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A compact 6D suction cup model for robotic
manipulation via symmetry reduction

Alexander A. Oliva ID , Maarten J. Jongeneel ID and Alessandro Saccon ID

Abstract—Active suction cups are widely adopted in industrial
and logistics automation. Despite that, validated dynamic models
describing their 6D force/torque interaction with objects are
rare. This work aims at filling this gap by showing that it is
possible to employ a compact model for suction cups, providing
good accuracy also for large deformations. Its potential use is
for advanced manipulation planning and control. We model the
interconnected object-suction cup system as a lumped 6D mass-
spring-damper systems, employing a potential energy function
on SE(3), parametrized by a 6 × 6 stiffness matrix. By ex-
ploiting geometric symmetries of the suction cup, we reduce the
parameter identification problem, from 6(6 + 1)/2 = 21 to
only 5 independent parameters, greatly simplifying the param-
eter identification procedure, that is otherwise ill-conditioned.
Experimental validation is provided and data is shared openly
to further stimulate research. As an indication of the achievable
pose prediction in steady state, for an object of about 1.75 kg,
we obtain a pose error in the order of 5 mm and 3 deg, with a
gripper inclination of 60 deg.

Index Terms—Modeling, Robotics, Manipulation, Suction cup,
Parameters identification, Symmetry, Logistics.

I. INTRODUCTION

SUCTION CUPS are the most widely used manipulation
end-effectors in the automation industry [1]. The reason

for this success is that they are highly customizable, have a
quick gripping response, and are capable of delicately handling
a wide variety of objects of different materials, weights, and
shapes, even in the presence of curved or flexible surfaces,
like filled plastic bags or films. Furthermore, suction cups
have the potential to be used as soft fingertips to perform
several manipulation tasks such as pushing [1], toppling [2],
or dragging [3], because their suction ability enables a bilateral
contact and permits them to pull in addition to push. Examples
of robotics applications where suction cups have recently been
employed include bin picking [4], [5], [6], bin packing [7],
order fulfillment [8], [3], [9], depalletizing [10], automated
trash-sorting [11] or even wall-climbing [12], [13].
Since a seminal work describing the design, kinetostatic, and
safety analysis of a mobile wall-climbing robot equipped
with suction cups on the legs [12], much effort has been
devoted to the modeling and simulation of suction cups for
robotic applications. A mathematical model for determining
the normal and tangential contact pressures between suc-
tion cup and a flat object, with the objective of finding
the minimum value of the static friction coefficient and the
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Fig. 1: Example of a robotic bin-to-bin application where
the deformation of an active bellow suction cup is clearly
visible. Our proposed model allows to accurately predict
this deformation enabling new robotic manipulation tasks.The
particular shows the parts of a suction cup: 1) Fitting 2)
Bellows 3) Lip.

vacuum level that guarantees a firm grasp, was developed
for both a single [14] and multiple [15] square suction cups.
More recent works on the subject have emerged proposing a
compliant suction contact model employing quasi-static spring
assumptions to quantify the seal formation [4]. In [1], a
locally-linear force-deformation model that is fitted online
starting from a deformation-reaction force dataset pre-recorded
from a Force/Torque sensor allows to compute an estimate of
the suction cup deformation from the measured wrench; The
model is then used for control purposes. A study focusing on
the maximum forces that prevent suction cup detachment while
moving an object in fast pick and place operations is presented
in [16]. A linear visco-elastic model to describe the suction
cup during contact in fast vertical picking is detailed in [17].
Active-vacuum suction cups in dynamic holding conditions
are also studied in [5] with the goal of improving energy
efficiency in handling processes. There, the authors considers
the 1D dynamic deformation behavior of vacuum grippers in
interaction with a specific gripper-object combination impos-
ing a predetermined force-deformation stiffness model whose
parameters are then learned from quasi-static experiments.
A parametric position-dependent nonlinear damping model is
then tuned by means of pull-off experiments conducted at
different velocities. A thorough physics-based model using a
constraint-based FEM simulation to describe the suction phe-
nomenon of a suction cup is reported in [18]. One of the most
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recent papers published on the subject [19], proposes a static
model with no damping, while recognises the urgent need of
developing validated suction cup models and implementing
them in physics simulators to enable a step change in robotics
manipulation capabilities.
For manipulation purposes, such as in the robotic bin-to-bin
application depicted in Fig. 1, it is paramount to forecast the
pose of the package held by the suction cup, and hence the
suction cup’s deformation. Modeling attempts to capture the
visco-elastic behaviour of the suction cup (or a system of
suction cups) can be found in [5], [20] and references therein.
What [5] refers to as the “standard model”, is a generalized
Kelvin–Voigt model (a parallel connection of spring and
damper) which is implemented only for the axial direction,
while [20] implemented it on two degrees of freedom. To the
best of the author’s knowledge, there is no literature reporting
model-based or data-driven models to predict the 6D object-
suction cup interaction in dynamic settings.
The present work takes a first step in this direction proposing
a 6D model describing the interaction forces between the
suction cup and the held object. The coupled object-suction
cup body is modeled as a mass-spring-damper system, while
taking a different approach from [5], [20]. In this paper, the
spring wrench is thoroughly investigated and its symmetries
exploited. For the sake compactness, the details of the deriva-
tion of the damping wrench will be the subject of a future
publication. The main contributions made by this paper can
be summarized as follows:

1) A coupled 6D linear-torsional model of the object-
suction-cup interconnection during holding, written using
rotation matrices and guaranteeing its passivity as it is
derived from a potential energy, following the seminal
work [21] on lumped modeling of elastic bodies.

2) A simplified model employing only 5 parameters instead
of the original 6(6 + 1)/2 = 21 ones, obtained making
use of the newly introduced mathematical model, axial
symmetry and in-plane wrench-deformation constraint,
allowing for a robust parameter identification and eco-
nomical data-collection.

3) An open dataset containing 1200 static pose measure-
ments of the deformation of a commercially available
bellow suction cup under different payloads, for repro-
ducibility and to further stimulate research on suction-cup
modeling.

The modeling and parameter identification procedure on the
reduced-order parameter model is validated by means of mo-
tion capture (mocap) data and the model’s prediction capability
is demonstrated by means of numerical simulations.

II. PRELIMINARIES

Let consider the system depicted in Fig. 1, consisting of
the blue tool-arm (TA) and the package (PA), modeled as
rigid bodies, interconnected by mean of a flexible body: the
suction cup (SC). Three main phases can be distinguished
when manipulating objects with a suction cup: the contact
(when the suction cup impacts the package), the holding
(when the suction cup uses the vacuum to carry a package)

and the release phase (where the vacuum is deactivated and
pressurized air is injected in the suction cup to quickly release
the package [22]). Each of these phases requires a different
model. In this paper, we devise a compact model describing
the suction cup - package interaction during the holding phase.

A. Notation for rigid transformations

This subsection introduces the notation employed in the paper.
It can be skimmed through at first read and consulted in a
later stage when needed. Coordinate frames are indicated with
capital letters (A, B, . . . ) and further specified by indicating
their origin (oA, oB , . . . ) and orthogonal unit vectors (xA, yA,
and zA for frame A, xB , yB , and zB for frame B, . . . ) [23].
As example, for a frame A, we will write its origin as oA and
its orientation frame as [A] such that A = (oA, [A]). Points are
indicated with a bold letter such as p (or o when corresponding
to a coordinate frame’s origin) with a suitable subscript for
differentiating them. A coordinate vector with respect to a
frame of reference is indicated with a left superscript so that,
e.g., Ap are the coordinates of p expressed in A and Bp
are the coordinates of the same point p but now expressed
in B. We write a rigid-body’s pose using the homogeneous
transformation matrix such that

AHB =

[
ARB

AoB
01×3 1

]
∈ SE(3) (1)

is a transformation matrix with ARB ∈ SO(3) a rotation
matrix and AoB ∈ R3 the origin of frame B fixed to the
object expressed in terms of frame A. Furthermore, with

Av∧
A,B =

[
AvA,B
AωA,B

]∧
:=

[
Aω∧

A,B
AvA,B

01×3 0

]
∈ se(3) (2)

we denote the relative velocity (twist) of frame B with respect
to A, expressed in the coordinated of A. In (2), we use ∧ (hat)
to indicate the classical mapping from R3 to the corresponding
3×3 skew-symmetric matrix in so(3) that represents the matrix
form of the cross-product in R3, and is such that given two
vectors ω,u ∈ R3, ω∧u = ω × u. Similarly, we use ∨ (vee)
as the inverse mapping [24, Chapter 3.2]. We recall that given
R ∈ SO(3), the log(R) = ω∧ ∈ so(3), where log denotes the
matrix logarithm, which can be effectively computed using the
inverse of Rodriques formula [25, Section 3.2.3.3]. Note that
both AHB and AvA,B in (1) and (2), respectively, are written
as R4×4 matrices. In Lie group theory, the logarithmic map
of a Lie group SE(3) transfers elements from the Lie group
to its tangent space se(3), which is denoted with THSE(3).
The coordinates of a wrench (vector of forces and moments
f , τ ∈ R3) with respect to a given frame B are indicated as

Bf =

[
Bf

Bτ

]
∈ R6. (3)

The notation can be further specialized with the use of the
subscript BD1 → BD2 to specify that the wrench is acting
from body BD1 on body BD2 (BfBD1→BD2).
Given an homogeneous matrix BHS , its associated adjoint
matrix BXS ∈ R6×6 allows to project a twist (in vector form
∈ R6) expressed in frame S into frame B while its dual BXS

allows to project a wrench expressed in frame S into frame B.
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The following relationship holds between the adjoint matrix
and its dual

BX
S = SX⊤

B =

[
BRS 03×3

Bo∧
S
BRS

BRS

]
. (4)

Finally, the ×̄∗ operator represents the dual cross-product
between a twist and a wrench, and is defined as

BvA,B×̄∗ =

[
Bω∧

A,B 03×3
Bv∧

A,B
Bω∧

A,B

]
∈ R6×6. (5)

Without loss of generality, we will assume that the inertial
frame of reference A is attached to the robot’s base with
its z-axis parallel to the gravity vector and directed upwards.
Frame B is located at the package’s center of mass (CoM)
while frame Q lies on the package surface at the contact point
with the suction cup’s lip. For simplicity one can assume that
frames S and Q are coincident (AHQ = AHS) when contact
between the suction cup and package is established, and that
frames S and B to have the same orientation ARS = ARB .
Frame E is placed at the end-point of the tool-arm (which is
coincident with the suction cup’s fitting) and S at the center
of the suction-cup lip’s plane, see Fig. 2. For further details
on the used notation, the reader is referred to [23].

B. Free body diagram
In order to determine the different forces acting on the system,
we will make use of the following modeling assumptions:

(i) there is no slippage between the held package and the
suction-cup lip,

(ii) the suction cup’s mass can be neglected in comparison
to the held package and tool-arm,

(iii) the inner-pressure within the suction cup is constant.
The deformation of the suction cup’s bellow is mainly due to
the gravitational and inertial forces of the held package and
its mass is negligible with respect to both the package and the
tool-arm. Furthermore, since we are interested in modeling the
suction cup’s behavior during holding phase, we are assuming
a rigid connection between the held package and the suction-
cup lip, such that there is no relative motion between them nor
the need to model frictional effects. Moreover, while the elastic
characteristics of the suction cup change when changing the
internal pressure, as shown in [26], maintaining the internal
pressure at a constant value is a legitimate assumption since
in real-world applications the pressure is not susceptible to
change.
A free body diagram with the different wrenches between
the interconnected parts of the tool-arm + Suction cup +
Package system is shown in Fig. 2. The wrench acting from the
tool-arm on the suction cup expressed in frame E is denoted
by EfTA→SC while SfPA→SC is the wrench acting from the
package on the suction cup in frame S. According to Newton’s
third law,

EfTA→SC = −EfSC→TA and SfPA→SC = −SfSC→PA,

and, due to assumption (ii), one can also state that

EfTA→SC = −EfPA→SC or SfTA→SC = −SfPA→SC ,

with clear meaning of the symbols. Finally, Bfg is the gravita-
tional wrench acting at the CoM expressed in frame B.

Fig. 2: Free Body Diagram of the bellows suction cup and
package in a planar perspective. In the picture, Bfg is the
gravitational wrench acting on the center of mass frame of
the package. SfSC→PA is the wrench acting on the package
applied by the suction cup, and similarly for the other expres-
sions.

C. Coupled package-suction cup system

As already mentioned, we model the bellows suction cup and
the package as a driven mass-spring-damper system. The left
side of Fig. 3, shows the nominal configuration of the suction
cup, corresponding to holding an ideal massless plate. Given
the definition of frames S and E, we have

EHS =

[
I −l0EzE

03×1 1

]
, (6)

with l0 being the distance between E and S along the z-axis,
and EzE = [ 0; 0; 1 ] where ";" denotes row concatenation.
I ∈ R3×3 is the 3× 3 identity matrix, if not otherwise specified
with a subscript, and 03×1 is the null matrix of dimension
3× 1. Due to this choice of the nominal configuration and
assumption (iii), we are essentially modeling the composite
behavior of the suction-cup’s material and vacuum as a single
visco-elastic element, i.e., the 6D linear-torsional spring and
damper. Therefore, the wrench acting on the package applied
by the suction cup can be modeled as the spring and damper
effects of the suction cup’s bellow as

SfSC→PA = S(fSPRG)SC→PA(
EHS ;K)

+ S(fDAMP )SC→PA(
EHS ;

SvE,S ;D) (7)

with K,D ∈ R6×6 the symmetric and positive (semi-)definite
stiffness and damping matrices, respectively, and SvE,S the
twist between frames E and S.
Following [21] we introduce two frames, S1 and S2 to param-
eterize the suction cup deformation (see right side of Fig. 3).
These two frames S1 and S2 coincides at the rest pose. Frame
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Fig. 3: Schematic representation of the bellow suction cup.
(Left) The nominal configuration of the suction cup: the
bellows are compressed due to the internal pressure while
holding an ideal massless plate. (Right) A package is held
by the vacuum suction force while the gravitational force
elongates the bellows. The frames for relative displacement
S1 and S2 are also drawn.

S1 is rigidly connected to frame S and has the same orientation,
similarly for frame S2 with frame E. Such frames represent
the centers of compliance and define the relative displacement
between bodies L1 and L2. L1, is the held object together
with the part of the bellows suction cup between frames S1

and S while L2 denotes the rigid body composed by the tool-
arm, including the part of the bellows suction cup between
frames S2 and E. We assume this two frames to be linked to
each other via a coupled linear-torsional 6D spring and damper.
Straightforwardly, we have

S2HS1
= S2HE

AH−1
E

AHS
SHS1

. (8)

The remaining constant terms in (8) are given by

S2HE =

[
I l2

EzE
03×1 1

]
, SHS1 =

[
I l1

SzS
03×1 1

]
(9)

where l1 and l2 are fixed link lengths (cf. Fig. 3). From (8) and
(9), we get

S2HS1
=

[
ERS l2

EzE + l1
ERS

SzS + EoS
03×1 1

]
. (10)

D. Held-package dynamics

When holding a rigid package of known inertia, its dynamics
can be described by the well known Newton-Euler equation of
motion

BMB
Bv̇A,B + BvA,B×̄∗

BMB
BvA,B =

BX
S
SfSC→PA + Bfg, (11)

where BMB is the package’s generalized inertia matrix

BMB =

[
mI 03×3

03×3 BIB

]
∈ R6×6, (12)

with m ∈ R its mass and BIB ∈ R3×3 the symmetric inertia
tensor expressed in frame B. The term BX

S
SfSC→PA, is the

suction cup force (7) reported to the CoM frame B and

Bfg = BX
B[A]

B[A]fg =

[
BRA 03×3

03×3
BRA

]
︸ ︷︷ ︸

BXB[A]


0
0

−mg
0
0
0

 (13)

is the gravitational wrench, where g = 9.81[m/s2] is the
gravitational acceleration.
In the next section, we detail the 6D suction cup spring wrench
model.

III. SPRING WRENCH MODELING

As mentioned in Section II, the coupled suction cup and held
object is modeled as a driven spatial mass-spring-damper sys-
tem. Inspired by the two-part work of Fasse [21], [27], we
propose a novel geometric potential energy function defined
on all SE(3). Unlike for [27], our spring wrench expression in
exponential coordinates is derived from our proposed geometric
potential energy function, allowing for large deformations and
ensuring that the spring wrench is conservative and has geomet-
ric meaning. The proposed potential energy has the following
expression

P0(H) =
1

8

[
(I+R⊤)o
(R−R⊤)∨

]⊤
K

[
(I+R⊤)o
(R−R⊤)∨

]
, (14)

where, for the sake of brevity, we use H = (R,o) to indicate
the local deformation S2HS1 = (S2RS1 ,

S2oS1) appearing
in (10) and

K =

[
Kt Kc

K⊤
c Ko

]
∈ R6×6 (15)

is a symmetric positive definite matrix. The potential energy
(14) is a quadratic form with respect the local deformation

1

2

[
(I+R⊤)o
(R−R⊤)∨

]
, (16)

where 1/2 (R − R⊤) is the well-known computationally effi-
cient approximation of log(R) (see Appendix A) and 1/2 (I+
R⊤)o is a regularized deformation vector, similar to the term
appearing in the spring wrench proposed by [27, Section 2.2],
that ensures the port-invariant property P0(H) = P0(H

−1).
Further details on the derivation, novelty, and properties of the
chosen potential function are provided in Appendix A. The
local deformation (16) also ensures that the matrix K can be
interpreted as a classical stiffness matrix for small deformations
(R ≈ I and o ≈ 0). In (14), the symmetric matrices Kt,
Ko ∈ R3×3 represent the translational and rotational stiffness
terms, while Kc ∈ R3×3 represent the coupling term.
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Straightforward geometric differentiation of the potential en-
ergy (14) with respect to the displacement H (cf. Appendix A
for the details) results in

S1
(fSPRG)L2→L1

(H) =

− 1

4

[
R⊤ + I 03×3

−(R⊤o)∧ (tr(R)I−R)

]
K

[
(R⊤ + I)o
(R−R⊤)∨

]
. (17)

This is the wrench applied by body L2 via the spring to
body L1, expressed in the coordinates of frame S1. The spring
wrench (17) can be written with respect to the suction cup frame
S and be then used in (7) and (11) via

S(fSPRG)SC→PA = SX
S1
S1
(fSPRG)L2→L1

. (18)

A. Exploiting symmetries for model parameter reduction
Any attempt at estimating the stiffness matrix K appearing in
(15) will require the estimation of 6(6 + 1)/2 = 21 param-
eters. Identifying the 21 has led us, in practice, to completely
unreliable results. However, the family of suction-cups we are
considering (see Fig. 4) clearly exhibits a continuous axial
symmetry and, as it will be better clarified in the following,
has a decoupling between torsional and bending stiffness in
rotation direction orthogonal to the axis of symmetry. These
two facts leads to the key result that only 5 parameters instead
of 21 are actually needed. This greatly simplifies the parameter
identification and data collection procedure, still characterizing
the 6D elastic behavior of the suction-cup’s bellows using a
lumped model such as (17).

1) Axial symmetry: A continuous axial symmetry for a
6D spring model corresponds to the invariance of the spring
potential such as P0(H) in (14) with respect to the mounting
angle. Mathematically, this constraint is written as

P0(H) = P0(T
−1
θ HTθ) (19)

for any arbitrary spring deflection H = S2HS1
∈ SE(3) and

spring mounting rotations θ ∈ [0, 2π). In (19),

Tθ :=

[
Rz(θ) 03×1

01×3 1

]
∈ SE(3) (20)

denotes a rigid transformation expressing a pure rotation of θ
radians about the spring axis, with Rz denoting the standard
rotation matrix about the z axis, which is the axis of symmetry
of the spring (cf. the frames S1 and S2 defined in Section II).
Assuming (19), we obtain the following result.

Proposition 1. If the spring potential (14) satisfies the in-
variance property (19), then the symmetric stiffness matrix K
appearing in (14), and as a consequence in spring wrench
(17), has the following structure

K =


ktxx 0 0 kcxx kcxy 0
0 ktxx 0 −kcxy kcxx 0
0 0 ktzz 0 0 kczz

kcxx −kcxy 0 koxx 0 0
kcxy kcxx 0 0 koxx 0
0 0 kczz 0 0 kozz

 , (21)

with just 7 independent parameters ktxx
, ktzz , kcxx

, kczz , kcxy
,

koxx , and kozz ∈ R.

Proof. See Appendix B.
A further reduction from 7 to 5 parameters is possible, as we
explain in the following.

Fig. 4: CAD model of the Suction cup with its cross-sections
on the ZX- and ZY-planes to highlight its axial symmetry.

2) In-plane twist-wrench relationship: If, besides having a
continuous axial symmetry, the suction cup also has a mirror
symmetry on any plane that contains the axis of symmetry,
then one expects that deforming the suction cup in that plane
will lead to a resulting in-place forces and a resulting torque
that is orthogonal to it. This is also confirmed by physical ex-
periments: tilting the tool-arm while carrying a payload whose
CoM is lying along the symmetry axis, leads to a bending of the
suction cup within the plane containing the gravity direction
and tool-arm axis, with no lateral deviation or suction cup
twisting. This behavior clearly suggests that the coupling terms
in the stiffness matrix (21) that induce out-of-plane forces and
in-plane torques must be zero.

Proposition 2. If the spring potential (14) satisfies both the
invariance property (19) and has a mirror symmetry, i.e., the
translation happens in a plane which contains the axis of
symmetry and that the rotation being orthogonal to that plane
generate forces only in the same plane and a torque only
along the same axis , then the coupling stiffness matrix Kc

appearing in (15) has zero elements on the diagonal and thus
the symmetric stiffness matrix K (21) is reduced to

K =


ktxx 0 0 0 kcxy 0
0 ktxx 0 −kcxy 0 0
0 0 ktzz 0 0 0
0 −kcxy 0 koxx 0 0

kcxy 0 0 0 koxx 0
0 0 0 0 0 kozz

 (22)

with just 5 independent parameters ktxx
, ktzz , kcxx

, kczz , kcxy
,

koxx , and kozz ∈ R.

Proof. See Appendix C.

These results not only lead to an easier identification problem
as we shows in the following section, but significantly reduces
also the experimental effort required to collect the data needed
to build the optimization problem (cf. Section V).

IV. PARAMETER IDENTIFICATION

In Sections II and III, we provided a parameterized model to
predict the wrench acting on the suction cup lip frame S based
on its relative displacement with respect to the tool-arm end
frame E. Despite dynamic model parameters (stiffness and
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Fig. 5: Representation of the equivariance notion of the spring
wrench. The configuration dependent spring wrench in a
certain pose (left) and after a rotation of the suction cup of
θ = 90◦ about the symmetry axis (right). Notice how the
frames E,S2, S1 and S results to be rotated of 90◦ about
their z-axes. Despite the rotation, the package and the tool
arm experience the same contact wrench before and after the
suction cup’s rotation.

damping) can be identified simultaneously, we opted for a two-
step identification procedure in which we firstly identify the
stiffness from static experiments. Here, we then introduce the
parameter identification problem that will identify the entries
of the stiffness matrix K.
In static conditions, the left hand side of (11) corresponding to
inertial forces are clearly zero and we obtain the force balance

−BXS
SX

S1
S1
(fSPRG)L2→L1

= Bfg (23)

or equivalently

−S1
(fSPRG)L2→L1

= S1
XB

Bfg = S1
fg. (24)

Assuming to know the held package inertial properties, its CoM
location with respect to the lip frame (SHB), and the suction
cup center of compliance parameterized by l1 in (9), we can
compute the right hand side of (24). On the other hand, the
spring wrench in (24), whose expression is provided in (17),
depends linearly on the elements of K that can be rearranged
in a vector k̄ = [k1; . . . ; kn], allowing to write the system for
each static configuration Hi and sample S1

fgi as

A(Hi)k̄ = S1
fgi , (25)

for i ∈ {1, . . . , N}. In (25), A(Hi) ∈ R6×n, is the known
configuration dependent regressor matrix. By staking various
instances of (25) for different measurements, one has that

Āk̄ =

A(H1)
...

A(HN )

 k̄ =

S1fg1
...

S1
fgN

 = S1
f̄g, (26)

with Ā ∈ R6N×n and S1 f̄g ∈ R6N×1. To identify the stiff-
ness parameters, one can solve an ordinary least-squares (LS)
problem

k̄∗ = argmin
k̄

∥∥∥∥∥
N∑
i=1

wi(A(Hi)k̄ − S1fgi)

∥∥∥∥∥
2

(27)

where wi ∈ R is a weighting factor, or equivalently via pseudo-
inversion

k̄ = Ā+
S1
f̄g (28)

where Ā+ = (Ā⊤WĀ)−1Ā⊤W denotes the left Moore-
Penrose weighted pseudo-inverse with weighting matrix W =
diag(w1I6, . . . , wNI6).

V. EXPERIMENTAL RESULTS

In order to solve the optimization problem (27) and identify
the stiffness parameters of the spring wrench model, we need
to know the suction cup’s configuration, i.e., the relative pose
between the suction cup’s fitting and lip, as well as the wrench
acting on the lip. To this end, an OptiTrack system composed
of 6 cameras (four Prime 17W and two Prime x22) operating at
360 Hz with sub-millimeter accuracy is used to track the passive
markers placed on the fitting collar and the held object. As
held object we use a custom designed Variable-Inertia-Object
(VIO), as shown in Fig. 6a. It consist of the top plate equipped
with passive markers, seven racks with an internal 7×7 grid that
can hold metal spheres, and the lip-holders on top of the plate to
constrain the suction cup’s lip. The number and configuration
of the spheres in the racks determines the total VIO’s mass,
CoM location and the principal axes of the inertia tensor. By
tracking its top-plate with the OptiTrack, we can estimate the
wrench applied by the VIO acting at the center of the lip-plate
interface area. Since our goal is to capture only the bellow’s
behaviour, we have constrained the suction cup’s lip to the
VIO plate for experimental repeatability, to guarantee that the
center of the lip is coincident with the plate’s center, to prevent
potential slippage and detachment of the suction-cup lip from
the package.
A custom-designed vacuum gripper, equipped with a Venturi
ejector for creating the vacuum and operating at an inlet pres-
sure of 3.7 [bar], is mounted on a tool-changer at the UR10’s
flange. It uses a Schmalz VS-VP8-SA-M8-4 [28] pressure
sensor to monitor the inner-pressure (∼ 0.49 Volts – we report
the sensor reading because the pressure-voltage characteristic
of the sensor reported its datasheet is wrong) at the attached
Piab’s piGRIP S1-7 suction cup used as end-effector.
The experimental data and MATLAB code developed in this
work will be made available at https://gitlab.tue.nl/robotics-lab-
public/suction cup-modeling/.

A. Data collection

A total of 1200 static poses were recorded in 6 distinct sessions
with varying inertial parameters of the payload, as indicated in
Table I.

TABLE I: Experiment payload parameters.
Sess. 1 Sess. 2 Sess. 3 Sess. 4 Sess. 5 Sess. 6 unit

# Exps 245 242 162 247 288 16 -

mass 1.948 2.366 1.421 1.014 2.821 1.747 kg

(SoB)x 0 0 0 -24.3 -30.55 0 mm

(SoB)y 0 0 0 -24.3 30.55 0 mm

(SoB)z -81.37 -79.03 -55.22 -27.83 -75.95 -80.57 mm

https://gitlab.tue.nl/robotics-lab-public/suction cup-modeling/
https://gitlab.tue.nl/robotics-lab-public/suction cup-modeling/
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Motion capture 
system

UR10 
Manipulator

Tool-arm

Suction cup
VIO

Fitting collar

(a)

Suction cup

Fitting collar

VIO

Motion capture 
camera

Motion capture marker

(b)

Fig. 6: Experimental setup used for collecting the data. Full setup with the different components indicated (a), and detailed
picture showing, in particular, the motion capture camera, the Fitting Collar for tracking the suction cup’s attachment, the
Piab’s piGRIP S1-7 suction cup, and the Variable Inertia Object VIO (b). The tool-arm, suction cup’s fitting and the package’s
frame (VIO’s top plate) are equipped with reflective passive markers used for tracking their pose with the OptiTrack system,
also indicated in Fig. 6b. In Fig. 6a, γ is the tilting angle between the tool-arm and the vertical axis while φ is the tilting
angle between the fitting and the lip (suction cup’s bending angle).

For each of the six experimental sessions, some or all of the
VIO’s racks were loaded with a number of metal spheres weigh-
ing 32.6 grams each. Each rack weights 81 grams while the VIO
plate 101 grams. Once the VIO is assembled and the suction-
cup’s lip attached to the plate by mean of the lip-holders, the
coupled system VIO + suction cup is mounted on the tool-
arm of the vacuum gripper. At this stage, vacuum is activated
and the robot is commanded to adopt a given configuration.
After 5 seconds, a recording script is launched that records
the robot’s log, among which the pressure sensor signal, and
triggers the OptiTrack recording for 3 seconds. These periods
were empirically found as a sufficient amount of time for the
motion of the held package to damp out and for the recording
to filter out any remaining oscillation around the equilibrium.
Then, a new robot configuration is commanded and the entire
recording process repeated. Once a data-collection session is
completed, a new VIO configuration is assembled and mounted
back on the tool-arm for the next one. Each recorded position
and orientation is filtered and averaged to obtain a single SE(3)
point. In view of the further expansion of this research to the
fully dynamic case, we have employed [29] already for filtering
the rotation information. The sessions spanned the tool-arm’s
inclination ranging from straight vertical (γ = 0◦), to large
inclination (γ ≈ 65◦ cf. Fig. 6a). The poses of frame S with
respect to frame E for the 1200 static experiments can be
seen in Fig. 7. Prior to each experimental recording session,
a calibration experiment is performed in which, by keeping
the tool-arm vertically aligned with the gravity vector, a rota-
tion of 360+ degrees about the symmetry axis is continuously
recorded. This data is needed to align the coordinate frames
of the assets (rigid body frames) defined in the OptiTrack’s
software suit Motive and their corresponding frames as defined
in this paper. The collected data was then split into two subsets,
namely the training and the test sets. The Training set contains

half of the data points in sessions 1 to 5 having picked one data
point each two (592 points). The test set contains the remaining
half of the data points in sessions 1 to 5 (592 points) plus the
entire session 6 (16 experiments with a different mass and CoM
location which is not used in the identification procedure).

B. Nominal length identification

To properly compute the suction-cup’s elongation one needs to
identify its nominal configuration which, as stated in Section II,
given the frames definitions, it only depends on the relative
vertical distance l0 between frames E and S (cf. Fig. 3), which

Fig. 7: Experimental data of the relative suction cup pose: the
1200 filtered static poses of frame S with respect to frame E.
Note how the lip’s deformation distributes itself in a bell-shape
fashion. With heavier payload, the frame S gets farther away
for the suction cup attachment frame E. The rest position of
frame S corresponds to (0,0, −l0) in the plot.
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Fig. 8: Nominal length identification: the gravitational vertical
force is plotted against the relative Fitting-lip elongation at
different payloads when the tool-arm is vertically aligned with
the gravity vector. The red line is the linear fitting to this data.
The nominal configuration length l0 = 42.6mm is the relative
fitting-lip distance at zero gravitational force.

correspond to the pose of the lip when the suction cup is holding
an ideal massless plate.
It is possible to estimate the rest pose of the suction-cup’s
lip with respect to the fitting using calibration recordings and
experiments in which the tool-arm is vertically aligned with
the gravity vector of those sessions with the payload along
the symmetry axis. From the stiffness matrix structure (22),
one notes that the linear stiffness along the z-axis is fully
decoupled. Assuming linear behaviour close to the nominal
configuration, one can fit a line through the data to find l0. The
force-elongation measurements are shown in Fig. 8, together
with the nominal length (l0 = 42.6mm) estimated via linear
fitting and indicated in the plot with a red circle. The slope of
the fitted line in Fig. 8 corresponds to the linear stiffness along
the z-axis, which resulted to be ktzz0 = 11387.86 kg/m, giving
us a first estimate of its magnitude near equilibrium. Indeed,
as it will be clear in the following subsection, when estimating
the stiffness parameters using data up to φ = 5◦, the identified
ktzz0 ∼ 11000 kg/m.

C. Identification results

The proposed spring wrench model linearly approximate the
behavior of the suction cup near the rest position via a stiffness
matrix and it is to be expected that for larger deformations
this single matrix in combination with the potential energy
expression (14) might fail to capture correctly the pose-wrench
relationship. From experimental observations we have found
that the nonlinear behavior of the suction cup becomes more
pronounced the more the relative inclination between the fitting
and the lip (φ, in Fig. 6a) becomes prominent, so we will
use this angle as weighting criteria for the identification. In
our experiments, φ ∈ (0, 50) deg. With the bin-to-bin robotic
application shown in Fig. 1 in mind, in which we envision
novel motion primitives for tightly stuffing boxes between each
other and where, from preliminary experiments, the relative
suction-cup’s tilting angle (φ) can reach 20◦, we have chosen
wi = 10 exp(−0.075φi) as weighting function. With this
choice, we optimize the stiffness parameters such that the pose
error around φ = 20◦ is minimized (cf. Fig. 9).

1) Location of the centers of stiffness: Before applying
the weighted least-squares method (28), we need to define the
location of the centers of stiffness, i.e., the location of the
frames S1 and S2 shown in Fig. 3. According to [21], this two
frames must be coincident at equilibrium. Furthermore, from
linear stiffness theory [21, Section 4.1] and recalling (15), if the
tr(Kt) is not an eigenvalue of Kt then, for each body there
exist a unique center of stiffness at which Kc is symmetric.
Given the structure of the stiffness matrix (22), unless ktxx

= 0,
tr(Kt) will never be an eigenvalue of Kt. So, it exist a unique
point at which Kc is symmetric.
Furthermore, given that Kc in (22) is always skew, asking for
Kc to be also symmetric implies Kc (equivalently, kcxy ) to be
zero. We found therefore a further reduction of the number
of parameters to be fitted in our model. Due to the suction-
cup’s symmetry, the centers of stiffness should lie along the
symmetry axis and we find its location numerically by iterating
the least-squares problem over different values of the convex
combination parameter α, where α is such that l2 = α l0 and
l1 = (1− α) l0.

2) Identifiability: The spring wrench model is structurally
identifiable [30] since it linearly depends on all its unknown
parameters, hence, it is theoretically possible to identify them
all. However, structural identifiability only implies practical
identifiability for an infinite amount of data with zero noise.
Therefore, before starting the identification process, especially
for experimental data with large measurement noise, it is ad-
visable to assess the informativeness of the collected data in
order to estimate the parameter with adequate accuracy. We
note first that the maximum elongation of the suction cup’s
lip with respect to its nominal rest pose is about ±25 mm
along x- and y-axes while it is less than 8 mm along the z-
axis (see Fig. 7); OptiTrack’s 3D position accuracy is ± 0.2
mm for each rigid body, thus, the noise level is significant for
the relative displacements we are measuring. We are concerned
about the practical identifiability of the torsional stiffness about
the z-axis, since it seems to be quite high compared to the
other two axes. Indeed, it is not possible to manually twist
the bellows suction cup about the z-axis; This means that in
a real application, slippage between the suction-cup’s lip and
the held object, due to a torque about the z-axis, may happen
way before a noticeable torsion of the bellows suction cup is
detected. This is an additional reason why we constrained the
suction-cup’s lip to the VIO top surface. On the other hand,
looking into the symbolic expression of the regressor (A(H)
in (25)) and knowing the expression of the rotation matrix
constructed from the axis/angle representation, parameter kozz
appears always multiplied by (R1,2 − R2,1) = −2uzsin(θ).
Since we are essentially measuring no rotation about the z-axis
(even for large off-centered payloads like in Sessions 4 and 5),
the data relative to the z component of the axis of rotation is
mostly measurement noise, resulting in an arbitrary estimate of
the parameter kozz (cf. Table II).
The identified stiffness parameters at varying α are shown in
Table II. The right-most column shows the root-mean-square
(RMS) of the residual r̄ = Āk̄− S1

f̄g for each set of identified
parameters, which seems to be insensitive to the location of
the centers of stiffness (∆%max = 0.02%). Indeed, the only
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TABLE II: 6D identification results at varying α.
α ktxx[

N
m ] ktzz [

N
m ] koxx[

Nm
rad ] kozz [

Nm
rad ] kcxy [

N
rad ] RMS(r̄)

0 5126.54 4491.29 4.2487 0.76590 -89.7711 22.122
1/3 5125.12 4491.25 2.6884 0.75320 -16.9759 22.121

0.411093 5124.78 4491.24 2.6218 0.75024 -0.0001 22.120
5/12 5124.76 4491.24 2.6214 0.75003 1.2165 22.120
1/2 5124.39 4491.23 2.6835 0.74686 19.4064 22.120
2/3 5123.66 4491.20 3.1950 0.74052 55.7783 22.120
3/4 5123.30 4491.19 3.6444 0.73736 73.9603 22.120
1 5122.19 4491.13 5.7665 0.72787 128.4904 22.120

3/2 5119.92 4491.00 13.4916 0.70893 237.4773 22.122
2 5117.61 4490.83 25.8524 0.69006 346.3640 22.125

∆%max 0.174% 0.01% 886.19% 10.99 % 485.83% 0.02%

values that significantly change are the coupling term kcxy
and,

proportionally to compensate for the coupling term variation,
the bending stiffness koxx , with variations of the 485.83%
and 886.19% respectively. The identified value of the torsional
stiffness about the z-axis kozz is, as expected, totally unreliable:
although the torsional stiffness of the suction cup is way higher
than the bending stiffness, the obtained value is extremely low.
Note that fixing the value of kozz in the range 0 to 105Nm/rad
in (27) and then identifying the remaining four parameters,
leads to the same results as shown in Table II.

3) Performance assessment: In order to predict the final
rest pose of the modeled package + suction cup system, we
have numerically implemented the Newton-Euler dynamics
(11) in an ODE MATLAB routine, initializing it with the fitting
frame’s pose from the real experiments and letting the system
evolve until the lip settles, pulled by the action of payload’s
gravitational force. We have assessed the compliance with
the principle of total energy conservation of the implemented
model by putting zero damping and verifying that the total
energy (kinetic + elastic + gravitational) is constant. To generate
a steady state, we have added fictitious damping tuned to
obtained a critically damped response (damping modeling and
parameter identification for the suction cup will be the subject
of a future investigation). The pose error is then computed
between the predicted and measured rest pose of the lip from
each of the 608 experiments of the test set, whose data was not
used for the identification. In Fig. 9, the position error SoŜ and
the orientation error SRŜ and their magnitude corresponding
to the pose error SHŜ = AH−1

S
AHŜ are plotted as a function

of the relative inclination between the fitting and the lip frame
φ (using the parameters for α and K given in the third row of
Table II, with kozz = 50Nm/rad).
The pose error was computed for each set of identified stiffness
parameters in Table II at varying α, without finding any sig-
nificant difference in the predicted rest pose, therefore, Fig. 9
is a good indication of the performance of the model. The first
fact to notice is that the system’s behaviour can be captured
independently of where frames S1 and S2 are placed (the
maximum deviation of the position and orientation error at
varying α is about 0.67 mm and 2.48◦ respectively) but, when
they lie at the center of stiffness, the system further decouples
(kcxy = 0). The rest position of the suction-cup’s lip can be
predicted fairly well with the identified parameter, even for
quite large deformations: as it can be see from Fig. 9, the pose
error remains always below 10 mm and 10◦, with a relative

Fig. 9: Rest pose prediction error over relative Fitting-Lip tilt
angle φ. (top) ox( ),oy( ),oz( ) and norm ||o||( ) of the
position error. (Bottom) ux( ),uy( ) and uz( ) components
of the rotation vector (u) and its norm ψ( ). The value of the
rotational stiffness about z-axis was set to kozz = 50Nm/rad
and the center-of-stiffness ratio to α = 0.411093.

bending angle that goes up to almost 50◦. In Fig. 10, the steady-
state of the simulated deformation (black box) against the
measured rest pose (red box) for five experiments of the Session
6 are shown. Apart from experiments (d) and (e) for which the
position and orientation error (norm ||o|| and ψ) reaches 5.4
mm and ψ = 2, 1◦, and 5.1 mm and ψ = 2, 09◦ respectively
against a tilt angle of 61, 15◦ and 63, 18◦ of the tool-arm, which
is very unlikely to happen in real logistics applications, the
predicted deformations are quite accurate. Furthermore, one
can clearly see how the position error along the z-axis increases
with the relative fitting-lip tilt angle (Fig. 9 top).

D. Exploiting equivariance to obtain a 2D problem

As discussed in section III-A, if the stiffness matrix presents a
certain structure, the spring wrench corresponding to a suction
cup that is axially symmetric satisfies the equivariance property
for rotations about the axis of symmetry. In this subsection,
we will show that thanks to this property, one can reduced the
amount of data to collect while still obtaining similar results in
terms of prediction capability.
Given any suction cup configuration (S2HS1

) and a wrench
acting on it (S1

f ), the equivariance property states that if we
rotate the suction cup about its symmetry axis (a simultaneous
rotation of frames S1 and S2 about their respective z-axes, as
shown in Fig. 5, the wrench acting on it only experiences a
frame transformation, preserving its magnitude and direction,
so the system configuration does not change. By exploiting the
equivariance transformation, one can project all the collected
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(a) (b) (c) (d) (e)

Fig. 10: Predicted (black) versus measured (red) VIO’s rest pose at different tool-arm inclinations. Experiments belongs to
Session 6 in Table I, whose data was not used in the identification procedure. The used stiffness values are those in Table II
for α = 0.411093, setting kozz = 50Nm/rad. See Fig. 9 for the complete set of experimental results.

Description Symbol a b c d e unit
Tool-arm inclination angle w.r.t. the vertical γ 1,56 12,68 37.26 61,15 63,18 deg

Relative fitting-lip tilt angle φ 0,58 5,38 12,44 28,03 29.07 deg
Position error norm ||o|| 3,1 2.7 1.3 5,1 5.4 mm

Orientation error norm ψ 0,42 0.77 3.2 2,09 2.1 deg

Fig. 11: Equivariance frame transformation: (Left) given a
certain spring configuration (S2HS1 ), the rotation angle (θ)
needed to bring S1 to S′

1 on the ZY (green) plane by rotating
S1 and S2 of θ about their z-axes, is the angle between
the (blue) plane containing the origins of both frames S1

and S2 and the ZY-plane. (Right) The data processed with
equivariance lying on one half-plane. Notice the half-bell
shape pattern (see Fig. 12 for real data.)

Fig. 12: Data projected with equivariance transformation. No-
tice that all the frame’s origins lie on the ZY-plane alongside
their z-axes. Half of the bell-shape is clearly visible as the
data is projected on the ZY-plane.

poses into the positive ZY half-plane for instance, by rotating
S1 and S2 about their respective z-axes of an angle θ, which
is the angle between the vertical plane containing the origin
of both frames and the ZY plane, as shown in Fig. 11. The
whole data-set, visible in Fig. 7, projected with the equivariance

TABLE III: 3D identification results at varying α.
α ktxx

[Nm ] ktzz [
N
m ] koxx

[Nmrad ] kcxy
[ Nrad ] RMS(r̄)

0 5929.13 4477.61 4.44 -101.79 30.74
1/3 5996.32 4532.64 2.71 -12.37 30.25

0.411093 5665.86 4506.18 2.60 3.62 30.27
5/12 5670.22 4505.79 2.60 4.97 30.28
1/2 5696.91 4501.40 2.69 25.02 30.38
2/3 5727.35 4497.39 3.33 65.63 30.45
3/4 5744.84 4496.35 3.86 86.21 30.48
1 5758.63 4494.50 6.33 147.63 30.51

3/2 5741.70 4492.84 15.11 269.28 30.52
2 5743.19 4492.00 29.12 391.62 30.54

∆%max 5.83 % 1.22 % 1017.4% 484.7% 1.52%

transformation can be seen in Fig. 12. Wrenches are trans-
formed accordingly by pre-multiplying them by the wrench
transformation matrix (see Appendix B).
Once the data has been projected on the plane, one can build a
reduced optimization problem that takes into account only the
entries on such plane, i.e., only the forces along y- and z-axis
and the torque about x-axis. Then, optimizing for the (four) non
zero components of the sub-stiffness matrix (50) (highlighted
in gray in Appendix C) we obtained the parameters reported in
Table III at varying of α.
The identified values for the data treated with the equivariance
transformation, are comparable with those previously obtained,
which in essence captures the same suction cup’s behavior.
Indeed, the differences in the predicted suction cup lip’s rest
pose is negligible when using either the values in Table II or
Table III.
In this section, we have shown that by only using data lying on
one half-plane is sufficient to identify the stiffness parameters.
The identified values are comparable with those obtained with
the 6D identification procedure, for which the data spans as
much as possible the configuration space. This results show that
it is possible to identify the parameters of symmetric suction
cups with a simpler data-collection procedure that only spans a
subspace of the suction-cup’s configuration space while being
rich enough to practically identify the parameter.
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Fig. 13: Predicted ( ) and ground-truth ( ) wrench comparison for all the 608 experiments in the test set. The letters from a
to f indicates that the data belong to each of the 6 data sessions from 1 to 6 (see Table I). It is possible to appreciate how
accurate is the wrench predicted by the proposed model and identification procedure. The RMS error of the predicted and
ground-truth forces and torques over the 608 experiments in the test set are: RMSf = 0.6949N and RMSτ = 0.0674Nm.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a 6D elastic model that de-
scribes the interaction between the suction cup and suction-
held object as a mass-spring-damper system. From a newly pro-
posed geometric potential energy function, inspired by classical
works but defined in terms of homogeneous transformation
matrices, we have derived an energy preserving spring wrench
model that linearly depends on the stiffness parameters. We
have then delved into the properties of such spring wrench
model for axial-symmetric suction cups. These studies have
made it possible to better understand the behavior of the suction
cups under load and to identify a structure in the stiffness matrix
with a consequent significant reduction in the number of param-
eters to be identified, from 21 to only 5 (or even 4, if the frames
that defines the relative deformation are placed at the centers of
stiffness). Furthermore, we demonstrate how this simplification
translates into a considerably simpler data collection procedure,
in which the configuration space to be explored is restricted to a
plane by showing that the identification procedure for the planar
case with 3 degrees of freedom leads to the comparable results
as for the 6D case.
The obtained results in terms of lip pose estimation accuracy
are satisfactory for the targeted application, especially if we
consider that the data used to fit the stiffness presents large
deformations, well beyond the range of intended use. The pose
prediction error over the entire test set (608 poses) shows that
the position error increases together with the relative fitting-lip
angle, being the position error along the z-axis the main source
of error. This direction presents indeed the strongest non-linear
behaviour, rapidly becoming compliant (less stiff) as the tilting
angle increases.
On the other hand, due to the particular choice of the residual
in the optimization problem to fit the stiffness parameters, we
optimize K such as to minimize the wrench prediction error.

As can be seen from Fig. 13, the predicted wrench results to
be quite accurate, with a medium/low signal-to-noise ratio (in
particular in the axial translation and the axial rotation).
It is fair to mention that the identified parameters are valid
just for a given fixed internal vacuum pressure of the suction
cup. Since vacuum grippers are usually equipped with pressure
sensor, an easy way to overcome this limitation would be to
identify a set of pressure-dependent stiffness parameters. This
procedure would not take much effort, as we demonstrate in this
work that a simpler data collection procedure can be put in place
and the equivariance transformation can be used to augment the
data (data-augmentation) by transporting the experiments on
the other half-plane, imposing symmetry in the collected data.
The results of this research is potentially valuable for all
robotics applications requiring a reliable 6D wrench model
of a suction cup in the holding phase for planning, learning,
estimation, and control purposes given the wide range of ap-
plications involving suction cups, particularly in the field of
robotic processes automation in logistics, where suction cups
are massively adopted.
In a future publication, we will detail the derivation of a com-
pact viscous model based on similar equivariance principles,
that will enable tackling dynamic manipulation problems.

APPENDIX A
SPRING POTENTIAL ENERGY AND WRENCH DERIVATION

A. The spring potential energy function

The simplest and intuitive geometric potential energy function
one can think of for a 6D spring has the following expression

P (H) =
1

2

[
o

log(R)∨

]⊤
K

[
o

log(R)∨

]
. (29)
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It is easy to verify that this potential is however not port-
indifferent, i.e., P0(H) ̸= P0(H

−1). Indeed, for a given
configuration H, the potential energy of H−1 is

P (H−1) =
1

2

[
R⊤o

log(R)∨

]⊤
K

[
R⊤o

log(R)∨

]
. (30)

However, we can easily obtain a port-indifferent potential by
construction simply averaging (29) and (30), resulting in

P̃ (H) =
1

2
(P0(H) + P0(H

−1)) =

=
1

4

([
o

log(R)∨

]⊤
K

[
o

log(R)∨

]
+

[
R⊤o

log(R)∨

]⊤
K

[
R⊤o

log(R)∨

])
(31)

despite not having the simple structure of a quadratic form.
An alternative, inspired by the average above and reminding the
approach in [21], is to use

P̃0(H) =
1

2

[
1
2 (I+R⊤)o
log(R)∨

]⊤
K

[
1
2 (I+R⊤)o
log(R)∨

]
. (32)

which is a now quadratic form. Expression (32) can be fur-
ther simplified considering the matrix logarithm approxima-
tion [24, Chapter 3.2][31] 1/2(R−R⊤) in place of log(R) =
θ/2 sin(θ)(R−R⊤) that saves computational efforts, resulting
in the displacement vector

h(H) :=
1

2

[
(I+R⊤)o
(R−R⊤)∨

]
≈
[
1
2 (I+R⊤)o
log(R)∨

]
(33)

yielding P0(H) = 1/2h⊤(H)Kh(H) or explicitly

P0(H) =
1

2

[
1/2(I+R⊤)o
1/2(R−R⊤)∨

]⊤
K

[
1/2(I+R⊤)o
1/2(R−R⊤)∨

]
, (34)

which is (14). The port-indifference of this potential energy
function is quickly verified by noting that h(H−1) = −h(H).

B. Derivation of the spring wrench
The wrench describing the spring forces and moments can
be obtained by partially differentiating the elastic potential
energy function with respect to the degrees of freedom. To
write down the partial derivative of (34), we need to know the
partial derivative of the 6D displacement vector h at H in an
arbitrary direction THSE(3) ∋ δH := Hv∧, that we write
Dh(H) · δH = Dh(H) ·Hv∧ [32], with v = [v;ω] ∈ R6 the
parameterization of the direction δH using a twist (an element
of the Lie algebra of SE(3) in vector form). Recalling the
expression for h given in (34), we get

Dh(H) ·Hv∧ =
1

2

[
(Rω∧)⊤o+ (I+R⊤)Rv

(Rω∧ − (Rω∧)⊤)∨

]
=

1

2

[
(ω∧)⊤R⊤o+ (I+R⊤)Rv

(ω∧R⊤ +Rω∧)∨

]
=

1

2

[
(R⊤o)∧ω + (R+ I)v

(tr(R⊤)(ω)∧ − (R⊤ω)∧)∨

]
=

1

2

[
(R⊤o)∧ω + (R+ I)v

(tr(R)I−R⊤)ω

]
=

1

2

[
(R+ I) (R⊤o)∧

03×3 tr(R)I−R⊤

] [
v
ω

]
︸︷︷︸
=v

, (35)

and ω∧R+R⊤ω∧ = tr(R)ω∧ − (Rω)∧ (cf., e.g., [33]).
Knowing Dh(H) · Hv∧, it is straightforward to compute the
partial derivative of (34) in the direction Hv∧, namely

DP0(H) ·Hv∧ = h(H)⊤KDh(H) ·Hv∧ =

1

4

[
(I+R⊤)o
(R−R⊤)∨

]⊤
K

[
(R+ I) (R⊤o)∧

03×3 tr(R)I−R⊤

]
︸ ︷︷ ︸

=−S1
(fSPRG)L2→L1

(as a row vector)

v, (36)

which is equivalent to (17), besides a transposition and a minus
sign (as in standard Lagrangian mechanics, the force applied is
given by minus the derivative of the potential).

APPENDIX B
PROOF OF PROPOSITION 1

The starting point of the proposition is assuming

P0(H) = P0(T
−1
θ HTθ) (37)

for any H ∈ SE(3) and θ ∈ [0, 2π) with Tθ defined as in (20)
and P0(H) as in (14) or equivalently in (34). We have

T−1
θ HTθ =

[
R⊤
z RRz R⊤

z o
01×3 1

]
, (38)

with Rz meaning Rz(θ). Recalling the definition of h(H) in
(34) and the identity (Ru)∧ = Ru∧R⊤ for any u ∈ R3 and
R ∈ SO(3), we get

2h(T−1
θ HTθ) =

[
(I+R⊤

z R
⊤Rz)R

⊤
z o

(R⊤
z RRz −R⊤

z R
⊤Rz)

∨

]
=

[
R⊤
z (I+R⊤)o

R⊤
z (R−R⊤)∨

]
=2X−θ h(H) (39)

where the twist coordinate transformation X−θ = X⊤
θ , with

Xθ :=

[
Rz 03×3

03×3 Rz

]
. (40)

From (39), the constraint (37) can be rewritten as

h(H)⊤Kh(H) = h(H)⊤XθKX−θ h(H). (41)

Because h(H) is arbitrary and we must have K = XθKX−θ
for any θ ∈ [0, 2π), leading to the conditions

Kt = RzKtR
⊤
z , (42)

Kc = RzKcR
⊤
z , (43)

K⊤
c = RzK

⊤
c R

⊤
z , and (44)

Ko = RzKoR
⊤
z . (45)

Since Kt and Ko are symmetric, the previous conditions for
Rz are satisfied if and only if

Kt =

ktxx
0 0

0 ktxx 0
0 0 ktzz

 and (46)

Ko =

koxx
0 0

0 koxx
0

0 0 kozz

 . (47)
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Finally, as elements of Kc can assume any values, (43) and (44)
can be satisfied if and only if

Kc =

 kcxx kcxy 0
−kcxy

kcxx
0

0 0 kczz

 . (48)

This leads to the structure of the stiffness matrix K as given in
the proposition statement. This concludes the proof.

APPENDIX C
PROOF OF PROPOSITION 2

Let e1, e2 ∈ R3 be two orthogonal unit vectors and define e3 =
e1×e2. An arbitrary translation vector in the e1e2-plane can be
written as ō(α, β) = αe1+βe2, with α, β ∈ R, while a rotation
orthogonal to the e1e2-plane can be written as R̄(γ) = Re3

(γ),
with γ ∈ R. Let

S = {(o,R) ∈ SE(3) : (o = ō(α, β),R = R̄(γ));α, β, γ ∈ R}

be the subgroup of SE(3) of all in-plane rigid transformation in
the e1e2-plane. Let

V = {v ∈ R6 : v = [αe1 + βe2; γe3]},

that is V ⊂ R6 is the span of the 6D vectors [e1;03×1],
[e2;03×1] and [03×1; e3].
Let us consider the deformation vector h appearing in (33). By
inspecting the expression of h(H) in (33), it is straightforward
to see that

∀H ∈ S =⇒ h(H) ∈ V.

This should not be fully surprising since h(H) can be thought
of an approximation of the logarithm on SE(3), mapping the
SE(3) to its Lie algebra, sharing the same property (on its
domain of definition).
Given the above implication, it follows that V is an invariant
subspace for the linear map Dh(H) · H : R6 → R6, for any
fixed H ∈ S. We recall that Dh(H) ·H is derived in (35) and
used to compute the spring wrench (36).
Let V ∗ denote the dual vector space of V , the vector space
of wrenches generated by the 6D covectors that are dual to
[e1;03×1], [e2;03×1] and [03×1; e3]. For duality, we have that
V ∗ is an invariant subspace for (Dh(H) · H)⊤, the dual of
Dh(H) ·H, for any fixed H ∈ SE(3).
By assumption, a deformation H ∈ SE(3) such that the
translation happens in a plane which contains the z-axis (the
axis of symmetry of the spring at rest) and the rotation R is
orthogonal to that plane, must generate a force in the same
plane and a torque along the plane’s normal. Mathematically,
recalling the derivation (36), this condition just expressed in
words about the force and torque directions for any in-plane
displacement H ∈ S, can be written as

(Dh(H) ·H)⊤Kh(H) ∈ V ∗, (49)

taking e2 to be the z-axis (the axis of symmetry of the spring
at rest) and, without loss of generality, e1 to be the y-axis ( and
thus e3 being the x-axis).

Remarkably,Dh(H) ·H and thus (Dh(H) ·H)T are invertible
given the fact that h(H) is a local diffeomorphism. This, com-
bined with the invariance of V ∗ with respect to (Dh(H) ·H)⊤,
leads to the implication

(Dh(H) ·H)⊤Kh(H) ∈ V ∗ =⇒ Kh(H) ∈ V ∗.

Because H ∈ S implies that h(H) ∈ V , sticking to the
illustrative example e1 = y, e2 = z, and e3 = x, it follows
that Kh(H) must be a linear combination of the second, third,
and fourth columns of K in (21). Namely, these columns are



y → z → x ⟲
x→ 0 0 kcxx

y → ktxx
0 −kcxy

z → 0 ktzz 0
x ⟲ −kcxy 0 koxx

y ⟲ kcxx 0 0
z ⟲ 0 kczz 0

, (50)

where the symbols → and ⟲ represent translation and rotation
components, respectively. The 3 × 3 gray submatrix appearing
above represents the in-plane stiffness matrix. It is evident that
for a linear combination of the columns of (50) to be always
in V ∗, the terms kcxx

and kczz appearing in the first, fifth, and
sixth rows must then be zero. This shows that the matrix K must
have the structure (22), given in the proposition statement. This
concludes the proof.
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