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Abstract: Rapid serial visual presentation (RSVP) is currently a suitable gaze-independent paradigm
for controlling visual brain–computer interfaces (BCIs) based on event-related potentials (ERPs),
especially for users with limited eye movement control. However, unlike gaze-dependent paradigms,
gaze-independent ones have received less attention concerning the specific choice of visual stimuli
that are used. In gaze-dependent BCIs, images of faces—particularly those tinted red—have been
shown to be effective stimuli. This study aims to evaluate whether the colour of faces used as
visual stimuli influences ERP-BCI performance under RSVP. Fifteen participants tested four condi-
tions that varied only in the visual stimulus used: grey letters (GL), red famous faces with letters
(RFF), green famous faces with letters (GFF), and blue famous faces with letters (BFF). The results
indicated significant accuracy differences only between the GL and GFF conditions, unlike prior
gaze-dependent studies. Additionally, GL achieved higher comfort ratings compared with other
face-related conditions. This study highlights that the choice of stimulus type impacts both perfor-
mance and user comfort, suggesting implications for future ERP-BCI designs for users requiring
gaze-independent systems.

Keywords: brain-computer interface (BCI); event-related potential (ERP); rapid visual serial
presentation (RSVP); stimulus; speller

1. Introduction

A brain–computer interface (BCI) grounded in event-related potentials (ERPs) can
serve as assistive technology (AT), empowering individuals to interact with their sur-
roundings solely through brain signals [1]. Beyond ERP-BCIs, various other ATs exist for
communication purpose, encompassing eye-tracking systems, head-pointing devices, and
low-pressure sensors [2]. Nevertheless, specific injuries or ailments, such as amyotrophic
lateral sclerosis (ALS), can compromise muscular function and even eye movements, ren-
dering some of these ATs less effective [3]. Consequently, in cases of profound motor
limitations, many conventional AT solutions may lose their utility due to their reliance on
muscular pathways that could be impaired in patients [4,5]. This underscores the potential
of ERP-BCIs as a promising alternative in severe instances of muscular control impairment.
In addition to other applications such as home appliance control [6], one of the most devel-
oped applications for these patients is spellers, systems that enable verbal communication
through letter selection for constructing words and sentences [7].

ERPs manifest as alterations in the brain’s electrical activity voltage are induced by the
perception of specific events. These events encompass external stimuli delivered through
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various sensory channels, including visual, auditory, or tactile stimuli [8]. For the purposes
of this study, we have opted for the visual modality. As outlined by Allison et al. [8], this
modality typically yields superior outcomes in the context of ERP-BCI control. Furthermore,
the visual modality can be effectively employed in specific presentation paradigms, even
when the user lacks control over their gaze. One such paradigm that does not necessitate
ocular mobility is the rapid serial visual presentation (RSVP) [9]. Below, we elucidate the
utilisation of RSVP for controlling a visual ERP-BCI.

The key characteristic of RSVP lies in its sequential display of visual stimuli, presented
one after another, all within the same spatial location. In the context of operating a visual
ERP-BCI, various visual stimuli are shown to the user, who must focus on a specific one.
Directing attention to the intended stimulus, such as a letter in a spelling application, elicits
a distinct brain electrical signal compared to signals associated with unintended stimuli.
Therefore, the primary objective of an ERP-BCI is to differentiate between the desired or
attended stimulus (referred to as the target) and the undesired or non-attended stimuli
(known as non-targets) based on the user’s brain activity. The key component utilized
by these systems is the P3 signal, also known as P300. This signal signifies a positive
peak in the brain’s electrical activity, typically occurring around 300–600 ms following
the presentation of an expected stimulus to the user [10]. However, ERP-BCI applications
commonly incorporate a broader range of ERPs within this timeframe (e.g., P200, N200,
or a late positive potential). Essentially, any signal aiding in distinguishing the attended
stimulus (target) from the unattended ones (non-targets) will be integrated within the
specified time interval (e.g., 0–800 ms after stimulus onset) [11,12].

As highlighted previously, the target audience for a visual ERP-BCI may include
individuals who have lost the ability to control their eye movements. Consequently, it is
crucial to customize the interfaces provided to these users according to their capabilities.
Importantly, performance can significantly decline when users are unable to shift their gaze
towards stimuli [13,14]. Therefore, employing paradigms that do not rely on eye control
to achieve satisfactory performance, such as the RSVP paradigm, can be advantageous.
Additionally, prior studies have shown that various factors, such as (i) the spatial arrange-
ment of stimuli [15], (ii) the duration of stimulus presentation [16], or (iii) the selection of
stimulus type [17], influence performance levels.

The selection of stimuli in an ERP-BCI has been extensively investigated, particularly
in gaze-dependent paradigms such as matrix-based ones where stimuli are dispersed
across different locations within the matrix. One of the most commonly used matrix-based
paradigms is the row-column paradigm (RCP) [18]. In the RCP, rows and columns are
highlighted sequentially from grey to white. To choose a character, the user focuses on
the flashing of a specific target character, which acts as the task-relevant stimulus that
triggers the ERP component, such as P300. Once the ERP is associated with a particular
row and column, the BCI can infer the user’s intended character. In these matrix-based
paradigms, images of faces have consistently proven to be highly effective stimuli [19].
Building on this trend, recent research has explored how even the colour of these faces
can impact performance. Notably, Li et al. [20] demonstrated that semi-transparent green
faces outperformed regular-coloured, semi-transparent faces. Subsequently, Li et al. [21]
investigated the influence of using semi-transparent faces of different colours—blue, green,
and red—superimposed on the letters. That study revealed that red faces yielded better
results compared with green and blue faces. However, it is crucial to recognise that the
performance outcomes and stimulus preferences observed in matrix-based paradigms
may not necessarily hold true in the RSVP paradigm [22]. Consequently, it becomes
intriguing to investigate whether the observed impact of face colour on performance can be
replicated under the RSVP modality. Therefore, the objective of this study is to reproduce
the experiment proposed by Li et al. [21]—which, to our knowledge, presents the latest
advance in terms of stimuli with better performance in a matrix-based paradigm—but
within the context of the RSVP paradigm.
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In conclusion, RSVP stands out as a viable gaze-independent control paradigm em-
ployed in the field of BCIs, particularly when users lack oculomotor control. Nevertheless,
the impact observed in previous studies regarding the colour of faces used as visual stimuli,
which primarily pertains to gaze-dependent paradigms, remains unexplored within the
context of RSVP. Therefore, investigating the influence of stimulus type on performance in
an ERP-BCI under RSVP holds the potential to make a noteworthy contribution to the field.

2. Methods
2.1. Participants

This study included 15 healthy French-speaking participants (aged 26.87 ± 11.32,
10 women and 5 men, identified as P01 to P15). Each participant possessed either normal
vision or vision corrected to normal, and they all gave written consent. Approval for the
study was obtained from the Ethics Committee of the University of Malaga, and it adhered
strictly to ethical guidelines. None of the individuals had a prior history of neurological or
psychiatric disorders, nor were they taking any medication that could potentially impact
the experiment. Prior to commencing the study, all participants were briefed on the
experimental protocol and were given the freedom to withdraw from participation at
any point.

2.2. Data Acquisition and Signal Processing

The electroencephalographic (EEG) data were recorded using specific electrode posi-
tions based on the 10/10 international system, including Fz, Cz, Pz, Oz, P3, P4, PO7, and
PO8. These channels were referenced to the right earlobe, while FPz served as the ground.
Signal amplification was conducted using a 16-channel gUSBamp amplifier (Guger Tech-
nologies GmbH, Schiedlberg, Austria). The amplifier was configured with a bandpass filter
spanning 0.1 to 60 Hz, a 60 Hz notch filter activated, and a sensitivity set to 500 µV. EEG
signals were digitized at a sampling rate of 256 Hz. To manage EEG data acquisition and
processing, this study employed the UMA-BCI Speller software (v0.45) [23], an open-source
BCI speller application developed by the UMA-BCI group (https://umabci.uma.es). This
software is built upon the widely recognised BCI2000 platform (v3.0.5) [24], ensuring relia-
bility. The UMA-BCI Speller simplifies the configuration and usage of BCI2000, providing
a more user-friendly interface. This study utilized a stepwise linear discriminant analysis
(SWLDA) approach on EEG data, akin to the methodology employed in developing a BCI
speller using BCI2000. The SWLDA facilitated feature extraction, classifier weight deter-
mination, and accuracy assessment. In this context, features represent signals at specific
EEG channels and time points following the stimulus. A comprehensive description of the
SWLDA algorithm is available in the P300Classifier user reference [25], where it is outlined
as a process “to derive a final linear model that approximately fits a dataset (stimulus) by
employing multiple linear regressions and iterative statistical methods, thereby selecting
only significant variables for inclusion in the final regression”. The default configuration
was applied, setting the maximum number of features to 60 and maximum p-values for fea-
ture inclusion or exclusion at 0.1 and 0.15, respectively. The default time interval analyzed
was 0–800 ms post-stimulus presentation. Subsequently, subject-specific weights for the
classifier were obtained through this analysis, and the classifier was then applied to the
EEG data to determine the item each subject attended to.

2.3. Experimental Conditions

In this study, four different RSVP paradigms have been assessed, each distinguished
by the type of stimulus employed in accordance with those used by Li et al. [21]: (i) grey
letters (GL), (ii) semi-transparent grey letters with a red famous face (RFF), (iii) semi-
transparent grey letters with a green famous face (GFF), and (iv) semi-transparent grey
letters with a blue famous face (BFF) (Figure 1). Each paradigm displayed six distinct letters
(A, E, I, N, R, and S, in Arial font), which were utilised for word formation during the
experiment. This specific number of letters was chosen to ensure that the target selection

https://umabci.uma.es
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time remained manageable, as the primary goal was to validate these diverse sets of stimuli
for communication purposes within the RSVP framework. These letters were deliberately
selected to facilitate both calibration and real-time writing tasks, aligning with prior studies
that employed a similar number of elements to test hypotheses [17,22]. As a stimulus, the
famous face of David Beckham was utilised, a choice consistent with previous studies [20].
The dimensions of the stimuli were standardised, with letters measuring approximately
6 × 6 cm (using the letter “N” as a reference) and faces spanning around 6 × 8 cm. The
interface background was set to black, and the stimuli were presented centrally on the
screen. Additionally, at the top of the screen, both the letters available for selection and
those already chosen were indicated. Each stimulus was centrally displayed on the screen
for 187.5 ms, with an inter-stimuli interval (ISI) of 93.75 ms, resulting in a stimulus onset
asynchrony (SOA) lasting 281.25 ms. The time taken to complete a sequence (comprising
the presentation of each stimulus) was 1687.5 ms. Each trial consisted of several sequences
(fixed at 10 in the calibration task and variable in the online task, as explained in Section 2.4).
Therefore, the flashing of stimuli lasted 1687.5 ms multiplied by the number of sequences
used. Before starting a trial, there was a pause of 4000 ms, as well as another pause of
875 ms at the end of it. Thus, between one selection and the commencement of the next
(i.e., between completed sets of sequences) there was a total pause of 4875 ms.
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Figure 1. Stimuli used for each condition in the present experiment: grey letters (GL), semi-
transparent grey letters with a red famous face (RFF), semi-transparent grey letters with a green
famous face (GFF), and semi-transparent grey letters with a blue famous face (BFF). Due to copyright
restrictions, David Beckham’s face shown in the figure has been pixelated, unlike in the experiment.

2.4. Procedure

A within-subject design was used, ensuring that all participants experienced all exper-
imental conditions (Figure 2). The entire session lasted approximately 90 min. To prevent
potential biases like learning or fatigue, the order of the paradigms was counterbalanced
among the participants. Each condition comprised two BCI tasks: (i) an initial calibration
phase aimed at capturing the user-specific signal patterns, during which no feedback was
provided, and (ii) an online phase, where participants actively controlled the interface.
Both phases involved the task of composing four-letter French words. Finally, in a sub-
jective questionnaire phase, the participants were required to respond to items related to
their opinion regarding the control experience during the just-completed condition. In
the calibration phase, the participants wrote four words (“ASIE”, “REIN”, “NIER”, and
“SAIN”), totalling 16 letter selections. In the online phase, participants were required to
write three different words chosen freely (although the following four were suggested:
“ANIS”, “AIRE”, “REIN”, and “SERA”), resulting in 12 letter selections. The participant
had to indicate before starting the writing which word they wanted to spell out. In the
event of an erroneous letter selection during the online phase, the participant proceeded to
the next letter. There were short breaks between words in both phases, with the duration
varying based on the participant’s preference. During the calibration phase, the number
of sequences, representing how frequently each stimulus was presented, was fixed at 10.
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Conversely, for the online phase, the number of sequences employed for character selection
corresponded to the instance in which the participant achieved the second-highest consecu-
tive accuracy results in the calibration task. In instances where the maximum accuracy was
not repeated consecutively or only occurred once, the first-best sequence was chosen.
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letters, GL; red famous face with letter, RFF; green famous face with letter, GFF; and blue famous face
with letter, BFF) was counterbalanced between the participants. Likewise, the order of presentation
of the stimuli in each sequence was random, without replacement.

2.5. Evaluation

Several variables were analyzed to assess how the choice of stimulus in each experi-
mental condition influenced letter selection performance, subjective user experience, and
the EEG signal’s ERP waveform.

2.5.1. Performance

To assess the impact of the RSVP paradigm and stimulus type on online performance,
two parameters were utilised: (i) accuracy (%), which represents the proportion of correctly
selected letters; and (ii) the information transfer rate (ITR, bit/min), which aims to assess
the communication speed of the system (e.g., Li et al. [21]). The ITR considers accuracy, the
number of elements available on the interface, and the time required to select one element:

ITR =
log2 N + Plog2 P + (1 − P)log2

1−P
N−1

T
,

where P represents the system’s accuracy, N denotes the number of elements accessible in
the interface, and T signifies the time required to complete a trial (i.e., select an element).
The ITR calculation did not account for the pauses between selections.

2.5.2. ERP Waveform

To examine the impact of different experimental conditions on ERPs, the relative
amplitude of target and non-target stimuli as well as the amplitude difference between
them during the calibration phase were explored. This amplitude difference, previously
utilised as a metric [20,26], provides valuable insights into the ERP paradigm, especially
when a target stimulus competes with non-target stimuli. Thus, to study the different effects
of target and non-target stimuli, measuring the amplitude difference is considered more
convenient than directly assessing the target stimulus’s amplitude. The evaluation covered
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a time interval spanning −200 to 1000 ms, with a baseline period from −200 to 0 ms. Data
artefacts were rectified by using the artifact subspace reconstruction (ASR) algorithm with
default settings in EEGLAB (v2022.1), coupled with the Riemannian distance [27]. The
ASR is a “non-stationary method based on a PCA [principal component analysis] window,
dedicated to automatically detecting and removing artifacts” [28]. Additionally, a low-pass
filter at 30 Hz was applied.

2.5.3. Subjective Items

Three specific variables related to the user’s perception of the control experience
were collected at specific points during the experiment. First, the participants rated their
perceived level of fatigue on a scale from 0 (no fatigue) to 5 (high fatigue) after using each
condition. Second, the participants rated letter visibility on a scale from 0 (not visible at
all) to 5 (completely visible). Third, the participants ordered the conditions based on their
level of comfort experienced, with this ranking completed at the end of the session after
experiencing all conditions. The scoring for comfort ranged from 1 to 4 (the number of
experimental conditions), with higher scores indicating greater comfort with the condition.

2.5.4. Statistical Analyses

We used the tidyverse package [29] in R [30] to examine how stimulus type affected
each variable related to performance or subjective items. For each variable, we initially
conducted an analysis encompassing all conditions involved. If significant differences were
found, pairwise comparisons between specific conditions were performed. Parametric
methods were employed for statistical analysis when the variables’ distributions met the
normality criterion: analysis of variance (ANOVA) for comparing means of three or more
conditions and paired t-tests for comparing means of two specific conditions. However,
when the normality assumption was violated, non-parametric methods were employed:
the Friedman test as an alternative to ANOVA and the Wilcoxon signed-rank test as an
alternative to the Student’s t-test. To mitigate the risk of false positives (i.e., rejecting
the null hypothesis when it is true) arising from multiple comparisons, we applied the
Bonferroni correction method.

Additionally, for the analysis of the ERP waveform, we utilized the EEGLAB software
(v2022.1) [31] to conduct permutation-based (non-parametric) statistics. This involved
comparing the amplitudes of target and non-target stimuli, as well as the amplitude
difference between them, across all channels for each paradigm. To account for multiple
comparisons across channels and intervals simultaneously, these analyses were corrected
using the false-discovery rate (FDR) method [32].

3. Results
3.1. Performance

Table 1 presents the number of sequences utilised, the accuracy, and the ITR for
each participant and condition during the online task. The average number of sequences
employed was as follows: GL, 4.87 sequences; RFF, 5.33 sequences; GFF, 5.53 sequences; and
BFF, 4.73 sequences. The average accuracy for each condition was as follows: GL, 83.3%;
RF, 87.2%; GFF, 96.1%; and BFF, 88.3%. Lastly, the average ITR for each condition was as
follows: GL, 14.2 bit/min; RFF, 14.2 bit/min; GFF, 17.7 bit/min; and BFF, 16.1 bit/min. The
statistical analysis revealed significant differences in terms of accuracy between conditions
(χ2(3) = 12.4; p = 0.006). Specifically, the GFF condition exhibited higher accuracy than
the GL condition (p = 0.032). However, neither the number of sequences (χ2(3) = 0.508;
p = 0.917) nor the ITR (F(3, 42) = 1.816; p = 0.159) differed significantly based on the type of
stimulus used.



Sensors 2024, 24, 3315 7 of 16

Table 1. The results for each participant in the metrics related to online performance for the variables
number of sequences, accuracy (%), and the information transfer rate (ITR, bit/min) for the different
experimental conditions (GL, grey letters; RFF, red famous face with letter; GFF, green famous face
with letter; and BFF, blue famous face with letter).

Participants
Number of Sequences Accuracy (%) ITR (bit/min)

GL RFF GFF BFF GL RFF GFF BFF GL RFF GFF BFF

P01 7 5 5 3 100 91.67 100 91.67 13.13 14.06 18.38 23.44
P02 4 8 7 4 91.67 100 100 83.33 17.58 11.49 13.13 13.76
P03 5 5 6 3 83.33 66.67 91.67 41.67 11.01 6.35 11.72 2.97
P04 3 6 3 3 91.67 100 100 100 23.44 15.32 30.63 30.63
P05 4 4 4 5 50 75 83.33 91.67 3.769 10.61 13.76 14.06
P06 3 4 5 5 100 83.33 100 100 30.63 13.76 18.38 18.38
P07 4 4 3 4 100 100 100 100 22.98 22.98 30.63 22.98
P08 4 4 6 7 75 91.67 100 100 10.61 17.58 15.32 13.13
P09 5 10 10 7 83.33 83.33 83.33 83.33 11.01 5.504 5.504 7.86
P10 10 9 9 10 66.67 66.67 100 91.67 3.17 3.53 10.21 7.03
P11 3 3 3 4 100 100 100 100 30.63 30.63 30.63 22.98
P12 6 3 4 5 91.67 75 100 75 11.72 14.14 22.98 8.485
P13 3 6 5 5 50 91.67 100 91.67 5.025 11.72 18.38 14.06
P14 7 3 5 3 91.67 91.67 100 91.67 10.05 23.44 18.38 23.44
P15 5 6 8 3 75 91.67 83.33 83.33 8.485 11.72 6.88 18.35

Mean 4.87 5.33 5.53 4.73 83.33 1 87.22 96.11 1 88.33 14.22 14.19 17.66 16.1
SD 1.89 2.12 2.09 1.91 16.39 11.33 6.71 14.53 8.64 6.97 7.88 7.42

1 Significant differences (p < 0.05) have been found between the averages of these two conditions (GL and GFF)
in accuracy.

3.2. ERP Waveform

Figure 3 presents the signal related to target and non-target stimuli as well as the
amplitude difference between the two types of stimuli. Both target and non-target stimuli
show a consistent visual evoked potential (VEP) approximately every 285 ms, which
coincides with the SOA applied in the experiment and is particularly pronounced in
channels related to occipital regions (PO7, PO8, and Oz). Therefore, it can be stated
that this VEP corresponds to the mere presentation of each stimulus in the interface;
the signal of the target stimulus is also affected by this VEP because a target stimulus
is temporally surrounded by non-target stimuli. However, for target stimuli, there is a
particularly pronounced potential around 500 ms, which could be interpreted as P300. This
interpretation is further supported when observing the signal related to the amplitude
difference, where the effect of VEPs is nullified. Therefore, this potential could be crucial in
assisting the classifier in discriminating between different types of stimuli to determine
to which the user is attending. For the amplitude difference, we observed a negative
component around 350–450 ms in occipital channels, which could be interpreted as a
potential N200 component [33]. It is also worth noting that both N200 and P300 exhibited
a shorter latency in the GL condition, which resulted in significant differences in the plot
related to the amplitude difference around 350–550 ms for most of the recorded channels.

Additionally, various analyses have been conducted, and their corresponding figures
have been added as Supplementary Materials. Firstly, an analysis was performed to
compare the target signal of each stimulus against the non-target signal (Figure S1). This
analysis corroborates the observations made through the amplitude difference graphs
in Figure 3: the segments with the most significant differences between target and non-
target signals occurred during the time interval associated with the P300 component
across all recorded channels, as well as a possible N200 component for channels located
in the occipital region (PO7, PO8, and Oz). Furthermore, for the amplitude difference, we
conducted multiple comparison analyses between each pair of conditions: GL versus RFF
(Figure S2), GL versus GFF (Figure S3), GL versus BFF (Figure S4), RFF versus GFF (Figure
S5), RFF versus BFF (Figure S6), and GFF versus BFF (Figure S7). These analyses revealed
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that the greatest difference in amplitude between condition pairs was observed between GL
versus RFF and GFF. These findings suggest that latency in the letter condition is shorter
for both the P300 and N200 components.
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3.3. Subjective Items

Table 2 displays the results concerning subjective items related to fatigue, letter visibil-
ity, and comfort. The average fatigue for each condition was GL, 2.47 points; RF, 2.93 points;
GFF, 2.8 points; and BF, 3 points. The average visibility of stimuli for each condition was GL,
3.67 points; RFF, 2.93 points; GFF, 2.8 points; and BFF, 2.6 points. Lastly, the comfort level for
each condition was GL, 3.67 points; RFF, 2 points; GFF, 2 points; and BFF, 2.33 points. First,
the analyses did not reveal significant differences in fatigue (F(3, 42) = 2.031; p = 0.124).
This implies that the type of stimulus utilized does not conclusively affect the level of
fatigue experienced by participants. Second, although the employed analysis indicated
significant differences among the conditions regarding visibility (χ2(3) = 9.02; p = 0.029),
post hoc multiple comparisons did not reveal any significant findings. Finally, the analysis
concerning the comfort variable showed a significant influence of the type of stimulus used
(χ2(3) = 17; p < 0.001). Thus, in this context, it appears that the type of stimulus employed
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indeed influenced the participant comfort levels during system control. Specifically, there
were significant differences between the GL condition and those with faces (RFF, p = 0.045;
GFF, p = 0.017; BFF, p = 0.028). Therefore, it appears that the use of faces decreases the
comfort level during the interface usage.

Table 2. The results for each participant in the metrics related to subjective items for the variables
fatigue, the visibility of the letters within the visual stimuli, and comfort for the different experimental
conditions (GL, grey letters; RFF, red famous face with letter; GFF, green famous face with letter; and
BFF, blue famous face with letter).

Participants
Fatigue Visibility Comfort

GL RFF GFF BFF GL RFF GFF BFF GL RFF GFF BFF

P01 3 3 3 4 4 3 3 3 4 3 2 1
P02 2 2 1 1 4 3 2 2 4 1 2 3
P03 2 2 2 2 2 4 3 4 4 2 1 3
P04 2 2 3 2 4 3 2 2 4 2 1 3
P05 2 3 2 4 4 3 3 2 4 3 1 2
P06 4 4 4 3 4 3 3 4 4 1 2 3
P07 1 1 2 2 4 4 3 4 1 4 2 3
P08 3 5 5 4 4 2 0 0 4 3 2 1
P09 1 1 1 2 4 3 4 4 3 1 4 2
P10 4 4 3 5 4 2 3 2 3 2 4 1
P11 3 3 3 3 3 1 4 1 4 2 1 3
P12 2 4 3 4 4 4 1 3 4 1 2 3
P13 3 3 2 2 3 3 4 4 4 2 3 1
P14 1 2 3 3 4 4 3 3 4 1 2 3
P15 4 5 5 4 3 2 4 1 4 2 1 3

Mean 2.47 2.93 2.8 3 3.67 2.93 2.8 2.6 3.67 1 2 1 2 1 2.33 1

SD 1.06 1.28 1.21 1.13 0.62 0.88 1.15 1.3 0.82 0.93 1 0.9
1 Significant differences (p < 0.05) have been found among the averages of the four conditions, with the comfort
reported by participants in GL significantly higher than the other three conditions (RFF, GFF, and GFF).

4. Discussion

The aim of this work was to explore the effect of face colour—previously studied in
matrix-based paradigms—on an ERP-based BCI under RSVP. We analyzed three dimen-
sions: (i) performance, (ii) ERP waveform, and (iii) subjective items. In this section, we
discuss the results for each dimension in the context of the previous literature.

4.1. Performance

The average performance of the conditions was >80% accuracy and >14 bit/min, which
reflects quite positive results in the context of gaze-independent ERP-BCI spellers [34]. In
fact, the GFF condition achieved an accuracy of 96.1% and an ITR of 17.7 bit/min. It is
challenging to contextualise the results obtained in the present study with those from the
previous literature due to the use of different paradigms or experimental specifications
(e.g., SOA). However, Ron-Angevin et al. [35] used the same configuration to explore the
use of three types of stimuli under RSVP: white letters, natural-coloured famous faces
without a letter, and pictures without a letter. The results of that study were similar to our
findings (Table 3). The GFF condition of the present study and the famous face condition of
Ron-Angevin et al. [35] stand out in terms of the ITR: they were the only conditions with
an accuracy > 90% and an ITR > 17 bit/min.
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Table 3. Online performance results of Ron-Angevin et al. [35] and the present work; both using a
similar brain–computer interface (BCI) based on event-related potentials (ERPs) under rapid serial
visual presentation (RSVP).

Study Condition Accuracy (%) ITR (bit/min)

Ron-Angevin et al. [35]
White letters 85.24 13.27
Famous faces 90.53 17.2

Pictures 85.99 14.5

Present study

GL 83.3 14.2
RFF 87.2 14.2
GFF 96.1 17.7
BFF 88.3 16.1

Note: ITR, information transfer rate; GL, gray letters; RFF, red famous face with letter; GFF, green famous face
with letter; and BFF, blue famous face with letter.

Regarding the hypothesis proposed in the present study, there was a tendency for the
GFF condition to exhibit higher performance, even demonstrating significantly superior
accuracy compared with the GL condition. Previous studies that involved matrix-based
paradigms have found that faces performed better than letters [19] and that there were even
differences between faces based on their colour [20,21]. Specifically, Li et al. [21] showed
that red faces performed better than green ones. Therefore, our results are only partially
aligned with these previous works since differences were observed only between green
faces (GFF) and letters (GL) but not between other coloured faces (red or blue) and letters
nor between any other face colour. It should also be noted that the significant differences
observed in performance were only with respect to accuracy, not the ITR. Therefore, our
results should be interpreted with caution, and it is advisable that future studies further
validate these findings. It is important to remember that other studies conducted using
RSVP have shown that the choice of stimulus does not necessarily result in enhanced
performance compared with what is achieved in other matrix-based paradigms [22,35].
Hence, it is crucial to consider the specific characteristics of each paradigm to identify the
variables that can contribute to enhance performance. Furthermore, the possibility of false
positives in the statistical analyses should not be overlooked, both in the present study
and in previous ones. Therefore, it is of the utmost importance to emphasise the need for
experimental replication.

Our proposal has employed a gaze-independent paradigm, the RSVP, which has
demonstrated promising results. However, other paradigms and modalities may also
be potentially suitable for patients without oculomotor control. Some of these visual
paradigms include those previously demonstrated by, for example, [36] or [37], which are
based on the use of covert attention. While these systems perform adequately, they may
face challenges with increased stimuli, given that they used only two and six selectable
elements, respectively. Regarding the use of other modalities, we also have auditory and
tactile options. However, similar to those based on visual overt attention, these modalities
generally exhibit poorer performance as the number of available elements increases (e.g.,
Severens et al. [38], Z. Chen et al. [39], and Séguin et al. [40]). Therefore, it appears that
RSVP remains an appropriate visual paradigm for patients without oculomotor control
who wish to operate a speller.

4.2. ERP Waveform

The RSVP paradigm has the peculiarity that all stimuli—targets and non-targets—are
presented at the same spatial location. It implies that the user will perceive both target
and, unintentionally, non-target stimuli in their central vision. In contrast to paradigms
where stimuli are in different spatial locations, this presents a challenge because non-target
stimuli also generate a VEP, making it difficult for the classifier to discriminate between
target and non-target stimuli [14]. Hence, in this study, we placed particular emphasis on
the amplitude difference as it indicates the variation between target and non-target signals,
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which is closely related to system performance [9]. Specifically, our results regarding
the amplitude difference showed that the distinguishing potentials between target and
non-target stimuli are N200 and P300. Both potentials have previously been employed
in the literature for ERP-BCI applications and have been manipulated—using different
stimuli or SOA—to enhance system performance [41,42]. In our study, the differences in
the ERP waveform related to amplitude difference were more affected in terms of latency
rather amplitude. Specifically, we observed an earlier onset of components associated
with the letter condition. This could potentially stem from differing processing speeds for
the two stimulus types (letters vs. faces), which are influenced by the complexity of the
visual stimuli [43]. However, it is essential to clarify that our paradigm was not designed
for theoretical ERP observation. Instead, what we observe in the corresponding plots is
the output of potential underlying components [44]. Therefore, interpretations should be
approached cautiously.

4.3. Subjective Items

The results regarding the subjective ratings of the participants are more conclusive
than those related to performance. While the performance results seem to lean towards
recommending the GFF condition, the subjective ratings tend to support the GL condition,
even showing significant differences in comfort compared with the other conditions (RFF,
GFF, and BFF). However, it is worth noting that the GL condition exhibited significantly
lower accuracy compared with the GFF condition. Therefore, the decision regarding which
type of stimulus to use will depend on user preferences, needs, and the intended goal of
using the ERP-BCI. In addition, there were no significant differences in fatigue based on the
type of stimulus employed. However, the ANOVA showed significant differences for letter
visibility, although these differences disappeared when correcting for multiple comparisons
with the Bonferroni method. Without this correction, there would have been significant
differences between the GL condition and each of the face conditions (RFF, p = 0.016; GFF,
p = 0.043; BFF, p = 0.015). Therefore, it is possible that the previously mentioned comfort
differences may be partly due to the visibility difficulty of the letters when the faces are
used, as well as other potential factors not addressed in this study, which could be explored
in future research.

4.4. Limitations and Future Directions

The present study comes with certain limitations that should be considered, either
to clarify the impact of the findings or to address them in future research. The potential
limitations include (i) the use of a young and healthy target population; (ii) the restriction
on the number of selectable items; (iii) the limited usage time; and (iv) the challenge of
recommending a specific condition in the present study.

Firstly, as noted in prior research, verifying outcomes in a clinical demographic remains
a hurdle in the BCI domain [45]. In this investigation, most participants were young
adult university students without documented neurological conditions. This demographic
notably contrasts with the typical target groups for ERP-BCI in RSVP, who are usually
middle-aged or elderly individuals with significant motor impairments. Thus, caution is
warranted when seeking to extrapolate the findings of this study to the clinical population
without corresponding assessments. Nonetheless, it is pertinent to acknowledge that not
all BCI applications are tailored to patients; some are intended for non-clinical cohorts, and
they could derive value from the insights provided here regarding stimulus types [46].

Second, it is true that the number of items that could be selected is quite limited,
especially when compared with other proposals based on an ERP-BCI speller [34]. Using a
reduced number of stimuli complicates the generalisation of the results to interfaces offering
more stimuli. For example, parameters like the target-to-target interval (TTI)—the time
interval between target stimuli, which would be greater with more stimuli—can impact
system performance [47]. However, even if TTI affects performance, it would need to be
demonstrated that this effect varies depending on the type of stimulus used to invalidate



Sensors 2024, 24, 3315 12 of 16

the findings. Furthermore, there are already approaches available that allow a large number
of selectable elements with the use of a small number of stimuli, such as those based on the
T9 or stepwise selection paradigms [48,49].

Third, we tested four different experimental conditions, and we controlled each condi-
tion for a relatively brief period (approximately 10–15 min per condition, encompassing
the calibration and online stages). This may deviate from the typical usage experienced
by users relying on these systems. Time-related factors such as fatigue or comfort may
not manifest until the application is used for an extended duration. Therefore, a potential
avenue for future research could involve a more comprehensive and prolonged analysis of
usability, which could also help address the following limitation.

Fourth, while this study represents progress in the investigation of visual gaze-
independent BCIs for patients lacking oculomotor control, providing a specific interface
recommendation presents a challenge. This challenge stems from the fact that, while
the GFF condition demonstrated superior performance, it was notably less comfortable
compared with the GL condition. Consequently, the decision-making process revolves
around what to prioritise: optimising the performance of the ERP-BCI or ensuring user
comfort. The choice will be contingent upon user preferences and needs and the intended
purpose of employing the ERP-BCI. Although our interface has been tested for a speller,
the commands to be selected could be modified with the aim of controlling other types of
applications, such as a wheelchair or a home automation system [50,51]. As a result, it is
advisable for such decisions to be grounded in real-world usage scenarios. Furthermore, it
would be advantageous for the system to be adaptable so that it could cater to evolving user
preferences. For example, user preferences may fluctuate within the same day due to user
fatigue levels or between sessions as users gain experience with the device. Additionally,
future proposals could explore ways to equalise the comfort level of the GFF condition
with that of the GL condition, all while preserving the positive impact of the green faces.

5. Conclusions

The findings of this study have shown that the type of stimulus used in an ERP-
BCI under RSVP significantly affects both user performance and comfort during control.
Specifically, there is a trend indicating that famous green faces stimuli lead to enhanced
performance; however, the use of faces, as opposed to letters, appears to negatively impact
user comfort. This suggests that the selection of stimulus type should be guided by user
preferences and system requirements. Consequently, this research holds promise for in-
forming the design of future proposals aimed at controlling these systems. These findings
could potentially enhance the quality of life for patients with severe motor impairments, as
communication stands as one of their most pressing needs [52]. Therefore, any improve-
ments in the usability of these systems, whether in performance or subjective experience,
represent valuable objectives in the field of BCI as AT. However, it is also essential that fu-
ture proposals validate the findings presented here through experimental replications [53].
Furthermore, there should be a focus on developing an evaluation methodology and using
easily adaptable software to enable the selection of optimal parameters (e.g., types of visual
stimuli, selectable commands, presentation times, and control paradigms) for each user
and control scenario. Additionally, the findings concerning the choice of stimulus type
may raise new questions for future studies. We propose the following potential avenues
for further research. First, these systems could be evaluated in real-world scenarios with
potential users, such as patients with ALS. Second, it would be interesting to evaluate
the specific factors that can affect user comfort (e.g., workload [54,55] or usability [56]).
Third, it might be relevant to combine the findings of this work with the results from prior
research (e.g., alternative gaze-independent paradigms [37]). In conclusion, incorporating
the insights from this study with those of prior research is crucial for advancing our under-
standing and application of ERP-BCI systems, ultimately benefiting users, and addressing
their unique needs.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s24113315/s1; Figure S1: Grand average event-related
potential waveforms for each condition (grey letters, GL; red famous faces, RFF; green famous
faces, GFF; and blue famous faces, BFF) were analyzed between target and non-target stimuli for
all channels used. Significant intervals are highlighted with a gray background on the time axis.
The false discovery rate correction method was applied; Figure S2: Grand average event-related
potential waveforms of amplitude difference between target and non-target stimuli (µV) for each
channel and conditions of grey letters (GL) versus red famous faces (RFF) were analyzed. Significant
intervals are highlighted with a gray background on the time axis. The false discovery rate correction
method was applied; Figure S3: Grand average event-related potential waveforms of amplitude
difference between target and non-target stimuli (µV) for each channel and conditions of grey letters
(GL) versus green famous faces (GFF) were analyzed. Significant intervals are highlighted with a
gray background on the time axis. The false discovery rate correction method was applied; Figure S4:
Grand average event-related potential waveforms of amplitude difference between target and non-
target stimuli (µV) for each channel and conditions of grey letters (GL) versus blue famous faces
(RFF) were analyzed. Significant intervals are highlighted with a gray background on the time axis.
The false discovery rate correction method was applied; Figure S5: Grand average event-related
potential waveforms of amplitude difference between target and non-target stimuli (µV) for each
channel and conditions of red famous faces (RFF) versus green famous faces (RFF) were analyzed.
Significant intervals are highlighted with a gray background on the time axis. The false discovery
rate correction method was applied; Figure S6: Grand average event-related potential waveforms of
amplitude difference between target and non-target stimuli (µV) for each channel and conditions
of red famous faces (RFF) versus blue famous faces (RFF) were analyzed. Significant intervals are
highlighted with a gray background on the time axis. The false discovery rate correction method
was applied; Figure S7: Grand average event-related potential waveforms of amplitude difference
between target and non-target stimuli (µV) for each channel and conditions of green famous faces
(GFF) versus blue famous faces (BFF) were analyzed. Significant intervals are highlighted with a gray
background on the time axis. The false discovery rate correction method was applied.
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