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DeepVibes: Correcting Micro-Vibrations in
Satellite Imaging with Pushbroom Cameras

Minh Hai Nguyen, François de Vieilleville and Pierre Weiss

Abstract—In this paper, we propose new algorithms for
estimating micro-vibrations and correcting its effects in
satellite imaging with linear pushbroom camera. We first
design an accurate model of the acquisition process with
linear pushbroom camera, that incorporates the satellite
attitude as parameters. We then propose a two stage
reconstruction method based on an identification neural
network to identify the attitude, followed by a deep unrolled
network to correct the micro-vibrations. We then evalu-
ate the proposed framework on synthetic and real data,
showing promising results for this challenging problem.
Our results highlight the critical role of the focal plane’s
geometry, to improve the micro-vibrations identifiability
and therefore, the reconstruction quality.

Index Terms—Pushbroom, micro-vibration, jitter, satel-
lite imaging, convolutional neural network, unrolled net-
work.

I. INTRODUCTION

PUSHBROOM cameras are widely used for Earth
observation as they provide high-resolution images

and large surveillance area, up to 700 000 square kilo-
meters daily [1]. Many commercial satellites use this
kind of camera, such as Pléiades 1A and 1B, Sentinel-2,
WorldView 1, 2 and 3 or QuickBird. Linear pushbroom
camera consists of one or multiple linear arrays of thou-
sands of small sensors, that work collectively to deliver
satellite images with large swath. They are acquired by
scanning the Earth surface line by line, as the satellite is
moving on its orbit. The image quality can however be
compromised by camera vibrations, which can originate
from onboard mechanical equipment, such as gyroscopic
actuators. They affect the camera orientation, leading to
geometric distortions or misalignment of lines, see Fig. 3
and [2]. The resulting geometric distortions are often
called jitter. The frequencies and amplitudes of these
vibrations vary across different satellites. In this paper,
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we are particularly interested by vibrations with small
amplitudes, often referred to as micro-vibrations.

A. Related works
Different methods have been proposed for detecting

and correcting the vibration effects in satellite images.
Hardware components or extra information can be used
to determine the vibrations, such as high-performance
attitude and orbit control system (AOCS) [3] or ground
control points (GCPs) [4]. Methods based on AOCS can
be inaccurate for small satellites [5]. Furthermore, the
frequency of onboard AOCS or inertial measurement
units [6] can be lower than the frequency at which
images are sampled. For instance, the Sodern star track-
ers are currently limited to 30Hz, and higher frequency
vibrations cannot be corrected with this approach. In par-
ticular it is worth noting that for LEO sun synchronous
satellite providing very high resolution imagery at 1.5
meter GSD, 0.2ms are required per line acquisition. To
provide an attitude for each acquired line would require
a star tracker system providing a sampling rate fairly
above 1kHz. This discrepancy leads to a situation where
the attitude information is not fully available, requiring
the development of post-processing methods. In [7], the
authors proposed an approach to correct jitter effects
based on Tikhonov regularization and a simple linearized
forward model. Alternatively, [8] proposed an approach
based on the acquisition of a couple of images with
different viewing angles.

In this study, we focus the feasibility of correcting sin-
gle multi-spectral images. We consider a self-calibrated
approach, where the satellite’s attitude is retrieved us-
ing only the vibrated image. One of the pioneering
approaches in this category is the work by Perrier et al
[7]. There, a Bayesian approach with quite simple image
priors was developed. More recently, supervised learning
methods have been proposed [9], [10]. The general ideas
is to use neural networks to identify and correct the
satellite vibrations. These works are close in spirit to the
ones we propose, but differ by a few important aspects,
as argued below.

B. Contributions
The main contributions of this paper are as follows:
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• We design an accurate mathematical model of the
acquisition process of linear pushbroom camera
under micro-vibrations, while previous works con-
sidered simple interpolation models.

• We design a specific neural network architecture
that adapts to the size of the input image.

• We are primarily interested in micro-vibrations,
which are significantly harder to detect and correct.

• We demonstrate the performance of our method on
synthetic and real data.

• The analysis reveals that the attitude can be ef-
ficiently estimated and corrected, if the distance
between the different spectral bands on the focal
plane is sufficiently large, further strengthening the
results of [7].

Overall, this computational imaging study suggests that
the open problem of micro-vibration correction can be
addressed satisfactorily with purely numerical methods,
given that some care is given when arranging the differ-
ent CCD sensors on the camera.

II. METHODS

The problem of micro-vibration estimation and cor-
rection can be seen as a blind inverse problem. From a
mathematical perspective, we can view the acquisition
process as a linear operator A(ξ):

A(ξ) : U −→ V
u 7→ A(ξ)u.

The space U is the vector space of “ideal” images, that
we would like to reconstruct. A good candidate is U =
L2(R2), the space of finite energy signals, for which
convolution operators are well defined. This space will
be discretized for numerical computation. The space V =
RNx×Ny is the space of discrete images acquired by the
satellite when sampling Nx lines with Ny sensors on
each array. The vector ξ describes the satellite’s attitude
at each sampling time. In what follows, we let v denote
the vibrated image. It can be related to the ground truth
image u using the following model:

v = P (A(ξ)u) , (1)

where P describes some sensors induced perturbations.
Our objective in this paper can be formulated as follows.

Problem 1 (micro-vibration detection and correction).
Given an observed image v ∈ V , find a sharp image
û ∈ U and some attitude ξ̂ such that A(ξ̂)v̂ ≈ u.

In this section, we properly define the operator A(ξ),
the degradation process P and then propose numerical
algorithms to recover ξ and u from v only.

A. Modeling the acquisition process

Proper physical models are deemed essential for accu-
rate satellite image correction [11]. The proposed model
shares similarities with the one in [4]. It accounts for the
observation geometry, for an accurate optical model and
the noise model.

Assumption 1 (Main assumptions). Our work is based
on the following assumptions:

• The satellite is traveling along a straight line at a
constant velocity with respect to the ground frame.

• The region observed by the camera is planar.

1) The observation geometry: In this paragraph, we
describe how a point on the ground relates to a point on
the focal plane of the camera.

a) Camera attitude: Without vibrations, the camera
is oriented along the local orbital frame: its origin is the
satellite’s center of mass. The z−axis points towards the
center of the Earth and the x−axis points towards the
satellite moving direction. The y−axis is determined by
requiring that the axes form an orthonormal right-handed
coordinate frame, see Fig. 1. Micro-vibrations make the
camera orientation (or attitude) change over time. This
can be modeled by camera rotations around the three
axes: roll (x−axis), pitch (y−axis) and yaw (z−axis)
with the corresponding angles (ω, ϕ, κ). In what follows,
we will refer to this triplet as attitude or rotation angles.
The three elementary rotations can be applied using
Givens rotation matrices. The final rotation is obtained
by composing them:

R(ω, ϕ, κ) =

1 0 0
0 cω −sω
0 sω cω

 cϕ 0 sϕ
0 1 0
−sϕ 0 cϕ

cκ −sκ 0
sκ cκ 0
0 0 1

 (2)

where ca and sa denote cos a and sin a, respectively. The
rotation matrix allows us to pass from the local orbital
frame to the camera frame, as shown in Fig. 1.

b) Localization function: At time t, we assume
that the satellite is at position (xt, 0, h) in the ground
frame. We let f denote the focal length of the camera,
ξt = (ω(t), ϕ(t), κ(t)) ∈ R3 its attitude and Rt =
R(ω(t), ϕ(t), κ(t)) the associated rotation matrix.

Definition 1 (Localization function). The function that
maps a location on the focal plane of the camera with
a location on the ground is called localization function.
It is illustrated in Fig. 2 and defined by

Lξt : (x, y) ∈ R2 7→
(
xt + h

xt

zt
,−hyt

zt

)
where (xt, yt, zt)

T = Rt · (x, y, f)T .

2) The sampling process: In this paragraph, we de-
scribe the precise forward acquisition model. We focus
on the multi-spectral sensor of the Pléiades satellite.
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Fig. 1: The orientation of the ground and local orbital frames
are fixed, while the orientation of the camera frame may change
over time and differ from the local orbital frame.

Fig. 2: Acquisition under rotations. A pixel on the CCD array
is discretized as a uniform grid on the ground for sampling
and integration.

a) Optical Point Spread Function (PSF): The cam-
era suffers from diffraction and therefore produces band-
limited images. We model the diffraction by a convolu-
tion with a point spread function (PSF) k ∈ L2(R2).
Since the latter is hardly accessible in practice [12], we
simply approximate it by a centered Gaussian kernel with
standard deviation σ = 0.27. This model was proposed
and calibrated in [13] for Pléiades satellites.

b) Sensor geometry: The light is integrated on each
CCD detector of the camera. We assume that they are
all squares of identical edge-length δ. We let Ωj denote
the support of the j-th sensor in the camera frame:

Ωj = [−δ/2, δ/2]× [yj − δ/2, yj + δ/2],

where yj = δj for j ∈ {−Ny/2, . . . , Ny/2 − 1}. In
Pléiades satellites, we have δ = 52 µm.

c) Forward model: We let (t1, . . . , tNx) denote the
sampling times. At each instant ti, the satellite acquires
one “line” on the ground. We let ξ = (ξt1 , . . . , ξtNx

)
denote the associated satellite’s attitude. The operators

Ground
image

Acquired image with
ξ = 0

Acquired image with
ξ ̸= 0

Fig. 3: Example of simulated images with 1 pixel error.

A(ξ) can now be defined pixel-wise as:

[A(ξ)u][i, j] =

∫
Ωi,j

∫
R2

u
(
Lξti

(x− sx, y − sy)
)

(3)

k(sx, sy) dsx dsy dx dy

where Ωi,j = Ωj−(xti , 0). In words, the above equation
indicates that we distort the image u using the localiza-
tion function, we then convolve it with the PSF k of
the camera and then integrate the light for every CCD
sensor.

From a numerical viewpoint, the above integrals are
replaced by discretized versions. We use a cubic con-
volution algorithm to interpolate the discretized image u
and replace the integrals by Riemann sums. We therefore
need to discretize the CCD sensor as illustrated on
Fig. 2. In our numerical experiments, each CCD sensor
is replaced by a 5× 5 grid.

3) The noise model: The complete forward model
reads v = P (A(ξ)u) where P : V → V is a random
perturbation. It takes the form P(v0) = Q12 (v0 + ϵ),
where Q12 denotes a 12-bits quantifier and ϵ is additive
noise.

The noise distribution on CCD sensors can be well
approximated by Poisson-Gaussian distributions. In this
paper, we approximate the Poisson distribution by an
additive heteroskedastic (space varying variance) Gaus-
sian distribution. The noise ϵ ∈ RNx×Ny is drawn with
the distribution N (0, a + b ⊙ u), where ⊙ denotes the
element-wise product. The values a and b were calibrated
in [14] as a = 3.24, b = 0.037. The constant a models a
noise with constant standard deviation modeling the am-
plification chain noise and darkness noise. The constant
b models the Poisson noise amplitude.

4) Yaw versus Pitch and Roll: The camera rotations
induce displacements with respect to a reference frame
on the ground. Following [4], [15], it turns out that the
displacements due to the yaw are negligible compared to
the ones related to the pitch and roll when the camera has
nadir view. For example, in Pléiades satellites, an error of
4×10−6 rad of roll or pitch results in a displacement of 1
pixel at nadir. An error of yaw with the same magnitude
produces a displacement of only 6.76× 10−5 pixel.
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Fig. 4: Multiple linear CCD arrays on the focal plane. dccd
denotes the intra-distance.

5) Multi-sensor arrays: In most of satellites, several
linear pushbroom cameras are placed in parallel on
the focal plane of the satellite. Those cameras record
different spectral bands. For simplicity, we focus on three
linear CCD arrays corresponding to red, green and blue
band of RGB format, as in Fig. 4. We can associate an
operator Ar, Ag , Ab as in (3) for each of them. The
only difference is that we need to replace the sensor
locations Ωj by Ωr

j , Ωg
j , Ωb

j . Each of them is shifted in
the x direction by a different amount dccd.

Due to the geometry of the focal plane, the three
cameras are not observing the same part of the scene
on the ground, thus the information captured in different
channel is shifted along the x−axis.

The space of discrete images observed by satellite is
V = RC×Nx×Ny , where C = 3 is the number of spectral
bands.

6) Simulating the satellite’s attitude: The attitude
can be represented by a sum of several sinusoidal and
cosinusoidal functions of certain frequencies [7], [9]. We
supposed that

ωi =

k2∑
k=k1

ai,k sin

(
2πi

Nx
k

)
+ bi,k cos

(
2πi

Nx
k

)

ϕi =

k2∑
k=k1

a
′

i,k sin

(
2πi

Nx
k

)
+ b

′

i,k cos

(
2πi

Nx
k

)

where an,k, a
′

n,k, bn,k, b
′

n,k are taken independently at
random with a Gaussian distribution. The frequency
range [k1, k2] should be chosen depending on the typical
vibration frequencies met on satellites. A review of the
typical ranges for various satellites is provided in [16].
For a Pléiades satellite, the vibrations typically occur
between 70 and 80Hz. As for the the coefficients ai,k
and bi,k, their amplitudes drive the pixel shifts extents.
For Pléiades satellites, micro-vibrations typically induce
shifts lower than 0.5 pixel. For the range of frequencies
we chose, this means that the random coefficients should
not be larger than 4×10−6 rad. An example of synthetic
vibrated image is given in Fig. 3. A typical image
produced by the complete pipeline described above is
given in Fig. 3.

B. Proposed method

Observed img
v = P(A(ξ)u)

Iden. network
N id

θ∗(v)
ξ̂

Reconstruction
method

Reconstructed image
û

Fig. 5: Proposed method: an identification network is first
trained to precisely estimate the attitude ξ̂ from the observed
image v. This estimated attitude ξ̂ and the observed image v
are then used to design a reconstruction network to recover the
ground image û.

We propose a two-stage method to correct the vibra-
tions, as illustrated in Fig. 5. A similar principle was
already proposed for blind image deblurring tasks in
[17], [18].

1) Step 1 – Identifying the micro-vibrations: The
micro-vibrations create geometric distortions, which may
lead to out-of-distribution measured images. In this pa-
per, we explore the use of convolutional neural networks
(CNNs) to identify this distribution shift and retrieve the
satellite’s attitude from a single input image. This first
CNN will be referred to as the identification network.
Let N id

θ denote our identification network. It depends
on weights θ and reads:

N id
θ : V −→ E

v 7→ N id
θ (v) = ξ̂,

where E = RNx×3 describes the space of rotation angles
for each sampling time.

The identification network is trained to minimize the
loss function:

θ∗ = argmin
θ

Ev,ξ

[
∥N id

θ (v)− γξ∥1
]
. (4)

In this equation, the vibrated image v and its attitude ξ
are seen as a random vectors. The ground truth image
u is drawn uniformly at random within a dataset. The
attitude ξ is drawn at random following the model
described in paragraph II-A6. The vibrated image v is
related to u and ξ by the relationship (1) which involves
a random perturbation.

The value γ is a normalization constant. It plays an
important role for numerical stability and convergence,
when training the identification network. In practice, we
set it equal to the inverse of an upper-bound on the
maximal angle ξ used to generate the vibrated images. In
the numerical tests, for the 0.5 pixel shifts, it is chosen
as γ = 1

4·10−6 .
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Convolution +
PReLU

Convolution +
BatchNorm +
PReLU

Tanh activation

Adaptive pooling
Elementary block

Fig. 6: Idenfication network architecture. The network is
composed of 6 elementary blocks with the same structure.
Each elementary block is composed of 4 consecutive con-
volutional layers and PReLU activations that keep the spatial
dimension unchanged. It ends by a convolutional layer which
reduces the y−dimension by a factor 2, a batch normal-
ization and a PReLU. The number of channels from the
largest spatial dimension to the smallest spatial dimension
are 32, 64, 128, 256, 128, 64, 32, 1. The total number of pa-
rameters of the identification network is about 4.65 million
parameters.

a) Identification architecture: We propose an orig-
inal identification network designed to estimate the rota-
tion angles for each line of an input image. The network
architecture is illustrated in Fig. 6. An original aspect
of this network lies in its gradual reduction of spatial
dimension along the y−direction only (CCD line direc-
tion) while maintaining the size along the x−direction
(flight direction) constant. This architecture is tailored to
a line-by-line estimation.

Once the identification network has been trained, we
can estimate the camera attitude from a single vibrated
image v as:

ξ̂
def.
= N id

θ∗(v) (5)

2) Step 2 – Reconstruction: The image reconstruction
task is ill-posed and prior information is needed to
restrain the solution space. First, the space of ground
truth images U has to be discretized. We use a fine
discretization U ′ of U , allowing us to simultaneously
reduce the vibrations and super-resolve the vibrated
images v. In our experiments, U ′ is a set of images super-
resolved by a factor 4 in each dimension compared to
V .

For the reconstruction process, we developed specific
unrolled neural networks (e.g. [19], [20]). They regularly
rank among the top competitors in recent image recon-
struction challenges (see e.g. the FastMRI challenge [21]
or the Finish inverse problem challenges). To explain
their principle, we can draw a parallel with the Maximum

A Posteriori estimators (MAP). In our setting, they
would typically write:

û = argmax
u∈U ′

p(u|v, ξ̂)

= argmax
u∈U ′

log p(v|u, ξ̂) + log p(u).

Assuming that p(u) ∝ exp(−R(u)) for some function
R : U ′ → R ∪ {+∞}, and under an additive Gaussian
noise assumption, this yields:

û = argmin
u∈U ′

1

2
∥A(ξ̂)u− v∥22︸ ︷︷ ︸

F (u)

+R(u) (6)

Many hand-crafted regularizers R have been developed,
including ℓ2 penalization (Tikhonov) or ℓ1 penalization
(sparsity-based regularizers, total variation). To solve
the resulting optimization problem, different iterative
optimization algorithms have been developed (6). Many
of them rely on proximal operators defined by

proxR(u0)
def.
= argmin

u∈U ′
R(u) +

1

2
∥u− u0∥2ℓ2 . (7)

The unrolled networks mimick the iterative algorithms.
They consist in replacing the proximal operator proxR
by a learned mappingDθ. This mapping can be chosen as
a CNN and can be interpreted as a denoiser, specifically
tailored to the residual artifacts after inversion of A(ξ̂).
In this paper, we propose to use Douglas-Rachford
splitting-like algorithm (e.g., see [22]). It is detailed in
Algorithm 1. The initialization z0 is obtained by the

Algorithm 1 DR Net for correcting micro-vibrations

Require: vibrated image v, estimated attitude ξ̂, number
of iterations K, regularization parameters γ, λ > 0

1: Initialize z0 = A(ξ̂)+v
2: for k ∈ {0, 1, ...,K − 1} do
3: uk+1 ← Dθ(zk)
4: wk+1 ← proxγF (2uk+1 − zk)− uk+1

5: zk+1 ← zk + wk+1 − uk+1

return uK−1

pseudo-inverse A(ξ̂)+ of A(ξ̂). It can be computed using
a conjugate gradient algorithm. In our experiments, we
set γ = 0.5. To reduce the number of trainable param-
eters, we adopted a strategy where the same weights θ
are shared across all iterations. The proximal operator
proxγF is defined as

proxγF (z) = (γA(ξ̂)∗A(ξ̂) + I)−1(γA(ξ̂)∗v + z)

It can be computed efficiently using conjugate gradient
for 10 iterations. The adjoint operator A(ξ̂)∗ is obtained

https://www.fips.fi/challenges.php
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through automatic-differentiation. The denoiser Dθ is
trained to minimize the following risk:

min
θ

Ev,u,ξ [∥uK−1 − u∥1] , (8)

where v, u and ξ are seen as random vectors.
The denoising network Dθ architecture is a DRUNET

[23], [24]. It is among the best competitors in plug-
and-play models. We used pre-trained weights for the
initialization. The total number of parameters to be
estimated is about 34.4 millions. In our numerical ex-
periments, we use a 48GB GPU from NVidia RTX8000
for training. We set K = 5 iterations, which appears
as a good balance between memory consumption and
reconstruction performance in related problems.

Remark II.1. Notice that we worked under an additive
white Gaussian noise assumption to derive Algorithm
1. This may seem paradoxal since we use a Poisson-
Gaussian noise approximation when synthetizing the
images. A possibility to handle this mismatch would be
to use the Anscombe transform [25], which makes it
possible to change a Poisson distribution to a Gaussian
one. We did not explore this solution in this paper.
Indeed, it would be a common misconception to see
the unrolled network as a MAP estimator, as was first
suggested in [26]. At the training stage, our objective
is not to construct a MAP estimator, but rather the
MMSE. Indeed, we minimize an approximation of the
average risk E[∥û − u∥22|v, ξ̂], which is known to be
the conditional expectation E[u|v, ξ̂] [27]. Hence, the
parallel to a MAP approach is used only to design the
network architecture. We train the network Dθ to learn
how to handle noise with a specific distribution, related
to the nature of the perturbation P and the inversion of
A(ξ).

III. NUMERICAL EXPERIMENTS AND RESULTS

A. Dataset and metrics

We trained the neural networks on the 2017 MS
COCO training dataset, using RGB bands only. Images
from MS COCO are resized to 1024× 1024 pixels and
used as the reference images to reconstruct. We focus on
the modeling of Pléiades satellites, with micro-vibrations
producing errors between 0.25 and 0.5 pixel on drifts of
25 − 75 lines. At each iteration, we simulate a random
micro-vibration for a randomly picked image with a
random amplitude (so that our model can handle multiple
levels of micro-vibrations). We also synthesize vibrated
images of size 256×256 from the high resolution images
observed using the model Eq. (1). We used the whole
training set of MS COCO for training, i.e. approximately
120000 images.

To quantify the discrepancy between the true signal
x – which can be an image or the attitude – and the

Fig. 7: Example of estimated attitude by identification network.
Left: observed image with a maximal pixel shift of 0.5 pixel.
Right: estimation of the attitude (orange: ground truth, blue:
estimation).

estimated signal x̂, we use the Signal-to-Noise Ratio
(SNR). We also use the Structural Similarity Index
Measure (SSIM) to evaluate the quality of images. The
SNR is defined as

SNR(x̂, x)
def.
= 10 log10

(
∥x∥22
∥x̂− x∥22

)
. (9)

B. Micro-vibration identification

We studied the identifiability of micro-vibrations as
a function of the focal plane’s geometry. We supposed
that the linear CCD arrays of different wavelength are
set in parallel (Fig. 4). We then varied the distance
dccd between the CCD lines from 0 to 6 pixels (or
equivalently CCD side-length). Grayscale means that we
used a single linear CCD array. For each value dccd, we
have trained an identification network N id

θdccd
with the

same training procedure and dataset. We then evaluated
its performance on a test set of 1000 images picked at
random in the MS COCO evaluation dataset. The results
are reported in Table I. A numerical result obtained
with acquisition parameters corresponding to a realistic
setting is given in Fig. 7.

It reveals noteworthy performance gaps between
single-channel (grayscale) and multi-channel (RGB) im-
ages. The identification performance increases as a func-
tion of the distance dccd and seems to stagnate for
distances larger than 4 pixels. A plausible explanation
for this phenomenon is that when the distance increases,
the different CCD lines acquire distant regions on the
ground. Hence a similar region of space is acquired
at different times with a different attitude for the dif-
ferent bands. This yields additional information, as in
a stereoscopic system, which can be exploited by the
identification network. This principle was used explicitly
in [7], while we let the network learn it in our approach.

This outcome provides valuable insights into the opti-
mal construction of the focal plane to make it possible to
identify and correct micro-vibrations. It should be care-
fully calibrated with the specifications of each satellite.

https://cocodataset.org/
https://cocodataset.org/
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
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TABLE I: EVALUATION OF THE ATTITUDE IDENTIFICATION PERFORMANCE. THE SNR ARE AN AVERAGE EVALUATED ON
1000 VIBRATED IMAGES. OBSERVE HOW THE PERFORMANCE INCREASES WHEN THE DISTANCE BETWEEN THE DIFFERENT
WAVELENGTHS CCDS INCREASES.

dccd Grayscale 0 1 2 3 4 5 6

SNR 11.76± 2.27 19.36± 1.21 22.04± 1.48 24.16± 1.75 25.34± 1.63 26.26± 1.71 26.26± 1.49 26.56± 1.45

C. An intrinsic identification issue

Vibrations induce distortions in the geometry of the
observed images. However, there exists adversarial situ-
ations where the geometry of the ground image makes
the identification impossible. A simple example is scenes
with an homogeneous albedo which can occur in deserts,
seas, glaciers. More complex situations can occur. An ex-
ample is shown in Fig. 8. There, we show that depending
on some texture orientation, either the pitch or the roll
cannot be identified. However, in this situation, acquired
image does not suffer from the pitch (resp. roll) effects,
and there is therefore no need for a restoration.

Observed
Estimated attitude

y (along linear arrays)

x
(m

ov
in

g
di
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ct

io
n)

Fig. 8: An example of ambiguity. This illustration showcases
that some geometries / textures can make it impossible to
identify the micro-vibrations. This can be the case either in
x−direction (aligned with the flight direction) or y−direction
(parallel to the CCD arrays). On the right: observe how the roll
and pitch are badly estimated depending on the flight position.

D. Reconstruction on synthetic data

We performed an empirical comparison between clas-
sical methods: Tikhonov (ℓ2), total variation minimiza-
tion (TV), a plug and play method [23] (PnP) and the
proposed unrolled neural network (DR Net). The results
are presented in Table II together with the associated
computational costs.

1The hyperparameter λ was optimized by grid search. The com-
putational benchmark procedure was executed using PyTorch’s internal
benchmark tool. It was conducted on a server equipped with an Intel
Xeon W-2275 processor (comprising 28 CPU cores with a clock speed
of up to 3.3 GHz) and an Nvidia Quadro RTX 5000 16GB GPU. The
image size was fixed to 256 × 256, RGB. The CPU benchmark is
conducted using 8 CPU threads. We used the DPIR implementation of
DeepInv library

The proposed method demonstrates superior perfor-
mance both in terms of SNR and SSIM. The closest
contender is the state-of-the-art PnP method, but the
unrolled network still provides results with a SNR larger
than 2dB in average. The method is also advantageous
in terms of computational costs, especially compared to
methods which require more than a hundred iterations
to stabilize.

A notable feature of our model is its capacity to seam-
lessly achieve a “super-resolution” task. This is done by
designing the forward model so that its input lives in a
space of higher resolution images. However, notice that
the high frequency contents only comes from an implicit
prior encoded in the unrolled network and is should
not be present in the vibrated images if they are well
sampled. In Fig. 10, we show qualitative comparisons
of different methods. For handcrafted priors such as
Tikhonov and total variation regularization, there are
still some residual artifacts. Plug-and-play method with
a deep neural network prior improve over handcrafted
priors, but still provide results with an accuracy 1dB to
2dB lower than the proposed supervised approach.

E. Reconstruction on real Sentinel-2B data

In this section, we validate the effectiveness of our
proposed method on real data. Our primary motivation
for this work is Pléiades data, but the raw sensor
data needed for our algorithms is not available. For
this experiment, we therefore turn to a real Sentinel-
2B image, which also works with a linear pushbroom
camera. We adapted our method to the Sentinel-2B
satellite, by taking the camera parameters from Sentinel
Online. As can be seen on the Fig. 9a, false color at
object boundaries are visible. This is due to non-uniform
shifts between the different channels. Their origin is
satellite vibrations. Notice that it is a raw image from
Sentinel-2B, without any post-processing steps (Level-0
product). In that example, the displacements are large
(up to 5 pixels) and are rather low frequency. They
cannot be considered as micro-vibrations. However, the
methodology can still be applied. We focus on the RGB
bands. In Fig. 9b, we applied our algorithm and observe
that the color mismatches are siginificantly reduced and
that the reconstructed image is more pleasant visually.
Since no ground-truth is available, the improvement can
however not be quantified. Yet, this preliminary result is
promising for real applications.

https://github.com/deepinv/deepinv
https://sentinels.copernicus.eu/web/sentinel/home
https://sentinels.copernicus.eu/web/sentinel/home
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(a) Real raw data from Sentinel-2B, cropped to 1024× 1024 (b) Processed 2048× 2048

Fig. 9: Our proposed method applied on a real raw data from Sentinel-2B.

GT, 512 × 512 Obs. ℓ2: 14.51 dB TV: 17.09 dB PnP: 18.43 dB Our: 19.74 dB

GT, 512 × 512 Obs. ℓ2: 17.67 dB TV: 22.37 dB PnP: 24.48 dB Our: 25.53 dB

GT, 512 × 512 Obs. ℓ2: 14.80 dB TV: 16.19 dB PnP: 17.52 dB Our: 19.44 dB

Fig. 10: Reconstruction and 2x super-resolution. From left to right: ground truth images, observation (of size 256 × 256), 2x
super-resolution reconstruction results using Tikhonov, total variation, plug-and-play and our proposed method.
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TABLE II: QUANTITATIVE EVALUATION OF THE RECONSTRUCTION PERFORMANCE ON THE TEST SET. 1 .

ℓ2 TV PnP [23] DR Net

Reconstruction and 2x super resolution

SNR 16.56± 0.5 24.48± 3.46 25.37± 2.62 27.40± 3.92
SSIM 0.78± 0.08 0.86± 0.06 0.91± 0.05 0.92± 0.04

GPU time (s) 2.85± 0.12 14.95± 0.01 8.39± 0.09 1.80± 0.07
CPU time (s) 91.44± 0.5 418.40± 1.2 220.39± 1.3 46.93± 0.09

N. iter 100 100 8 5

IV. DISCUSSION AND CONCLUSION

We introduced a novel approach to restore images
suffering from a specific type of jitter. In our setting,
micro-vibrations of a pushbroom camera induce pixel
shifts with an amplitude typically smaller than half
a pixel. Detecting and correcting them is challenging,
but important to improve the geometric quality of the
products for various applications such as image inter-
pretation or for generating digital elevation models from
stereoscopic pairs. We designed a two-step approach:
first a tailored neural network performs a line by line
identification of the satellite’s attitude. This information
is then provided to a second neural network, which is
in charge of correcting the pixel shifts and – possibly –
creating a higher resolution image.

Surprisingly, the identification network is able to
identify the attitude convincingly in this extremely chal-
lenging setting. A noteworthy finding of this study is
the critical role of the spacing between the different
spectral bands on the focal plane. A higher spacing
can improve the attitude’s estimation performance from
about 12dB to more than 26dB. The proposed unrolled
network is capable of restoring the images with a quality
significantly higher than more standard methods (e.g.
Tikhonov or total variation), but also state-of-the art PnP
methods, in shorter computing times.

At the current stage, the method is based on the
assumption that the scene is planar. This simplifies the
forward model, which is a key element of the proposed
methodology. The transition from flat scenes to mod-
els incorporating elevation is not straightforward. The
forward operator A, which is currently dependent on
the satellite’s attitude alone, would also be contingent
on the elevation. In the event that a digital elevation
model (DEM) is available, the proposed approach re-
mains valid, albeit with the necessity for modifying
the operator’s definition. In the absence of a DEM, the
correction should depend on the unknown elevation, seen
as a latent variable. It therefore looks questionable that
this approach can work. Yet, as illustrated on real data,
the proposed correction is visually pleasant, sugggesting
that the approximation is acceptable, given that the
elevation is varying sufficiently smoothly. However, for

stereo applications, where the challenge is to reconstruct
a DEM from image pairs, this approximation is not
acceptable. For this important application type however,
the stereo pair contain the elevation implicitly and could
resolve the ambiguity. A preliminary study was already
proposed in [8]. The present study is an encouraging
step towards the feasibility of solving this problem
with artificial intelligence tools. The results suggest that
they may lead to breakthroughs in the reconstruction
performance.
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in the computer science (IRIT), biology (CBI, MCD) and mathematics
(IMT) laboratories. He is specialized in the theoretical and applied
aspects of imaging with a special emphasis in techniques involving
optimization and artificial intelligence. He leads the MAMBO team,
aiming at improving the understanding of life, through microscopic
imaging and mathematical modelling.

https://www.mdpi.com/1424-8220/21/14/4693
https://rfpt.sfpt.fr/index.php/RFPT/article/view/137
https://rfpt.sfpt.fr/index.php/RFPT/article/view/137
https://isprs-archives.copernicus.org/articles/XXXIX-B1/555/2012/
https://isprs-archives.copernicus.org/articles/XXXIX-B1/555/2012/

	Introduction
	Related works
	Contributions

	Methods
	Modeling the acquisition process
	The observation geometry
	The sampling process
	The noise model
	Yaw versus Pitch and Roll
	Multi-sensor arrays
	Simulating the satellite's attitude

	Proposed method
	Step 1 – Identifying the micro-vibrations
	Step 2 – Reconstruction


	Numerical experiments and Results
	Dataset and metrics
	Micro-vibration identification
	An intrinsic identification issue
	Reconstruction on synthetic data
	Reconstruction on real Sentinel-2B data

	Discussion and conclusion
	References
	Biographies
	Minh Hai Nguyen
	François de Vieilleville
	Pierre Weiss


