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Exploring Engagement in Human-Robot Interaction through the
Quantification of Human Spontaneous Movement

Isabel Casso1, Hendry Ferreira Chame2, Patrick Hénaff2,3, Yvonne Delevoye-Turell1,4

Abstract— Developments in the field of social robotics open
interesting opportunities for applications in healthcare, educa-
tion, and services. For this, studying engagement in human-
robot interaction (HRI) is crucial for improving the quality
of interactive experiences. Questionnaires are powerful in de-
scribing voluntary behavior; however, engagement is often an
implicit non-voluntary behavior that reaches awareness only
once initiated. Inspired by research in cognitive psychology,
we propose a behavioral feature to quantify engagement in
HRI through the measurement of spontaneous movement and
spectral wavelet analysis. For this, we conducted an experiment
during which participants listened to sad stories narrated by a
moving social robot. Throughout the experiment, we tracked the
participants’ spontaneous and non-voluntary sway movements
with a motion capture system. The experiments were conducted
with three robotic platforms (Buddy, Pepper, and Nao). Results
showed that spontaneous body sway can be modulated by social
robots within no-goal-oriented interaction. This opens up the
application possibility of our methodology to various modes of
HRI such as collaboration.

I. INTRODUCTION

Advances in social robotics constitute interesting opportu-
nities for applications in healthcare, education, entertainment,
and services. These robots are expected to be useful to
humans, hence studying the design properties that offer opti-
mal engagement in human-robot interaction (HRI) is crucial.
Engagement has been defined as a process by which the
perceived connection between participants in interaction is
initiated, maintained, and ended [1]. However, the definition
of engagement differs in the literature across modes of inter-
action (e.g., Human-Human (HHI), Human-Computer (HCI),
Human-Robot). In their survey, Salam and colleagues deter-
mined engagement to be dependent on emotional, cognitive,
and behavioral factors [2]. Common estimation features
across the various interaction modes may exist, specifically,
the quantification of spontaneous movement was considered
as a non-verbal behavioral feature that would offer the means
to infer human engagement. Studies in HHI have reported
that spontaneous rhythmic movements like head nodding
and body sway emerge continuously during interaction and
are triggered without individuals’ awareness [3], [4]. Human
spontaneous movements have also been quantified along
with posture to assess engagement in HRI [5], [6]. These
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HHI and HRI studies resorted to temporal motion analysis
from motion capture or video recordings, suggesting that
the quantification of spontaneous movement can serve as
an additional indicator of engagement to other non-verbal
behavioral indicators such as gaze, or face expression pro-
cessing [7], [8].

The main contribution of our work is to propose a method-
ology based on wavelet spectral analysis to quantify sponta-
neous movement as a behavioral metric that can characterize
engagement in HRI. To test our methodology, we defined a
social (i.e., no goal-oriented) face-to-face interaction experi-
ment where participants were invited to listen to sad stories
told by a robot that exhibited emotional body language.
Concurrently, their movements were tracked with a motion
capture system. We hypothesized that the presence of a robot
would affect spontaneous human sway and that spontaneous
sway during interaction would be related to the social traits
attributed to the robot. We also examined how different robot
platforms might impact participants’ spontaneous swaying
based on robots’ morphological differences and emotional
body postures. Additionally, we compared these results with
a control condition for which no robot was present.

This document is organized as follows. In Section II
related works based on spectral analysis of non-verbal be-
havior are discussed for contextualizing the proposal of our
methodology. Section III provides an algorithmic description
of our method. In Sections IV and V the experiment is
presented and the results are discussed, respectively. Finally,
in Section VII the conclusions and research perspectives of
our study are presented.

II. PREVIOUS WORKS

Within HRI, studies have considered the quantity of move-
ment as a behavioral feature to determine the level of hu-
man engagement. In [5], [6], authors quantified spontaneous
movement by computing the average motion of silhouette
pixels on video frames. A disadvantage of this method might
be the analysis of static frames, which could overlook the
dynamic changes in human motion. As studies show, humans
in interaction often exhibit sporadic and irregular movements
(e.g. ballistic motions for pointing, changes in posture),
and rhythmic movements (e.g. head nodding, body sway)
emerging at different frequencies. HHI studies have proposed
to quantify movement with spectral analysis of time series in
the frequency domain using the Fourier transform [9], [10].
A limitation of this technique is that it assumes the time
series to present a constant regular pattern, which does not



correspond to situations of irregular motion which is non-
stationary in nature. Alternatively, spectral analysis through
the wavelet transform does not require time series to be
stationary. Thus, it provides a time-frequency representation
allowing the identification of frequency components and
power spectrum magnitude at different time intervals [11].
For example, in [12] cross wavelet spectral analysis was
employed for movement coordination. In [11] interpersonal
synchrony patterns were evaluated. These studies suggest that
spectral analysis through the wavelet transform is suitable
for the quantification of movement characteristics such as
temporal variability and intensity. To summarize, inspired by
research in HHI, we propose to employ continuous-wavelet
transform analysis to quantify spontaneous movement in
HRI. We propose that the magnitude of the power spec-
trum can serve as an indicator of spontaneous movement
emergence and thus, be taken as an objective feature for
engagement inference. In the section below, we provide an
algorithmic description of our methodology.

III. MATHEMATICAL MODEL

Wavelet analysis has been applied in several fields [13].
The wavelet transform is used to analyze time series, which
contains non-stationary power at different frequencies. From
the notation proposed in [14], let the discrete signal Xn

with n ∈ [0, N) represent a sequence of measurements of
a participant’s motion (e.g. a point at the torso) with respect
to a reference frame fixed on the environment, obtained at
an equal time spacing δt. The continuous wavelet transform
of Xn is defined such that

Wn(s) =

N−1∑
i=0

Xiψ ∗
[
(i− n)δt

s

]
(1)

with η a non-dimensional parameter, s a scale factor, ∗ rep-
resenting the complex conjugate, and ψ a wavelet function,
which is taken as the Morlet wavelet, defined so

ψ(η) = π−1/4eiω0ηe−η2/2 (2)

with ω0 a non-dimensional frequency that must be taken
(usually ω0 = 6) to satisfy the admissibility condition for
a wavelet, which has zero mean and be localized in both
frequency and time-space.

The wavelet transform Wn(s) is a complex signal that
can be separated into a real part (amplitude) |Wn(s)| and
an imaginary (phase) tan−1[ℑ{Wn(s)}/ℜ{Wn(s)})]. Then,
the power spectrum can be calculated such as

P (s) = |Wn(s)|2 (3)

Sometimes in wavelet analysis it is required rectification of
bias in the wavelet power spectrum [15]. The presentation
of this problem deserves a detailed mathematical treatment
which for simplicity is not given here.

We propose the algorithm spontaneous movement engage-
ment (SME) as a behavioral metric for engagement inference
in HRI through the processing pipeline shown in Algorithm

1. The procedures referred to are presented in pseudo-formal
language in Algorithm 2 and described in detail in Section
IV.

Algorithm 1
1: procedure SME
2: A← initialize()
3: for r ∈ {Buddy,Nao,Pepper} do
4: for f ∈ {Low,Medium,High} do ▷ robot sway condition
5: Prf ← initialize()
6: for j ∈ Gr do ▷ participants exp. group Gr

7: Xrfj ← BuildSequence()
8: Prfj ←WaveletAnalysis(Xrfj)

9: Arf ← StatisticalAnalysis(Prf )
return A

Algorithm 2
1: procedure BUILDSEQUENCE ()
2: X3D

j ← acquireData() ▷ for participant j

3: X̂3D
j ← computeKinematics

(
X3D

j

)
4: X̃3D

j ← filterOutliers
(
X̂3D

j

)
5: X1D

j ← reduceDimension
(
X̃3D

j

)
6: X̂1D

j ← downSample
(
X1D

j

)
7: Xj ← filterData

(
X̂1D

j

)
8: return Xj

1: procedure WAVELETANALYSIS (Xj)
2: γ ← selectParameters()
3: Wnj(s)← computeCWT (Xj , γ) ▷ Eqs. (1), (2)
4: Pj(s)← computePS (Wnj(s)) ▷ Eq. (3)
5: P̂j(s)← scalePS (Pj(s)) ▷ see [15]

6: P̃j(s)← T−1
T∑

t=1
P̃jt(s) ▷ with experiment time T

7: if P̃j(s) < γ then ▷ test for aberrant motion
8: return P̃j(s)
9: else

10: return ∅

1: procedure STATISTICALANALYSIS
(
Prf

)
2: Arf ← N−1

j∈Gr∑
j

Prfj ▷ participants’ mean

3: Ârf ← filterBandPass(Arf ,K) ▷ with bandwidth K

4: Ãrf ← Y −1
N

Y∑
y
Ârfy ▷ mean in freq. range Y

5: return Ãrf

IV. EXPERIMENTS

A. Materials

As detailed in Table I and shown in Fig. 1, three robot
platforms were used in the experiments, having distinct
morphology, actuation modalities, and size. The software
components included: Qualysis Track Manager to obtain mo-
tion capture data of human movement, the PyCWT module
[16] was used for wavelet analysis, the library naoqi version
2.1 was used to program the robots Nao and Pepper. All
programs were developed in Python language both version
2.7 and 3.



Hardware Description
Robot
Buddy

4 degrees of freedom (DOF), 0.56 m height, a cone-like
base connected to an oval head, it has an animated face
in a touchpad on the head.

Robot
Nao

25 DOF, 0.57 m in height, presents a humanoid mor-
phology showing bipedal walk and two arms, it also has
motionless eyes and a mouth and its eyes can blink.

Robot
Pepper

20 DOF, 1.2 m tall, featuring arms and a base with no legs.
The head has eyes that emulate blinking, but the mouth
remains fixed.

Computer x64-based PC, i5-1235U processor, RAM 32 GB.
Qualisys Six infrared cameras recorded 3D motion at 200 Hz of

four reflective markers placed on the shoulders, base of
the neck, and forehead of participants (see Fig. 1A)

TABLE I: Hardware components

B. Emotional body cues of robots

Considering our task was to listen to sad stories told
by the robots, they were programmed to show behavioral
cues corresponding with a negative affective valence. As
such, the specificity of their actuation systems was carefully
considered (see Fig. 1).

Buddy was programmed to exhibit sway motion in its
sagittal plane (i.e. the plane XZ facing the human) while
showing sad facial expressions on its touchpad head. The
body morphology above the hip is relatively similar for
Nao and Pepper, hence they were programmed to sway in
a combined motion between the head and torso tilt, which
intended to imitate human cowering movements generally
associated with sadness [17]. However, there were some
differences in their behavior. Nao held its arms against the
torso, but this posture was not replicated for Pepper (see Fig.
1-B) since placing Pepper’s arms against the torso resulted
in increased mass around its center of gravity, causing the
hip’s actuators to overheat triggering warnings alarms, which
could distract participants.

Sway motion was controlled in position, from a sinusoidal
signal with a constant frequency and amplitude depending
on the robot, sampled at 20 Hz. Three periodicity levels
were selected to display different energy levels on a negative
valence [18]: Low = 8 s (0.13 Hz), Medium = 4 s (0.25 Hz),
and High = 2 s (0.5 Hz).

Three sad stories (mean length of 3 min) told in French
from a first-person perspective were written and recorded
with the text-to-speech method of Buddy supported by
ReadSpeaker. The generated voice pitch had a fundamental
frequency of 220 Hz. To control the impact of differences in
robot voice synthesis, Buddy’s generated stories were stored
and played back in Nao and Pepper.

C. Participants

Four independent groups of participants N=76 were re-
cruited (nBuddy=20, nNao=20, nPepper=21, nNo−Robot=15).
All participants were fluent in French language, undergrad
and post-grad psychology students, aged 18 to 35 years.

Participants were informed about the experiment’s general
procedure at least 24 hours before their inclusion and gave
their signed consent. All participants were naive to the
objective of the study.

x

y

z

A

B

Fig. 1: (A) Illustration of the posture adopted by participants
during the experiment. The red dots on the head, shoulders,
and base of the neck, represent the tracked markers in
relation to a fixed reference frame. (B) Emotional body
language programmed on robots Buddy (left), Nao (center),
and Pepper (right).

Fig. 2: Experimental protocol. The experiment videos are
available at: https://tinyurl.com/4nffm2dk

The experimental procedure and inclusion of participants
followed the strict code of ethics of the WMA Declaration
of Helsinki for research involving human participants.

D. Experimental protocol

We conducted experiments in which participants were
grouped for interaction with one of the three robots. As a
control condition, a group of participants listened to three
sad stories from a speaker (No-Robot condition).

The experiment structure is presented in Fig. 2. During
the introduction phase, participants were instructed to sit
on an ergonomic ball. We opted for this type of seating
to allow for a wider range of motion and enable the non-
voluntary spontaneous back-and-forth oscillation (i.e., sway)
of their body, which is often restricted by conventional chairs.
Then, participants watched a short video of 1 min duration
to contextualize the experiment.

Panel A of Fig.1 shows the posture adopted by participants
when facing the corresponding robot. During the storytelling
phase, participants were instructed to listen to the stories
told by the robot. No specific instructions were given to



participants other than to listen to the stories. Participants
were not informed either about the valence of the stories or
that the narration would be from the first-person perspective.
During the storytelling phase, the robot played the three
stories always in the same order, while displaying emotional
body cues which were counterbalanced for every participant.

The environmental conditions of the experimental room
were identical for all robots. Since Pepper is almost twice
the size of the other robots, a platform was used to elevate
the participants’ position to have an equivalent view direction
slope to the robot.

After every story narrated by the robot (Self-report phase),
participants completed the Godspeed questionnaire [19] for
the categories: anthropomorphism, likeability, animacy, and
perceived intelligence. Semantic differential scales were
used (e.g., Fake-Natural, Apathetic-Responsive, Unfriendly-
Friendly). From a pilot evaluation, we decided to exclude
the category Perceived Safety, since this category was in-
sufficiently discriminating for the small-sized social robots
considered.

E. Spontaneous Movement Engagement (SME)

This section explains in detail the procedures involved in
the proposed method SME by referring to a specific line
shown in Algorithm 2. For the BuildSequence procedure,
data was acquired at 200 Hz (line 2), and markers velocity
and acceleration were estimated (line 3). A filtering proce-
dure was applied to extract all absolute acceleration peaks
above 1000 mm/s2 so filtered points were substituted by
interpolation (line 4). Data in 3D was reduced to 1D by
tacking the Euclidean distance between consecutive acqui-
sitions of the torso’s estimated location (line 5). Data was
then down-sampled from 200 Hz to 25 Hz (line 6). A third-
order Butterworth low-pass filter with a cutoff frequency
of 11 Hz to the 3D was applied, followed by a highpass
third-order Butterworth filtering with a threshold of 0.03 Hz
to remove the low-frequency trend (line 7). The resulting
data from previous steps correspond to the motion sequence
for participant j. The Morlet mother wavelet was chosen
with ω0 = 6 (see Eq. (2)). The procedure WaveletAnalysis
involved selecting the wavelet transform parameters (line 2).
To calculate the transform in Eq. (1) (line 3), we used the
method wavelet.cwt of the module PyCWT, with parameters:
time step dt = 0.05, starting scale s0 = 0.25, time
increment between scales dj = 0.08 sec, and the number
of powers of two with dj sub-octave intervals J = 100.
The wavelet coefficients were then squared to obtain the
wavelet power spectrum (PS) conforming to (3) (line 4).
To correct for the effects of the wavelet transform on the
PS, the latter was multiplied by the inverse of the scale at
each frequency (see [15]) and by a scaling factor (line 6).
Only sway movements were quantified (i.e., rocking back
and forth), while posture corrections such as stretching were
not taken into account in this analysis. Participants who
exhibited excessive movements during the adaptation period
of the introduction phase (see Fig. 2) were excluded from
the experiment (with threshold γ = 0.6, see line 7).

For the procedure StatisticalAnalisys, the power spectra for
participants were averaged according to the robot condition
(Buddy, Nao, Pepper, No robot) and robot sway periodicity
condition (Low, Medium, High). We calculated the local
minima of the PS to identify the significant frequency
windows for the bandwidth filter [20]. The parameter K (see
line 4) was selected so 90% of the PS was contained in the
passing bandwidth.

V. RESULTS
Results are presented for the spontaneous movement

quantification according to Algorithm 1, followed by the
participants’ responses to the Godspeed questionnaire.

A. Spontaneous human movement
Fig. 3 presents an example of the procedure WaveletAnal-

ysis (see Algorithm 2) applied to participants who displayed
spontaneous sway motion. In Fig. 4 we present an example
of the operation filterBandPass (line 3), to determine the
bandwidth for statistical analysis. Our analysis determined
that SME tended to be higher when all robots moved at an
8s periodicity (0.13 Hz) in the sagittal plane.

A one-way ANOVA analysis indicated that the robot’s
sway motion globally exerted an influence on human sponta-
neous motion (F(2,31) = 6.06, p = .006, η2p =0.28). A Tukey
posthoc analysis confirmed that the spontaneous movement
of participants who interacted with Buddy had higher SME
than those who interacted with Pepper (t = 1.91, p = .035)
and Nao (t = 3.43, p = .005).

Concurrently, those who interacted with Pepper had higher
SME than those who interacted with Nao (t= 2.74, p = .006).
The post-hoc analysis did not reveal a statistical difference
between the group that did not interact with a robot and the
robot groups. Specifically, the no-robot group demonstrated
higher SME variability among the three groups (M = 0.10,
SD = 0.14), and tended to be lower than the Buddy group
(M = 0.15, SD = 0.10) (t = -0.95, p = 0.77). The no-robot
group tended to have higher SME than the Nao group (M =
0.06, SD = 0.03) (t = 1.59, p = 0.39), and than the Pepper
group (M = 0.09, SD = 0.03) (t = 0.89, p = 0.81).

B. Robot social traits
A one-way ANOVA determined an interaction of God-

speed categories and Robots (F(5,33) = 5.9, p = < .001, η2p
=0.16). A Tukey posthoc test revealed statistical differences
in all categories except for Anthropomorphism. We found
Buddy (t = 7.42, p = < .001) and Pepper (t = 6.12, p =
< .001) were perceived to be more animated than Nao, as
shown in Fig. 5. As for the Likeability category, Buddy (t
= 7.13, p = < .001) and Pepper (t = 7.85, p = < .001)
were perceived to be more likable than Nao. Finally, in the
Perceived Intelligence category, Buddy (t = 8.07, p = < .001)
and Pepper (t = 8.52, p = < .001) were perceived to be more
intelligent than Nao. Table II presents mean results for each
category and robot.

In Fig. 6, we present the correlation matrix showing the
relationship between the Godspeed categories, robot size, and
Spontaneous Movement engagement (SME).



Fig. 3: Movement analysis examples. The upper panel of
each figure presents the relative 3D position of the reflective
motion marker in mm. The lower panel shows the power
spectra heat map, where high and low power spectra are
highlighted by bright and dark colors, respectively. High-
power spectra indicate more and larger movements, while
low-power spectra indicate an inhibition or absence of move-
ment.

Fig. 4: Local minima identification example. Red and green
dots correspond to the local minima in the mean and standard
deviation curves of the power spectra, respectively. The
dotted lines indicate the limits of the selected bandwidth for
statistical analysis [20].

Category Buddy Nao Pepper
M (SD) M (SD) M (SD)

Animacy 3.3 (0.48) 2.26 (0.44) 3.29 (0.5)
Likeability 3.14 (0.73) 2.1 (0.46) 2.89 (0.63)
Perceived intelligence 3.41 (0.78) 2.24 (0.43) 3.36 (0.75)

TABLE II: Mean scores for Godspeed social trait categories.

VI. DISCUSSION

The social traits attributed to Buddy and Pepper were
higher than Nao’s, which could suggest a preference for
either a small non-humanoid robot with animated facial
expressions or a preference for a bigger humanoid robot,

Fig. 5: (A) Results on the Animacy, Likeability, and Per-
ceived Intelligence of the Godspeed questionnaire. Boxplots
represent each robot. (B) SME from left to right: No-robot,
Buddy, Nao, and Pepper. ∗p < .05, ∗∗p < .01, ∗∗∗p < .001

Fig. 6: Correlation matrix of the four Godspeed categories,
robot size, and the SME of humans.

within social interaction with a negative (i.e., sad) context.
Our results on human movement show that an 8s periodicity
(Low condition) of robot movement has the potential to
trigger spontaneous sway in participants without them being
aware, while the other two periodicities (2s and 4s, for
Medium and High conditions, respectively) seemed to have
an inhibitory effect on SME. Significant differences in SME
(see Fig. 5) indicate that Buddy elicited more spontaneous
movement than the other robots. Comparing the figures of
robot social traits and spontaneous movement (Part A and
B of Fig. 5, respectively) we observed both Buddy and
Pepper groups exhibited higher Godspeed scores and more
spontaneous movement compared to the Nao group. Even if
no statistical differences were found between the SME of
the robot groups and the no-robot group, the latter tended to
present a higher variability which could be explained by the
lack of a visual anchor during the storytelling phase. Also,
a possible explanation for Nao’s low SME and Godspeed
scores could be attributable to factors such as the negative
interaction context and its small humanoid morphology, as
some participants tended to characterize it as a distressed



child. We observed a strong positive correlation between
human movement and Animacy, Likeability, and Perceived
Intelligence in Fig. 6. We found a strong positive correlation
between SME and the Anthropomorphism category, suggest-
ing that more anthropomorphized robots lead to increased
spontaneous movement in participants. Furthermore, we no-
ticed a moderate negative correlation between Anthropomor-
phism and robot size, indicating that smaller robots tended
to be more anthropomorphized, which may have influenced
participants’ behavior. This can be explained by the fact that
Nao has arms, legs, and a torso while Buddy has animated
eyes and mouth.

VII. CONCLUSION

Our study has provided evidence that the quantification of
human spontaneous movement during HRI is a non-invasive
technique that can be used as a non-verbal behavioral feature
for engagement inference. This method is complementary to
other features such as gaze and facial expression analysis.
Our results on human sway complemented the perceived
social traits of the robots and revealed behavioral differences
between groups. Results also showed that spontaneous move-
ment can be modulated by the presence of social robots,
in a face-to-face no-goal-oriented interaction. We reported
that some categories in the Goodspeed questionnaire were
perhaps redundant for estimating engagement, thus as a
next step we plan to employ a more comprehensive tool
(e.g., RoSAS [21]). Also, a larger experimental sample with
non-university members should be studied to strengthen our
results. We also acknowledge a potential confounding factor,
such as the presence of an animated face on Buddy, which
suggests the need to include another robot with animated
facial expressions (e.g. Furhat). Finally, more research is
required to explain the variability of sway in the no-robot
group. Considering that context has been reported to influ-
ence engagement, we do not disregard the potential impact of
the negative context on participants. Additional data shows
that participants experienced lower valence and arousal after
the experiment, and all groups perceived the stories as sad.
Therefore, we aim to investigate how a positive interaction
can affect SME. Although our methodology was applied in a
listening task with no goal, we consider that our methodology
has the potential to be applied to other modes of HRI (e.g.,
collaboration, guide-and-follow). In future studies, we plan
to test the proposed metric in engagement inference where
the robotic system adapts its movement to the SME of
humans in real-time, instead of having established body cues.
We hypothesize engagement will be stronger as the robotic
system will simulate behavioral dynamics observed in HHI.

ACKNOWLEDGMENT

This work was funded by the 80-Prime 2021 program
financed by CNRS granted to YDT. We thank the CNRS
Federation (FR CNRS 2052 SCV), Equipex+ Continuum as
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