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Breach detection in spine surgery based on cutting
torque

E. Saghbiny∗1,2, L. Leblanc∗1, A. Harlé1, C. Bobbio1, R. Vialle1,2, G. Morel1, and B. Tamadazte1

Abstract—The accurate placement of pedicle screws is crucial
for various spinal interventions, demanding precise geometric
alignment while carrying inherent risks. Studies show that the
rate of complications can reach up to 18% in case of imprecise
placement of pedicle screws. To enhance the precision and safety
of pedicle screw placement, we have developed a robotic system
equipped with several sensors and paired with a breach detec-
tion algorithm capable of identifying potential breaches in the
spinal canal. The breach detection algorithm was conceptualized
through an analysis of the cutting torque of the drill system.

An ex-vivo experiment was conducted to assess the effec-
tiveness of the developed robotic solution and breach detection
algorithm. The data (e.g., cutting torque, position, velocity, etc.)
used during the validation were collected by drilling 80 pedicles
in fresh porcine vertebrae.

The results demonstrated that the proposed algorithm could
predict breaches in 96.42% of cases, i.e., the distance between
the detected point (drilling stop) and the point of the breach is
within 2 mm. In a single instance, the detection occurred earlier
than anticipated due to the trajectory being oriented significantly
medially, resulting in an initial interaction with the cortical bone
at an earlier point.

Index Terms—Spine Surgery, Breach Detection, Medical
Robotics, Robot Control, Torque.

I. INTRODUCTION

SCOLIOSIS represents a three-dimensional deformity char-
acterized by distortions in the coronal, sagittal, and axial

planes [1]. In addition to the geometric deformities, there is
an anatomical alteration in the pedicles. On the concave side,
the pedicles are notably slender, and the spinal cord is close
to the medial wall of the pedicle (Fig. 1).

Pedicle screws are employed in the correction of deformities
and wield significant corrective capacity by engaging all three
structural columns of the vertebra. These screws are initially
introduced through the posterior column, traverse the middle
column formed by the pedicle, and ultimately anchor into the
anterior column represented by the vertebral body. Pedicle
preparation is a challenging procedure. The surgeon inserts
screws from the posterior column while seeing solely the
posterior aspect of the spine (Fig. 2). In scoliosis surgery, this
task is particularly challenging due to the presence of vertebral
rotation, pedicle deformation, and the intricate proximity to
critical anatomical structures like the aorta and the spinal
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Fig. 1. An axial MRI section image illustrating alterations in traditional
anatomical reference points. The zoomed area shows the structure of the
pedicle, with cortical bone (A and B) and cancellous bone (shaded area).
Dashed arrows illustrate the ideal trajectory for a screw through the pedicle.

cord or spinal roots. A breach into the spinal canal can lead
to spinal cord injury. Clinical symptoms range from mild
muscle weakness and sensory loss to complete paraplegia. The
consequences of a breach of the pedicular screw within the
spinal canal depend on the extent of the screw’s penetration
into the canal. One of the most commonly used classifications
to quantify this breach and predict its impact on the spinal
cord and spinal roots is that proposed by Gertzbein and
Robbins [2]. This classification involves assessing the degree
of screw penetration into the spinal canal. The transpedicular
screw position is graded from A to E based on the extent of
the breach of the pedicle cortex:

• ”A”: Fully intrapedicular position without breaching the
pedicle cortex;

• ”B”: Exceeding the pedicle cortex by less than 2 mm;
• ”C”: Exceeding the pedicle cortex by 2-4 mm;
• ”D”: Exceeding the pedicle cortex by 4-6 mm;
• ”E”: Exceeding the pedicle cortex by more than 6 mm

or being located outside the pedicle.
Grades ”A” and ”B” are typically regarded as satisfactory

outcomes in surgical procedures. However, in cases graded
from ”C” to ”E”, there is a potential for neurological symp-
toms to manifest, which can contribute to unsatisfactory sur-
gical results. Notably, neurological damage can be delayed in
instances of medial breaches [3].

In addition to neurological damage, reports of pulmonary



Fig. 2. Illustration of the entry point and the direction of the pedicle aim.

complications have also been noted [4]. Vascular injuries, in-
cluding conditions such as false aneurysms [5], iatrogenic tho-
racic aortic injuries that require endovascular intervention [6],
and delayed manifestations of aortic injury or perforation [7],
have been documented.

This paper is structured as follows: Section II provides
an overview of pedicle screw placement techniques, accuracy
rates, and contributions. Section III discusses the experimental
robotics platform and data collection methodology. Section IV
presents the proposed breach detection algorithm using the
drilling torque signal. Section V assesses our method using
data from drilling 80 fresh pig vertebrae, examine its limi-
tations and explores potential applications in other surgical
areas. Finally, Section VI presents the conclusion and future
outlook.

II. RELATED WORK

Perforation rates for pedicle screws in scoliosis surgery
range from 1.2% to 65% [8]. This wide range is attributed
to the different techniques used for detecting perforations. In
studies utilizing plain radiographs, the range of misplacement
is relatively low (1.2% - 3.0%) [9], [10]. Conversely, in studies
where a CT scan was used to assess screw position, the rate is
higher and may reach 65%. In a recent study, Kwan et al. [8]
conducted a retrospective review of 140 scoliosis patients with
a total of 2020 screws. The assessment of screw position
was evaluated with a CT scan. The overall total perforation
rate was 20.3% (410 screws) with 8.2% (166 screws) grade
1, 2.9% (58 screws) grade 2, and 9.2% (186 screws) grade
3 perforations. This study categorised perforations according
to Rao et al. [11], following the same classification system
as Gertzbein and Robbins. Given the multitude of potential
complications, this highlights the critical importance of precise
placement of pedicle screws.

Various techniques are employed to enhance the safety of
pedicle screw placement, often involving surgical assistance.
The freehand technique is the oldest and requires a perfect
knowledge of the anatomy and a long learning curve. In
assisted techniques, some methods are based on imaging
technologies, while others are imageless, such as:

• 3D printed models, which assist the surgeon during
surgical planning and procedures [12];

• 3D printed guides, which are used as patient-specific
pedicle screw templates [13];

• Electrical conductivity signal, whose variations are de-
termined by the conductivity of tissues being drilled and
can alert the surgeon of imminent breach [14], offering
100% of breach detection [15];

• Somatosensory evoked potentials (SEPs), a neurophysi-
ological monitoring method that measures the electrical
responses of the brain and spinal cord to sensory stimuli,
providing real-time feedback on the integrity of sensory
pathways during surgery;

• Different types of exteroceptive sensors have also been
investigated, such as vibroacoustic, accelerometer, bear-
ing force, etc.

• Full-power drill, a technique that relies on the surgeon’s
experience and tactile feedback to determine the appro-
priate drilling depth and force, minimizing the risk of
breaching the spinal canal.

The image-guided techniques are fluoroscopy-based nav-
igation, CT-based navigation, robot-assisted, or ultrasound-
guided.

De Vega et al. [16] recently published a systematic re-
view and meta-analysis on the accuracy of different meth-
ods of pedicle screw placement. All the trials utilized the
freehand method as a control group, except for one that
used fluoroscopy-based navigation as a reference [17]. The
accuracy of the modified free-hand method using electrical
conductivity is superior to the standard free-hand method
(95.96% versus 85.8%) [18]. The modified free-hand methods
significantly increase accuracy compared to the traditional
free-hand approach. Even when compared to fluoroscopy-
based navigation, the modified freehand using a 3D model
demonstrates higher accuracy (93.5% versus 84.7%, p-value
= 0.0003) [17]. The 3D-printed anatomical model provides
the surgeon with a better understanding of the anatomy of
the deformed vertebrae [19]. Fluoroscopy-based and CT-based
navigations are the two most common methods practised to-
day. The literature supports that CT-based navigation improves
the accuracy of pedicle screw placement. Compared to the
free-hand method, CT-based navigation shows higher accuracy
(94.08% accuracy rate in CT-based navigation compared to
86.39% accuracy rate in free-hand, odds ratio OR = 2.50, p-
value = 0.02) [20]. CT-based navigation has the highest accu-
racy rate (95.5%) compared to other methods such as robot-
assisted, fluoroscopy, and free-hand (90.5%, 91.5%, and 93.1%
respectively) [21]. Although navigation and robotics have
contributed significantly to advancements in spinal surgery,
they have several limitations, particularly in terms of user-
friendliness and precision. Patient respiratory movements can
notably compromise precision, as even minor variations in
the patient’s position during pedicle preparation can lead to
registration errors [22]. Moreover, these techniques rely on
ionizing radiation, posing risks to the patient, surgeon, and
medical staff [23]. Younger patients are more susceptible to
the effects of radiation due to higher division rates, and those
who received radiation in childhood have an increased risk of
malignancy [24].

The use of a power drill in spine surgery is limited. Recent



literature showed that power drill does not affect the accuracy
or the surgery time [25], [26]. The control of drilling relies
on the experience of the surgeon; in experimental studies,
surgeons drill beyond the far cortex by an average of 6.33 mm
[27]. Today, no specialised technology is integrated into
drilling tools designed to detect or minimize pedicle breaches.
Bone breach detection was studied in cows’ femur [28]. The
detection method is based on Proportional and Derivative (PD)
motion control coupled with the force control system in real-
time drilling. High-pass filtering was applied to the thrust
force, allowing it to detect the interface between bone layers
and detect breaches [29]. Brett et al. developed one of the
first algorithms for ear surgery [30]. Their approach identified
a transition between layers when specific threshold values in
the increased cutting torque and decreased penetration force
were attained. In the study conducted by Torun et al., torque
was employed to identify breaches in cortical bone. Their
methodology relied on the closed-loop approach utilizing
force sensor data. The accuracy achieved on synthetic bone
was 96.9± 0.8 % while on sheep femur, it reached 98.1 ±
0.2 % [31]. The friction between the drill bit and the bone
generates vibrations that vary depending on the bone density.
When the drill crosses an interface (cancellous bone / cortical
bone), the change in vibration is abrupt. Wang et al. relied
on this change to detect a cortical breakthrough. Their study
was conducted on bovine [32]. Based on their research, the
automated drill demonstrated time savings of 30 to 60 %
compared to manual drilling and enhanced surgical precision.
The study was conducted using bovine femoral diaphyses.
Given the femoral cortical bone’s substantial thickness, the
bone density disparity is significant. Using acoustic signals to
identify breakthroughs and classify states has shown promise
as a method for monitoring surgical drilling procedures [33]–
[37]. Zakaria et al. [33], [34] achieved approximately 80 %
accuracy when drilling into bovine bone. Their method utilized
air-borne microphones, a factor problematic in real operating
rooms due to their proximity to sterile and noisy environments.
Additionally, they focused on long bone diaphyses, such as the
tibia, characterized by thicker and denser cortical bone com-
pared to cancellous bone. In a recent investigation conducted
by Seibold et al. [38], contact microphones were employed
on human cadaveric specimens, resulting in a sensitivity of
93 % through the application of a deep learning approach.
Their research focused on human femurs. Massalimova et al.
[39] recently published a study on breach detection in the
spine using several types of sensors: a contact microphone, a
free-field microphone, a tri-axial accelerometer, and a uni-axial
accelerometer attached to the spine. The study revealed that
the best results obtained with a single sensor were achieved
using the contact microphone attached to the skin, which
detected breaches with an 85.8 % success rate, and the uni-
axial accelerometer, which achieved an 81 % detection rate.
Furthermore, by combining the data from these two sensors,
the researchers were able to enhance the breach detection accu-
racy to 98 %, demonstrating the effectiveness of multi-sensor
integration in spinal breach detection. In their recent state-
of-the-art paper, Timmermans et al. reviewed non-radiative,
non-visual spine sensing methods for breach detection. They

reported that the use of different sensing methods integrated
into robotic systems is common, achieving a detection rate of
around 90 %. Additionally, they suggested that the integration
of multiple tools could further increase detection rates [40].

Nonetheless, drilling into the pedicle comes with its own
set of challenges. The cancellous and cortical layers have
different biomechanical traits, and these can vary from one
patient to another. Also, precision is crucial during pedicle
drilling due to its closeness to important anatomical structures.
This makes it especially tough to identify breakthroughs in
the spinal canal, requiring special detection strategies. The
quality of the bone through which the drill bit cuts during
drilling progression is a crucial factor in detecting breaches,
making torque a reliable indicator for this purpose. The torque
of a drill represents the force it can exert on an object. It is
essentially the rotational force applied to the drill bit, thereby
facilitating the drilling process. This rotational force originates
from the drill’s motor and is subsequently transferred through
the drill bit. Specifically, the torque of a drill represents the
force applied by the drill bit to the material being worked
on, and as torque increases, so does the force exerted on the
material.

The main contributions of the paper concern the devel-
opment of a robotic platform for pedicle screw placement
in the spine. The platform is equipped with a multitude of
sensors to record drilling progress in the pedicles. Among
the signals used is torque, which provides information on the
layers traversed during drilling. As a result, we have developed
an algorithm for detecting breaches in the spinal canal, which
can prevent them in 96.42% of cases. This algorithm could
be integrated into a spinal surgical workflow for safer pedicle
preparation.

III. MATERIALS AND DATA COLLECTION

In this Section, we will introduce our robotic platform. We
employed force control to sustain contact between the drill
and the vertebra, thus averting slippage through the bone.
Data collection involved drilling on 80 pig vertebrae under
conditions resembling those of an operating room. Lastly, we
will detail the algorithm devised for the real-time detection of
cortical breaches in the spinal canal.

A. Robotic Platform for Spinal Surgery

Our robotic platform for pedicle screw placement is
equipped with a customized KUKA LBR Med 7 R800 redun-
dant robotic arm designed to meet healthcare specifications.
It incorporates integrated joint torque, position and velocity
sensors, a custom-made power drill, and a threaded drill bit.
With a maximum payload capacity of 7 kg, it exhibits precise
positional accuracy within ±0.15 mm and offers seven degrees
of freedom, allowing for joint redundancy (Fig. 3). During
ex-vivo drillings, the vertebra is rigidly fixed with a clamp in
a transparent box. A camera is fixed in front of the spinal
canal to record the whole drilling procedure (Fig. 5). The
utilized drill bit is composed of a 3 mm diameter cutter with
a pyramidal tip and a threaded shaft. The threaded design
of the drill ensures continuous contact between the drill and



Fig. 3. Illustration of the developed robotic setup for pedicle screw placement.

the bone, preventing unintended motion along the z-axis, i.e.,
along the drilling path. A customized power drilling unit is
employed for the drilling process, capable of delivering a
nominal torque of 1.5 N·m and a maximum speed of 922
rotations per minute (rpm), enabling both drilling and screwing
operations. Ultimately, the drilling system is affixed to the
robot’s end-effector at a 30◦ angle relative to the last robot
axis, as depicted in Fig. 3.

B. Pseudo-force Controller

Pedicle drilling implies potential interactions between the
robot, the clinical staff, and an unknown environment (i.e.,
vertebrae). Impedance control [41] is a widely used approach
to enable safe interactions for human-robot cooperative tasks.
Its goal is to realize the same dynamical relationship as a
mass-spring-damper system with desired inertia, stiffness, and
damping.

In impedance control, the dynamic relationship between the
end-effector Cartesian pose vector x ∈ R6 and the end-effector
generalized interaction force Fe ∈ R6 is:

Λdẍ = Kd(xr − x) +Bd(ẋr − ẋ)− Fe , (1)

where Λd, Bd, Kd, and xr represent the desired inertial,
damping, stiffness matrices, and the reference Cartesian po-
sition, respectively.

Regulating the interaction force to its desired value Fd

requires adjusting ẋr in real-time. A common approach seen
in the literature is to implement an external force loop based
on F/T sensor measurements as follows [42]:

ẋr = λ(Fd − Fe) , (2)

where λ is a proportional gain and τe is the force measured
at the end-effector level using an external force sensor.

To maintain stability, force control methods usually ne-
cessitate a reasonable estimation of the environment to ac-
commodate contact dynamics. In spine surgery, the patient’s

Fig. 4. Block diagram of the used pseudo-force control strategy.

position is unknown and variable (due to other signs such
as breathing movements). Additionally, knowing beforehand
the stiffness of contact seems not feasible. Consequently,
conventional impedance control may engender instability in
pedicle drilling. In this study, we implemented pseudo-force
control to achieve consistent and stable force control during
pedicle drilling as outlined in [43]. In this work, the authors
show that better stability is achieved by defining a pseudo-
force signal F̃e = Kd(xr − x) as the feedback signal. This
pseudo-signal feedback is illustrated in Fig. 4 and allows to
define a new force regulation:

ẋr = Λ
(
Fd −Kd(xr − x)

)
. (3)

where Λ is a diagonal matrix whose elements denote the
proportional gains Λ = diag(λ1, ..., λ6).

In our application, gains λi are set to zero for directions
where the force is not controlled, leaving it free for con-
ventional trajectory control, similar to hybrid position/force
control. This pseudo-force control allows the application of
a stable, constant force along a drilling direction on a ver-
tebra of unknown position and stiffness while also rejecting
undesirable high-frequency disturbances.

C. Data Collection and Labeling

The torque (respectively, position, velocity and time) data
acquisition was performed on fresh pig lumbar vertebrae
(a total of 80) obtained from a butcher shop. We opted
for the pig model due to its close resemblance to humans
despite variations in size and bone density. Knowing that
the pedicle size and bone density differ between pigs and
humans, the difference between the consistency of cancellous
bone and cortical bone always exists. The trajectory direction
was determined manually by the surgeon to ensure conver-
gence and breach in the spinal canal to collect the torque
from cortical breakthrough. The ex-vivo specimens, once at
room temperature, were fixed in a clamping vice positioned
within a clear box. A camera was strategically placed just
outside the box to capture and monitor the internal aspects
of the spinal canal, specifically to identify any occurrences
of bone breaches. A surgical expert subsequently conducted
a comprehensive review of the recorded videos and annotated
the precise time of perforation. An example of annotation is
represented in Fig. 5.

A few drilling parameters were defined in advance in
discussion with clinicians. As a result, the drilling speed is
fixed at 30 rpm, and the robot is force controlled with an
initial desired force of fd = 10 N and increased as needed
to continue drilling. Numerous data signals were gathered,



Fig. 5. On the left, we can see the setup; a webcam is filming the inside of the
spinal canal. The right mosaic shows the deformations and bone penetration
within the vertebral column while using the threaded instrument. There is no
breach in the image (a); the image highlighted in red (b) denotes the moment
the tool begins to exit the bone and enter the spinal canal. In images (c) and
(d), we can see a progression of the tool through the cortical bone.

encompassing the robot’s position for instrument depth cal-
culation, drill torque, velocity, and time. This experiment’s
recording frequency for torque data is f = 45 Hz.

Note that for each signal, the surgeon defined the exact time
instant of perforation by a posterior visualizing the videos
recorded by the camera during the drilling (Fig. 5). This
task allows grading perforation detection according to our
derivation of the Gertzbein-Robbins classification. Detecting
an imminent breaching before the actual point of perforation
corresponds to grade ”A” while declaring a perforation less
than 2 mm after the actual perforation point corresponds
to grade ”B”. In other words, the detection is considered
acceptable if a breach alert is raised before the right-most
limit of the red area in Fig. 6.

IV. BREACH DETECTION METHOD

A. Torque Signal

Therefore, a clinically relevant bone breach detection al-
gorithm should possess several characteristics. It must op-
erate online, processing in real-time torque signals, which
are inherently highly noisy. This noise prohibits the use of
straightforward methods, such as gradients, to detect local or
global maxima and necessitates filtering, which must introduce
minimal delay. Additionally, the quality of cortical bone varies
from one vertebra to another, meaning an absolute value
cannot serve as a threshold. Consequently, a detection strategy
that can adapt to varying torque profiles is essential.

The detection method was developed utilizing unfiltered
torque values extracted directly from the drilling unit. Recog-
nizing that cortical bone exhibits greater hardness compared to
cancellous bone; it is theoretically anticipated that a noticeable
increase in torque values will occur as the drill bit progresses.
This signifies the need for heightened torque to sustain effec-
tive drilling until the far cortex’s cortical bone is penetrated.
Figure 6 illustrates various recorded torques during the drilling
of fresh pig vertebrae. As expected, the torque signals are
highly noisy, yet they all share a common feature: a gradual
increase as the drill navigates through the cancellous bone,
peaking to indicate contact with the cortical bone, followed
by a gradual decrease post-breach. The vertical green lines

show where the surgeon saw the breach on the recorded videos
(Fig. 5(b)), and the red zone is the safe zone in which the
position of the drill does not represent a risk to the patient
according to the classification Gertzbein and Robbin.

Fig. 6. Illustration of some recorded torques (for the vertebrae n◦ 17, 61, 20,
04 and 72). The red area represents the safe zone the surgeon defines around
the moment the breach begins (vertical green line).

B. Data Online Processing

Among the common online noisy signals filtering ap-
proaches, the Chebyshev filter is renowned for its unusual
characteristics. It recognizes a trade-off, in contrast to some
other filters that place a higher priority on a smooth response.
This type of filter attains interesting precision within its desig-
nated range by allowing controlled oscillations, also known as
ripples, in the pass band. Consequently, the Chebyshev filter is
utilized to process the raw torque signals, aiming to delineate
significant patterns effectively [44].

Let us introduce the function of the Chebyshev filter as it
is implemented in our case. The gain (or amplitude) response
Gn(ω) of a Chebyshev nth-order low-pass filter is given by:

Gn(ω) =
1√

1 + ε2T 2
n(ω/ω0)

,

where ω is the angular frequency, ε is the ripple factor in
decibel (dB), ω0 is the cutoff frequency, and Tn is a Chebyshev
polynomial of the nth order. The pass-band exhibits equiripple
behaviour, with the ripple determined by the ripple factor ε.

The drill rotation speed is set at 30 rpm. Since controlling
the rotation speed controls the insertion speed directly once
the threads are engaged inside the bone, this equates to an
insertion speed of 0.5 mm/second. Assuming that a significant
drop in the torque signal is concurrent to a cortical bone
breach, it is considered acceptable to introduce a delay of
approximately 1 s when filtering the torque. Thus, ω0 is set
at 0.66 Hz. Manual tuning revealed that order N = 4 delivers
good noise filtering and extracts the most meaningful signal
variations. Finally, choosing a ripple factor ε = 0.5 dB limited



signal distortion and allowed us to apply our detection strategy
efficiently.

C. Breach Detection Algorithm

Let us consider e to be the difference (in millimetres)
between the depth zv of the instrument at the breach time
detected by the video and the depth za of the instrument at the
instant t detected by our breach detection algorithm, i.e. e =
zv − za. e >0 mm and −2 < e <0 mm, therefore correspond
to a grade ”A”, respectively to a grade ”B”, screw position
according to the Gerzbein-Robbins classification. Thus, an
algorithm is considered successful if all errors e are greater
than −2 mm. In this study, the data were divided into a tuning
set (30%) and a validation set (70%). Raw torque signals
recorded during the ex-vivo pedicle drillings were streamed
to emulate real-time pedicle drilling and test the breach de-
tection algorithm. The spinal canal’s bone consists of cortical
bone, which is relatively harder and denser than the pedicle’s
trabecular bone. Consequently, there is a logical progression
of torque increase when transitioning from cancellous bone to
cortical bone, followed by a gradual decrease. The algorithm’s
objective is to identify Online this pattern of increasing and
decreasing torque within an acceptable time-frame, aiming to
prevent delayed detection. For each new value of the torque
obtained at time t, we apply the Chebyshev filter with ct the
value of the resulting filtered torque. We then calculate the first
derivative, c′(t) = dc(t)

dt . We define the following conditions
which are required to trigger a breach detection:

• Condition 1: The signal has consistently shown
a decrease throughout a specified time interval
∆tdecrease preceding the present moment:

∀tn ∈ [t−∆tdecrease, t] : c
′(tn) < 0

• Condition 2: The signal is currently exhibiting a
decrease: c′(t) < δ1

• Condition 3: If condition 1 and condition 2 are met,
tx is the latest time such that c′(tx) = 0. Let ti =
tx −∆tincrease, where :

d = c(tx)− c(ti) > δ2

• Decision: If Condition 1, Condition 2, and Condi-
tion 3 are true then a breach is detected.

The parameters used to tune the detection algorithm are :
∆tdecrease, δ1, δ2, ∆tincrease. Initial parameter values were
estimated based on visual inspection of torque data. Through
multiple iterations of the tuning set, optimal values for param-
eters were identified, enabling accurate detection of breaches
at the most opportune moment. Below is the proposed pseudo-
algorithm for preventing potential breaches during pedicle
drilling (Algo. 1).

V. VALIDATION AND ANALYSIS

The methods and materials proposed have been evaluated
on 80 fresh pig vertebrae collected from the butcher. For each

Algorithm 1 Bone breach detection.
Input: τ , raw cutting torque in Newton meters
Input: t, time in seconds
Input: z, depth insertion in the bone in millimeters
Output: Alert, breach detected

ct = Chebyshev(τ, (n = 4, rp = 0.5, w = 0.03))

c′(t) = dc(t)
dt

if
∀tn ∈ [t−∆tdecrease, t] : c

′(tn) < 0

then
tx is the time t when the derivative c′ = 0
ti = tx −∆tincrease
d = ctx − cti
if (c′(t) < δ1 & d > δ2) then

Alert← True
end if

end if

vertebra, we performed an intentional spinal canal perforation
using our robotic setup equipped with the driller. Then, we
emulated real-time vertebra drilling by replaying the signals,
performing online data filtering and detecting breaches.

A. Parameters Optimization and Validation

Part of the recorded data (i.e., 30%) was used as tunning
data to estimate off-line the parameters of our algorithm.
After 16,800 iterations, the optimization process yields the
parameters shown in Table I. These parameters assume an
error stop of +2 mm after the very beginning of the breach (i.e.,
deformation of periosteal tissue, as can be seen in Fig. 5(b))
and 5 mm before the breach.

TABLE I
PARAMETERS USED TO TRIGGER BREACH DETECTION CONDITIONS

Definition Parameter Parameter
value

Downward Slope Interval ∆tdecrease 0.4s
The minimum value of slope after down-
ward slope interval

δ1 −0.3N ·m/s

Interval during which the signal increases
progressively

∆tincrease 10s

Increase in torque during ∆tincrease δ2 80N ·m

The proposed algorithm (Algo. 1) was first evaluated in the
set of data used to tune the algorithm’s parameters given in
Table I to ensure that our method works on this data before
evaluating it on the rest of data (i.e., 70%) that has not been
processed. It has been demonstrated that the breach detection
algorithm provides an average detection error of etuning = -
0.05 mm ± 1.32 mm. The maximum and minimum error
were min(etuning) = -1.42 mm and max(etuning) = 3.47 mm,
respectively. Figure 7 depicts the breach detection errors on the
part of the data used to estimate the algorithm’s parameters.
As expected, the algorithm detects the breach in 100% of cases
(i.e., 24/24 vertebrae).



Fig. 7. Barplot illustrating the algorithm’s results on the tuning set. The
shaded area represents the accepted limits, with errors less than -2 mm
considered breaches and errors greater than 5mm considered premature
detections.

Afterwards, the method was applied to the validation
set with the same parameters as the tuning set. The algo-
rithm achieved breach detection with a mean error evalidation
= 0.26 ± 2.36 mm. The minimum and maximum error
were min(evalidation) = -1.96 mm and max(evalidation) =
11.28 mm, respectively. Figure 8 depicts the breach detection
errors on the validation set (i.e., the remaining 70%) for
each drilled vertebra. There were only two cases with error
e > 5 mm. The first case was the pedicle with the error of
11.28 mm (vertebra n◦21). After investigation using a post-
drilling CT scan, it was found that this vertebra exhibits a
breach outside the canal on the lamina because the surgeon
had not defined the drilling trajectory with sufficient precision,
as shown in Fig. 9. The second case corresponds to the
vertebrae n◦7 where the detection error is slightly superior
to 5 mm. Due to the pronounced medial trajectory, the drill
encountered the cortical bone of the lamina, precipitating an
early detection akin to breaching the cortical bone of the spinal
canal. Figure 10 illustrates the premature breach detection
(from top to bottom: post-drilling CT scan, torque signal and
drill bit depth measurement).

Fig. 8. Barplot illustrating the breach detection error for each drilled pedicle
for the validation data set.

As a result, the average breach detection error through-
out the validation set is estimated to be evalidation = -
0.06 mm ± 1.84 mm, with a minimum and a maximum
error of min(evalidation) = -1.96 mm and max(evalidation)
= 11.28 mm (corresponding to the breach detection on the
cortical (Fig. 9)), respectively. These results show that using
torque as a signal to prevent a potential breach in the spinal
canal is efficient (96.42% of success), with the capacity to
identify the breach relatively far upstream.

Fig. 9. Illustration of the case of vertebra n◦21, where the trajectory defined
by the surgeon allowed for a breach not in the spinal canal but outside the
pedicle. Our algorithm was still able to detect the involved breach out of the
cortex. The blue line indicates the breach detected by the algorithm outside
the vertebra body, and the red one depicts the breach in the spinal canal.
A: transverse process, B: spinal canal, C: vertebral body, D: pedicle, and E:
drilling trajectory.

Fig. 10. Example of a vertebra (n◦ 6) exhibiting premature detection due to
the presence of cortical bone within the pedicle, coupled with an excessively
medial trajectory. A: transverse process, B: spinal canal, C: vertebral body,
D: pedicle, and E: drilling trajectory. The blue line represents the first torque
peak indicating engagement with cortical bone, which occurs at ≈7 mm
from the entry point. The red line depicts the second torque peak, signifying
engagement with cortical bone in the spinal canal, which occurs at ≈14 mm
from the entry point.

B. Angle Correlation
Historically, the influence of drilling angle on torque-based

methods for detecting cortical bone perforation remained elu-



sive. This ambiguity stemmed from the theoretical dependence
of torque on the extent of drill thread engagement with the
bone. Given that this engagement is directly impacted by the
angle between the drill axis and the cortical bone surface,
a clear understanding of this relationship was crucial. To
quantify the impact of drilling angle on torque-based detec-
tion, we employed a robust correlation analysis, specifically
examining the relationship between drill-cortical bone angle
and the accuracy of cortical bone breach identification. To do
this, a millimetre-scale CT scan conducted after the experiment
detailed the desired orientation relative to surrounding struc-
tures. The penetration angle is between the desired trajectory
and the spinal canal. It is defined by the angle between the
desired trajectory and the tangent to the spinal canal at the
penetration point (Fig. 11).

This study pointed out the mean of the drilling angle a =
66.24◦ ± 18.26◦. The drilling angle and detection correlation
are weak, with a Pearson correlation coefficient r = 0.16 and
p-value = 0.15.

Fig. 11. Examples of the measurement of the angle between the aimed
trajectory and the spinal canal. A: spinous process, B: medullary canal, C:
vertebral body, D: pedicle, and E: transverse process.

C. Limitations and beyond Pedicle Screws Placement

First, our breach detection algorithm was evaluated in
data recorded during the drilling of 80 fresh pig vertebrae
collected from the butcher. The transposability of this method
to a living subject requires several parameters to be taken
into account. The bone density of vertebrae can vary from
one group of subjects to another, for example, from the
elderly to younger patients. It is widely acknowledged that
the dimensions and bone density of porcine pedicles differ
from those of humans. Furthermore, bone size and density
variations are observed among individuals of different ages
and statures within the human population. Additionally, there
can be variability between lumbar and thoracic vertebrae even
within the same individual. However, a consistent feature is
the transition from less dense cancellous bone to cortical bone.
As a result, some of the method parameters can vary, although
the pattern of the drilling torque signal remains similar. To

remedy this, certain parameters can be redefined according to
age groups, a calibration-like procedure. Another phenomenon
that can affect the correct functioning of the breach detection
algorithm is the movement of the spine (i.e., due to breathing)
and, therefore, of the vertebrae during the drilling procedure.
However, the force control law proposed in Section III-B,
thanks to its good dynamics, keeps the drill head and pedicle
in constant contact, which means intuitively compensating
for breathing-induced movements. In scoliotic surgery, pedicle
sclerosis in the concavity may affect the detection ability. In
such cases, a multi-sensor approach may be required. These
findings warrant further evaluation and validation in patient
populations.

The proposed robotic platform and breach detection algo-
rithm can have other applications beyond pedicle screw place-
ment. In neurology and otology surgeries, drilling near critical
structures like nerves and blood vessels requires a breach
detection method to stop the drilling procedure automatically
in the early stages of bone inner wall fracture. Traumatology
often requires the placement of screws to manage complex
fractures or reconstruction of shattered bones. A real-time
breach detection algorithm can help the surgeon to safely
secure bone fragments with screws and plates, avoiding ad-
ditional damage to the bone or surrounding tissues.

VI. DISCUSSION AND CONCLUSION

Real-time breach detection is a challenging procedure. In
spine surgery, breaches will lead to tissue damage. Breaches
measuring less than 2 mm (i.e., grades ”A” to ”B”) pose a low
risk to the patient [2]. This work aims to mitigate breaches
beyond grade ”B”. The torque is an accurate signal that can
be used to establish an algorithm for breach detection. Given
the inherent noise in the cutting torque signal, it is essential
to utilize a filter such as Chebyshev filters to reduce the noise
and extract only meaningful trends from the signal.

This study set the acceptable error range with a lower limit
of -2 mm to prevent breaches exceeding grade ”B”. The upper
limit was set at 5 mm to enable early detection and timely
adjustment of the target direction. Breaches detected before
reaching 5 mm were classified as premature or false positives.
It can be asserted that the detection capability remains un-
affected by the drilling angle. Therefore, our detection ability
remained effective even with more tangential approaches. This
is significant, as the aim is typically not perpendicular to the
canal in actual surgical scenarios.

This work is the first to demonstrate real-time breach detec-
tion using torque with ground truth data made by a surgeon.
While previous research has illustrated the feasibility of this
task in offline settings [45], our study showcased its successful
implementation in real-time scenarios. Nevertheless, validation
on deformed human vertebrae, such as those from patients with
scoliosis, is still needed, as their anatomical models can differ
significantly from those of animals.

In conclusion, the implementation of a comprehensive sen-
sor integration emerges as an optimal solution to enhance
safety in spinal surgery. By combining various sensors, we
can create a multifaceted safety system that addresses diverse



aspects of the surgical environment. This approach ensured a
more robust and reliable detection mechanism and provided
a broader spectrum of information, improving surgical safety
measures overall.

Future work will involve transposing the breach detection
algorithm in experimental conditions close to those of an
operating room, e.g., on an animal model (pig) subject to
breathing motions.
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