
HAL Id: hal-04606582
https://hal.science/hal-04606582v1

Submitted on 10 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Assistance in Model Driven Development: Toward an
Automated Transformation Design Process

Pascal André, Mohammed El Amin Tebib

To cite this version:
Pascal André, Mohammed El Amin Tebib. Assistance in Model Driven Development: Toward an
Automated Transformation Design Process. Complex Systems Informatics and Modeling Quarterly,
2024, Complex Systems Informatics and Modeling Quarterly, 38, pp.54-99. �10.7250/csimq.2024-
38.03�. �hal-04606582�

https://hal.science/hal-04606582v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Assistance in Model Driven Development
Toward an automated transformation design process

Pascal André1 and Mohammed El Amin Tebib2

1LS2N CNRS UMR 6004 - University of Nantes, 2 rue de la Houssinière F-44322 Nantes France
2LCIS lab, Grenoble INP*, 50 Rue Barthélémy de Laffemas, 26000 Valence, France

pascal.andre@ls2n.fr, mohammed-el-amin.tebib@

univ-grenoble-alpes.fr

Abstract Model engineering aims to shorten the development cycle by fo-
cusing on abstractions and partially automating code generation. We longly
lived in the myth of automatic Model Driven Development with promising
approaches, techniques and tools. Describing models should be the main
concern in development also with model verification and model transform-
ation to get running applications from high level models. We revisit the
subject of MDD through the prism of experimentation and open mindness.
In this article, we explore assistance for stepwise transition from the model
to the code to reduce the time between analysis model and implementa-
tion. The current state of practice requires method and tools. We provide a
general process and detailed transformation specifications where reverse-
engineering may play its part. We advocate a model transformation ap-
proach in which transformations remain simple, the complexity lies in the
process of transformation that is adaptable and configurable. We conduct
experiments within a simple case study in software automation systems.
It is both representative and scalable. The models are written in UML (or
SysML) and programs deployed on Android and Lego EV3. We report the
lessons learnt from experimentations for future community work.
Keywords: Model Driven Software Engineering, Refinement, Model
Transformation process, Automation Control Systems

1 Introduction

Since the advent of MDA, we longly lived the myth of automatic Model Driven Development
(MDD) with promising maintenance cost reduction. MDD shortens the development cycle by fo-
cusing on abstractions and partially automating code generation: describe abstract models, verify
and transform them to get running applications. Twenty years later, this goal has not been reach
despite numerous contributions on techniques and tools. The software must not only be of qual-
ity in terms of reliability and performance, but also be able to evolve and fit to new needs and
constraints. The development and maintenance life cycle must support continuous evolution but
software maintenance costs, which traditionally accounted for 70% of the total cost of the soft-
ware, still increase [1,2]. We revisit the subject of MDD through the prism of experimentationand
open mindness, including Model-Driven Reverse Engineering (MDRE) concerns, leading to the
field of Model driven engineering (MDE).

We are convinced that MDE is gainful to develop long-term software systems. Reasoning to
verify the system properties can happen at the model level (methods and tools exist for this) but

at the code level it is hard, due to the complexity inherent to implementation and deployment
details. Code generation from operational models exists for many years by the means of compilers
or grammar-based generators such as Antlr, XML and JSON parsers or recently Xtext. But the
generation of code from higher level models of abstraction, resulting from the analysis or the
software design, remains still a prerogative of the developers. Automation becomes more cost-
effective than manual development when considering the evolutionary maintenance of functional,
non-functional and technical requirements (hardware modification for example).

The general problem is how to efficiently develop and maintain applications from abstract het-
erogeneous models (including structural, dynamic and functional aspects of the modelled system).
Typically, we can illustrate the case of a UML model with a class (or component) diagram for the
static part, Statecharts for dynamics and activity diagrams supplemented by an action language for
computations. The application is a system distributed over several devices. We do share the vision
given in [3] that reduces MDE to two main ideas: raising the level of abstraction and raising the
degree of computer automation. In [4] we highlighted the problems by comparing the approaches
and drew a vision for a generic MDE transformation process. This article extends [4] by provid-
ing deeper sharpness on the state of practice, specification details for practitioners and application
principles for automation and assistance.

This work is a practical contribution to the engineering practice challenges of [5] and locates
in the social and domain challenges of [6]. To the best of our knowledge, there are no proposals of
MDD process as a process of model transformations. Our goal is to introduce an assisted MMD
process with the following contributions: (i) a frame to reason about MDE in software development
in terms of transformations, (ii) detailed specifications for automatable transformations, illustrated
by experiments, (iii) a case study for benchmarking collaborative contributions, (iv) an integrated
vision of MDE and reverse engineering and (v) a combination of tools to achieve the transform-
ations process. We focus more on methodological issues than on technical ones. We conduct trial
and error experiments, some with students, starting from models written with expressive model-
ling languages and we target programmable controllers (e.g. Lego EV3) remotely controlled by
an Android client. This is not a systematic study but lessons from experience. We implement and
compare three ways to get the source code: manual forward development, automatic code gener-
ation and stepwise model transformation which can be seen as a compromise approach in terms
of automation and genericity. The experiments illustrate the complexity of the task. The lessons
learnt from these experimental works will open tracks for future work.

The article is structured as follows. Section 2 introduces the context elements and we present
the illustrating case study, a simple home automation (domotics) system. The next sections relate
the experimentations and limitations of the manual forward development (Section 3) and the auto-
matic code generation (Section 4). We draw a stepwise refinement process in Section 5 by the
means of macro-transformation where the complexity yields in the process which must be adapt-
able and configurable. Implementation details of the macro-transformations are given in Section 6
and illustrated by experimentations on the case study. To fill the missing technical model, we ex-
plore reverse engineering in Section 7. Lessons learnt are discussed with related works in Section 8.
Finally, Section 9 summarises the contribution and draws open perspectives that go beyond model
transformation topics.

2 Background

Consider forward engineering. The goal is to set up a software production chain based on ex-
pressive models for distributed systems. In this article we illustrate the discourse by automation
systems because they include various concerns on distribution, communication and control that
cover many paradigm of the UML notation but also on non-functional requirements. In particular,
we are interested in programmable controllers having an effective execution environment that take
into account operating, safety and performance constraints [7]. Some properties are general (safety,

2

liveness), others are related to the environment or the system itself (energy, dangerousness, qual-
ity of service...). Moreover the focus can be extended to software/hardware issues and properties.
Note however that the results presented here are definitely not restricted to such systems.

2.1 Software development

Figure 1. 2TUP Unified Process

The software development in forward engineering
starts from requirements analysis to execution code de-
ployment. We do not consider here the project man-
agement part or the production part (DevOps). Among
the development process models, we chose the 2 Track
Unified process (2TUP) (also called "Y") of Fig. 1
coming from [8] because it really puts forward the
role of design as the central activity that combines an
analysis model with technical support. Having reuse
in mind, the "Y" process shows that (i) the technical
debt can be solved by changing the right part of the
"Y" and (ii) the software supplier can apply a technical
background to different projects of different customers.
Also the "Y" process make sense from a MDE point
of view when seeing the development as a (complex)
model transformation. The development cycle is impli-
citly iterative and incremental, the "Y" process is ap-
plied for each iteration.

From the software point of view we consider at least two levels:

1. the modelling and simulation level, where the individual and collective behaviours are de-
scribed and where the constraints are analysed (digital twin). Specifications are written in
modelling languages such as UML [9], SysML [10], Kmelia [11], AADL [12]) and associ-
ated verification or simulation tools, etc. The models at this level will be called logical models
in the sense that the technical details are not yet given. As illustrated by Fig. 1, the analysis
model is plunged into a technical model to build a design model.

2. the operational level, where the controls of the physical devices are implemented. This is
achieved using communication tools based on programmable logic controllers (PLCs), robots,
sensors and actuators.

Intermediate steps can be processed to reach the implementation level in the spirit of the model-
driven development (MDD) [13] and software product lines (Software Product Lines) [14].

In MDD, it is essential to ensure the model correctness before starting the process of trans-
formations and code generation [11]. This reduces the high cost of late detection of errors [15,16].
Whatever is the modelling language, the models are considered to be sufficiently detailed to be
made executable3. This allows to verify properties on the models, using theorem proving, model
checking or model testing techniques [17].

2.2 Case Study

A case study is simple, to be easily understood, and complete to cover a representative set of
software development artefacts including object communications that goes beyond the simple pro-
cedure call and object protocols ordering the API method invocation. We chose a simple control
systems in cybernetics and selected a simplified home automation equipment (domotic): a garage

3 Model transformations become relevant if the models contain enough information.

3

door including hardware devices (remote control, door, PLC, sensor, actuators ...) and the software
that drives these devices4.

In cybernetics, SysML [18] is recommended for PLC design e.g. the detailed SysML model of
a transmission control for Lego NXT5 has been simulated by the Cameo tool. However we chose
UML because it belongs to the student’s program and because the UML modelling ecosystem is
rich. We provide a Software Requirements Specification (SRS) and a logical model (LM) of the
case given in the UML notation i.e. the class diagram of Fig. 2 including the operation signature.
Note that the SRS is larger than the LM ; it includes for example user management for the remote,
additional devices such a warning light, motion detectors, safety and security constraints but also
requirement priority list for an agile incremental development.

Figure 2. Analysis Class diagram - garage door

The system operates as follows. Suppose the door is closed. The user starts opening the door
by pressing the open button on his remote control. It can stop the opening by pressing the open
button again, the motor stops. Otherwise, the door opens completely and triggers the open sensor
so, the motor stops. Pressing the close button close the door if it is (partially or completely)
open.

Figure 3. Remote control State
diagram - garage door

Closing can be interrupted by pressing the close button again,
the motor stops. Otherwise, the door closes completely and triggers
a closed sensor sc, the motor stops. At any time, if someone trig-
gers an emergency stop button located on the wall, the door will
lock. To resume we turn a private key in a lock on the wall. The
remote control, when activated, reacts to two events (pressing the
open button or pressing the close button) and then simply informs
the controller which button has been pressed (Fig. 3).

The state diagram of Fig. 4 describes the behaviour of the door
controller. The actions on the doors are transferred to the engines
by the door itself. User stories can be defined in requirement ana-
lysis and refined in the logical view of the analysis activity to be

4 A variant is given with an outdoor gate to access a home property. A third case is the Riley Rover (http:
//www.damienkee.com/rileyrover-ev3-classroom-robot-design/) driven by a re-
mote android application. An additional interest of these cases (https://ev3.univ-nantes.fr/
en/) is that they can be later be integrated as subsystems in larger applications.

5 https://tinyurl.com/wkja25u

4

Figure 4. Door controller State diagram - garage door

later reused as test cases in model or code verification. As an example, the sequence diagram of
Fig. 5 describes the collaboration of the door components when opening the door. Door actions are
transferred to the motors by the door itself.

Figure 5. Opening Sequence diagram - garage door

The verification of logic models includes at least static analysis and type checking. These can be
designed as a transformation process [19] where advanced verification of properties require model
checking for communications, theorem proving for functional contract assertions, and testing for
behavioural conformance [17]. Most of them requires the translation to formal methods. In the
following, before refining models to code, we assume model properties to be verified some way.

2.3 From Models to Implementation

We assume a technical architecture made of Lego EV3 (java/Lejos) and a remote computer (smart-
phone, tablet, laptop) under Android as pictured by the deployment diagram of Fig. 6. Available

5

wireless protocols between EV3 and the remote are WiFi and bluetooth. Next step would be to
select a technology in a library and to map model elements.

Figure 6. Technical Architecture - EV3 and app

Software design is the activity that implements requirements inside a technical platform
cf. Fig. 1. It is an engineering activity where decisions have to be taken that affect the quality
of the result. Key design concepts are abstraction, architecture, patterns, separation of concerns,
modularity. The result is a design model that cover the complementary aspects such as persist-
ence, concurrency, human interfaces, deployment in an architectural vision that gradually reveals
the details. This model should evolve under technical or functional changes. There are three main
alternatives to develop an application from a logical model (design, coding, and testing). We clas-
sify them by degree of automation: (i) forward engineering, (ii) model transformation process,
(iii) automatic code generation. Next we overview solution i) in Section 3, solution iii) which is
at the opposite side of the automation spectrum in Section 3. The intermediate solution ii) will be
detailed in Section 5.

3 Forward Engineering Experimentations

Developers implement a solution that should conforms to the given models and requirements spe-
cification. The case studies of Section 2.2 were given to different groups of students from 2018
to 2020. The starting point was a software requirement specification, a logical model, like the
one figured in Section 2.2, on-line documentation on EV3 Lejos, and articles like [20,21,22,23].
All student’s work have been prototyped using Lego Mindstorm sets. As an example one student
project6 led to the mock-up of Fig. 7.

In the case of the garage door, a basic version called v17 was proposed in 2018, that has been
extended later until having an Android App to play the remote device with Bluetooth connection
and led to an implementation with enumeration types for STDs. Another implementation, called
v28 led to the class diagram of Fig. 8.

The case was given to different groups of students who produced quite different implantations.

• The code produced by students does not necessarily conform to the logical UML models. In-
deed, the model serves to understand and interpret the case study, it is perceived as a document-
ation reference rather than an abstract model. The students do not aim at a strict conservation of
semantics: they implement rather than refine. Moreover their program includes functional and

6 https://www.youtube.com/watch?v=7WBKTgRv7co
7 https://github.com/demeph/TER-2017-2018
8 https://github.com/FrapperColin/2017-2018/tree/master/
IngenierieLogicielleDomoDoor

6

Figure 7. Lego prototype of the door system

Figure 8. Class Diagram of the door application (v2)

non-functional requirements (see Section 2.2) that were not mentioned in the given (simplified)
logical model.

• The prototype of Fig. 7 uses two motors for two door swings while a single door and motor
were specified in the logical model.

• The preliminary design decisions are different. The remote device was also implemented in
different ways according to the student experience: from Java Swing GUI with wired TCP-IP
communication with EV3 or Android app with Bluetooth or Wifi connection. For example, des-
pite implementation v1 and v2 use the Bluetooth protocol, the remote device (Android App) is
not connected to the EV3 application in version v2 while it is in version v1. Using architectural
patterns can help to improve the preliminary design product quality.

• The detailed design decisions are different. Design pattern can be introduced here to improve
the quality of the design [24]. In version v1 the students used enum types to implement state
machines while a state pattern has been chosen in version v2 of Fig. 8.

7

• The technical background varies between the groups, some use the Java Lejos framework9,
others used ev3dev10 which enables several programming languages. It depends on the devel-
opment support (Integrated Development Environment -IDE) and operating system.

Isolating the various design choices is a first step to rationalize development in a refinement process
(see Section 5).

The experimentation continued in 201911 by 7 groups of students who started from scratch.
The development workflow delivered different products during the project according to the "Y"
cycle of Fig. 1: technical analysis (by exploring EV3 frameworks), preliminary design, detailed
design, implementation. Each product includes models and documentation. The implementation
includes a source code archive, a user manual and a reference manual including evolution per-
spectives. Only a part of the requirements has been implemented, the results suffer from errors
and weaknesses. These products have been reused as an entry point in 2020 to engage a second
iteration on the project with new student groups12. New objectives were fixed by the new groups
based on their understanding of the freely chosen project (one of the seven’s): software correction
(errors, bugs, low quality) , software evolution (user requirements, technical change) and software
validation (integration and testing). The students systematically criticized the quality of their input
background (quality of the documentation and the code) but usually repeat similar mistakes due
to ’not enough’ time reasons, junior experience in projects. Quality goes far beyond functional
suitability, but this criterion establishes the least sufficient level to reach at the end of their project.

4 Code generation, animation

Forward engineering makes space for software developers skill and experience leading to unpre-
dictable process and results. Conversely, automatic code generation or animation define the way,
even with parameter, to source code. We report in this section investigations on that automated
code generation.

4.1 UML Case Tools

Our panorama is definitely not an exhaustive study but tries to find prototype tools for representat-
ive categories: free (F), community edition (CE), open-source (O), commercial (C) We compared
the code generation facilities of some UML related tools according to the selected features of code
generation given in Fig. 9.

Figure 9. Comparison entries

9 http://www.lejos.org/
10 https://www.ev3dev.org/
11 Note that the other case studies (footnote 4 of page 4) have also be handled by other groups and lead to

the same observations.
12 A teaching issue is to make them understand how much are the models and documentation valuable

during software maintenance and evolution.

8

• Model Interoperability (UML/XMI) In addition to interoperability UML and MOF based
XMI are an important input formal for model transformation. The XMI header provide the
UML version and may influence on the input models compatibility for the transformation.

• UML Diagrams We mainly focus on class diagrams (CD) and state transition diagrams (STD)
by the means of code generation. UML editors should cover the main UML notation but differ
one another on specific notations, notation semantics and consistency links between diagrams.
(i) Operation body is rarely define by activity diagrams (AD), OCL assertions or actions. How-
ever this would enable accurate transformation rules. (ii) Some tools consider the semantic
link between classes from CD and STD in their code generation while others consider them
separately.

• Model Synchronization (Round-trip (RT)) keeps a strong link between a model element and
a source code. This enable to replay code generation after a model evolution without loosing the
updates made at the code level. RT is also a way to define the body of an operation i.e. a concrete
semantics that is convenient in practice but prevents accurate verification and transformation at
the model level.

• Communicating state machine (CSM) In plain UML, STD are associated to classes as state
machine protocols but STD can also be used separately to model system behaviours or a main
control program. The code generation for communicating state machine (CSM) is often post-
poned to programming but it is a main feature for distributed applications.

• Target programming language (TPL) This entry indicates the target languages for the beha-
vioural part, since we assume the static part to be provided by default.

• STD We consider here the None/Partial/Complete code generation for state-transitions dia-
grams. We will mentioned the STD elements supported by partial generator engine.

• MOM (Message Oriented Middleware) UML assumes an implicit middleware for message
sent (reliable order preserving medium) but deploying a distributed application requires to im-
plement distant communications. We look forward this aspect in code generators.

• API Mapping At low level, model elements are connected to predefined elements in libraries.
In the case of a model element that exist, with a different shape, in a framework library, we call
that API mapping. This point will be developed in Section 6.4. API mapping is different from
round-trip facilities which annotate models with source code references.

Starting from these entries, the goal is to draw the strength and the weakness of some representative
tools we have tested. The study is summarized in Table 1

Table 1. Comparison of some tools on their code generation facilities

XMI Diagrams RT STD CSM TPL MOM APIM
Papyrus (O) 2.5 CD, STD

√
Full - C++ - -

Modelio (O) 2.4.1 CD, STD
√

Partial - C, C++, Java, Python - -
Umple (O) - CD, STD

√
Partial - C++, Java, PHP - -

StarUML (F,C) 2.0 CD - - - JAVA, C++, C# - -
Visual Paradim (CE, C) 2.0 CD, STD

√
Full - Java, C++, Python - -

UModel (C) 2.4 CD, STD
√

Full - Java, C#, VB - -
Rhapsody (C) 2.4 CD, STD

√
Full - C, Chmd++, Java - -

Yakindo (F,C) - STD - Full
√

C, C+, JAVA, Python Event -
FXU 2.2 CD, STD Partial - C - -

• Papyrus13 Code generation in Papyrus includes behaviours to operations with an incremental
that overrides the code generation. Starting from the version 3.0, the code generator engine of

13 Papyrus and Modelio belong to the Eclipse Modeling ecosystem with an active community. In this
category, also mention the Obeo tools, UML Designer and Acceleo, or the Polarys project including
Papyrus and Topcased.

9

papyrus extends the IF-Then-Else constructions of programming languages with multi thread-
based concurrency and state machines hierarchy support [25]. It brings also some improve-
ments in terms of the generated code portability, event processing speed, and optimization.
Papyrus generates only C++ code from STD, which make some difficulties to conduct our
experiment when the generated programs will be deployed on Android. The context of state
machine elements is defined by the associated class diagram, which provides a complete XML
models that can be used to define a specific transformation rules, with the different transform-
ation tools (ex: ATL, Java...).

• Modelio In addition to the fact that Modelio supports code generation for class and STD, it
provides round trip functionalities which ensures synchronisation between code and model.
Unlike Visual Paradigm, it makes the difference between the methods managed by Modelio
and the others. A managed method is automatically generated for each release. A simple (not
managed) method is under the responsibility of the developer. Fork, Join elements are not
among the state diagram features in Modelio14.

• Umple supports code generation from state machines to java, php, and c++ codes [26]. In
Umple, CD operations are not associated to STDs. Umple has a solution to the problems of
round-trip by allowing embedding of arbitrary code directly in the model [27]. Due to the fact
that code generation does not support pseudo states (Fork, History, ...), Umple cannot design
the behaviour of embedded industrial systems.

• StarUML is much more oriented to support modelling at educational and professional in-
stitutes. it provides rich modelling features but few support for code generation (only CD).
Reverse engineering exists for programming languages including Java, C#, and C++ via open
source extensions.

• Visual Paradigm is rich in standards and features. It supports the generation of CD and STD in
Java source code but also in C++ or VB.net. Its round-trip engineering feature synchronizes the
code and the model. We did not have access to the generated code to estimate the programming
effort to add communication between state machines.

• UModel belongs to the commercial tools. We have tested its trial version which generates a full
Java, C# and Visual Basic executable code from complete STD15. Umodel provides a model-
code synchronization through round trip engineering. Model interoperability is ensured in this
tool through supporting XMI. The CSM is not available in UModel.

• IBM Rational Rhapsody inspired by the authors of UML, appears to be the most complete
tool. The code is updated automatically in a parallel view of the model. One can edit the code
directly, the diagrams will stay in synchronised. It provides a full code generation from com-
bined Class and STD diagrams. However, no information confirming that the tool expresses
communication between multi STDs. Again, we did not have access to the generated code to
estimate the manual programming part.

• Yakindu16 is a statecharts-based modeling and simulation tool proposed by Itemis. It generates
a detailed implementation for one STD only which is independent from class diagrams. Despite
the fact that Yakindo does not ensure a hight synchronisation level between code and models,
it can be considered as a powerful tool to design complex behaviours. In version 4.0, the CSM
code generation make it usable for control systems.

• Framework for eXecutable UML (FXU)17 supports execution of concurrent state machines
which can specify behaviour of many different objects. Regions of orthogonal states are ex-
ecuted concurrently as well. Transitions across vertices are triggered by events [22]. In FXU,
CD and STD are related to each other. Class elements create context for STD diagrams. FXU,

14 https://www.sinelabore.de/doku.php?id=wiki:landing_pages:modelio
15 https://www.altova.com/umodel
16 https://www.itemis.com/en/yakindu/
17 http://galera.ii.pw.edu.pl/~adr/FXU/

10

is based on IF-THEN-ELSE approach to generate Java code from state machines. We found no
way to export the source models with FXU, so we cannot define specific transformation rules
using this tools

In the last years, we notice that there is a prominent progress in modelling tools to support
model driven engineering process: (i) code generation, (ii) reverse engineering, (iii) modelling of
real time and event-driven complex systems, (iv) dealing with the significant features of embedded
systems such objects distribution, synchronous and asynchronous communication, become a key
tool advantage for the industry.

Many tools mentioned in Table 1 are not bound to only one language e.g. Modelio, Papyrus or
Visual Paradigm integrate different OMG standards such as SysML, BPMN, etc. Several tools sup-
port the full modelling of structural and dynamic behaviour views of such complex system. Support
for model verification exist for static and type checking conformance but advanced support is re-
quired for full consistency, completeness and dynamic correctness. However code generation is
not as developed as modelling task, especially for STD where limits are related to the code gener-
ation from some pseudo states like join and fork elements in Umple. The model interoperability
is insured in most tools through XMI format, except Umple which has a textual representation and
Yakindo which uses a specific XML format called SCXML. Some tools have specific or esoteric
notations for some model elements.

Tool limits are related to the target programming languages e.g. the generated code from STD
in Papyrus cannot be deployed or integrated to other frameworks or protocols e.g. Android. Table 1
illustrates that, to our knowledge, no tool deals clearly with the problems of (heterogeneous) com-
munications (MOM) and mapping to code libraries (APIM). Recently Yakindo 3.0 introduced
features through the concept of multi state machines that share events ; this can help in MOM.

To conduct our experiment, we used Papyrus models due to their completeness, interoperability
and simplicity. Starting from these models (CD + STDs), we defined partial rules to generate step
by step Java code.

4.2 Executable UML

Generating code from UML, by targeting a given technical architecture or a given framework, is
still restricted to simple cases, like the CRUD (Create, Read, Update, Delete) application gen-
eration on relational databases. Some modelling environments propose to animate or to execute
specifications, which are then qualified as operational. In both code generation and animation, the
prerequisite is to start with complete logical models of the system structure (class or compon-
ent diagrams), of its dynamic behaviour (state-transitions diagrams) and its functional behaviour
(activity diagrams).

UML diagrams are usually not enough to specify a complete semantics. Constraints, associ-
ated to model elements, can help in providing precision. They are written in OCL, a declarative
language for invariant and pre/post-condition assertions [28]. But again this is not sufficient. In
particular, there usually miss information on actions. To be short, an action is a statement describ-
ing a computation or an object interaction. This is the basic behavioural structure in activity and
state transitions diagrams. It also describes the glue between diagrams which make a foundation
concept of UML.

The Action Semantics is defined by a meta-language since UML 1.4. No standard concrete
syntax was proposed but early concrete syntaxes were associated to XUML tools, especially for
real-time systems:

• Action Specification Language (ASL) was defined for iUMLLite of Kennedy-Carter (Abstract
Solutions) supporting xUML [29].

• BridgePoint Action Language (AL) (and the derived SMALL, OAL, TALL) proposed by Balcer
& Mellor was implemented in xtUML of Mentor Graphics [30].

11

• Kabira Action Semantics (Kabira AS) proposed by Kabira Technologies (and later TIBCO
Business Studio).

• The normative telecom SDL [31] has also be used to provide a semantics as a UML profile.
• Other proposals are Platform Independent Action Language (PAL) of Pathfinder Solutions, or

SCRALL [32] which had a visual representation, +CAL [33].

All these efforts led to semantics for a subset of executable UMLs, called fUML (Semantics of a
Foundational Subset for Executable UML) [34], with now a normalized concrete syntax Alf. A
reference implementation exists18.

The executable UML tools are not directly convenient to design heterogeneous distributed
applications since they have fixed targets however the action support is necessary for detailed
design and we plan to integrate it in the project once the tool support will be available.

5 Toward a design transformation process

In MDE [13] forward engineering is seen as a transformation process from Platform Independ-
ent Model (PIM) to (more) concrete Platform Specific Model (PSM) injecting elements of the
Platform Description Model (PDM).

5.1 Principles of design as a transformation

As illustrated in Fig. 1, the software design consists in "weaving" the logical model and the tech-
nical model (the platform in MDE) to obtain in fine an executable model. Each transformations
comply an algorithmic style (e.g. Kermeta19) or a rule-based style (e.g. ATL20). The QVT standard
accepts both styles [35]. We draw the reader’s attention to the following observations:

• Only a complete (and consistent) logical model enables to reach an executable source code.
Model transformation can infer but cannot create from scratch.

• The code generation cannot be viewed as a single transformation step, due to the semantic dis-
tance between the logical model and the technical model. Especially if the target is composed
of orthogonal related aspects, called domains (e.g. persistence, HMI, control, communications,
inputs/outputs), on which the logical model must be "woven".

• Design, as an engineering activity, is linked to the designers’ experience (cf. Section 3). A
process can be automated only if all the activities are precisely known.

• MDE practice shows that transformations are effective when the source and target models are
semantically close e.g. class diagram and relational model for persistence. This suggest to work
with small transformations. Small transformations leave the complexity to the process, not the
atomic transformations. Small transformations are probably easy to verify and to compose
(reusable).

• Modelling means finding abstractions. Refinement, the opposite process, introduces news de-
tails in models until reaching an executable model. For a long time we though process trans-
formation as stepwise refinement [36,35] but we showed in [4] that the gap to fill is too large
and we had better to think in terms of mappings. This is detailed in Section 6.4 and Section 7.

5.2 Transformation process

On the above principle we propose a design process composed of four configurable composite
transformations. A composite transformation is a process hierarchically composed of other (sim-
pler) transformations, according to principle of small step transformations. It is depicted in Fig. 10
Each macro-transformation addresses either a design or programming aspects.
18 http://modeldriven.github.io/fUML-Reference-Implementation/
19 http://diverse-project.github.io/k3/
20 https://www.eclipse.org/atl/

12

Figure 10. General transformation process

• The deployment transformation T1 starts by structuring subsystem applications with a mapping
on the application architecture by describing the APIs and the communication protocols. If the
logical model includes component and deployment diagrams for a preliminary design in Fig. 1,
the deployment transformation will be simplified.

• The MOM transformation T2 focuses on object communication. For each kind of communic-
ation, the UML message sending are refined according to the protocol under consideration
(called MOM in Table 1). In a single node deployment, message sending is simply method call
in the target OOP language (Java, C ++ or C#).

• The OOP transformation T3 refines UML concepts into a OOP models which in general do
not natively include these concepts. This thorny problem is discussed in Section 6.3. In partic-
ular T3 refines state-transition diagrams (resp. activity diagrams, multiple inheritance, associ-
ations...) in OOP concepts.

• The program transformation T4 pre-processes the code generation by matching model elements
to predefined libraries of the technical frameworks. For example, the class Motor is implemented
by the class lejos . robotics .Regulated Motor. This API mapping requires adaptors for sending
messages or calling methods. This point will be discussed in Section 6.4.

All configuration parameters and all decisions of transformations must be stored to replay the
transformation process in an iterative design process.

5.3 Implementation of the design transformation process

The process of Fig. 10 is abstract and generic. We now focus on implementation and customisation
issues.

• Input Quality In addition to the static verification mentioned at the end of Section 2.2, type
checking and assertions can be checked using OCL verification tools [37]. This topic is out of
the scope of this article but OCL transformations to formal models or code would be of interest.
Fine model verification needs adequate verification tools, model transformation is used with
profit to target these tools having a DSL entry [19].

• M2M Every step of the process is a Model-to-Model (M2M) transformation until the last level
which is Model-to-Text (M2T) transformation to generate source code. At this stage, a rational
implementation combines model transformations tools and code generation facilities of CASE
tools (cf. Section 4).

13

• Parallelism For sake of simplicity, Fig. 10 hides the multiplicity of sub-models. The more
you progress in the process the more you have parallel transformations. At first T1 works one
one global application. T2 is applies to each subsystem of each node. T3 is applies to each
component. T4 applies to each class.

• Iteration By essence this process is generative. However the transformations are not fully auto-
mated and manual injections are needed. An effective approach combines this process with a
round trip approach in which the code injections are attached to access points (hook) so as not
to be lost in the (re) generation next.

• Animation When the technical environment is fully mastered, the transformation can "plunge"
the model into the framework to make it executable. Refinement techniques to Java can be
found in [38].

• Tooling Experimentations showed that no transformation tool was a panacea especially because
various kind of transformation are in play including for example synthesis, extraction, mapping,
refactoring [39]. But again, the overview of model transformation tools and the combination
of tools including those of Section 4 is beyond the scope of this article. Transformation tool
surveys can be found in [40,41].

In the following we provide details on the macro-transformations.

6 Macro Transformations Experimentations

In this section, we report implementation tracks and the experimentations we led in the context of
the case study.

6.1 Deployment Transformation (T1)

The T1 composite transformation was designed manually by providing a deployment model of
Fig. 11 from the analysis models of Section 2.2 and the technical architecture of Section 2.3. The
bluetooth protocol has been selected to connect the EV3 and the remote computer.

Figure 11. Deployment diagram - garage door

In terms of transformation, the above activity is naively to group analysis classes into compon-
ent clusters and to deploy components on deployment nodes (pick and pack). The designer must

14

provides the component model and then interact to select classes and map to technical elements
from libraries. However new classes are necessary that structure the design. Next step would be to
select a technology in a library and to map model elements.

6.2 MOM Transformation (T2)

The problem is to refine UML communications according to the basic causality prin-
ciple of UML21. The causality model is quite straightforward: Objects respond to messages
that are generated by objects executing communication actions. When these messages ar-
rive, the receiving objects eventually respond by executing the behavior that is matched to
that message. The dispatching method by which a particular behavior is associated with
a given message depends on the higher-level formalism used and is not defined in the
UML specification (i.e., it is a semantic variation point)". During an object interaction
e.g. in a sequence diagram, objects exchange messages (synchronous/asynchronous, call

Figure 12. Basic causality prin-
ciple

and reply, signals). A message receive event is captured by the re-
ceiver protocol (state machine) leading to actions (including those
of do− activities inside states). An action , described as an oper-
ation (for sake of uniformity) described in the class diagram by
OCL assertions and Action Semantics statements, especially those
actions related to message sent to join back the sequence and state-
transition diagrams22.

In plain OOP, the problem yields in transforming individual
message sent by generating OOP method call. In the general case
the transformation is complex and takes into account

• the communication medium (middleware) which is implicit in UML (reliable, lost),
• the message features (call or signal, synchronous/asynchronous, call-aback, broadcast, un-

known senders, time events...),
• the underlying protocols (TCP-IP layers of services),
• the connecting mode (stateless, session).

For example, in the case study, the remote device and the controller exchange with session-based
protocols. It is assumed the devices are physically bound: the EV3 cables are connected sensors
and adapters. A Wifi or Bluetooth connection is required to be done manually and interactions
happen during a session (open session - exchanges - close session).

A project led by a group of master students23 explains the main issues and illustrates them on
the conducted case study. Beyond the problem of defining the underlying communication support
(service and protocol implementations, configuration, initialisation), the main point, considering
UML models, is to isolate the message sending from the models before processing the communic-
ation instantiation transformation. For a sake of simplicity, the students chose to extract messages
from sequence diagrams since the message sent are explicit24 and processed ATL transformation
to introduce lower lever communication messages. Examples of models and concrete Java code
have to be implemented. However, sequence diagrams (or communication diagrams) are instance
diagrams but not rules. The true sent messages are found in the actions of a state-transition diagram
or in the operations defined in the classes. The lessons learnt from that experimentation are:

21 UML Superstructure Specification, v2.3 p. 12
22 Note that this principle binds sequence, state-transition and class diagrams providing a way to check some

inter-diagram consistency rules [19] but also a way to organise models.
23 https://ev3.univ-nantes.fr/rapport_ter_22-05-2020/
24 Abstract to raising signals or time events.

15

• Messages are low level concepts in terms the UML diagrams except in sequence diagrams.
Transforming message communications implies messages to be explicit in state-transition dia-
grams (actions and activities) and operations (activity diagrams or actions). A full action lan-
guage is not mandatory, only is the part related to message and events (e.g. as a DSL).

• Some messages are simple procedure call in the target program. For example, the communic-
ations between EV3 and the sensors/actuators are Java method calls. We call them primitive
messages in opposition to protocol message which enable distant objects to communicate.

• From the result of transformation T1, we simplify by considering that primitive messages are
used for objects deployed on the same node while protocol message are used for objects de-
ployed on different nodes. Recall that the deployment diagram provides the protocol stereotype
on communication path between nodes. Otherwise, a user information is necessary to process
the transformation.

• For each communication path, we associate communication services and protocols. This com-
munication infrastructure (middleware) is installed and configured in the main program.

• Each individual protocol message is transformed in a proxy call that will be in charge of trans-
ferring the message to the receiver according to the middleware configuration.

When there are variable communication media, an alternative is to consider communications as an
orthogonal interoperable concern. We proposed a solution to that alternative called Multi-protocol
communication tool (MPCT) in [42].

6.3 OOP Transformation (T3)

Suppose UML−java, a UML profile that accepts only UML concepts which are meaningful in Java.
The macro-transformation T3 transforms UML models to UML−java models. For a sake of con-
ciseness, we sketch the following simplified sequence of transformations:

1. Transform STD [T3.1] associated to classes into OOP structures (a missing criterion in
Table 1). Various strategies (enumerations, State pattern, execution engine) are possible for
the same case study according to the nature of the automata. For example, binary states (light
is on or off) or enumerations are simple solutions for an automaton with few states, while
the State pattern [24] is useful if the associated operations have different behaviour from one
state to another and the number of states remains limited (see the illustrating example below).
Beyond 10 states, an instrumentation machinery (a framework) is necessary, connecting to a
framework API for instantiation, inheritance, call, mapping...

2. Transform Activity Diagrams (AD) associated to operations into OOP structures. This problem
is a variant of the STD transformation.

3. Transform multiple inheritance to single inheritance25 is to determine the main inheritance
flow either the first in the multiple inheritance order or by a metric that computes the feature
reuse rank. If the target model allows the "implement" inheritance variant e.g. Java or C# the
secondary inheritance flows are defined by interfaces. If it does not e.g. Smalltalk, features are
duplicated.

4. Class-associations are transformed into classes plus associations. The multiplicity is 1 in the
new class role side.

5. Aggregations and compositions are transformed into simple associations.
6. Dependencies are transformed into <<import>> dependencies. Variants are possible according

to given stereotypes.

25 Note that the transformation from UML classes to relational databases transforms with no inheritance.
Intermediate classes, especially those which are abstract may disappear by aggregating attributes in the
root or in the leaf classes. Another transformation replace inheritance by 1-to-n associations.

16

7. Bidirectional associations (A↔ B) are transformed into two unidirectional associations (A→
B and A← B) with a symmetric constraint ((a, b) ∈ A↔ B =⇒ (b, a) ∈ B ↔ A). Keeping
only one of both is a (good) design decision that reduces class coupling (dependency inversion
principle of the SOLID principle). It can be decided automatically if no navigation path exists
in the OCL constraints associated to the model.

8. Process the meta-features (attributes, operations) is not required in Smalltalk but it is for Java,
C# or C++. They are implemented by static features in a UML-Java profile. If other meta-
facilities are used e.g. in OCL constraints, using a Factory pattern [24] would be of interest.

9. The derived features (attributes, associations) are transformed by operations. If an OCL con-
straint gives a computation, it can be an assertion of the method associated to this operation.

10. Unidirectional associations A → B are transformed into attributes (called references in UML
to be distinguished with primitive types or utility classes). The attribute name is by order the
role name or the association name of the implicit association name. The type of the attribute in
class A depends on the multiplicity and the constraint:

• b : B if less or equal to 1. Note that in case of 0..1 it should be mention a union of types
B ∨Null since it is optional.

• Otherwise it is a set, an ordered collection, a sorted collection, a map if the association was
qualified).

11. Operations are transformed into methods. If an OCL assertion was associated to the operations,
it can be an assertion of the method associated to this operation.

12. Stereotypes can be handle. As an example, a candidate identifier <<key>> (for persistent data)
lead to uniqueness constraints in OCL invariants.

13. OCL invariants are implemented by test assertions (e.g. jUnit) or operations that are called
every time an object is modified.

T3 is a transformation process implemented with intermediate steps and each rule is implemented
by one transformation (or macro-transformation). We could define specific UML profiles for each
intermediate step e.g. UML-SI-OOP, a UML profile dedicated to OOP with single inheritance is
an intermediate step to Java. The designer can then select the sub-transformations and organise the
macro-transformation T3.

Now we describe the experimentations on the STD sub-transformation [T3.1] in the above
sequence.

Example: UML2Java, a STD Transformation with ATL Due to its expressibility and abstrac-
tion, we chose ATLAS Transformation Language (ATL)26 to conduct these experiments. ATL is
a model transformation language based on non-deterministic transformation rules. In a model to
model (M2M) transformation ATL reads a source model conforming to the source meta-model
and produces a target model conforming to the target meta-model. At this stage we used model to
text (M2T) transformation type to generate Java source code. The input model is a Papyrus model
(XMI format for UML 5) composed of class and state diagrams (CD + STD).

ATL proposes two modes for transformations from and refine . The from mode enables to create
a model by writing all the parameters, all the attributes in the output model. The refine mode is
used to copy anything that is not included in the rule into the output template and then apply the
rule. A rule can modify, create, or delete properties or attributes in a model. In this mode, the
source and target meta-models share the same meta-model. The refine mode is more interesting
for our transformations because we are working on partial transformations. Morever we want to
avoid DSL explosion, we limit the number of metamodels or profiles by keeping UML as far as
we can.

STDs are assumed to be simple automata: no composite state, no time, no history. Also a main
restriction is that state machine inheritance through class inheritance is not allowed here because
26 https://www.eclipse.org/atl/

17

the UML rules have different interpretations and vary from one tool to another. Most of them do
not consider STD inheritance. Code style conventions have been determined (for example, the
elements Region and StateMachine have the name of their class) that make it easier to write the
transformation rules.

The UML2Java transformation is structured in three main steps:

1. Generate a Java model that have exactly the same UML-Papyrus models structure. In this line,
Fig. 13 describes the ATL rule building a target XMI model with respect to Papyrus specifica-
tion. The model2model rule builds the main structure of the generated XMI model. This model,
called uml_java (MM1!Model), has the same name as the source model and contains all the
instances of the UML source model that conform to Java.

Figure 13. Model to model transformation -basic rule

2. Once the main XMI structure of the Java target model is built. The second step copy all the
existing elements from the source model that refer to UML-Java Profile such as Packages
(MM!PackageImport), Classes (MM!Class), Attributes (MM!Property), Methods(MM!Operation).
As described in Fig. 14, after a deep analysis of the XMI file, four main elements could be
copied directly to the Java target model: Package, Class, Property and Operation. For each
element, an ATL matched rule is defined.

3. For each UML class (MM!Class) containing a subsection (MM!StateMachine) or possibly
MM!Activity), we carried out a set of ATL rules (Fig. 15) to transform this behaviour into
UML-Java. Among the alternatives given in transformation [T3.1], we chose the State pat-
tern because it is straight forward. According to the pattern definition [24], the corresponding
Java elements will be generated:
(a) A Java Interface representing the STD of each object,
(b) The Java class should implements the generated stateMachine interface,
(c) For each context class (1) a private attribute references the STD and (2) a public method

setState () defines of the current object state.
(d) We generated a path variable _currentState and a memory variable _previousState if the

state diagram holds a Pseudostate element of type deepHistory. Both variables are Property
elements typed by the enumeration type. To initialize the current state, a child element
OpaqueExpression is added, with two parameters: ’language’ which takes the value ’JAVA’
and ’body’. The body parameter is initialized with the concatenation of the enumeration
name and the initial state. The initial state is found by retrieving the target state of the
transition having the initial state as source state.

(e) To determine the behaviour of the operations. For each operation used as a trigger in a state
machine, we will create a condition switch in the method implementing the operation. To
fulfil the condition, we retrieve the source state and target state of all transitions that trigger
the function. The source states correspond to the possible cases for the change of state and
the target states correspond to the new value of the current state. We add in each case the
switch the exit action of the start state and the input action of the arrival state if any.

The experiments highlight the complexity of the problem and some basic aspects to deal with.
The results are still far from the final objectives.

18

Figure 14. From UML elements to Java elements

6.4 Source Code Transformation (T4)

Transformation T4 aims at unifying model elements and implementation (source code). All model
elements are not generated from scratch, some already exist, maybe in a different nature, in the
technical model (cf. Fig. 1). As mentioned in Section 4, we look forward API Mapping a feature to
map model elements to predefined elements in libraries or frameworks. In this section, we study the
mapping of design classes (and operations) to predefined code source classes and we experiment
source code generation. To simplify the discourse will focus on classes as to be the model elements,
but it should be extended to packages, data types, predefined types or operations and so on.

API Mapping All the classes of the model need not to be implemented, some exist already in the
technical framework. In our case study, the sensors and actuators already exist at the code level in
the Lejos library. For sake of simplicity we consider that a model element maps to one implement-
ation but an implementation can map to several model elements (1-N relation). When model and
implementation elements do not match, developers usually refactor the model to converge. The
mapping process includes three activities

19

Figure 15. From STD to Java elements

Figure 16. The Java elements generated for the garage door

1. Match to find implementation candidates in libraries with if possible matching rates. Different
model elements are taken into account such as class, attribute, operation... We face here two
issues:

20

• Abstraction level. Basically the model and implementation elements are not comparable and
we need a model of the implementation framework. This abstraction issue will be discussed
in Section 7.

• Pattern matching. The model elements are not independent e.g. operations are in classes
which are grouped in packages. The way the model elements are organised influence the
matching process.

2. Select the adequate implementation of model element (class, attribute, operation) and bind the
model elements. We proposed a non intrusive solution of this problem in [43].

3. Adapt to the situation. Once a mapping link is established, it usually implies to refactor the
design. Adaptation is the core mechanism to bind the two branches of the "Y" process of Fig. 1.
Several strategies can be chosen

• Encapsulate and delegate. The model classes are preserved that encapsulate the implement-
ation classes (Adapter pattern). The advantage are to keep traceability and API. The draw-
back is the multiplication of classes to maintain.

• Replace the model classes by the implementation classes. The transformation must replace
the type declarations but also all messages sent. The pro and cons are the inverse of encap-
sulation.

During forward engineering, the students used both strategies, depending on their concerns
with traceability, easy of implement, code metrics...
Replacement is possible when classes have same structure and same behaviour but also for
UML/OCL/AS primitive types. In any other cases the Adapter pattern captures multi-feature
adaptations:

• Attribute: name, type adaptation, default value, visibility...
• References (role): name, type adaptation, default value, visibility...
• Operation: name, parameters (order, default), type adaptation...
• Protocol: STD for the model class but not the implementation class.
• Composition: a class is implemented by several implementation classes.
• Communication refinement: MOM communictaions are distributed.
• API layering: classify the methods to reduce the dependency.
• Design principles: improve the quality according to SOLID, IOC...

The high-level frameworks for MOM or STD are not concerned by these issues because they are
pluggable components. In the remaining of this section, we describe experimentations on code
generation transformations.

Source Code Transformation with ATL This transformation is a Model-To-Text (M2T) trans-
formation that generates source code from the UML models resulting from transformation T3.
To parse the XMI model and generate the Java code, we defined an ATL transformation engine
composed from a set of sub-transformation rules.

1. Generate the source code structure In M2T transformations, ATL provides the concept of help-
ers (methods) to parse the XMI model. Each helper generates a piece of code that conforms to
the Java grammar (syntax). The ATL helper of Fig. 17 organises the parse-generate process by
calling sub-rules.• The GenerateClasses () helper parses every class presents in XMI model (UML-Java)

and generate the Java class code structure. It is completed by calling other help-
ers: (i) GenerateAttributes () to generate the attributes corresponding to each class,
(ii) GenerateMethods() to generate only the signature of each method, this helper could be
extended in the future to generate the method body from the associated activity diagram,
and (iii) GenerateInterfaces () to generate the modelled interfaces if there exist.

• The GenerateAttributes () helper parses all classes and generates all information related to
the attributes: visibility, name and type (see Fig. 18).

21

Figure 17. ATL transformation rule for classes

Figure 18. ATL transformation rules for attributes

Figure 19. ATL transformation rules for methods

22

Figure 20. The list of the generated classes

• The GenerateMethods() helper generates the method signature: visibility, returned type, name
and parameters (see Fig. 19).

Fig. 20 shows the list of Java files generated for the Motor model class.
These experiments highlight the complexity of the task, especially when different alternatives

exist. In the case of STD again, the design choice for states implementation (enumeration, state
pattern or machinery) impacts the remain to be done especially for the operation -to-method trans-
formation. For example, the STD graph can be distributed over the operations or centralised in
a unique behaviour−protocol. We advise the second way which is easier to maintain. Other issues
like threads and synchronisation have not been discussed here because they better take place in
a STD-framework. Again this reports many implementation problem to API mapping instead of
code generation.

Source Code Transformation with Papyrus Since 2017, Papyrus provides a complete code
generation from StateMachines. The implemented pattern is a part of the Papyrus designer tool.
It considers the following Statechart elements during code generation: State, Region, Event(Call
Events, SignalEvents, Time Events, ChangeEvents), Transitions, Join, fork, choice, junction, shal-
low history, deep history, entry point, exit point, terminate. A deep presentation of the algorithms
designed to translate these elements into code is available on [25]. As explained in section, the
code generator engine of papyrus extends IF-Else/Switch construction of programming languages
that supports state machines hierarchy. It brings many features compared to the existing tools [25]
such as:

• All statechart elements are taken into account during code generation,
• Consider sync/asynchronous behaviours through events support,
• The used UML is conformed to the OMG standard,
• Much more improvements in terms of efficiency: events processing is fast and the generated

code size is small,
• Concurrency and hierarchy support.

The generated code could be only on C++. Accordingly, we have to use ATL transformation as an
intermediate to adapt our papyrus UML models to our Lejos programs based on Java programming
language. The transformation pattern we implemented by ATL is based on State Design Pattern
which is an oriented object approach that could also support hierarchical state machines. These
solution suffer from one limit that is related to the explosion of the number of classes that requires
much memory allocation. Note that there is an ongoing work by Papyrus designers to add Java
code generation from STDs.

23

Source Code Transformation using Mapping This transformation find candidate mappings and
establish the mapping by adaptation.

a) Candidate Mapping For each class of the Model, e.g. Motor the goal is to find, if any, candidate
implementation classes in the framework to map to. A prerequisite is have at disposal a model
of the framework or to establish one if none exist yet. This point will be discussed in Section 7.

In a previous work [44] we faced the problem of identifying components in a plain Java pro-
gram and one of the issue was to compare a UML component diagram with extracted Java classes.
We used string comparison heuristics that were efficient for 1-1 mappings with similar names.
When a component was implemented by several classes, even with naming conventions, the prob-
lem was inextricable without user expertise. A key best practice is to put traceability annotations,
just like the little thumb places stones, to find a way back. However the problem is not really to
discover the source code to establish the traceability links but to find potential implementation of
some model classes.

In another work [43] we suggested an assistant to present elements in double lists and to map
them by drag and drop. The mapping is non intrusive and up to model evolution. This is clearly
a convenient solution for small size applications. In order to make it applicable we suggest the
general guidelines:

• Model preprocessing: use stereotypes to separate the utility or primitive classes, the STD are
not taken into account (State patterns are excluded).

• Implementation preprocessing: get an abstract model of the different implementation libraries
and find the entry point libraries (cf. Section 7).

• Apply a divide and conquer strategy to avoid mapping link explosion.
1. Map parts: isolate model subsystems and implementation frameworks
2. Map concerns: isolate model points of view (design concerns) and implementation libraries
3. Map packages: isolate model packages and implementation libraries
4. Map classes: establish links between corresponding classes -if any
5. Map operations: establish links between corresponding methods -if any

As an example, we list here model classes and candidates. The implementation classes come from
the Lejos library (see Section 7.2). Recall that the GUI part is considered to be developed separately.
For the simple example of class Motor, Table 2 show it is not an easy task to detect which candidate
class could be the good one. We definitely do not look for automated mapping but mining facilities
to detect candidates based on names (class, attributes, operations), the user is in charge of deciding
the class to map.

b) Adaptation To simplify the description of the mapping attributes and their injection in the
previous ATL transformation engine. we preferred to represent them as a properties file containing
the list of mapping attributes. Following the ATL specification any input file should have an XMI
format and respect a description defined by its meta-model. for this fact, we defined a model for
the mapping properties as shown in Fig. 21.

In the example of Fig. 22, the (model) class Motor delegates its method calls to the EV3Large
RegulatedMotor.
Based on the specification of a simplified Adapter Pattern presented in Fig. 21, we delegate to
Adapter instances every model class that maps to one existing framework class taking into account
the following parameters: (i) Import: the packages of each class depending on the className
and packageName values, (ii) MethodCall: represents the API calls to perform on the defined
operationName existing in the class specified by the className attribute, (iii) Attribute defines API
references declaration. Based on these parameters, our ATL transformation engine will generate
the appropriate Java code mapped to the lejos PI using three ATL helpers presented in Fig. 23.

24

Table 2. Mapping candidates

Model Lejos candidates Choice Comment
Motor <<abstract>> Motor Motor class contains 3 instances of reg-

ulated motors.
EV3Large RegulatedMotor Installed Actually, it depends on the installed

hardware.
42 other classes or interfaces with "*mo-

tor*.java"
lejos .hardware.motor pack-
age

11 classes or interfaces with "*mo-
tor*.java" over 13

ContactSensor no
EV3TouchSensor Installed
49 other classes or interfaces with "*con-

tact*sensor*.java"
MotionDetector no 0 classes for "*motion*.java"

EV3UltrasonicSensor Installed
Communication BTConnection if bluetooth

lejos . remote.nxt package
Controller outside the EV3 libraries scope
Remote android App
Communication android . bluetooth package Installed BluetoothAdapter, BluetoothDevice,

BluetoothSocket

Figure 21. Adapter Pattern Model

The addAdapterAttributes helper adds for each class the specific attributes referencing objects
in the corresponding Lejos framework. The getImports ATL helper maps each class to the one of
the framework. For API calls, the helper mappingMethods takes as an input a couple of paramet-
ers representing the name of the class and the name of the operation to be mapped. Note that
addAdapterAttributes , mappingMethods() and getImports () helpers will run based on the properties
file that is defined as an instance of the adapter model. Listing 1.1 presents the content of such a
property file in the case of Motor.

Listing 1.1. Instance of Adapter Model

1 <?xml version="1.0" encoding="UTF−8"?>
2 <Adapter xmi:version="2.0"
3 xmlns:xmi="http :// www.omg.org/XMI">
4 <methods className="Motor"
5 operatioName="push" Instruction ="EV3LargeRegulatedMotor.forward();" />

25

Figure 22. Class Mapping by Adaptation of the Motor Class

Figure 23. ATL helper to generate adapted attributes

6 <methods className="Motor"
7 operatioName="hire" Instruction ="EV3LargeRegulatedMotor.backward();" />
8 <methods className="Motor"
9 operatioName="stop" Instruction ="EV3LargeRegulatedMotor.stop();" />

10 <methods className="ContactSensor"
11 operatioName="contact" Instruction ="EV3TouchSensor.fetchSample();" />
12 <methods className="MotionDetector"
13 operatioName="contact" Instruction ="EV3UltrasonicSensor.fetchSample() ;" />
14 < attributes className="Motor" attributeDeclaration =" private

26

15 EV3LargeRegulatedMotor ev3LargeRegulatedMotor;" />
16 < attributes className="ContactSensor"
17 attributeDeclaration =" private EV3TouchSensor ev3TouchSensor;" />
18 < attributes className="MotionDetector"
19 attributeDeclaration =" private EV3UltrasonicSensor ev3UltrasonicSensor ;" />
20 < attributes className="Communication"
21 attributeDeclaration =" private lejos . remote.nxt nxt ;" />
22 <imports className="Motor"
23 packageName="lejos.hardware.motor.EV3LargeRegulatedMotor;" />
24 <imports className="ContactSensor"
25 packageName="lejos.hardware.sensor .EV3TouchSensor;" />
26 <imports className="MotionDetector"
27 packageName="lejos.hardware.sensor .EV3UltrasonicSensor" />
28 <imports className="Communication"
29 packageName="lejos.remote.nxt.BTConnection;" />
30 </Adapter>

The result of the above adapter transformation in the simple case of class Motor is given in
Listing 1.2. It implements direct mapping for class, imports and method call.

Listing 1.2. Instance of Adapter Model

1 /*
2 * Automatically generated Java code with ATL
3 @author Mohammed TEBIB & Pascal Andre
4 */
5 import lejos .hardware.motor.EV3LargeRegulatedMotor;
6

7 public class Motor implements IMotorStateMachine {
8 // attributes
9 private EV3LargeRegulatedMotor ev3LargeRegulatedMotor;

10 public Door ctrl ;
11 private IMotorStateMachine motorState ;
12

13 // methods
14 public void push(){ // delegates to EV3LargeRegulatedMotor
15 EV3LargeRegulatedMotor.forward();
16 }
17

18 public void hire (){ // delegates to EV3LargeRegulatedMotor
19 EV3LargeRegulatedMotor.backward();
20 }
21

22 public void stop (){ // delegates to EV3LargeRegulatedMotor
23 EV3LargeRegulatedMotor.stop();
24 }
25

26 public void Motor(){ // to be completed
27 }
28

29 public void setState (IMotorStateMachine motorState){
30 this . motorState=motorState;
31 }
32 }

27

The above transformations work for direct name-based mappings. Additional work is neces-
sary for more complex transformation, and currently developers have to code more complex ad-
aptations.

7 Reverse engineering PDMs

As mentioned in Section 5.1, stepwise refinement is implemented by model mapping when
too many details have be brought in the transformation; low-level model mapping has been
illustrated in Section 6.4. Model mapping is made applicable only if a model of the target
framework (PDM) exists. One way to get an XMI model from the framework documentation,

Figure 24. View of a mapping transformation

which is actually never the case. Another way
to fill this hole is to extract the model from
the framework source code by Model Driven
Reverse Engineering (MDRE) as illustrated by
Fig. 24. Note that the mapping persists at the
PSM level e.g. adapters store the API mapping
(cf. Section 6.4).

7.1 Model Driven Reverse Engineering
(MDRE)

Reverse engineering is the process of compre-
hending software and producing a model of it
at a high abstraction level, suitable for documentation, maintenance, or re-engineering [45]. It
aims at producing high (abstraction) level models from software systems according to various
software maintenance objectives including technical upgrading, business process alignment, im-
proving quality, etc.

As far as MDE is perceive as a transformation process, MDRE is itself a transformation
process [46]. A MDRE step can be represented by a model transformation from a PSM up to
a PIM as illustrated by Fig. 25. A reverse engineering process will be a composition of such
model reverse transformations where the reverse designer will have to define the meta model of
each intermediate model: a PIM model of transformation will be considered as a PSM model
of another transformation. In MDE, writing model transformations is not very simple but the
source and target models are usually known. Finding abstraction is an even more difficult prob-
lem in MDRE [47,45]. Abstraction hides implementation details. During the development of
software systems, high level abstraction models refer to system analysis and design while low
level ones refer to implementation and deployment of the solutions. Abstraction layers represent

Figure 25. Reverse Model Transformation

the organisation of complex
architectures; typical examples
are the ISO stack of protocols
and services for telecommunic-
ations or the service architecture
approach (SOA). The relations
between model elements of dif-
ferent layers are refinement or
traceability. Sometimes inherit-
ance is used to materialize the
abstraction between comparable
model elements. In our case the
abstraction layers are levels T1
to T4.

28

MDRE may target different levels of abstraction, from program representation to high level
application architectures or business processes. Consequently, different types of models are expec-
ted with various notations like de facto MDE standards such as UML, OCL, MOF, EMF, SysML,
AADL, BPMN or customised models defined with domain specific languages (DSL). The source
information also differs and may include binary code, source code, configuration files, tests pro-
grams or scenarios models... Such a diversity make the RE activity difficult to solve.

The question is not to sort abstract and concrete elements from the source information but to
built abstractions. The more you hide in the abstraction, the more it is difficult to find abstrac-
tion. For example, Knowledge Discovery Metamodel (KDM) is a standard for software system
representation [48]. It is useful at low level because it is a model representation but it keeps a very
detailed information which miss abstraction.

7.2 Example: Reverse engineering Lejos libraries

In our conducting case study, we expect a model from the specific Lejos framework27. More pre-
cisely we consider only the EV3 library28 as the PDM. (PA) https://www.juanantonio.
info/blog/2017/03/20/why-use-ev3dev-lang-java.htmlfatjarWe extracted
the main in its source form ev3classes-src.zip. The o3smeasure metrics are given in Fig. 26.

Figure 26. Metrics of the Lejos EV3 classes library

For this case study, we experimented with Papyrus, Modisco and AgileJ. Papyrus enabled to
reverse engineer29 individual classes but not packages. In the context of a papyrus project, apply-
ing the command Java>Reverse on lejosEV3src model elements fails except for classes. Even
for a class, the methods were not included. In Modisco [48], UML discovery from Java code is
composed of two transformations (Java to KDM / KDM to UML). Unfortunately, the second one
is no more available in the Eclipse Modelling distribution, but remains available in the Modisco
git repository. Once again, we faced two ATL compatibility problems: lazy rules are not allowed
in the refining mode and the distinct ... foreach pattern is also forbidden in that case. Also the

27 Android/Java libraries are considered as standard for the experimentation purpose.
28 Lejos is a complete Operating System based on an Oracle JVM.
29 https://wiki.eclipse.org/Java_reverse_engineering

29

methods were not captured as model elements in KDM. In AgileJ 30 reverse the java code to UML
class diagrams is simple. Fig. 30 shows the result of applying reverse engineering on lejos library
using AgileJ/structureviews. From a visual point of view, we note that it provides many relation-
ships between classes (see Fig. 30), compared to other tools like ObjectAid (see Fig. 8). Especially
in the case when the number of classes is too big, and that by (1) building and maintaining a better
overview of the architecture and (2) highlighting where the design can be improved and refactored.

Recall that the initial problem to solve is match model elements to PDM abstractions. In this
experimentation, the working unit is the class element. For each model class, e.g. Motor to goal
is to find candidate implementation classes in the framework model. The MDRE process aims at
providing foundations classes, those which can be candidates for mapping. In order to reduce the
number of classes to compare, we apply the following simple heuristics: (i) focus on Java source
files (479 among the KDM elements), (ii) select only interfaces (160) and abstract classes (19),
because usually framework are structured to evolve. (iii) search according to string matching or
(iv) or better on pattern matching (including references, attributes and operations). These can be
implemented by Modisco queries. Specific stereotypes or annotations to separate model classes
are helpful in the case of iterative processing.

Figure 27. Modisco discovery for interfaces

AgileJ provides a filter tool (cf. Fig. 28) which powerful enough to remove the noise from the
key structural elements. Once the filter is applied it changes the content of the screen e.g. show all
interfaces or show abstract classes.

In the simple example of class Motor, the string matching provides 11 interfaces and abstract
class BasicMotor. This is a reasonable set to find potential API mappings (pick and adapt). The
above observations are not definitive opinions on the tools. AgileJ provides visual and interact-
ive information while Modisco enables customize query and transformation. Papyrus is still on
contribution. Further reading can be found in [46].

8 Discussion

We discuss here some lessons learnt from the above studies and related works. The manual design
of the application from a logical model was not greatly difficult to the students, except learning the
target technical environment. However, we found that the code did not meet the requirements or the
initial model, which, although detailed, did not guarantee the consistency or completeness of the

30 https://marketplace.eclipse.org/content/agilej-structureviews

30

Figure 28. AgileJ filter process

system specification. In addition, technical constraints are required, such as the fact that the Lego
model uses two motors (one per door panel) and not a single engine as in the model. In the same
way the wireless communication between the remote control and the controller remains abstract in
the form of sending messages in the model. The manual design shows various orthogonal aspects
that were are not a priori prioritized by the students. Dependencies remain implicit for them, even
if they realize that choices for one aspect will influence other aspects. Last but not least, it is not
efficient because (a) forward engineering is time consuming especially when the models evolve
and (b) the experience return on invest (ROI) is more individual than collective. Our contribution
focus on methodology and guideline for MDE developers.

Lesson 1: MDD is a complex task and assisted MDD is an open field. To the best of our know-
ledge, transformations from analysis to code from a practitioner’s point of view, has not been
addressed as a whole in the literature. The development standards are not immediately applic-
able here. For example, in [49], the authors use MDE for process compliance, however the refer
to standard or de facto development process which are far from our practice orientation. They
are not concerned with the produced models contents but rather with their meta-information. As
mentioned by Aranda et al. in 2012, the step from traditional development, even with model, to
MDE is large and disruptive and "practitioners and researchers have little information to help
guide them on this process." [50]. It seems to be still the case in 2020, especially for code gen-
eration as mentioned by Sebastián et al. "There is still a long way to go in the field of MDA,
and -in many cases- the automatic generation of code from models is still a software engineers’
dream, and the development and subsequent publication of research works that use MDA to
generate code is still complicated. [51]. However ad-hoc solutions exist. For example, Sindico
et al. [52] present a MDE process based on the INCOSE framework that conforms to the MIL-
STD-498 standard for military real-time embedded systems with SysML Marte, Simulink... The
platforms play the role of integration system for engineers. SysML models are given for the
requirements but also the target platform. The solution works at low level of electronic devices
but is interesting to compare with.

Code generators provide incomplete models, which often does not even exploit the information
of the model (OCL constraints, operation details).

31

Lesson 2: Even for very detailed models, automatic code generation can’t apply in the large.
Although many studies have been conducted, the systematic study of Ciccozzi et al. [53] shows
that the execution of UML models remains a difficult problem and answers to animation needs
not to software development. However, the new standards fUML and Alf contribute to palliate
a lack of action semantics. They have been implemented, for example, in the verification of
models [54,55], execution via C++ [56] or MoKa/Papyrus [57,54]. We are convinced that MDE
can cross the threshold since tool support handle these standards.

Figure 29. Mapping transformation process

In MDD, the abstraction
gap between analysis mod-
els and the detailed design
models is huge. In the devel-
opment workflow of Fig. 10,
the macro-transformations
are ordered according to the
impact: architectural choices
(deployment, communica-
tions), general design choices
(programming language), de-
tailed design choices (patterns,
library mapping). The ex-
perimentations showed that
transformations are already
numerous and difficult to
design even if we did not
take into account the bridges
between domains and the or-
thogonal aspects of PSMs [58].

Lesson 3: providing information and decision as parameters to design transformation is really
a problem. Among the techniques to define transformations [58,39] we suggest to use mappings
to fill the abstraction gap. This refinement process has been transformed into a mapping process
in Fig. 29, according to the principles of Section 5.1. For sake of simplicity, Fig. 29 shows one
couple of models per level but the more you progess to code the more you have domains in
parallel. At each level, a model of the technical frameworks is requested. Reverse engineering
tool support exist at low level but raising in abstraction remains an engineering task [46]. The
mapping process, requires a matching process. Many techniques exist as pointed by Somogyi
and Asztalos [59], based on graphs or text algorithms. However they are more useful to compare
models than to find implementation candidate, as we showed in Section 6.4. A non-intrusive
mapping technique and a tool are presented in [43].

We made use of design patterns for detailed design. We observed pattern implementation from
books or student work and observed that implementations varies making it difficult to process
systematically in pattern transformations.

32

Lesson 4: Standard design best practices may lead to pattern transformation. Having a pattern
description of the PDM models would help to define the mapping transformations. We did not
found pattern (based) transformations but there exist works on transformation patterns e.g. [60],
that improve some quality characteristics such as modularity or efficiency of the transformations.

Similarly to the Components On The Shelf (COTS), our MDE vision requires that technical
framework providers delivers not only libraries but also models. First models play the rôle of
documentation because current API are difficult to overcome and abstraction is really missing.
Components, class and state machine protocols are convenient means to explain and to understand
the framework design. Second, models are a mandatory input for our transformation mappings.

Lesson 5: MDE works with MDRE. Assuming a framework model, the question is how to make
it consistent with the code libraries, especially after evolution and releases. This is the point of
round trip and MDRE facilities. The first implies a MDE development of frameworks, according
to the principles introduced in this article. The second requires new abstraction heuristics to get
high-level abstractions from low level abstractions [44] as illustrated in Section 7.2. We feel that
many of the challenges on model evolution given in [61] remain on the way.

Our workflow model remains abstract in the sense that the parameters to provide remain sub-
stantial and these transformations are themselves processes of transformation. Nevertheless, it is
generic enough to be customised to projects by parametrisation and transformations substitutions.

Lesson 6: Collaboration is required achieve actual transformations. Similarly to the component-
based approach, the MDE developer should have models, metamodels and transformation on the
shelf, to build its actual transformation process. Standards exist for metamodels and many open
source projects propose tools. The challenge is to have community PDM models and transform-
ations but also development components to integrate them. The development strategies should
be parametrisable in the transformation process. For example, coding state machines is subject
to interpretation and strongly related to the execution model [22]. We also believe that several
transformation tools should be combined because the rule-based approach is unsuitable in some
operational transformations like the one mentioned in [22]. In particular, we tried to combine
model transformation with code generators.

We observe that the MDE tools have improved but the process do not reach an industrial mile-
stone and MDE do not replace classical software development. Many transformations are in charge
of the designer and the tool support offer is not mature enough and most of all, we always have
problems with release compatibility (UML versions, XMI version, Plugins, librairies, Java, IDE...).

Lesson 7: MDA is an evolving entity that generates growing technical debt. We observed im-
provements on the standard compliance of tools, sometimes by meta-model co-evolution but the
tool support in general is still not mature. Many tools are not maintained and some important
facets, such as incrementality, built-in traceability, verification and validation are not supported
and better tool integration is required [41].

Despite our case study belongs to cyber-physical systems, we did not consider the low-level
hardware connection as in [62]. The lejos java library is already the hardware platform abstraction.
In [62], (low-level) SysML models are mapped to realise the implementation and model transform-
ation plays a secondary role.

Finally, we discuss some threats to validity.

33

• How far is the method applicable to other cases ?. We use a single context (automated control
system with physical devices and mobile app) and presented here only one case study. This
minimal contexts enables to cover the main software design concerns (distribution, communic-
ation, persistency, concurrency, deployment...) in a reduced complexity set and we think it is
representative of what we can expect to do and the underlying concepts. Other architecture can
be used, this is the generic vision of the process that make it more applicable than dedicated
approaches such as the one of Section 4.2. But other experimentations of different types of
applications and different PDM must confirm our assumptions.

• Is the method bound to UML only?. The answer is no because the method is generic but of
course we need to have transformation implementations available for the modelling languages.

• Is the method applicable to the whole software development of a system ?. At this stage, the
answer is no. Only a part of the application is transformed, e.g. the GUI part is not concerned
here but GUI generating facilities exist. Also the early macro-transformations (T1, T2) appear
to be simpler in their principle (mapping logical elements to platform architectural elements)
than the late transformation (T3, T4), their integration is much more complex because they
have organisational consequences on those late transformation. There is a composition issue
we have not tackle yet in detail.

• Can this method be applied in real software development process ? Theoretically the answer
is yes but there is a long load to this goal due to the numerous prerequisite for an assisted
process: PDM models, transformation engineering (transformation implementation, mapping
transformations, operators to combine transformations, verification...). The next step should be
a high level transformation case tool with libraries of (compatible) transformations.

9 Conclusion

Model-Driven Engineering did not reach yet the promises given in [58] for the software devel-
opment practice. Integration modelling process still require methodological standards and tool
support despite progress is not mature enough. Domain specific applications coupled with spe-
cific platforms can lead to good automation rate but add them up do not provide general-purpose
equipment. The maintenance of software systems implies a high reactivity of the development
teams and highlights the need for industrialisation tools that go beyond integrated development
and deployment platforms.

This article takes the development problem from a practitioner’s point of view, we share exper-
iments and vision, and we exhibit solutions where assistance and automation can take place. The
gap between logic models and implementation stay large, the "no code" vision is utopian for gen-
eral purpose modelling languages such as UML or SysML. Starting from low level design model
stay difficult if the frameworks have not been integrated in the models.

The problem has been studied by reporting forward engineering experience and comparing
modelling code generation tool support to elaborate a stepwise development workflow based on
both engineering and reverse-engineering activities. To reduce a technical debt, we propose to
abstract the infrastructure and reason at the model level while facilitating the refinement of these
models in executable versions. The experiments carried out here stand to that direction and induce
the feasibility of the different model transformations which (partially) automate the process.

Our contribution does not pretend to replace developers but to assist them to build integration
chains that make maintenance and evolution less expensive. The human intervention in transform-
ations remains predominant when there are alternative choices, such as state machines or message
send detailed design. The process has to be more rationalised to be automated or even assisted
by the means of interactive design decisions. This point remains premature in the state of our
experiments.

This works establishes a starting point from which further works are requested through col-
laborative community contribution. Enriching models, formalizing processes of refinement, mak-

34

ing modular and personalizing development to rely on transformation tools are the tracks we fol-
low. Many tracks remains to be explored, that are challenging. From a theoretical point of view,
the transformation processes remain little explored. One perspective is to design an algebra of
transformations to combine them by assertion conditions. From a practical point of view, we still
need to rationalise the software engineering process as a combination of decisions and experiment
with a typology of transformations. From a tooling point of view, we need a transformation pro-
cess factory to build specific MDD processes based on the generic design transformation process
where one could pick and combine transformations and macro-transformations, a composite level
of transformation patterns [60]. Also it is necessary to be able to reverse engineering the design
frameworks as platforms models and to combine transformations written in different languages
and that are interactive so that the designer influences the design choices.

Acknowledgements This article is an extended version of [63].

References

[1] J. Koskinen, “Software Maintenance Costs,” School of Computing, University of Eastern
Finland, Joensuu, Finland, Tech. Rep., Apr. 2015. [Online]. Available: https://wiki.uef.fi/download/
attachments/38669960/SMCOSTS.pdf

[2] S. M. H. Dehaghani and N. Hajrahimi, “Which factors affect software projects maintenance cost
more?” Acta Informatica Medica, vol. 21, no. 1, pp. 63–66, Mar. 2013. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610582/

[3] B. Selic, “Personal reflections on automation, programming culture, and model-based software engin-
eering,” Automated Software Engineering, vol. 15, no. 3, pp. 379–391, Dec 2008.

[4] P. André and M. E. A. Tebib, “Refining automation system control with MDE,” in Proceedings
of the 8th International Conference on Model-Driven Engineering and Software Development,
MODELSWARD 2020, Valletta, Malta, February 25-27, 2020, S. Hammoudi, L. F. Pires, and B. Selic,
Eds. SCITEPRESS, 2020, pp. 425–432.

[5] R. F. Paige, N. Matragkas, and L. M. Rose, “Evolving models in model-driven engineering:
State-of-the-art and future challenges,” Journal of Systems and Software, 2016. [Online]. Available:
//www.sciencedirect.com/science/article/pii/S0164121215001909

[6] A. Bucchiarone, J. Cabot, R. F. Paige, and A. Pierantonio, “Grand challenges in model-driven engin-
eering: an analysis of the state of the research,” Software and Systems Modeling, vol. 19, no. 1, pp.
5–13, 2020.

[7] L. Rierson, Developing Safety-Critical Software: A Practical Guide for Aviation Software and
DO-178C Compliance. Taylor & Francis, 2013.

[8] P. Roques and F. Vallée, UML 2 en action: De l’analyse des besoins à la conception, ser. Architecte
logiciel. Eyrolles, 2011, (in french).

[9] O. M. Group, “The OMG Unified Modeling Language Specification, version 2.4.1,” Object Manage-
ment Group, UML 2.4 Superstructure Specification available at http://www.omg.org/spec/UML/2.4.1/
Superstructure/PDF, Tech. Rep., Aug. 2011.

[10] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML: Systems Modeling Language.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[11] J. Mottu, P. André, M. Coutant, and T. L. Berre, “Shall we test service-based models or generated
code?” in 22nd ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems Companion, MODELS Companion 2019, Munich, Germany, September 15-20, 2019, L. B.
et al., Ed. IEEE, 2019, pp. 493–502.

35

[12] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL: An Introduction to the SAE
Architecture Analysis & Design Language, 1st ed. Addison-Wesley Professional, 2012.

[13] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering in Practice: Second
Edition, 2nd ed. Morgan & Claypool Publishers, 2017.

[14] C. Atkinson, Component-based Product Line Engineering with UML, ser. Addison-Wesley object
technology series. Addison-Wesley, 2002.

[15] M. Gogolla, J. Bohling, and M. Richters, “Validating uml and ocl models in use by automatic snapshot
generation,” Software and Systems Modeling, vol. 4, no. 4, pp. 386–398, 2005.

[16] G. Shanks, E. Tansley, and R. Weber, “Using ontology to validate conceptual models,” Commun.
ACM, vol. 46, no. 10, pp. 85–89, Oct. 2003.

[17] P. André, C. Attiogbé, and J.-M. Mottu, “Combining techniques to verify service-based compon-
ents,” in Proceedings of the International Workshop on domAin specific Model-based AppRoaches
to vErificaTion and validaTiOn, AMARETTO@MODELSWARD 2017, Porto, Portugal, Feb. 2017.

[18] T. Weilkiens, Systems Engineering with SysML/UML: Modeling, Analysis, Design, ser. The
MK/OMG Press. Elsevier Science, 2008.

[19] P. André and G. Ardourel, “Domain Based Verification for UML Models,” in
Workshop on Consistency in Model Driven Engineering C@Mode’05, L. Kuzniarz, G. Reggio,
J.-L. Sourrouille, and M. Staron, Eds., Nov. 2005, pp. 47–62.

[20] M. O. Hansen, “Exploration of UML State Machine implementations in Java,” Master’s thesis, Uni-
versity of Oslo, Norway, Feb. 2011.

[21] I. A. Niaz, J. Tanaka, and K. Words, “Mapping uml statecharts to java code,” in in Proc. IASTED
International Conf. on Software Engineering (SE 2004, 2004, pp. 111–116.

[22] R. Pilitowski and A. Dereziñska, “Code generation and execution framework for uml 2.0 classes and
state machines,” in Innovations and Advanced Techniques in Computer and Information Sciences and
Engineering, T. Sobh, Ed. Dordrecht: Springer Netherlands, 2007, pp. 421–427.

[23] M. Schader and A. Korthaus, “Modeling Java threads in UML,” in The Unified Modeling Language –
Technical Aspects and Applications, M. Schader and A. Korthaus, Eds. Physica-Verlag, Heidelberg,
1998, pp. 122–143.

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software. USA: Addison-Wesley Longman Publishing Co., Inc., 1995.

[25] A. R. Van Cam Pham, S. Gérard, and S. Li, “Complete code generation from uml state machine,”
in Proceedings of the 5th International Conference on Model-Driven Engineering and Software
Development, vol. 1, 2017, pp. 208–219.

[26] M. H. Orabi, A. H. Orabi, and T. C. Lethbridge, “Concurrent programming using umple.” in
MODELSWARD, 2018, pp. 575–585.

[27] A. Forward, O. Badreddin, T. C. Lethbridge, and J. Solano, “Model-driven rapid prototyping with
umple,” Software: Practice and Experience, vol. 42, no. 7, pp. 781–797, 2012.

[28] J. Cabot and M. Gogolla, “Object constraint language (ocl): A definitive guide,” in Formal Methods
for Model-Driven Engineering, ser. Lecture Notes in Computer Science, M. Bernardo, V. Cortellessa,
and A. Pierantonio, Eds. Springer Berlin Heidelberg, 2012, vol. 7320, pp. 58–90.

[29] C. Raistrick, P. Francis, I. Wilkie, J. Wright, and C. B. Carter,
Model Driven Architecture with Executable UML. Cambridge University Press, 2004, iSBN
0-521-53771-1.

36

[30] S. J. Mellor and M. J. Balcer, Executable UML: A Foundation for Model-Driven Architecture, 1st ed.,
ser. Object Technology Series. Addison-Wesley, 2002, iSBN 0-201-74804-5.

[31] F. Belina, D. Hogrefe, and A. Sarma, SDL with Applications from Protocol Specification, ser. The
BCS Practitioner. Prentice Hall, 1991, iSBN 0-13-785890-6.

[32] A. Charfi, A. Schmidt, and A. Spriestersbach, “A hybrid graphical and textual notation and editor
for uml actions,” in Proceedings of the 5th European Conference on Model Driven Architecture -
Foundations and Applications, ser. ECMDA-FA ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
237–252.

[33] I. Perseil and L. Pautet, “A concrete syntax for uml 2.1 action semantics using +cal,” in Proceedings
of the 13th IEEE International Conference on on Engineering of Complex Computer Systems, ser.
ICECCS ’08. IEEE Computer Society, 2008, pp. 217–221.

[34] OMG, “Semantics of a Foundational Subset for Executable UML Models (fUML), version 1.4,”
Object Management Group, Tech. Rep., Dec. 2018. [Online]. Available: https://www.omg.org/spec/
FUML/1.4/

[35] I. Kurtev, “State of the art of qvt: A model transformation language standard,” in Applications of
Graph Transformations with Industrial Relevance, A. Schürr, M. Nagl, and A. Zündorf, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 377–393.

[36] D. Di Ruscio, R. Eramo, and A. Pierantonio, “Model transformations,” in Formal Methods for
Model-Driven Engineering: 12th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012. Advanced
Lectures, M. Bernardo, V. Cortellessa, and A. Pierantonio, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 91–136.

[37] J. Cabot and E. Teniente, “Constraint support in MDA tools: A survey,” in Model Driven Architecture
- Foundations and Applications, Second European Conference, ECMDA-FA 2006, Bilbao, Spain, July
10-13, 2006, Proceedings, ser. Lecture Notes in Computer Science, A. Rensink and J. Warmer, Eds.,
vol. 4066. Springer, 2006, pp. 256–267.

[38] K. Lano, Advanced Systems Design with Java, UML and MDA, 1st ed., ser. Computer Science. El-
sevier, 2005, iSBN 0-7506-6496-7.

[39] G. Karsai, G. Taentzer, T. Mens, and P. V. Gorp, “A taxonomy of model transformation,” Electronic
Notes in Theoretical Computer Science, vol. 152, pp. 125 – 142, 2006, proceedings of the International
Workshop on Graph and Model Transformation (GraMoT 2005).

[40] E. Jakumeit, S. Buchwald, D. Wagelaar, L. Dan, Ábel Hegedüs, M. Herrmannsdörfer, T. Horn, E. Kal-
nina, C. Krause, K. Lano, M. Lepper, A. Rensink, L. Rose, S. Wätzoldt, and S. Mazanek, “A survey
and comparison of transformation tools based on the transformation tool contest,” Science of Computer
Programming, vol. 85, pp. 41 – 99, 2014.

[41] N. Kahani, M. Bagherzadeh, J. R. Cordy, J. Dingel, and D. Varró, “Survey and classification of model
transformation tools,” Software and Systems Modeling, vol. 18, no. 4, pp. 2361–2397, 2019.

[42] P. André, F. Azzi, and O. Cardin, “Heterogeneous communication middleware for digital twin based
cyber manufacturing systems,” in Proceedings of SOHOMA, ser. Studies in Computational Intelli-
gence, T. Borangiu, D. Trentesaux, P. Leitão, A. G. Boggino, and V. J. Botti, Eds., vol. 853. Springer,
2019, pp. 146–157.

[43] J. Pepin, P. André, J. C. Attiogbé, and E. Breton, “Definition and visualization of virtual meta-model
extensions with a facet framework,” in 6th Int. Conf. MODELSWARD 2018, Revised Selected Papers,
ser. Communications in Computer and Information Science, S. Hammoudi, L. F. Pires, and B. Selic,
Eds., vol. 991. Springer, 2018, pp. 106–133.

37

[44] N. Anquetil, J. Royer, P. Andre, G. Ardourel, P. Hnetynka, T. Poch, D. Petrascu, and V. Petrascu, “Java-
compext: Extracting architectural elements from java source code,” in 2009 16th Working Conference
on Reverse Engineering, Oct 2009, pp. 317–318.

[45] S. Rugaber and K. Stirewalt, “Model-driven reverse engineering,” IEEE Software, vol. 21, no. 4, pp.
45–53, July 2004.

[46] P. André, “Case studies in model-driven reverse engineering,” in Proceedings of the 7th International
Conference on Model-Driven Engineering and Software Development, MODELSWARD 2019,
Prague, Czech Republic, February 20-22, 2019, 2019, pp. 256–263.

[47] C. Raibulet, F. A. Fontana, and M. Zanoni, “Model-driven reverse engineering approaches: A system-
atic literature review,” IEEE Access, vol. 5, pp. 14 516–14 542, 2017.

[48] H. Brunelière, J. Cabot, G. Dupé, and F. Madiot, “Modisco: A model driven reverse engineering
framework,” Information and Software Technology, vol. 56, no. 8, pp. 1012 – 1032, 2014. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0950584914000883

[49] F. R. Golra, F. Dagnat, R. Bendraou, and A. Beugnard, “Continuous process compliance using model
driven engineering,” in Model and Data Engineering - 7th International Conference, MEDI 2017,
Barcelona, Spain, October 4-6, 2017, Proceedings, ser. Lecture Notes in Computer Science, Y. Ouham-
mou, M. Ivanovic, A. Abelló, and L. Bellatreche, Eds., vol. 10563. Springer, 2017, pp. 42–56.

[50] J. Aranda, D. E. Damian, and A. Borici, “Transition to model-driven engineering - what is re-
volutionary, what remains the same?” in Model Driven Engineering Languages and Systems -
15th International Conference, MODELS 2012, Innsbruck, Austria, September 30-October 5, 2012.
Proceedings, ser. Lecture Notes in Computer Science, R. B. France, J. Kazmeier, R. Breu, and
C. Atkinson, Eds., vol. 7590. Springer, 2012, pp. 692–708.

[51] G. Sebastián, J. A. Gallud, and R. Tesoriero, “Code generation using model driven architecture: A
systematic mapping study,” Journal of Computer Languages, vol. 56, p. 100935, 2020.

[52] A. Sindico, M. D. Natale, and A. L. Sangiovanni-Vincentelli, “An industrial system engineering pro-
cess integrating model driven architecture and model based design,” in Model Driven Engineering
Languages and Systems - 15th International Conference, MODELS 2012, Innsbruck, Austria,
September 30-October 5, 2012. Proceedings, ser. Lecture Notes in Computer Science, R. B. France,
J. Kazmeier, R. Breu, and C. Atkinson, Eds., vol. 7590. Springer, 2012, pp. 810–826.

[53] F. Ciccozzi, I. Malavolta, and B. Selic, “Execution of uml models: a systematic review of research and
practice,” Software & Systems Modeling, vol. 18, no. 3, pp. 2313–2360, Jun 2019.

[54] E. Planas, J. Cabot, and C. Gómez, “Lightweight and static verification of uml executable models,”
Comput. Lang. Syst. Struct., vol. 46, no. C, pp. 66–90, Nov. 2016.

[55] M. Tisi, F. Jouault, Z. Saidi, and J. Delatour, “Enabling ocl and fuml integration byźtransformation,” in
Proceedings of the 12th European Conference on Modelling Foundations and Applications - Volume
9764. Berlin, Heidelberg: Springer-Verlag, 2016, pp. 156–172.

[56] F. Ciccozzi, “On the automated translational execution of the action language for foundational uml,”
Software & Systems Modeling, vol. 17, no. 4, pp. 1311–1337, Oct 2018.

[57] S. Guermazi, J. Tatibouet, A. Cuccuru, E. Seidewitz, S. Dhouib, and S. Gérard, “Executable modeling
with fuml and alf in papyrus: Tooling and experiments,” in Proc. of the 1st International Workshop on
Executable Modeling in (MODELS 2015)., Ottawa, Canada, Sep. 2015, pp. 3–8. [Online]. Available:
http://ceur-ws.org/Vol-1560/paper1.pdf

[58] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven Architecture: Practice and Promise,
1st ed., ser. Object Technology Series. Addison-Wesley, 2003, iSBN 0-321-19442-X.

38

[59] F. A. Somogyi and M. Asztalos, “Systematic review of matching techniques used in model-driven
methodologies,” Software and Systems Modeling, vol. 19, no. 3, pp. 693–720, May 2020.

[60] K. Lano, S. Kolahdouz-Rahimi, S. Yassipour-Tehrani, and M. Sharbaf, “A survey of model
transformation design patterns in practice,” Journal of Systems and Software, vol. 140, pp. 48 – 73,
2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0164121218300438

[61] A. Van Deursen, E. Visser, and J. Warmer, “Model-driven software evolution: A research agenda,” in
In Proc. Int. Ws on Model-Driven Software Evolution held with the ECSMR’07, 2007.

[62] B. Vogel-Heuser, D. Schütz, T. Frank, and C. Legat, “Model-driven engineering of manufacturing
automation software projects – a sysml-based approach,” Mechatronics, vol. 24, no. 7, pp. 883 – 897,
2014, 1. Model-Based Mechatronic System Design 2. Model Based Engineering.

[63] P. André and M. E. A. Tebib, “More automation in model driven development,” in Model and
Data Engineering - 10th International Conference, MEDI 2021, Tallinn, Estonia, June 21-23, 2021,
Proceedings, ser. Lecture Notes in Computer Science, J. C. Attiogbé and S. B. Yahia, Eds., vol. 12732.
Springer, 2021, pp. 75–83. [Online]. Available: https://doi.org/10.1007/978-3-030-78428-7_7

39

A Appendix A

(PA) to be completed : ev3dev + python server

40

Figure 30. Applying AgileJ RE process on Motor package of Lejos Library

41

Contents

Assistance in Model Driven Development . 1
Pascal André and Mohammed El Amin Tebib

1 Introduction . 1
2 Background . 2

2.1 Software development . 3
2.2 Case Study . 3
2.3 From Models to Implementation . 5

3 Forward Engineering Experimentations . 6
4 Code generation, animation . 8

4.1 UML Case Tools . 8
4.2 Executable UML . 11

5 Toward a design transformation process . 12
5.1 Principles of design as a transformation . 12
5.2 Transformation process . 12
5.3 Implementation of the design transformation process . 13

6 Macro Transformations Experimentations . 14
6.1 Deployment Transformation (T1) . 14
6.2 MOM Transformation (T2) . 15
6.3 OOP Transformation (T3) . 16
6.4 Source Code Transformation (T4) . 19

7 Reverse engineering PDMs . 28
7.1 Model Driven Reverse Engineering (MDRE) . 28
7.2 Example: Reverse engineering Lejos libraries . 29

8 Discussion . 30
9 Conclusion . 34
A Appendix A . 40

