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Abstract—Federated learning (FL) is a distributed learning
paradigm enabling participants to collaboratively train a machine
learning (ML) model. In security-oriented tasks, FL can be used to
share attack knowledge, without sharing participants’ local data.
Recent research results reveal that highly heterogeneous data
distributions can prevent federations from converging towards an
appropriate global model. Moreover, maintaining trustworthiness
is challenging, as FL-based collaborative intrusion detection
systems (CIDSs) are vulnerable to malicious updates.

In this demonstration paper, we present critical examples of
these challenges using a set of standardized public datasets and a
dedicated automation tool. We review the impact of heterogeneity
using different data-distribution, before looking at a scenario with
malicious actors.

Index Terms—demonstration, federated learning, intrusion
detection, heterogeneity, adversarial mitigation, data poisoning.

I. INTRODUCTION

Due to the increasing importance of privacy-related con-
straints, organizations are reluctant to share their data with
third parties. This is especially true in the context of intrusion
detection systems (IDSs), where the data is highly sensitive.
To address this issue, federated learning (FL) has been pro-
posed as a solution to enable collaborative intrusion detection
systems (CIDSs). FL is a distributed learning paradigm where
participants share trained models instead of raw data [1].

However, FL suffers from several limitations, especially
in terms of participants’ heterogeneity. Indeed, the default
aggregation algorithm, FedAvg [1], requires that the data
distributions are similar enough to converge to a suitable
global model. This is not always the case in practice, and
the performance of the algorithm decreases when the data
distributions are too different. On the other hand, if the data
distributions are too similar, the benefits of FL are negligible.

In this paper, we present a demonstrator to highlight the
limits of these federated intrusion detection systems (FIDSs)
using FL. Because the demonstrator is based on a purposely
built evaluation framework, the parameters of the experiments
can be easily adjusted by the attendees, making the demon-
stration highly interactive. Section II summarizes the state of
the art on FL in intrusion detection. Section III presents the
demonstration setup and a set of illustrative scenarios.

This research is part of the chair CyberCNI.fr with support of the FEDER
development fund of the Brittany region.

II. COLLABORATIVE INTRUSION DETECTION WITH
FEDERATED LEARNING

Since its introduction, FL has been applied to FIDSs in
numerous works, using supervised or unsupervised learning,
or even technics in between [2]. However, a majority of these
works focus on the performance of the algorithm, and do
not always consider the impact of data partitioning on the
aggregated model. Furthermore, few of them share public
implementations of their solution allowing to quickly illustrate
limits of FL in IDS contexts.

A. Federated Learning on non-IID data

In the FL foundation paper [1], the authors emphasize on non
independent or identically distributed (NIID) data being one
of the key attributes of FL, alongside the unbalanced overall
distribution. They notably present a pathological-NIID situation
using MNIST [3], a digit recognition dataset, where each client
is given only two digits, e.g. 3 and 7. More recent papers
consider alternative NIID use cases, deemed more realistic. For
instance, Huang et al. [4] present a practical-NIID use case,
where participants can share similarities. This is particularly
suited for cross-silo use cases, such as CIDSs.

B. Data Partitioning in IDS contexts

Pathological-NIID partitioning is rarely seen in IDS binary-
classification tasks, as they typically require both benign and
malicious training data. Therefore, a common NIID partitioning
scheme is: 1) pathological-NIID of the attack classes, e.g. one
or two class per client; and 2) independent and identically
distributed (IID) benign samples. Campos et al. [5] also review
other partitioning settings based on the ability to separate data
by client IP in public datasets. They also artificially build
balanced IID partitions by dropping attack samples until a
specific Shannon entropy threshold window is reached for the
local distribution. This approach is however more suited for
cross-device use cases, as each client receives the data from
one device only. Overall, NIID data for a cross-silo network-
based intrusion detection system (NIDS) context is typically
one of:
(a) distributing a dataset among clients, before removing

samples from n attack classes from each client; or
(b) distributing the benign data among clients, before giving

samples from n attack classes to each client, with or
without class overlap.



TABLE I: Parameters used for all scenarios.

Parameter Notation Value

Federated Learning

Number of rounds R 10
Local epochs per round ε 10
Number of clients C 4

Local Training

Neurons of the (2) hidden layers 128
Activation function (hidden layers) ReLU
Activation function (output layer) Softmax
Batch size β 512
Learning rate η 0.001

Datasets

Number of features D 39
Number of samples N 100,000

C. Threats against Federated Learning

Given the distributed nature of FL in a CIDS use case, the
quality of the model updates shared by clients can vary, and
low-quality updates can negatively impact the performance
of the aggregated model. Existing works often focus on
model poisoning, as it can produce finer attacks than data
poisoning [6]. Indeed, the ability to control the model update
provides more flexibility to the attacker, as they can target
specific parameters of the model. However, data poisoning
attacks are easy to implement and configure, while still yielding
impactful results [7]. Furthermore, considering malicious actors
also protects against clients uploading low-quality contributions,
since they are likely to produce less impactful updates.

III. EXHIBITING THE LIMITS OF FIDSS

This demonstration spans over four specific scenarios, each
highlighting a specific aspect of the considered challenges. The
first three (Sections III-B to III-D) target different heterogeneity
scenarios, ranging from homogeneous dataset partitioning
to completely independent data sources. The last scenario
(Section III-E) focuses on poisoning attacks against FL, where
malicious participants try to degrade the performance of the
global model.

A. Setup

For the sake of reproducibility, these experiments are made
using public datasets whose features have been standardized
in [8]. The authors provide modified versions of the original
datasets with this feature set (based on NetFlow v9) and using
nProbe1. Namely, we use the following (adapted) datasets:

• UNSW-NB15 [9] is produced using the IXIA PerfectStorm
tool on the Cyber Range Lab of UNSW Canberra. The
traffic is a hybrid set of real modern normal activities
and synthetic contemporary attack behaviors, grouped in
9 attack classes.

• Bot-IoT [10] is another dataset generated at USNW, using
a realistic smart home environment setup, completed by

1Available at: https://www.ntop.org/products/netflow/nprobe/

IoT devices. It focuses on the detection of IoT botnet
attacks, the DoS and DDoS classes being the most
represented. This dataset is highly unbalanced, as the
majority of the traffic is malicious.

• ToN_IoT [11] is yet another dataset generated by the same
team, containing IoT/IIoT telemetry data, network traffic,
as well as system logs. The network dataset contains
9 attack classes, including Ransomware, Scanning, and
XSS.

• CSE-CIC-IDS2018 [12] is a dataset generated by the
Canadian Institute for Cybersecurity in collaboration with
the Communications Security Establishment (CSE). The
traffic is collected on a large-scale infrastructure deployed
on AWS. It contains 14 attack labels, grouped in 6 attack
classes.

To generate the different scenarios, we build an evaluation
framework for FL called Eiffel2, which relies on Flower [13], a
modular FL framework. Eiffel is a Python library that provides
a set of tools to automate the evaluation of FL algorithms, such
as instantiating various types of data distribution, local models,
and aggregation strategies. It further provides multiple label-
flipping attacks, and automates metric collection and plotting
to quickly evaluate the impact of each parameter.

To assess the impact of a scenario on the federation, we
evaluate the global model on each participant’s test set and
collect different performance metrics. The results are averaged
over the different participants to obtain the global model’s
performance. We select the F1-score as the main metric for
its focus on positive samples, but the same methodology can
be applied to other metrics. To assess the performance of a
model trained locally, we define a FedNoAgg strategy, where
local models are kept by participants at the end of each round.
Therefore, models are trained during ε×R local epochs, where
R is the number of rounds and ε is the number of local epochs
per round, instructed by the server. Table I summarizes the
parameters used for all scenarios.

B. Scenario 1: IID Data

The first scenario is the simplest one, where the data is
partitioned in IID settings. Each participant receives N

C samples,
after shuffling the dataset. Figure 1 presents the results of this
scenario based on the global model’s F1-score. There are
virtually no differences between the FedNoAgg and FedAvg
strategies, since each participant has enough samples of each
class to train a suitable local model. Therefore, there are few
benefits to using FL in this scenario.

However, this configuration is often found in the literature
to evaluate CIDSs based on FL, such as in [14]. While this
experiment illustrates the lack of performance gains on IID data,
larger-scale setups configurations might benefit from FL. In
fact, selecting only a subset of the available participants could
obtain similar results while reducing the local computing costs
for participants. This setup is thus more akin to a distributed

2Available at: https://github.com/phdcybersec/eiffel

https://www.ntop.org/products/netflow/nprobe/
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Fig. 1: Global model performance in IID.

learning approach, where the server is only used to coordinate
the training process.

C. Scenario 2: NIID Data from the Same Source

The second scenario highlights the knowledge-sharing
capabilities of FL, as it can transfer characteristics of the
data distribution between participants. To illustrate this, after
partitioning the data as in Section III-B, we randomly drop
two classes from each participant’s train set. This results in a
NIID data distribution among participant, where each one has a
different subset of classes. Figure 2 displays the results of this
scenario, where FedAvg performs significantly better overall
than having clients train locally. However, the F1-score hides
the fact that some participants can miss entire attack classes
in the test set, rather than it being a global model issue.

Specifically, since clients have different subsets of classes,
they might be unable to detect some intrusions that are not
present in their training data. For example, Table II displays the
detection rate (DR) of the first client (client_0) in our setup
for each attack class, both in local and federated training, along
with the number of samples of each class. client_0 has no
samples of the Infiltration and DoS classes, and therefore
cannot detect them, i.e. its DR is either 0 or very low. However,
the global model is able to detect these classes, as other clients
have samples of these classes in their training set. We also
see a slight decrease in performance for the other classes (e.g.,
99.91 instead of 100 for DDoS) due to the aggregation process.

These results indicate that FL can effectively share knowl-
edge between participants, allowing them to detect attacks that
are not present in their local training data. This is a key feature
of FL in the context of intrusion detection.

D. Scenario 3: NIID Data from Different Sources

While we highlight in Section III-C that FL can benefit
from having different datasets per client, to the point where it
can share knowledge between participants, the third scenario
illustrates the limits of this assumption. CIDS experiments in
the literature often evaluate their approach with a scenario close
to the ones presented in Sections III-B and III-C, where one
dataset is partitioned among participants. However, in practice,
participants will likely collect data from different networks,
and therefore have different data distributions.
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Fig. 2: Global model performance in NIID (same source).

TABLE II: Detection rate (DR) of client_0 in NIID settings.
Rows where knowledge-sharing is visible are highlighted in
gray.

Attack class Samples DR (local) DR (federated)

DDoS 176107 100 99.91
DoS 0 2.43 98.57
Bot 1513 100 99.94
Brute force 1299 99.77 99.55
Infiltration 0 0 20.11
Injection 3 100 100

In this third scenario, we test FedAvg in this configuration,
with each participant having a different dataset. Thanks to
the standardized feature set (see Section III-A), we can use
the same model architecture for all participants, which is a
requirement for FedAvg. The class overlap between datasets
is also not an issue in this use case, as we focus on binary-
classification, which implies that all participants have benign
and malicious samples.

The results presented in Figure 3 confirm great performances
overall when participants are trained locally. However, the
global model’s performance is highly impacted by the het-
erogeneity of the data distributions. This is likely due to the
fact that all participants converge to local minima that are too
different from each other, and therefore the aggregation do not
result in a suitable model for all participants. Other approaches
than FedAvg have been proposed to address this issue in IDS
context, as the one by Popoola et al. [15] for instance.

E. Scenario 4: Poisoning Attacks

With the first three scenarios, we have highlighted how the
heterogeneity between participants can impact the performance
of FL. However, these scenarios assume that participants are
honest and respect the protocol. In this last scenario, we
demonstrate how FL can be vulnerable to malicious participants,
whose goal is to degrade the performance of the global model.
To do so, we use poisoning attacks (see Section II), where
attackers flip the labels of samples in their training data to
degrade the performance of the global model.

Two of the four clients are instructed to perform a label
flipping attack on their entire training set. We can observe
in local training (Figure 4) that participants identified as
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Fig. 3: Global model performance in NIID (different sources).
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Fig. 4: Global model performance in poisoning attacks.

"Attackers" have a very low DR on their test set, as they
literally misclassify all of their testing samples. The two
benign participants, on the contrary, reproduce the results of
Section III-B, with a high DR on their test set.

In FL however, the global model is impacted by the malicious
participants, as illustrated in Figure 4. The participants cannot
converge towards a stable global model, as the malicious
participants’ updates are too different from the others. Due to
the miss-classification introduced by the malicious participants,
the global model’s performance is degraded, and theFF1-score
oscillates between 0.1 and 0.2. This is critically low, as it
means that the aggregated model either misses a lot of attacks
and misclassifies a lot of benign samples.

IV. CONCLUSION

In this paper, we present a demonstrator that aims at
highlighting the limits of FL in the context of intrusion
detection. With the help of our dedicated evaluation framework,
we show that FL can be highly impacted by the heterogeneity
of the data distributions between participants. Furthermore,
this demonstration presents a critical scenario of poisoning
attacks against FL, where the performance of the algorithm
is highly impacted. Extended analyses on this scenario can
be found in [16]. This emphasizes on the necessity of
counter-measures, in particular works on detecting malicious
participants’ contributions.
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