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Abstract—Federated Learning (FL) is a Machine
Learning paradigm that enables training models across
distributed clients without accessing their data. In the
context of network security, FL can be used to collabo-
ratively train Intrusion Detection System (IDS) models
across multiple organizations, virtually extending the
local dataset of each participant. Among the new chal-
lenges raised by this approach, the heterogeneity of the
clients’ environments induces consequent differences in
the data distributions, and therefore contributions. Fur-
ther, identifying and mitigating malicious contributions
is made more complex in heterogeneous environments.

This tutorial introduces the audience to the principles
of FL and its application to network security, and more
specifically to build Collaborative Intrusion Detection
Systems (CIDSs) using FL. We address open challenges
on that regard, before focusing on the problem of
training on heterogeneous data. Finally, we discuss the
issues raised by using FL in the context of network
security, with a particular focus on poisoning attacks.

Index Terms—Federated Learning, Network Secu-
rity, Collaborative Intrusion Detection System, Network
Monitoring, Data poisoning.

I. INTRODUCTION

The emergence of Federated Learning (FL) has
opened new perspectives for collaborative learning
across distributed clients. The topic is particularly
relevant for the distributed system community, as it
echoes to a lot of the challenges faced in this field.

FL has emerged as a promising paradigm for col-
laborative machine learning, enabling model training
across decentralized networks while preserving data
privacy. This article delves into the fundamentals of
FL, exploring its core principles and applications
(Section II). The aim is to establish a solid foundation
for understanding the subsequent discussions on FL’s
applications in collaborative network security and the
associated security challenges.

a) Federated Learning for Collaborative Network
Security: Section III delves into the application of
FL in the realm of network security, specifically
on training Collaborative Intrusion Detection System
(CIDS) models. Addressing the challenges posed
by the heterogeneity of clients’ data, the discussion
explores strategies to ensure effective model training
in diverse network settings.

b) Security Challenges in Federated Learning:
The last part (Section IV) of this article navigates
through the security challenges inherent in deploying
and operating Federated Intrusion Detection Systems
(FIDSs). With an in-depth understanding of the dy-
namics of federations, this part browses vulnera-
bilities and potential attacks that can compromise
FL systems. Specifically, the focus is on poisoning
attacks, wherein malicious participants attempt to
subvert the global model’s integrity.

c) Hands-on: Through examples and hands-on ex-
ercises provided in the companion repository [1], the
reader should gain insights into practical implemen-
tation of FL using Flower [2], an open-source Python
framework. Hands-on activities involve constructing
a basic CIDS model using Flower and experimenting
with real-world network traffic datasets, providing
participants with practical insights into tackling the
complexities of collaborative network security using
FL. Through interactive exercises, readers could also
simulate and analyzes poisoning attacks on CIDS
models, alongside devising and testing mitigation
strategies to safeguard against such threats.

II. FUNDAMENTALS OF FEDERATED LEARNING

FL emerges at the intersection of collaborative
computing and machine learning paradigms, offering
a revolutionary approach to training models across
a distributed network of devices without centralized
data aggregation. Rooted in the concept of crowd-
sourcing, where large groups contribute or produce
goods and services, FL extends this notion to machine
learning, enabling diverse participants, from smart-
phones to IoT devices, to collaboratively improve
model performance while preserving data privacy.

The genesis of FL can be traced back to crowd-
sourcing platforms like Waze, where users collec-
tively contribute real-time traffic data, or collaborative
journalism initiatives, illustrating the power of decen-
tralized contributions. Industrializing crowdsourcing
further, FL finds applications in various domains,
marking a shift towards harnessing collective intel-
ligence for data-driven tasks.

yann.busnel@imt-nord-europe.fr
leo.lavaur@imt-atlantique.fr


Figure 1. First distribution of the model, from the server to the
participating nodes

Figure 2. Models modified by nodes, by integrating local data,
are returned to the server

In its foundation, FL addresses the limitations of
centralized machine learning by distributing the learn-
ing process across multiple nodes, each possessing
local data and processing capabilities. This distributed
approach not only enhances scalability to handle large
datasets, but also mitigates privacy concerns associ-
ated with sharing sensitive data. Thus, the motivation
for FL includes performance improvement with more
data, meaningful combination of models and local
training at node scale (and not only prediction at the
edge). By allowing nodes to collaborate on model
updates without sharing raw data, FL ensures privacy
compliance with regulations such as HIPAA and
GDPR, crucial in sensitive domains like healthcare
and advertising.

A. FL in a Nutshell

At its core, unlike traditional centralized learning
approaches, FL does not require raw data to be
uploaded to a central server. The latter transmits to the
participating nodes an initial model, usually generated
randomly (cf. Figure 1). Then, model updates are
computed locally on each device based on its data
and then shared with a central server or aggregator
(cf. Figure 2). These updates are aggregated to con-
struct a global model, which is subsequently refined
and redistributed back to the participating devices.
This iterative process continues, with each round of
communication and aggregation improving the global
model’s accuracy without compromising the privacy
of individual data.

Despite its promising potential, FL faces several
challenges, including power consumption, dropped
connections or high-latency due to stragglers. More-
over, other issues must be considered, like com-
munication overhead and privacy concerns. These

challenges necessitate robust solutions like end-to-
end encryption and secure aggregation to safeguard
data integrity and confidentiality.

B. Different Approaches of FL

Two variations of FL exists, which are tailored
to different contexts and requirements: Cross-Device
Federated Learning (CD-FL) and Cross-Silo Feder-
ated Learning (CS-FL).

Cross-device FL: In cross-device settings, the par-
ticipating devices are typically heterogeneous and
widely distributed, encompassing a massive number
of parties, such as smartphones, IoT devices, and
personal computers, potentially ranging from thou-
sands to billions, with each device possessing a small
dataset. Due to the diversity of devices and their
varying computational capabilities, cross-device FL
often encounters challenges related to limited avail-
ability, reliability, and communication overhead, but
offers scalability and adaptability, making it suitable
for scenarios where a large and diverse set of devices
collaborate on model training tasks.

Cross-silo FL: In contrast, cross-silo FL operates
within organizational boundaries or distinct data silos,
where each silo represents a separate entity or institu-
tion. Silos could correspond to different departments
within a company, independent organizations, or even
geographical regions. Unlike CD-FL, which involves
heterogeneous devices, CS-FL typically implies or-
ganization with more homogeneous capabilities and
more data to train on. Parties in cross-silo FL are
more likely to be reliable and consistently available
for participation, as they are usually institutional
entities with dedicated infrastructure and resources.
Yet, entities involved in CS-FL also tend to have
considerably greater discrepancies in terms of ob-
jectives and data-distributions, and sometimes even
model architectures. Cross-silo FL offers more con-
trol over data governance and security, as data sharing
occurs within predefined organizational boundaries,
facilitating compliance with regulatory requirements
and privacy policies.

On the other side, two paradigms of distribution
exist in the federated approach, each offering unique
advantages and challenges, catering to different use
cases and requirements.

Server-orchestrated FL: A central server coordi-
nates the training process by managing communica-
tion between participating devices and aggregating
model updates. The central server plays a pivotal role
in distributing model parameters, orchestrating train-
ing rounds, and aggregating updates from individual
devices. This approach requires global coordination
and synchronization, as all communication and aggre-
gation activities are orchestrated by the server. While
server-orchestrated FL offers centralized control and
streamlined management, it also introduces potential



single points of failure and scalability limitations due
to the server’s central role.

Fully decentralized FL: There is no central server
orchestrating the training process. Instead, devices
communicate directly with each other and perform
local model updates and aggregations independently.
Each device acts autonomously, making decisions
regarding model training, aggregation, and synchro-
nization without reliance on a central authority. This
decentralized approach eliminates single points of
failure and allows for greater scalability, as commu-
nication and computation can be distributed across a
large number of devices. However, fully decentralized
FL may face challenges related to coordination, con-
sistency, and synchronization, especially in scenarios
with a vast number of participating devices.

C. Wide Acceptance of the Paradigm

As evidenced by its exponential growth in research
(from a few dozens in the first years to thousands
of publications today) and real-world deployments,
FL stands as a burgeoning field with profound im-
plications for various industries. With open-source
libraries like PySyft and TensorFlow Federated fa-
cilitating its adoption, FL fosters interdisciplinary
collaboration, bridging machine learning, privacy, and
networked systems to shape the future of decentral-
ized intelligence.

III. FEDERATED LEARNING FOR COLLABORATIVE
NETWORK SECURITY

Artificial Intelligence (AI) can intervene at vari-
ous stages of the network security lifecycle, from
threat detection to alert correlation and triage. Deep
Learning (DL) techniques, in particular, have shown
promising results in enhancing the performance of
Intrusion Detection Systems (IDSs) by allowing for
learning more complex patterns and behaviors, and
generalizing to zero- or one-day attacks. Yet, training
DL-based IDSs requires large amounts of labeled data
to properly learn the underlying patterns of normal
and malicious behaviors. In practice, organizations
often face challenges in collecting and sharing such
data due to privacy concerns, such as sensitive infor-
mation leakage or regulatory compliance. FL offers
a compelling solution to this problem by enabling
organizations to collaboratively train IDS models
without sharing raw data.

Typical FL applications often imply cross-device
settings, with the hypothesis of a single actor trying
to learn from multiple devices without accessing
their data. The CIDS use case is slightly different,
as it usually involves multiple organizations, each
owning independent datasets and infrastructures. We
refer to CIDS leveraging FL as FIDS, as they are
federated across organizations. This context raises
new challenges, notably the heterogeneity of the data

distributions across organizations. These differences
can further vary in terms of monitored traffic (e.g.,
services, protocols, user behavior), the deployed se-
curity solutions, or even the DL models used. The last
point is particularly critical, as it prevents the direct
aggregation of models as done by FedAvg [3].

Simplifying the problem, we can consider the
case of a shared model architecture, ensuring the
applicability of most FL strategies. Yet, the data het-
erogeneity remains a significant challenge, as model
aggregation of highly heterogeneous data is already
identified as an open challenge in FL literature [4].

Previous works [5] provided a comprehensive
overview of the state-of-the-art of FIDSs, identifying
clear research directions. These challenges span over
three main axes:

(i) Transferability, adaptability, and scalability.
How to deal with a high number of clients and
constrained environments? How to learn from
heterogeneous data, or heterogeneous clients?
How to balance generalization and specialization
for model aggregation?

(ii) Security, trust, and resilience. How to resist
to poisoning and inference attacks against the
aggregated models? How to deal with untrusted
or malicious participants? How to leverage FL
to react to attacks?

(iii) Local algorithm and aggregation performance.
What is the impact of the hyper- and meta-
parameters? How to model behaviors to better
characterize traffic? How to improve the raw
performance of models?

IV. SECURITY CHALLENGES IN FEDERATED
LEARNING

The distributed nature of FIDS opens the way to
various attack vectors, ranging from poisoning attacks
to privacy breaches. The former aim at altering the
global model’s behavior, while the latter target the
confidentiality of the data used by the participants’
in training. We especially focus on the poisoning
attacks, as they are particularly relevant in the context
of FIDS [6]. Indeed, the ability to manipulate the
global model is a significant threat, as it can lead to
an overall decrease in the protected system’s security.
Rodrı́guez-Barroso et al. [7] summarizes the different
types of poisoning attacks in a fourfold taxonomy:

(i) Attack Moment: whether the attack is performed
during the training or the inference phase.

(ii) Attackers’ Objective: Targeted/Backdoor attacks
aim at specific samples or classes, modifying
the model’s behavior when subjected to specific
behaviors, while untargeted poisoning alters the
global model uniformly.

(iii) Poisoned components: depending on if the at-
tacks alters the training data or the model di-
rectly, the impact will vary.



(iv) Frequency: one-shot attacks or adaptive/iterative
ones. In the latter case, different strategies can
be adopted, e.g., increasing the percentage data
over time to slowly divert the global model of
its original local optimum.

A. Threat modeling in FL settings

Depending on the attacker’s positioning and knowl-
edge, different threat models can be considered.

Outsider vs. Insider: An outsider has no knowl-
edge of the model or the data used and cannot interact
with the system, while an insider has access to the
model and its own local data. Further, insiders can
impact the model’s behavior, and therefore the other
participants, while outsiders are limited to listening
to the communication channel.

Lone vs. Colluding Attackers: Especially in the
context of insiders, attackers can act alone or in collu-
sion to maximize their impact. This collusion can be
caused by a single entity controlling clients (Sybils)
or multiple entities sharing a common interest.

Honest-but-curious vs. malicious clients: Honest-
but-curious clients follow the protocol but try to learn
from the model or the data, while malicious clients
actively try to disrupt the system.

B. Mitigation strategies

Fortunately, the community also proposed numer-
ous mitigation strategies against adversarial attacks
targeting FL systems, and FIDS by extension. Specif-
ically, multiple works have focused on the develop-
ment of robust aggregation algorithms and contribu-
tions filtering mechanisms, which can mitigate the
effect of poisoning attacks. These strategies can be
classified into three main categories:

Server-side evaluation: the server evaluates the re-
ceived contributions on a purpose-built representative
dataset. This is mostly inapplicable in Non Identi-
cally or Independently Distributed (NIID) settings, as
building a representative dataset would imply having
access to the clients’ data-distribution.

Server-side model comparison: the server com-
pares the received contributions to a reference model,
or to each other. In the former, just as in the pre-
vious case, the absence of a single-source-of-truth
in NIID settings makes this approach difficult. By
comparing models to each other, however, the server
can detect discrepancies and identify potential ma-
licious contributions. This is the strategy leveraged
by FoolsGold [8] or FLAME [9], although with
different approaches and objectives.

Client-side evaluation: the clients are tasked to
evaluate other participants’ contributions and generate
metrics using their local dataset. This removes the
need for a single source of truth, while the metrics
act as feedbacks that can be used to feed reputation
systems.

V. CONCLUSION

In conclusion, this article has covered the fun-
damentals of Federated Learning (FL) and its ap-
plications in collaborative network security. Partic-
ipants gained insights into FL principles, practical
implementation (using the Flower framework), and
its role in training Collaborative Intrusion Detection
System (CIDS). FL offers a powerful solution for
decentralized data training while preserving privacy.
However, deploying Federated Intrusion Detection
System (FIDS) poses unique security challenges, such
as poisoning attacks. By providing knowledge and
tools to tackle these challenges, this tutorial aims to
empower researchers and practitioners in utilizing FL
for collaborative network security. Moving forward,
further research and development efforts are essential
to advance FL techniques and enhance the resilience
of FL systems against emerging threats in distributed
computing environments.
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