encountered 
blood parasites: Trypanosoma brucei and Babesia divergens. The latter is intra-erythro
cytic and can be confused with Plasmodium spp (22). Moreover, the performances of 
the RT-DETR algorithm were compared with those of the other two object detection 
algorithms: YOLOv5 and YOLOv8.

MATERIALS AND METHODS

Data collection

The training and validation data set included 24,720 pictures taken from 475 manually 
May Grunwald–Giemsa (MGG)-stained thin blood smears from the Montpellier Univer
sity Hospital collection and for a smaller part from the Toulouse University Hospital 
collection. In Montpellier, the pictures were taken with a FlexCam C1 microscope camera 
(Leica) attached to a Leica DM 2000 microscope and Leica DF450C microscope cam
era adapted with a Leica DM2500 microscope at ×1,000 magnification. Labeling of 
pictures was performed manually and then automatically with manual correction with a 
Computer Visual Annotation Tools (CVAT) free software. Nine categories of labels were 
used: white blood cells (n = 3,338), red blood cells (n = 1,887,781), platelets (n = 48,520), 
Trypanosoma brucei (n = 2,773), and red blood cells infected by P. falciparum (n = 43,545), 
P. ovale (n = 4,651), P. vivax (n = 4,115), P. malariae (n = 2,732), and Babesia divergens (n = 
5,142).

The test data set included 4,508 pictures taken from 170 thin blood smears from the 
same number of patients from the Parasitology laboratories of University Hospitals of 
Montpellier, Toulouse, Rouen, Lille, Nantes, and Saint-Louis in Paris (Table 1). Among 
these 170 patients, 54 were not infected, including two patients with Howell–Jolly 
bodies, and 116 were infected with hematozoa. For each patient, between 20 and 30 
photos were taken from one thin blood smear, with at least one hematozoan parasite per 
picture for infected patients.

Accurate species diagnosis was made by a senior parasitologist, and for recent 
smears, it was confirmed by specific PCR, either performed locally (Toulouse) or at the 
Malaria French National Reference Center (Montpellier, Saint Louis, Rouen, Lille, Nantes).

Algorithm training and validation

The training and validation data sets were split into 80% training and 20% vali
dation to train the real-time object detection neural network algorithms RT-DETR 
(https://arxiv.org/abs/2304.08069), YOLOv5x (https://github.com/ultralytics/yolov5), and 
YOLOv8x (https://github.com/ultralytics/ultralytics) using the Pytorch framework. Images 
from the same patient contributed to either the training or validation data set, but not 
to both, to avoid bias. Parameters of algorithm training were as follows: image resolution 
640 pp, epoch 25, patience 5, and batch size 32. The models were trained on an NVIDIA 
GeForce RTx3060 GPU with 12 GB of memory in 13.106 hours (14 epochs) for the RT-DETR 
model, in 14.976 hours (25 epochs) for the YOLOv5x model, and in 10.384 hours (23 
epochs) for the YOLOv8x model. Overfitting was not observed during training of the 
models (Fig. S1 through S3).

Algorithm testing

The test data set images were resized at 16:9, and a zoom correction was applied to fit 
the images of the train/validation data set. Performances of the models were assessed 
at the label and patient level, thanks to the multicentric test data set. The label level 
corresponds to the raw data obtained directly from the object detection algorithm. 
Indeed, the object detection models work on a frame-by-frame basis. In each image, 
around a hundred objects are labeled, corresponding to uninfected red blood cells, 
platelets, and red blood cells infected by various parasites. The patient-level detection 
comes after this initial detection stage and consists of compiling the labels obtained 
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from several images belonging to the same smear to give a general result: uninfected, 
infected by this, or infected by that species.

At the label level, the performances for each label category were evaluated with 

precision = TPTP + FPwith TP, true positive and FP, false positive; recall = TPTP + FN
with FN, false negative; F1 score = 2 precisionxrecall

precision + recall  ; Matthews correlation coefficient 

= TN*TP − FP*FN
TN + FN FP + TP TN + FP FN + TP  with TN, true negative ; mean average precision at 

an intersection over union (IoU) of 0.5 (mAP@.5) and average mAP over different IoU 
thresholds, from 0.5 to 0.95, step 0.05 (mAP@.5:.95) (23) (Table 2).

At the patient level, the label confidence scores of each parasite were summed over 
the 20 to 30 pictures (Fig. 1), and the parasite with the highest sum of confidence scores 
was selected as the final diagnosis. Each label had a confidence score between 0 and 
1. Results at patient level were presented in the form of a confusion matrix (Table 3) 
and were assessed in terms of accuracy (true predictions/ all predictions), precision, and 
recall.

RESULTS

Labels level

Out of the 4,508 images of the 170 smears in the test data set, 358,825 labels were 
generated by the model. At the label level, overall precision, recall, and mAP@.5 were 
0.686, 0.669, and 0.638, respectively (Table 2). However, performance varied greatly 
by class. The mAP@.5 was greater than 0.95 for white blood cells, red blood cells, 
and platelets. The mAP@.5 was 0.858 for P. falciparum, 0.764 for Trypanosoma brucei, 
and 0.644 for P. malariae. This metric was lower for P. ovale (0.199) and P. vivax (0.15). 
The confusion matrix (Fig. 2) showed a significant mislabeling between the latter two 
parasites since 40% of the P. ovale were labeled as P. vivax and 35% of the P. vivax were 
labeled as P. ovale. The model poorly performed in detecting Babesia divergens parasites, 
with a precision of 0.385 and a recall of 0.32.

Parameters used for the confusion matrix were as follows: confidence score threshold 
equal to or greater than 0.25; IoU equal to or greater than 0.45; agnostic = True.

Patient level

At the patient level, the test data set included 170 thin blood smears from 170 patients, 
of which 54 were uninfected and 116 infected with either P. falciparum, P. malariae, P. 
ovale, P. vivax, Babesia divergens, or Trypanosoma brucei (Table 3). The overall accuracy 
with the six parasite class RT-DETR model was 68.2% (116/170). The recall was 100% (3/3) 
for Trypansoma brucei, 90% (38/42) for P. falciparum, 74% (40/54) for negative smears, and 
81.8% (18/22) for P. malariae. The recall was lower for P. vivax (26%, 6/23), P. ovale (43%, 
10/23), and Babesia divergens (33%, 1/3). Misdiagnosis between P. ovale and P. vivax was 

TABLE 2 Overall and per class results of the test dataset with the RT-DETR modela

Class Images Labels Precision Recall mAP@.5 mAP@.5:.95: F1 score MCC

All 4508 275240 0.686 0.669 0.638 0.596 0.677 0.633
WBC 4508 363 0.798 0.953 0.956 0.904 0.869 0.855
RBC 4508 261789 0.973 0.992 0.994 0.976 0.982 0.723
Platelets 4508 8581 0.895 0.956 0.979 0.9 0.924 0.852
P. falciparum 4508 2488 0.819 0.845 0.858 0.845 0.832 0.827
P. ovale 4508 530 0.417 0.353 0.199 0.193 0.382 0.38
P. malariae 4508 500 0.679 0.604 0.644 0.626 0.639 0.637
P. vivax 4508 672 0.376 0.284 0.15 0.143 0.324 0.326
Babesia 4508 250 0.385 0.32 0.203 0.197 0.35 0.34
Trypanosoma brucei 4508 67 0.827 0.716 0.764 0.579 0.768 0.756
aMCC: Matthews correlation coefficient.
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common, and among the 46 P. ovale/vivax smears, eight (17.4%) were P. vivax diagnosed 
as P. ovale and 11 (23.9%) were P. ovale diagnosed as P. vivax. Taking this into account, a 
fiveparasite class model gathering P. ovale and P. vivax labels showed an overall accuracy 
of 79.4% (135/170) with a recall of 76.1% for the P. ovale/vivax class (35/46). For the 
classification of patients into infected and uninfected, the accuracy was 91.8% (156/170).

Algorithm comparison

The performance of the RT-DETR model was compared with that of the YOLOv5x model 
and of the YOLOv8x model (Table 4). At the label level, YOLOv8x seems to be slightly 
better than the other models, with an mAP@.5 of 0.727 (Fig. S14) vs 0.67 for the YOLOv5x 
(Fig. S25) and 0.638 for RT-DETR (Table 2). At the patient level, the overall accuracy of the 

FIG 1 Determination of parasitic diagnosis at the patient level. Example of a smear from the test data set. P. vivax was selected as the final diagnosis because its 

sum of confidence scores is the highest (8.43 > 3.17 > 2.08 > 0.73).

TABLE 3 Results by class of the test data set at the patient level with the RT-DETR modela,b

Predicted / True Babesia P. falciparum P. malariae P. ovale P. vivax Not infected Trypanosoma brucei Precision

Babesia 1 2 1 0.25
P. falciparum 1 38 4 2 8 3 0.68
P. malariae 1 18 10 0.62
P. ovale 10 8 1 0.53
P. vivax 1 1 11 6 0.32
Not infected 40 1
Trypanosoma brucei 3 1
Recall 0.33 0.90 0.82 0.43 0.26 0.74 1
F1 score 0.29 0.78 0.71 0.48 0.29 0.85 1
MCC 0.27 0.70 0.66 0.41 0.19 0.81 1
aMCC: Matthews correlation coefficient.
bFigures in bold refer to metrics calculated from non-bold figures.
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three models was similar: 62.8% (116/170) for the RT-DETR and the YOLOv5x model 
(Table S3) and 67% (114/170) for the YOLOv8x model (Table S4).

DISCUSSION

To our knowledge, the RT-DETR model is the first algorithm aiming to identify five 
hematozoan parasites on thin blood smear images. With a large test data set of 170 thin 
blood smears from six different centers, the six-parasite class model exhibited an overall 
accuracy of 68.2% (116/170), while the fiveparasite class model, which combines P. ovale 
and P. vivax, showed an overall accuracy of 79.4% (135/170) at the patient level.

In respect to the results by parasite class at the patient level, the recall for Trypano
soma brucei was 100% (3/3), which was expected due to its easily identifiable extra-eryth
rocytic nature. The recall for P. falciparum was 90% (38/42). Four P. falciparum smears 
were misdiagnosed as P. malariae (one smear), P. vivax (one smear), and B. divergens 
(two smears). Old trophozoites with Maurer’s clefts were particularly prone to being 
misdiagnosed as a non-falciparum species.

FIG 2 Confusion matrix with test data set labels of the RT-DETR model.
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The recall for P. ovale and P. vivax was 43% (10/23) and 26% (6/23), respectively, 
showing a high rate of confusion between these two species. Indeed, 19 out of 46 P. 
vivax/ovale smears were misdiagnosed as P. vivax for P. ovale or vice versa. This is coherent 
with the difficulties encountered by microscopists in routine practice to distinguish both 
species without geographic priors or rapid diagnostic test information (3). Nevertheless, 
this error has no therapeutic or clinical impact on patients since the treatment is similar 
for both species. Thus, grouping P. ovale and P. vivax in a single class achieved a recall of 
76.1% (35/46).

The recall for P. malariae was 81.8% (18/22). Four P. malariae smears were misclassified 
as P. falciparum due to a high rate of young ring-form trophozoites. A new class could 
have been trained for P. malariae late parasitic stages (equatorial-like bands; rosette 
schizonts) which are speciesspecific patterns, but the number of corresponding labels 
was too small in the data set.

The recall for Babesia divergens was only 33% (1/3)%. This may be due to the lack of 
Babesia smears included in the train/validation data set. The recall of negative smears 
was 74% (40/54). Forty-one out of 100,708 labels (0.04%) corresponding to 14 out of 54 
negative smears (25.9%) of the test data set were misclassified as positive. Ten of them 
were mislabeled as P. malariae, three as P. falciparum, and one as P. ovale (Fig. S5).

A previous study (21) using the EasyScan GO device showed 60% accuracy in 
identifying the four major Plasmodium species on a set of 15 positive smears. This is to 

TABLE 4 Comparison of patient-level results of three algorithm modelsa

YOLOv5x YOLOv8x RT-DETR

Accuracy, number of Six-parasite class model 116 (68.2) 114 (67) 116 (68.2)
Correct diagnosis /170 (%) Five-parasite class model 137 (80.6) 129 (75.3) 135 (79.4)

Four-parasite class model 139 (81.8) 137 (80.6) 135 (79.4)
Two-parasite class model 160 (94.1) 160 (94.1) 156 (91.8)

Accuracy, number of Four-Plasmodium class model 66 (60) 66 (60) 72 (65.5)
Correct diagnosis /110 (%) Three-Plasmodium class model 87 (79.1) 81 (73.6) 91 (82.7)

Two-Plasmodium class model 89 (81) 89 (81) 91 (82.7)
Babesia divergens Precision 0 0.33 0.25

Recall 0 0.33 0.33
F1-score 0 0.33 0.29

P. falciparum Precision 0.63 0.73 0.68
Recall 0.86 0.69 0.90
F1-score 0.73 0.71 0.78

P. malariae Precision 0.93 0.61 0.62
Recall 0.59 0.5 0.82
F1-score 0.72 0.55 0.71

P. ovale Precision 0.40 0.41 0.53
Recall 0.74 0.91 0.43
F1-score 0.52 0.57 0.48

P. vivax Precision 0 0.56 0.32
Recall 0 0.21 0.26
F1-score 0 0.31 0.29

Not infected Precision 0.98 1 1
Recall 1 0.81 0.74
F1-score 0.9 0.90 0.85

Trypanosoma brucei Precision 0.6 0.69 1
Recall 1 1 1
F1-score 0.75 0.75 1

aSix-parasite class model (T. brucei, B. divergens, P. falciparum, P. malariae, P. ovale, and P. vivax, none infected). Five-parasite class model (T. brucei, B. divergens, P. falciparum, 
P. malariae, and P. ovale/vivax, none infected). Four-parasite class model (T. brucei, B. divergens, P. falciparum, and P. malariae/ovale/vivax, none infected). Two-parasite class 
model (T. brucei, intraerythrocytic parasites, none infected). Four-Plasmodium class model (P. falciparum, P. malariae, P. ovale, and P. vivax). Three-Plasmodium class model (P. 
falciparum, P. malariae, and P. ovale/vivax). Two-Plasmodium classe model (P. falciparum and P. malariae/ovale/vivax).
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be compared with the presented RT-DETR model, which exhibited an overall accuracy of 
65.5% (72/110) on 110 Plasmodium-positive smears and an 82.7% (91/110) accuracy with 
the model pooling P. ovale and P. vivax. The latter model achieved a WHO competence 
level 2 for species identification (24). For species identification, the presented algorithm 
could be of great help for inexperienced microscopists and shows advantages over both 
loop-mediated isothermal amplification (LAMP), which does not discriminate between 
Plasmodium species, and rapid diagnostic tests, which have a very low sensitivity for P. 
malariae and P. ovale.

YOLO was described as more performant than other object detection algorithms 
(R-CNN, SSD) using publicly available malaria data set (15, 17), and RT-DETR was found 
more performant than YOLO models on the COCO (Common Objects in Context) data 
set (https://arxiv.org/abs/2304.08069). The RT-DETR algorithm gets rid of the computa
tionally expensive segmentation step used with the CNN to obtain multiple cropped 
images with a unique red blood cell from a microscope field of view image. Besides, the 
RT-DETR algorithm can be run in real-time on low-cost devices such as a smartphone 
with a microscope adapter (25). Such a system could be adapted to improve parasite 
detection for inexperienced microscopists and to alert them to forms suspected of being 
Plasmodium parasites. A later step will therefore require adapting this RT-DETR algorithm 
to a device that can be used in the field. Mobile applications have been developed using 
either CNN, R-CNN such as Malaria Screener (26), or PlasmoCount (27). Beyond manual 
microscopy, other systems could be considered to reach partial or full automatization 
such as a robotic handed microscope (28) or hardware slide scan (29).

This study acknowledged some limitations. It was not designed to assess parasite 
detection and quantification performance of the RT-DETR model but only for species 
identification purposes. Parasitemia assessment could not be done on our test data 
set since the images were not captured randomly but focused on parasite forms. 
Although the test data set included images from six different parasitology laboratories, 
previously unseen staining artifacts are likely to induce algorithm errors. As for species 
identification, the parasitic stage should also be considered. Indeed, although late-stage 
trophozoites, schizonts, and gametocytes are more specific for species identification, 
they are less abundant than ring and young trophozoites. For this purpose of parasite 
stage recognition, an unsupervised machine learning approach might be interesting 
(30). Besides, performances might be improved by coupling the RT-DETR algorithm with 
expert rules including geographic priors, parasitemia, and rapid diagnostic tests results.

To our knowledge, this study is the first attempt to predict malaria species from thin 
blood smear images using an RT-DETR object detection algorithm. This algorithm allows 
accurate real-time detection of parasites on easily affordable devices as smartphones 
mounted on a microscope. Further studies should aim to develop and evaluate this cell 
phone application, particularly in malaria endemic countries where trained microscopists 
are not in sufficient numbers.
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