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A multimodal method for computing the potential base flow and propagating acoustic1

perturbations inside axisymmetric ducts is presented. Instead of using the standard2

modal basis, a polynomial basis is used in the radial direction to reduce the com-3

putational cost of the method, but this introduces non-physical high-order modes.4

The impact of these modes on the stability of the calculation is examined, and for5

the acoustic computation, a modification of the axial integration is proposed to im-6

prove the conditioning of the matrices involved. The flow computation is achieved7

by applying the method (initially devoted to acoustics) at a zero frequency without8

convective effects, by modifying the definition of the admittance at the exit of the9

duct and by performing an induction process on the density. The method is validated10

against a finite element method for ducts with hard walls or lined walls. The results11

show that the proposed multimodal method is very efficient in computing the mean12

flow and propagating the sound disturbances inside axisymmetric ducts.13
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I. INTRODUCTION14

The accurate prediction of sound wave propagation in ducts is a crucial challenge in tur-15

bofan engineering, and various methods are employed when a mean flow is present. These16

methods can be broadly classified as numerical or semi-analytical/semi-numerical. Numer-17

ical methods, such as finite difference 1–3 and finite element 4–7, are versatile and can18

accommodate general geometries and mean flow profiles. Still, they are computationally19

expensive as they do not take advantage of the ducted aspect of the problem. In contrast,20

semi-analytic methods, such as WKB 8–10, pseudo-spectral 11 or multimodal 12–16, can21

be fast, but they face difficulties in handling irregular geometry or non-uniform mean flow.22

These methods are based on the idea of dissociating the propagation in the axial direction23

from the acoustic shape in the transverse direction. Until recently, multimodal methods24

were limited to cases with no flow or with a uniform flow 12–14, but a recent extension25

to account for a multiple-scale flow has been proposed 16. Even if this method appeared26

promising for low frequencies and Mach numbers, the results became less accurate for high27

Mach numbers because of the multiple-scale approximation of the flow.28

This work therefore aims to extend the multimodal methodology to account for an accu-29

rate flow description. As for the previous studies, the method is intended to compute the30

acoustic field in the presence of an already-known base flow (the novelty being here that it31

can be heterogeneous as long as it remains potential). But in order to obtain fast predictions32

on the whole, the multimodal method is here also used to compute the base flow by analogy33

with an acoustic field at a zero frequency and without convective effects. In the proposed34
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method, Chebyshev polynomials are used to represent the acoustics in the radial direction.35

The polynomial basis offers excellent convergence properties for smooth geometries. How-36

ever, as this basis is non-physical, high-order modes (not well captured by the polynomial37

basis) are present in the calculation and must be handled with care 17, 18. Here the au-38

thors propose to modify the Magnus–Möbius scheme 14, 19 traditionally used for the axial39

computation. This modification is based on an eigendecomposition of the Magnus matrix.40

The involved matrices are then rewritten to avoid the summation of high values associated41

with right-running non-physical eigenmodes with low values associated with left-running42

non-physical eigenmodes. To validate our method for axisymmetric cases, we compare it to43

the classical finite element method (FEM), which is commonly used for predicting sound44

wave propagation in ducts. We focus on the accuracy and stability of our predictions for45

various modes and frequencies.46

The paper is organized as follows. Section II provides a brief overview of the equations47

governing the flow and acoustic fields, which serve as a basis for constructing the proposed48

formulation. Section III describes the developed multimodal method for computing the49

acoustic field in the presence of a heterogeneous potential flow (supposed to be known at this50

step), and section IV details the adaptation of the method for computing the aforementioned51

potential flow. The developed method is then validated against a FEM code in section V52

for a realistic engine geometry with hard walls and lined walls. Conclusions and discussions53

are finally provided in section VI.54
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II. GOVERNING EQUATIONS55

In this work, we study the linear propagation of sound in a waveguide with an axially56

varying circular or annular cross-section, defined by the inner and outer radii R1 and R2.57

The analysis is performed in the frequency domain, with ω the angular frequency, and all58

the variables are dimensionless (see Reference 8 for more details). We express the velocity59

vector, density and speed of sound variables as follows60

ṽ = V +Re(v eiωt) = (U, V,W ) + Re((u, v, w) eiωt),

ρ̃ = D +Re(ρ eiωt),

c̃ = C +Re(c eiωt).

(1)

Capital letters denote time-averaged quantities, and lower-case letters represent unsteady61

harmonic perturbations.62

The flow is assumed to be a potential perfect gas flow. Therefore, the mean flow velocity63

and the acoustic velocity derive from scalar potentials, denoted Φ and ϕ, respectively. The64

equations for the mean flow and the perturbations may be written65

∇ · (D∇Φ) = 0, (2a)

Dγ−1

γ − 1
+

1

2
∇Φ · ∇Φ = E, (2b)

∇ · (D∇ϕ)−D
D

Dt

(
1

C2

Dϕ

Dt

)
= 0, (2c)

p = −D
Dϕ

Dt
, (2d)

with D/Dt = iω + V · ∇ the convective derivative, V = ∇Φ, v = ∇ϕ and where γ is the66

ratio of specific heats and E a Bernoulli constant. The walls of the duct are impermeable67
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to the mean flow68

V · n = 0. (3)

The duct walls can be acoustically lined, using a locally reacting treatment. The Ingard–69

Myers impedance condition is used for this purpose 2070

iω∇ϕ · n = −
[
D

Dt
− n · (n · ∇V)

](
D

Z

Dϕ

Dt

)
, (4)

with n the unit outgoing vector normal to the surface and Z the local impedance of the71

liner.72

To apply the multimodal method, the governing equation must be rearranged into a73

system with only first-order derivatives in the axial direction x. The chosen variables are74

the acoustic potential ϕ and its axial derivative u. The system then becomes75

∂ϕ

∂x
= u, (5a)

D
∂

∂x

((
1−M2

x

)
u
)
= D

D

Dt

(
1

C2

D⊥ϕ

Dt

)
+D

D⊥

Dt

(
Uu

C2

)
+

D

2C2

∂

∂x
(V⊥ ·V⊥)u−∇⊥ · (D∇⊥ϕ),

(5b)

in which Mx = U/C is the axial Mach number. The symbol ⊥ refers to the transverse76

direction, so that ∇⊥ is the gradient operator restricted to the cross-section. In addition,77

V⊥ is the mean flow velocity along the duct cross-section, and D⊥/Dt = iω +V⊥ · ∇.78

III. MULTIMODAL FORMULATION FOR THE ACOUSTIC FIELD79

This section presents the formulation of a multimodal method to solve the model de-80

scribed above, assuming that the mean flow is known.81
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A. Variational formulation82

The weak formulation of equations (5a) and (5b) is obtained by multiplying them by83

the complex conjugate of a test function g and by integrating over the duct cross-section,84

denoted S, whose boundary is the contour Λ. After some manipulations, one can write85

∫
S

D(1−M2
x)
∂ϕ

∂x
g∗dS =

∫
S

D(1−M2
x)ug

∗dS, (6a)

d

dx

(∫
S

D(1−M2
x)ug

∗ − DU

C2

D⊥ϕ

Dt
g∗dS

)
=

∫
S

D(1−M2
x)u

∂g∗

∂x
+D∇⊥g

∗ · ∇⊥ϕ

− D

C2

(
D⊥ϕ

Dt

(
D⊥g

Dt

)∗

+ Uu

(
D⊥g

Dt

)∗

+ U
D⊥ϕ

Dt

∂g∗

∂x

)
dS −

∫
Λ

Dg∗∇ϕ · ndΛ. (6b)

in which ∗ denotes the complex conjugate.86

The impedance condition (4) is used for the last term in (6b). Following Eversmann 21,87

we use Stokes’ theorem to rewrite this term as follows88 ∫
Λ

Dg∗∇ϕ · n dΛ =
1

iω

∫
Λ

D2

Z

(
Uu

(
Dg

Dt

)∗

+
D⊥ϕ

Dt

(
Dg

Dt

)∗)
dΛ−

1

iω

d

dx

[∫
Λ

D2

Z

(
Uu+

D⊥ϕ

Dt

)
g∗(V · τττ)dΛ

]
,

(7)

where τττ is the unit vector tangential to the duct wall. In the remainder of the paper, V · τττ89

is simply denoted Vτ . In the special case of a circular duct (R1 = 0), the last term in (6b)90

vanishes on the inner duct wall since dΛ1 = R1dθ = 0.91

B. Modal decomposition92

To apply the multimodal method, the governing equation (6) must be rearranged into93

a system with only first-order derivatives in the axial direction x. To that end, the cho-94
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sen variables are the acoustic potential ϕ and its axial derivative u = ∂ϕ/∂x. They are95

represented using a set of linearly independent transverse cross-section functions, denoted96

(φj)j∈N. Using this basis, the acoustic potential and its axial derivative are written97

ϕ =
∑
j

ϕj(x)φj(x, r, θ) , and u =
∑
j

uj(x)φj(x, r, θ). (8)

The same basis is used for the test functions associated to ϕ and u. The equations (6) and98

(7) then become99 ∫
S

D(1−M2
x)φ

∗
iφjdS

dϕj

dx
= −

∫
S

D(1−M2
x)φ

∗
i

∂φj

∂x
dSϕj +

∫
S

D(1−M2
x)φ

∗
iφjdSuj,

d

dx

(∫
S

D(1−M2
x)φjφ

∗
idSuj −

∫
S

DU

C2

D⊥φj

Dt
φ∗
idSϕj

)
=

+

(∫
S

D∇⊥φ
∗
i · ∇⊥φj −

D

C2

D⊥φj

Dt

(
Dφi

Dt

)∗

dS − 1

iω

∫
Λ

D2

Z

D⊥φj

Dt

(
Dφi

Dt

)∗

dΛ

)
ϕj

+

(∫
S

D(1−M2
x)φj

∂φ∗
i

∂x
− DU

C2
φj

(
D⊥φi

Dt

)∗

dS − 1

iω

∫
Λ

D2U

Z
φj

(
Dφi

Dt

)∗

dΛ

)
uj

+
1

iω

d

dx

(∫
Λ

D2Vτ

Z

D⊥φj

Dt
φ∗
idΛϕj +

∫
Λ

D2VτU

Z
Uφjφ

∗
idΛuj

)
.

(9)

These expressions can be written in vector form by introducing the vectors ϕϕϕ and u100

containing the unknowns ϕj(x) and uj(x). The equations governing the axial variation of101

these vectors are102 
A11 A12

A21 A22

 d

dx


ϕϕϕ

u

 =


M11 M12

M21 M22




ϕϕϕ

u

 . (10)

The detailed expressions for the matrices A11, A12, A21, A22, M11, M12, M21 and M22 are103

given in Appendix A. The two vectors ϕϕϕ(x) and u(x) are linked through the admittance104

matrix Y such that u(x) = Y (x)ϕϕϕ(x).105
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FIG. 1. Schematic of the calculation performed.

C. Overview of the calculation106

Before going deeper into the numerical details of the method, an overview of the procedure107

to perform a multimodal computation is given in the following and is depicted in Figure 1.108

Let us suppose that we want to compute the acoustic propagation inside the ducted part of an109

aero-engine. This region is considered to be a duct whose cross-section varies axially. In the110

following, the source denotes the fan plane location while the exit refers to the inlet plane.111

First, the admittance Ye at the exit is imposed. Using this initial value, the admittance112

Y is calculated from the exit to the source using a Magnus–Möbius scheme. Next, the113

potential at the source ΦΦΦs is calculated using the specified injected wave and the previously114

obtained admittance. Finally, the Magnus–Möbius scheme is once more employed to obtain115

the potential throughout the entire engine.116

D. Transverse mode basis117

In multimodal methods, the basis functions φj are generally the local transverse mode of118

a hard-walled duct (i.e. Fourier-Bessel modes for an axisymmetric duct)12–14, 22. However,119

9
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these bases tend to yield slow convergence rates, and additional modes are often required120

to improve the accuracy of the calculations 15, 23. In this paper, we focus on axisymmetric121

ducts, and therefore, a Fourier transform is used to represent the acoustic field in the cir-122

cumferential direction. However, Chebyshev functions are preferred in the radial direction123

since they provide good convergence properties 24–26. As in Reference 16, for each basis124

function index j, we associate a pair (m, p) ∈ (Z,N) such that125

φm
p =

(
r

R2 −R1

)min(|m|,1)

Tp

(
r −R1

R2 −R1

)
e−imθ, (11)

where Tp is the shifted Chebyshev polynomial of order p, related to the Chebyshev polyno-126

mials T ∗
p by the relation Tp(x) = T ∗

p (2x − 1). The inclusion of the factor rmin(|m|,1) ensures127

that all the matrices given in Appendix A are well-defined. This factor is included based on128

the property of propagating modes, which exhibit a behaviour of rm as r → 0 27. Here we129

use the min(|m|, 1) exponent so that the multimodal matrices are the same for all non-zero130

azimuthal wavenumbers. Note that this reduces the number of polynomials needed to rep-131

resent the acoustic field if the transverse section is circular without increasing it when it is132

annular.133

For the remainder of the paper, the duct is considered axisymmetric, so there is no134

possible coupling between different circumferential Fourier modes. Therefore we consider135

that the value of the azimuthal order m is fixed, and, in the rest of the paper, no distinction136

is made between φm
p and φp.137

10
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E. Admittance calculation138

Introducing the definition of the admittance matrix in Equation (10), it is possible to139

show that this matrix satisfies a Riccati equation of the form140

dY

dx
= −Y A−1

11 M11 − Y A−1
11 M12Y −A−1

22 A21A
−1
11 (M11 +M12Y ) +A−1

22 M21 +A−1
22 M22Y . (12)

This equation is solved numerically using a Magnus–Möbius scheme starting from an initial141

value Ye. This numerical procedure is described in detail in References 14 and 19.142

We use the same procedure as in References 16, 22 to define the matrix Ye. We assume an143

infinite duct termination with constant cross-section with only forward waves. To determine144

the admittance at the exit, the acoustic variables are expressed as a summation of modes145

that either propagate or decay exponentially with respect to the axial distance. By doing146

so, the problem of equation (10) simplifies to the following eigenvalue problem147

iλi


A11 A12

A21 A22




wϕ
i

wu
i

 =


M11 M12

M21 M22




wϕ
i

wu
i

 , (13)

the solution of which gives the eigenvalues λi and the eigenvectors associated with the148

acoustic potential wϕ
i and axial velocity wu

i waves. These waves are separated into the149

forward (+) and backward (−) directions based on the sign of Re(λi)− ω/C Mx/(1−Mx
2
)150

for cut-on modes and Im(λi) for cut-off modes, where the overline denotes the mean value151

of the flow variable over the cross-section. The resulting forward admittance matrix is given152

by153

Ye = W u
+(W

ϕ
+)

−1 = W ϕ
+Λ+(W

ϕ
+)

−1, (14)

11
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where Λ+ = diag(λ0, λ1, λ2, ...) is the matrix of eigenvalues, and W ϕ
+ =

(
wϕ

0 ,w
ϕ
1 , ...

)
and154

W u
+ = (wu

0 ,w
u
1 , ...) are the matrices of potential and axial velocity eigenvectors associated155

with forward waves. Note that the matrix W ϕ
+ is the transfer matrix from the transverse156

eigenmode basis to the polynomial basis.157

F. Potential calculation158

The admittance is calculated from the exit to the source by integrating the equation (12)159

(the details of this axial integration will be addressed in section IIIG). Injecting the ex-160

pression of the admittance into equation (10) gives the following equation for the acoustic161

potential162

A11
d

dx
(ϕϕϕ) = M11ϕϕϕ+M12Y ϕϕϕ. (15)

It can then be calculated from the source to the exit (more details in section IIIG). Given163

an incoming acoustic wave ϕϕϕ+
s , the potential at the injection is ϕϕϕs = (Id + R)ϕϕϕ+

s with164

R = (Y − Y−)
−1(Y+ − Y ) the local reflection matrix and Y± the local forward/backward165

admittance matrix.166

G. Modification of the Magnus–Möbius scheme167

High-order modes, that are not well captured by the polynomial basis, are present in168

the calculations when using polynomials for the basis functions, as reported by Wilson et169

al. 17 and Guennoc et al. 18. Their axial wavenumbers are far from the ones associated with170

physical modes, and they tend to be strongly cut-off. It will be shown later that the matrices171

12
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involved in the Magnus–Möbius scheme are directly related to these wavenumbers. While172

the physical eigenvalues (obtained when using the hard-wall duct modes as an approximation173

basis) do not pose a problem, the non-physical eigenvalues obtained when using a polynomial174

basis lead to poorly conditioned matrices due to their strongly cut-off nature. To avoid this175

conditioning issue, we propose a modified formulation of the Magnus–Möbius scheme.176

Firstly, the classical Magnus–Möbius scheme is as follows. We introduce the exit location177

xe and the source position xs. Considering an axial discretization (xn)n∈J0,NK such that178

xN = xs and x0 = xe, the potential and acoustic velocity at positions xn and xn+1 are linked179

using the following equation180 
ϕϕϕn+1

un+1

 = eΩn


ϕϕϕn

un

 , (16)

where the matrix Ωn is the Magnus matrix, the expression of which can be found using the181

matrices defined in section III B 14. After splitting the matrix exponential into four blocks182

eΩn =


E1 E2

E3 E4

 , (17)

the evolution of the admittance and the potential are written183

Yn+1 = (E3 + E4Yn)(E1 + E2Yn)
−1

ϕϕϕn = (E1 + E2Yn)
−1ϕϕϕn+1.

(18)

The difficulty is that the matrix (E1 +E2Yn) can be ill-conditioned 18, which makes the184

scheme not robust for high frequencies or strong flow gradients. We use an eigen decom-185

position of the matrix Ωn to avoid using these matrices. Since the transfer matrix exp(Ωn)186

represents the transfer of information from the axial location xn to its neighbouring value187

13
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xn+1, the eigenvalues (Λ+,Λ−) of Ωn, are characteristic of the evolution of right-running188

(ϕϕϕ+,u+) and left-running (ϕϕϕ−,u−) eigenvectors. The exponential matrix can be rewritten189

as:190

eΩn =


ϕϕϕ+ ϕϕϕ−

u+ u−




eΛ+ 0

0 eΛ−




ϕϕϕ+ ϕϕϕ−

u+ u−


−1

. (19)

In addition, by assuming that all the sub-matrices are invertible, the last matrix can be191

rewritten192 
ϕϕϕ+ ϕϕϕ−

u+ u−


−1

=


(ϕϕϕ+ − ϕϕϕ−u

−1
− u+)

−1 0

0 (u− − u+ϕϕϕ
−1
+ ϕϕϕ−)

−1




Id −ϕϕϕ−u
−1
−

−u+ϕϕϕ
−1
+ Id

 .

(20)

By noting Y± = u±ϕϕϕ
−1
± the admittance matrix associated to respectively right/left run-193

ning modes, the exponential matrices can be written194

E1 = ϕϕϕ+e
Λ+ϕϕϕ−1

+ (Id − Y −1
− Y+)

−1 + ϕϕϕ−e
Λ−ϕϕϕ−1

− (Id − Y −1
+ Y−)

−1,

E2 = ϕϕϕ+e
Λ+ϕϕϕ−1

+ (Y+ − Y−)
−1 + ϕϕϕ−e

Λ−ϕϕϕ−1
− (Y− − Y+)

−1,

E3 = u+e
Λ+u−1

+ (Y −1
+ − Y −1

− )−1 + u−e
Λ−u−1

− (Y −1
− − Y −1

+ )−1,

E4 = u+e
Λ+u−1

+ (Id − Y−Y
−1
+ )−1 + u−e

Λ−u−1
− (Id − Y+Y

−1
− )−1.

(21)

Here the problem associated with the presence of the high-order modes is clearly visible.195

As these modes are strongly cut-off, the matrices E1, E2, E3, E4 involve adding terms in196

eΛ+ to other terms in eΛ− while these two exponentials have entirely different orders of197

magnitudes. Depending on the direction of the axial integration, one of those two always198

corresponds to exponentially increasing terms, say here eΛ+ , while the other is linked to199

exponentially decreasing terms, say here eΛ− . This means that the terms in eΛ+ are very200

14
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large while the ones in eΛ− are very small, leading to round-off errors. The goal is to201

reformulate this expression so as to avoid this summation, which is difficult to compute202

accurately.203

The previous expressions are therefore inserted into the equation (18) to give204

Yn+1 = Y+ + (Y− − Y+)P−RP−1
+ (Id + P−RP−1

+ )−1

ϕϕϕn = (Id +R)P−1
+ (Id + P−RP−1

+ )−1ϕϕϕn+1,

(22)

where P− = ϕϕϕ−e
Λ−ϕϕϕ−1

− , P−1
+ = ϕϕϕ+e

−Λ+ϕϕϕ−1
+ and R = (Yn − Y−)

−1(Y+ − Yn).205

Note that with these expressions, contrary to the ones in (21), there is no summation of206

the term eΛ+ and eΛ− . The impact of the high-order mode interaction is included in the207

term P−RP−1
+ , with the high-order modes which are small in both e−Λ+ and eΛ− .208

A quick analysis of Yn+1 can give us a better understanding of the role of each of the209

previous matrices. The terms ϕϕϕ±e
Λ±ϕϕϕ−1

± are characteristic of the propagation of the left and210

right running modes between the axial position xn and xn+1. By analogy to the reflection211

matrix found when deriving the expression for the potential at the source, the matrix R212

can be associated with the local reflection between left- and right-running modes. When213

Yn = Y+ (constant cross-section duct), R = 0 and the formulation reduces to Yn+1 = Y+.214

This is expected because the admittance is constant inside a duct when there is no wall215

or flow variation. In such a duct ϕϕϕn = ϕϕϕ+e
−Λ+ϕϕϕ−1

+ ϕϕϕn+1 which means that there is also no216

possible scattering.217

Note that the expression obtained for the potential in equation (22) is similar to the ones218

derived by Wilson 17 or Félix & Pagneux 13, but here we have not neglected the contribution219

of high-order modes.220
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Although this methodology is useful, it has two drawbacks. First, computing the eigen-221

values of the matrix Ωn can be numerically costly. Secondly, as explained previously, it is222

necessary to distinguish between left and right-running modes. Failing to sort these modes223

correctly can cause some numerical difficulties. In theory, it would be possible to use the224

group velocity to differentiate between them, but evaluating this term can be challenging in225

practice. As an alternative, the ”transverse-mode” criteria, defined in Section III E, can be226

used to classify these modes. This method for ordering the different categories of eigenmodes227

is used in the remainder paper and reliably distinguishes left and right-running modes for228

the studied cases.229

Finally, note that a non-reflective boundary condition at the exit (R = 0) becomes230

available with the newly derived expression. However, it is not used in the remainder of231

the paper for comparison reasons with validation methodologies and because it causes some232

phenomena that are not yet explained.233

H. Impedance discontinuities234

The equation (10) obtained from the multimodal approach is valid as long as the235

impedance is represented by a differentiable function. However, in practice, the liner is236

only applied to a finite portion of the duct, which leads to impedance discontinuities. Let237

us now suppose that one of these discontinuities is located at xd. We denote x−
d and x+

d the238

limit when x → xd from the left and from the right, respectively. In a previous paper 16,239

we demonstrated that the jump in the admittance matrix between these two axial locations240

can be expressed as241
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Y (x−
d ) =

(
A−N−)−1 (P− − P+ +

(
A−N+

)
Y (x+

d )
)
, (23)

with242

Aij =

∫
S

D(1−M2
x)φjφ

∗
idS,

(N±)ij =
1

iω

∫
Λ

D2Vτ

Z(x±
d )

Uφjφ
∗
idΛ,

(P±)ij =
1

iω

∫
Λ

D2Vτ

Z(x±
d )

(
iωφj + V

∂φj

∂r

)
φ∗
idΛ.

(24)

IV. MULTIMODAL FORMULATION FOR FLOW CALCULATIONS243

It is interesting to note that solving the acoustic propagation equation (2c) for ω → 0,244

m = 0 and V = 0 amounts to solving equation (2a) for the potential mean flow, with ϕ245

replaced by Φ. In this section, we show how to apply the multimodal method developed for246

acoustic propagation to calculate the mean flow. The same procedure as for the acoustic247

calculation is followed, but with two important differences, described in the next sections.248

A. Iterative procedure249

An iterative procedure is required because equation (2a) is non-linear due to the depen-250

dence of the mean density D on the velocity potential Φ, as defined by (2b). Starting from251

an initial value for the density, we solve equation (2c) using the same multimodal method252

as above to calculate the velocity potential and the axial velocity. A new density field D253

is then calculated using (2b). This process is repeated until the change in D between two254

iterations is smaller than a chosen threshold.255
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B. Inflow condition256

The other specificity for using the multimodal method for computing the mean flow lies257

in the definition of the inflow condition. Indeed, a problem arises when we need to define an258

admittance at the exit where we consider a constant cross-section duct end. The analogy259

with the acoustics shows that the first eigenvalue associated with the mean flow potential and260

mean flow axial velocity is λ = 0. Equation (14) then indicates that the mean flow potential261

is not proportional to the mean flow axial velocity. Consequently, the equation (14) cannot262

be used as such anymore.263

To address this limitation, we propose representing the mean flow in constant ducts as a264

combination of a mean value U0 and perturbations that vary exponentially. In a constant265

cross-section duct, the vector of flow axial velocity coefficients is therefore written266

U(x) = U0w
u
0 +

∑
i ̸=0

αiw
u
i e

λix, (25)

where λi ∈ R∗. The term of wu
0 associated with φ0 is 1 and all the other ones are equal to267

zero. This implies that Φ writes268

ΦΦΦ(x) = U0w
ϕ
0 +

∑
i ̸=0

αiw
ϕ
i e

λix, (26)

where the term of wϕ
0 associated with the mode φ0 is x+ cst. At the exit, this term equals269

xe + cst.270

By noting that the flow perturbations cannot increase in a constant cross-section duct,271

and therefore by only selecting the eigenvalues associated with exponentially decreasing272

perturbations, the exit boundary condition for the admittance is273
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Ye = W u
+(W

ϕ
+)

−1. (27)

For the flow cases, the admittance matrix plays a double role at the duct exit. On the one274

hand, it sets the potential constant, and on the other hand, it avoids spurious reflections.275

With this value, it is possible to find the admittance everywhere inside the duct using the276

standard Magnus–Möbius scheme. Unfortunately, the technique to stabilize this scheme for277

high-order modes cannot be used for the flow since the matrix Ωn is no more diagonalizable.278

Finally, by imposing an “incoming” velocity U+
s at the source location and by using the279

local admittance matrix, it is possible to define an injection condition. The “incoming”280

velocity is then adjusted to get the desired mass flow.281

V. VALIDATION FOR A VARYING DUCT WITH A CIRCULAR CROSS-SECTION282

A. Validation methodology283

1. Description of the test case284

For all the following results, we use the axisymmetric geometry from Reference 28 which285

is representative of the intake duct of the CFM56 engine. It is entirely defined by the spinner286

radius R1 and the radius R2 of the inner wall of the intake287

R1(x) = max
(
0, 0.64212−

(
0.04777 + 0.98234 y2

)0.5)
,

R2(x) = 1− 0.18453 y2 + 0.10158
e−11(1−y) − e−11

1− e−11
,

(28)

for 0 ≤ x ≤ L and with y = x/L and L = 2. The fan is located at the axial position x = 0,288

and the duct exit at x = L. The flow properties are specified at the fan location, with a289

prescribed axial velocity, density and speed of sound. The density and speed of sound are290
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set to 1 in all cases of the paper. The acoustic source is defined as an incoming acoustic291

mode at the fan plane, where the duct has hard walls. This mode is defined by its azimuthal292

and radial wavenumber orders m and n, respectively. At both ends of the duct, we assume293

infinite duct conditions with zero reflection coefficients. For test cases with a liner, we apply294

a constant impedance Z2 = 2− i on the outer wall between x = 0.2 and x = 1.8.295

2. Numerical convergence296

For a given two-dimensional variable f(x, r), we define the variables fp referring to the297

approximation obtained using the multimodal method with p polynomials. The relative298

numerical error is defined as299

ϵp =

(∫ R2

R1

∫ L

0
|fp − fref |2rdxdr∫ R2

R1

∫ L

0
|fref |2rdxdr

)1/2

, (29)

where fref is the reference solution obtained using an FEM code 29 with a fine grid. This300

FEM code is used to compute both the steady potential flow and the acoustic field. For flow301

calculations, the error is calculated on the axial velocity, while it is based on the amplitude302

of complex pressure for acoustic results.303

The FEM solutions are computed on an unstructured, triangular mesh generated using304

Gmsh 30. Quadratic elements (6 node triangles) are used to represent the solutions. To305

avoid spurious reflections at the inlet and outlet boundary conditions, where a representation306

over transverse hard-wall modes is used, the duct ends should be located far enough from307

regions of non-uniformities. Therefore, the duct is extended by straight parts of length 0.5 at308

the inlet and the outlet to tend to a uniform flow at boundary conditions. The counterpart309
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is that the sharp junctions between the real duct and the straight duct extensions can also310

cause reflections, that should nevertheless be captured by the two solvers (note that a non-311

reflective boundary condition with the original duct geometry could have only been achieved312

with the multimodal method as discussed at the end of Section IIIG). A mesh convergence313

study is performed to evaluate if the acoustic field is accurately represented. When using314

the FEM solver, there is also a need to refine the mesh near the sharp edges and the liner315

discontinuities to have an accurate solution.316

3. Axial discretization317

The multimodal method involves a numerical integration along the x axis, to calculate318

both the admittance matrix and the sound field. It is important to identify a robust criterion319

to define the number of points in the axial direction to achieve a trade-off between accuracy320

and computational efficiency. For this purpose, we follow the approach of Guennoc 18 and321

define a density, Dex, as the number of points per characteristic length of decay of the most322

evanescent mode. However, we have to ignore non-physical high-order modes since they are323

highly evanescent and would lead to a dramatically oversampled mesh. We therefore only324

consider the first two thirds of the eigenvalues, which is considered to be a good criterion325

to isolate physical modes 31. If N is the total number of eigenvalues, this means that the326

discretization is set to correctly capture the axial variation of all modes with a radial order327

inferior to 2N/3. In practice, we use the eigenvalues found at the duct exit, λi, to define the328

number of axial grid points Nx329

Nx = Dexλ2N/3L. (30)
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In the rest of this paper, we use Dex = 1 and a second order Magnus–Möbius scheme 14, 19.330

B. Flow computation331

To validate the computation of the mean flow, three test cases are considered, with a low,332

medium and high velocity defined at the fan face byMs = −0.2, −0.4 and −0.6, respectively.333

For each of these cases, the number of Chebyshev polynomials is varied: p = 3, 6 or 9. The334

results are shown in Figure 2. While three polynomials are not sufficient to accurately335

represent the mean flow, a good representation of the flow can already be achieved with336

only six polynomials. With nine polynomials, the agreement is excellent. The areas where337

the accuracy is reduced are near the sharp corners along the duct walls, which are located338

at the transition from the spinner to the duct axis near x = 1.25, and at the exit of the339

duct xe = 2, where a straight duct is used for the exit condition. At these points, the flow340

velocity indeed reaches zero to satisfy the zero normal velocity conditions (wall boundary)341

along the two different normal directions of the sharp corner, which results in strong local342

gradients in the solution. Yet, these localized losses of accuracy do not impact the rest of the343

solution, and the method is able to compute the mean flow accurately even with a limited344

number of polynomials.345

The results in Figure 2 also indicate that the required number of polynomials does not346

depend on the specified Mach number value, since there is no visible loss of accuracy when347

increasing it. The difference, which is not visible in the graph, is the number of iterations348

required to converge to the solution of the non-linear equation (2a). For the low-velocity349

case, only three steps are required to reach a converged solution (with a tolerance of 10−5),350
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while five steps are needed for the medium-velocity case and seven for the high-velocity case.351

This is expected, since compressible effects become more significant as the Mach number352

increases.353

Ms = −0.2 Ms = −0.4

Ms = −0.6

3 polynomials
6 polynomials
9 polynomials
Reference

FIG. 2. Contours of normalized axial velocity, overlaid on the reference FEM solution, for varying

numbers of polynomials.

Figure 3 presents a convergence analysis using the FEM computations as the reference354

solutions. The number of polynomials used in the multimodal method is varied between355

1 and 50. The results confirm the qualitative observations based on Figure 2. Firstly, an356

accurate representation of the flow can be obtained even with a small number of polynomials.357
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FIG. 3. Relative error on the axial velocity field as a function of the number of polynomials used

in the multimodal method and for the three flow velocities.

For example, with just nine polynomials, the relative error is only ϵp ≃ 6× 10−4. Secondly,358

the specified Mach number only has a small influence on the accuracy.359

To provide an indication of the computational cost of the flow calculations with the360

multimodal method (based on the Python implementation), we report the CPU time for361

a single iteration needed to solve Equation (2a). With five polynomials, the time is 0.09362

seconds, with ten polynomials it is 0.25 seconds, with twenty polynomials it is 0.97 seconds,363

and it is 7.2 seconds with fifty polynomials. While the method is advantageous with a small364

number of polynomials, the calculation time increases rapidly as the number of polynomials365

increases. Still, the multimodal method can provide useful results with reasonably low366

computational times.367
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C. Hard-wall acoustic calculations368

The method is designed with high-velocity calculations in mind, since it is precisely in369

such cases that the multimodal method with a multiple-scale flow presented in a previous370

paper 16 encounters difficulties. Consequently, the high-velocity flow (Ms = −0.6) is used371

for acoustic computation. Forty polynomials are used for the flow computations to prevent372

the numerical error on the flow from affecting the acoustic calculations. Note that axial373

grid points used in the multimodal calculations of the mean flow might differ from those374

used in the multimodal calculation of the sound field. For this purpose, the amplitudes of375

the Chebyshev polynomials representing the flow properties are interpolated along the axial376

direction using a cubic interpolation. The interpolated amplitudes are then used to compute377

the flow properties at the desired radial locations.378

To analyse the acoustic response, we first perform a qualitative test by analyzing contour379

maps of the sound pressure levels (SPL) defined as380

pSPL = 20 log10

(
|p|

20× 10−6

)
. (31)

This is done for a mode (m,n) = (13, 1) at ω = 20 and ω = 30, and for the modes381

(m,n) = (1, 1) and (m,n) = (13, 3) at ω = 20. These modes include a case where the injected382

mode encounters a transition from cut-on to cut-off inside the duct ((m,n) = (13, 3)) and383

cases where the injected modes are far from a transition phenomena (all other modes). A384

unit value is specified for the outer wall pressure of the incoming wave at the source location385

for all cases. The SPL contours inside the duct are calculated for each case with the FEM,386
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in order to have a reference solution, and with the multimodal method with various numbers387

of polynomials p = 10, 15 and 25. The results are shown in figure 4.388

(m,n) = (13, 1) at ω = 20 (m,n) = (13, 1) at ω = 30

(m,n) = (1, 1) at ω = 20 (m,n) = (13, 3) at ω = 20

10 polynomials
15 polynomials
25 polynomials
Reference

FIG. 4. Contours of sound pressure levels, overlaid on the reference FEM solution, for different

numbers of polynomials.

When the mode (13, 1) is injected at ω = 20, even with 10 polynomials, the agreement is389

already good for SPL between 50 and 110 dB, but the agreement remains poor for low SPL.390

With 15 or 25 polynomials, the agreement is excellent for all SPL shown in the graph. It391

should be noted that it is in the regions where the flow speed is higher (x ∈ [1.8, 2]) that the392
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precision is the lowest. Similar conclusions can be made for the higher radial order mode393

(13, 3).394

When the frequency is increased for the azimuthal mode (m,n) = (13, 1), the agreement is395

degraded. With 10 polynomials, the pressure field is inaccurate everywhere in the duct. With396

15 polynomials, the agreement improves markedly, and for high SPL values, the agreement is397

acceptable. With 25 polynomials, the agreement is once again excellent. As expected, more398

polynomials are needed when increasing the frequency since the number of cut-on modes399

also increases.400

To further confirm these qualitative observations, we perform a convergence analysis by401

plotting, in figure 5, the relative error on the amplitude of acoustic pressure as a function402

of the number of polynomials. We consider the influence of the azimuthal mode order, the403

frequency, as well as the first three radial orders. It is important to note that we exclude404

cases in which the mode is strongly cut-off at the source plane since their strong decay is405

hard to compute accurately using the FEM.406407

We first consider the azimuthal mode m = 1 for a wide range of polynomials. We observe408

that the convergence graphs can be divided into three parts for this test case. First, a409

pre-asymptotic region where the error is almost equal to one and where including further410

polynomials does not modify the error. Then a sharp decay region, where the convergence is411

almost exponential (typical of a polynomial basis), is obtained. Lastly, a slower convergence412

is observed. The authors assume that this last region is linked to the axial discretization, and413

that the observed convergence rate is related to the order of the Magnus–Möbius scheme.414

Note that for the pulsation ω = 5, the pre-asymptotic behaviour is not observed mainly415
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FIG. 5. Relative error on the acoustic pressure amplitude field as a function of the number of

polynomials.

because very few polynomials are necessary to accurately represent the acoustic field. For416

the radial order n = 3 of the same frequency, the error decreases more sharply than for417

the other radial orders for a low number of polynomials p < 10, before converging again418

with the previously observed convergence rates. One explanation for this behaviour is that419

the Magnus–Möbius scheme is highly adapted to compute cut-off modes. Therefore the420

convergence rate at the beginning corresponds to the improvement in the representation of421

the mode n = 3. After that, the convergence is more linked to the representation of the422

modes n = 1, 2 (which are cut-on). In fact, the mode n = 3 will create modes n = 1, 2 by423

scattering mechanisms. Therefore, the convergence rate after the strong decay is the one of424

these newly created modes.425
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When the azimuthal mode increases (m = 13 and m = 25), all the observations made426

before remain true except for the size of the pre-asymptotic region. The decrease starts427

further in the graph since a higher azimuthal mode means that the acoustic energy is mainly428

concentrated near the tip wall, and higher-order polynomials are necessary to capture it.429

However, the error remains small even with a limited number of polynomials. In fact, for430

all frequencies and radial orders, the error is less than 10−3 with 30 polynomials.431

Next, to assess the effectiveness of the stabilization proposed for the Magnus–Möbius432

scheme in Section IIIG, we compare the conditioning of the matrices that need to be inverted433

for both the standard and improved schemes: namely, (E1 +E2Y ) for the standard scheme434

and (Id + P−RP−1
+ ) for the improved scheme. We consider two cases: the mode (m,n) =435

(13, 1) at ω = 20 and the mode (m,n) = (1, 1) at ω = 30 (both cases use 40 polynomials).436

The conditioning does not depend on the axial discretization with the modified scheme, while437

it is highly sensitive to it in the standard scheme. Therefore, to evaluate the improvement438

brought by the new formulation, four axial integration steps are used with the standard439

scheme: Dex = 0.5, 1, 2, 10. The results are shown in figure 6. As expected, the conditioning440

of the improved scheme is better than the one of the standard scheme almost everywhere.441

Some peaks appear in both formulations near axial positions where transition phenomena442

occur (cut-on to cut-off, or vice versa). For the improved formulation, additional peaks also443

appear where an error in the sorting of the modes is made. Note that the conditioning of444

the matrix (E1 +E2Y ) is suddenly worsened when the duct cross section goes from annular445

to circular (around x = 1.2). In this region, the proposed stabilized scheme improves the446

conditioning by several orders of magnitudes.447
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m = 1 m = 13

FIG. 6. Conditioning of the matrix to invert in the Magnus-Möbius scheme with the standard and

improved formulation.

Finally, we report the computational time required for each calculation. These are mea-448

sured using a Python implementation of the multimodal method running on a desktop449

computer. The CPU time is not given for each calculation, but instead we provide a range450

of runtimes, from the shortest to the longest runtimes for a fixed number of polynomials.451

With five polynomials, the runtime ranges from 0.02 to 0.9 seconds, while with ten poly-452

nomials, it ranges from 0.09 to 3 seconds. Similarly, with twenty polynomials, the runtime453

ranges from 0.5 to 7 seconds, and with forty polynomials, it ranges from 1.5 to 33 seconds. It454

is important to note that unlike for the flow calculations in Section VB, the computational455

time for a given number of polynomials varies significantly depending on the studied mode456

and frequency since they influence the number of points in the axial direction. Note that457

the criterion defined for Dex is rather conservative, and sufficiently accurate results can be458

obtained with smaller values of Dex.459
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D. Lined acoustic computation460

The same test cases are now considered with a lined wall (see section VA1). It should be461

recalled that when there is an impedance discontinuity along the wall, the jump condition462

derived in Section IIIH is used. In practice, three multimodal computations are done: one463

before the liner, one in the liner region and the last one after the liner. The admittance464

jump condition of equation (23) is used between each part. Note that the density criterion465

Dex is redefined in each region, leading to different axial discretizations. Contours of the466

sound pressure levels in the duct are given in Figure 7. All the conclusions made for the467

hard-wall cases remain valid, and an additional observation can be noted. At the junctions468

between hard and lined walls, the jump in surface impedance induces sharp gradients in469

the velocity potential, and hence large jumps in the acoustic pressure. This type of weak470

singularity is difficult to capture with a spectral method 32 such as the multimodal method.471

It is therefore expected that the rate of convergence of the numerical model will be reduced472

when compared to the hard-wall test cases. To mitigate this, in the presence of a liner, high-473

order polynomials are required to accurately represent the large pressure gradients near the474

end points of the liner. This effect is relatively weak for the first liner discontinuity at475

x = 0.2, but is clearly visible at x = 1.8. Two reasons can explain why the effect seems476

to vary between both discontinuities. First, the fact that there are low SPL values close to477

the duct axis for the second discontinuity makes the errors more visible. Then, the higher478

errors at the second discontinuity could also be attributed to the slower convergence of the479

Chebyshev basis in the circular regions compared to annular ones.480
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(m,n) = (13, 1) at ω = 20 (m,n) = (13, 1) at ω = 30

(m,n) = (1, 1) at ω = 20 (m,n) = (13, 3) at ω = 20

10 polynomials
15 polynomials
25 polynomials
Reference

FIG. 7. Contours of the sound pressure level in the lined duct, overlaid on the reference FEM

solution, for different numbers of polynomials.

Once again, a convergence study is performed, and the same flow condition and acoustic481

modes as the ones used for the hard-wall validation are taken. Figure 8 presents the results.482

As expected, achieving a precision of 10−3 requires more polynomials than the hard-wall483

case, and the convergence rate is lower. This slower convergence rate makes the method less484

appealing for lined wall computations. It would be necessary to add supplementary modes485

to address the singularities in the pressure field and avoid this slow convergence. Another486

key observation is that the liner tends to smooth the convergence plots by decreasing the487

size of the pre-asymptotic region, and for the most difficult hard-wall cases (ω = 30), the488
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FIG. 8. Relative error on the acoustic pressure amplitude field as a function of the number of

polynomials for the lined duct cases.

error goes faster to a value of 10−2. This could be due to the fact that the method captures489

well the attenuation of the liner with few polynomials (p < 20), even if the prediction of the490

pressure singularity is erroneous. These singularities also pose problems with finite element491

methods, where it is necessary to refine the region around them. Note that the calculation492

times required by the multimodal method are similar to the ones obtained for the hardwalled493

test cases.494

VI. CONCLUSION495

This paper presents a novel multimodal method to efficiently compute the acoustic field496

in a duct with a potential mean flow. The acoustic potential equation is rearranged into a497
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system with only first-order derivatives in the axial direction governing the evolution of the498

acoustic potential and acoustic axial velocity. Fourier functions and Chebyshev polynomials499

provide the approximation basis in the duct cross-section, while a Magnus–Möbius scheme500

is used to integrate the equations in the axial direction. The use of a high-order polynomials501

basis results in the presence of spurious, non-physical modes. This is a problem common502

to multimodal schemes using polynomial bases, and is not related to the presence of a503

mean flow. A modification of the Magnus–Möbius scheme is proposed to avoid the poor504

conditioning associated with the spurious modes. Results demonstrate that this modification505

of the integration scheme significantly improves the conditioning of the model. Consequently,506

larger axial steps can be used for Magnus–Möbius scheme, hence reducing the computational507

cost of the method. This method, initially devoted to acoustics, has been, in addition,508

adapted to compute the potential mean flow required for acoustic computations by modifying509

the boundary conditions and applying an iterative method to solve the non-linear flow510

equation.511

The proposed method has been compared against a finite-element method on a model512

of a turbofan inlet with hard and lined walls for several frequencies and modes. Validation513

test cases demonstrate excellent agreement between the multimodal method and the FEM514

solutions when a sufficient number of polynomials is used. For the mean flow, the proposed515

method provides quick and accurate results, even for high flow velocities and a number of516

polynomials as low as 9. For acoustic propagation with hard-wall conditions, a relative517

error smaller than 10−3 can be achieved for all cases with only 25 polynomials, resulting518

in very short computational times. However, for cases with lined ducts, the presence of519
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strong gradients in the solutions near impedance discontinuities requires the use of more520

polynomials to achieve a similar level of accuracy. The computational cost therefore increases521

for lined ducts, but the method remains efficient compared to a traditional finite-element522

model.523

While validations were conducted on axisymmetric ducts and flows, the method is also524

applicable to non-axisymmetric flows, but it would require solving the acoustic equation525

for several azimuthal orders simultaneously since these are coupled together. It would be526

interesting to use this method to study phenomena such as flow distortion generated by an527

angle of incidence into a turbofan intake.528
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APPENDIX A: MULTIMODAL MATRICES529

The detailed expressions for the matrices introduced in the multimodal method are as530

follows531

(A11)ij =

∫
S

D(1−M2
x)φjφ

∗
idS,

(A12)ij = 0,
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