
HAL Id: hal-04606388
https://hal.science/hal-04606388

Preprint submitted on 10 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance portability of generated cardiac simulation
kernels through automatic dimensioning and load

balancing on heterogeneous nodes
Vincent Alba, Olivier Aumage, Denis Barthou, Raphaël Colin,

Marie-Christine Counilh, Stéphane Genaud, Amina Guermouche, Vincent
Loechner, Arun Thangamani

To cite this version:
Vincent Alba, Olivier Aumage, Denis Barthou, Raphaël Colin, Marie-Christine Counilh, et al.. Perfor-
mance portability of generated cardiac simulation kernels through automatic dimensioning and load
balancing on heterogeneous nodes. 2024. �hal-04606388�

https://hal.science/hal-04606388
https://hal.archives-ouvertes.fr


Performance portability of generated cardiac
simulation kernels through automatic dimensioning

and load balancing on heterogeneous nodes
Vincent Alba∗, Olivier Aumage∗, Denis Barthou†, Raphaël Colin‡, Marie-Christine Counilh∗,

Stéphane Genaud‡, Amina Guermouche∗, Vincent Loechner‡, Arun Thangamani‡

∗ University of Bordeaux, CNRS,
Bordeaux INP, Inria, LaBRI

Talence, France

† Bordeaux INP
Talence, France

‡ ICube Lab.
University of Strasbourg, CNRS, Inria

Strasbourg, France

Abstract—Electrophysiology simulation applications, such as
the community-developed OPENCARP framework for in-silico
experiments, involve applying a broad range of ionic model
kernels with different computational weights and arithmetic
intensity characteristics. Efficiently processing such kernels on
modern heterogeneous architectures necessitates to accurately
dimension the set of computing resources to use and to actively
balance the load on the available computing units, to account
for discrepancies in kernel duration and distinct computing unit
speeds. We thus propose the following contributions: 1) the
adaptation of an existing load-balancing algorithm to transpar-
ently manage the mapping of these ionic model kernels onto
the heterogeneous units of a computing node; 2) a resource
dimensioning heuristic that constraints the number of devices
that should be used to maximize efficiency, according to the
selected ionic models’ computational weight; 3) the integration
of these mechanisms in OPENCARP, building on prior work
that took advantage of LLVM’s MLIR framework to generate
multiple device-specialized variants of kernels from ionic models
expressed in OPENCARP’s high-level DSL; 4) a thorough ex-
perimentation of the mechanisms on a comprehensive series of
30 ionic models provided by OPENCARP. The experiments show
that when using the combination of the load-balancing algorithm
and the resource dimensioning heuristic to compute each ionic
model, the geometric mean of speedup is 9.97× with respect
to the original multi-threaded code on an architecture with two
A100 GPUs and 2× 32-cores AMD Zen3 CPUs.

Index Terms—Heterogeneous architecture, dynamic load-
balancing, resource selection, task parallelism, task aggregation

I. INTRODUCTION

Cardiac electrophysiology is a medical specialty in which
the research community has long been using computational
simulation. Understanding the heart beat behavior (and in
particular cardiac diseases involving arrhythmia) requires to
model the ionic flows between the muscular cells of cardiac
tissue. Such models, called ionic models, describe the way an
electric current flows through the heart cell membranes.

The widespread practice in this field is for experts to de-
scribe their ionic model in a domain-specific language (DSL),
which essentially enables to model the current flow by ordi-

nary differential equations. The OPENCARP1 [19] simulation
framework has been created to promote the sharing of the car-
diac simulation efforts from the electrophysiology community.
To describe ionic models, it offers a DSL named EasyML [24],
from which a code generator can derive C/C++.

The next major advances in cardiac research will require to
increase by several orders of magnitude the number of cardiac
cells that are simulated. The ultimate goal is to simulate the
whole human heart at the cell level [20], that will run several
thousands of time steps on a mesh of several thousands of
billions elements.

In its initial version, the OPENCARP code generator could
produce C/C++ code suited for CPU and parallelize the
computations using OpenMP. However, simulations at large
scale require to efficiently exploit all the capabilities of modern
supercomputers. In order to tackle the heterogeneous nature
of today’s supercomputers, recent work on OPENCARP has
improved the original code generator with efficient SIMD
code generation for multicore CPUs [22] and for GPU [23].
Although this work has brought significant performance en-
hancement, it is limited to target a specific accelerator at
code generation time. Thus, in order to introduce a level of
abstraction with respect to the hardware architecture, we use
the STARPU task-based runtime system [1] as the foundation
to build the heterogeneity-enabled OPENCARP to make the
kernel launches and data transfers device-independent for the
application. Our first contribution was therefore to augment the
code generator [23] to generate systematically both vectorized
multicore code and GPU code, with STARPU runtime code.

Running computations on a heterogeneous architecture may
however introduce load imbalance. As a matter of fact, all
computing units may not get the same amount of work.
Furthermore, due to the lightweight nature of OPENCARP
ionic models kernels and the wave-oriented layout of their
execution, instead of a pure runtime approach balancing tasks
among devices such as STARPU, we propose an hybrid

1https://opencarp.org



compiler/runtime approach. Thus, we adapted the load bal-
ancing algorithm proposed by Huchant et al. [12], [13] to
match OPENCARP needs. At each computation iteration, this
algorithm adapts the workload chunk size given to each device
(if needed) according to the execution time of the previous
iteration. Moreover, since the OPENCARP ionic models ex-
hibit a variety of computational requirements, we developed an
algorithm that adapts the number of used devices, depending
on the actual needs of the selected ionic model.

The contributions of this paper are as follows:
• automatic generation of StarPU code (as codelets),
• implementation of a load-balancing algorithm,
• automatic resource dimensioning algorithm,
• integration of all of the above in a real use-case applica-

tion (OPENCARP).
We implemented and evaluated our proposal in a real large-

scale code, on 30 different ionic models in OPENCARP, on
up to 8 GPUs per node. Depending on the ionic model, the
performance gain on multi-GPU architectures reaches up to
60× speedup, with a geometric mean speedup of 13× com-
pared to the multicore CPU vectorized and parallel version. On
an hybrid architecture, the geometric mean speedup reaches
9.97×.

The paper is organized as follows: Section II presents the
OPENCARP application. Sections III and IV describe the
main contributions of the paper. Section V presents experiment
results on real use-cases. Section VI discusses related works,
and Section VII concludes the paper.

II. OPENCARP ARCHITECTURE

OPENCARP is an open cardiac electrophysiology simu-
lator for in-silico experiments. It offers single-cell as well
as multiscale simulations from the ion channel level to the
whole organ level. OPENCARP uses a mathematical-oriented
domain-specific language (DSL), called EasyML, that provides
a convenient way for cardiology scientists to describe ionic
models in a natural formalism. These ionic models are at the
core of the simulation. They model the ion transfers through
the cells membranes that result in the heart contraction.

Each step of the main OPENCARP simulation time-loop is
composed of two stages: (i) the computation of the electrical
potential on the membrane using a solver and (ii) the com-
putation of the ion flow that crosses the membrane. While
the former can be executed in a distributed manner (involving
several compute nodes), the latter is always run on a single
node (that can be heterogeneous). In this paper we focus on
the ionic models (the second stage), that are used to compute
the current that flows in and out of each cell. These models
are accessed through the LIMPET (Library of Ionic Models &
Plug-ins for Electrophysiological Theorization) library, which
defines a common interface to them. The work presented in
this paper more specifically focuses on this library.

To run experiments using LIMPET without any call to the
solver part, we use bench, a tool provided by OPENCARP.
Most of the computations of the bench execution is contained
inside a main loop. This loop revolves around a structure called

timer_manager, which handles the time discretization into
timesteps.

Inside the main loop, at each timestep, two types of com-
putations are repeated :

• the computation of the membranes ion flow using
LIMPET’s ionic models,

• additional operations (e.g stimuli, I/O operations), known
as events.

Events are stored in the timer_manager: they are known
at the start of the execution and are characterized by the
timestep ts when the event occurs and its duration d in
timesteps. At each timestep ts′, the main loop calls the
timer_manager during the event handling phase to check
if any of the stored events should occur at ts′. If so, it
will execute the function associated to each event that will
run during ts′. Note that events can last more than a single
timestep, in which case they are called persistent events.

Listing 1. Pseudo-code of the main loop of the bench executable
1 for timestep in time_manager(){
2 event_phase()
3 model->compute()
4 }
5
6 function model::compute(){
7 for I in mesh_domains{
8 // ionic computation
9 }

10 }

For a given timestep, as seen in Listing 1, the main loop
first computes the events (if any) and then runs the ionic
computation. The ionic computation has its own loop that
iterates over a list of mesh elements: these elements are an
abstraction of either one or multiple cells or even sub-cellular
states. The loop runs the ionic model compute function over
each mesh element, and is referred to as a kernel.

III. RUNNING OPENCARP ON HETEROGENEOUS NODES

The exploitation of simulation applications such as OPEN-
CARP on modern heterogeneous computing nodes requires
to be able to generate specialized kernels for the target
computing units and to manage the efficient execution of
these kernels on these units. Task parallelism is a natural
way to achieve this goal, as it brings the necessary flexibility
in handling kernel specialization and work mapping on such
architectures. We describe below how we rely on the LLVM
MLIR framework [16] to generate the kernel specializations
for each target device (Section III-A), and on specially tailored
granularity management techniques to achieve load balancing
on heterogeneous computing units (Section III-B).

A. Compiling OPENCARP kernels for heterogeneous nodes

OPENCARP uses EasyML as a DSL to represent diverse
ionic models. The models are described as mathematical equa-
tions. EasyML can be translated from/to many other equivalent
languages used to describe ionic models in this community
(CellML, SBML, MMT). OPENCARP’s LIMPET library pro-
vides an EasyML compiler through the limpet_fe python



EasyML Limpet_fe

MLIR
Code gen.

C++
Code gen.

MLIR to LLVM
Passes

Linking

MLIR CPU

MLIR GPU

Vectorized
CPU Version

GPU Version

CPU version

Object File

compute_cpu()

compute_mlir_cpu()

compute_mlir_gpu()

CUDA Wrapper
with StarPU

Fig. 1. Compilation steps and STARPU integration

script. Figure 1 represents an overview of the code generation
using limpet_fe on an EasyML model.

The original limpet_fe code could only produce the CPU
version with OpenMP parallelization on the mesh elements
loop of the kernel. Recent works used MLIR to develop
LimpetMLIR [23], an extension of limpet_fe able to
generate both efficient vectorized OpenMP CPU code (for
SSE, AVX2, and AVX512 vector units) and GPU code (us-
ing CUDA for Nvidia GPUs and ROCm for AMD GPUs).
LimpetMLIR allows to compile EasyML models for different
hardware to aim for higher performance.

During compilation, LimpetMLIR produces multiple ver-
sions of each ionic model compute function:

• CPU: the baseline version, runs on CPU, with basic
compiler optimization, plus OpenMP multi-threading.

• MLIR-CPU: efficient SIMD version for CPU, with MLIR
vectorized mesh elements computation, plus OpenMP
multi-threading.

• MLIR-CUDA: MLIR generated GPU version for Nvidia
GPU.

• MLIR-ROCm: MLIR generated GPU version for AMD
GPU.

In this paper, we will refer to those different versions
as targets. By default, LimpetMLIR will compile all of the
available targets on the system (i.e. only compile the MLIR-
CUDA target when Nvidia GPUs are available). Each of these
kernels are then linked to different private functions inside
each model’s object file. To adapt to the STARPU execution
environment, we wrote wrapper functions to those target-
specific kernels, to be able to select the target dynamically
as STARPU codelets.

For our implementation, we also need to control the GPUs:
we use STARPU to manage CPU-GPU data transfers, to
handle GPU streams and to select on which CPU or GPU
a kernel will run. To address this we modified the CUDA
and ROCm wrappers generated by LimpetMLIR to let the
STARPU runtime handle those aspects.

B. Executing OPENCARP on heterogeneous nodes

Once the kernel versions have been compiled, they need
to be run onto the available computing units. This process is
particularly challenging for the various ionic model kernels
of OPENCARP. Indeed, the models exhibit widely distinct
characteristics regarding their computational weight and arith-
metic intensity, resulting in varying relative efficiencies on

User Input

Object File

compute_cpu()

compute_mlir_gpu()

compute_mlir_cpu()

Main Loop

Run
Events

Create Tasks

Aggregate
Timesteps

Wait for
Tasks

2

3

4

6

Load
Balancing

7

Task 1

Task 3

Task 2

Event
list

StarPU

GPU1

GPU2

CPUs

Initialize
Simulation

1

5

Contributions

Fig. 2. Execution flow of bench

accelerated units and on CPU cores. These behavioral differ-
ences incur load imbalance and resource under-subscription.
Note that the execution of a kernel handles independent mesh
elements, that can thus be freely reordered.

To address this challenge, we devised the use of a task-based
parallel programming approach based on the STARPU runtime
system. However, the computing cost of individual ionic kernel
calls is often too lightweight for each call to be wrapped in its
own STARPU task. This is a typical problem with simulation
applications where the natural expression of the problem does
not reach a sufficient grain to efficiently use the underlying
architecture and compensate the runtime overhead [21]. As
a matter of fact, the minimal STARPU task granularity is
≈ 100µs while the duration of a timestep kernel can be as low
as ≈ 11µs. We therefore developed an aggregation stage that
merges the computation of several consecutive timesteps by
taking advantage of the opportunities offered by the simulation
characteristics. We then integrated a heterogeneity-aware load-
balancing algorithm to map the work on the available CPU
and GPU units. Yet, even with such an aggregation stage, the
resulting computational weight of each task may be too low
for some of the ionic models to justify the use of all the
computing units on platforms with multiple accelerators per
node, especially with respect to the data transfer costs. We
thus designed a heuristic to automatically constrain the set of
targeted computing units to maintain a high level of efficiency.

IV. PARALLEL EXECUTION

In this section, we detail our contributions to OPENCARP
regarding load balancing, data partitioning and resource selec-
tion.

A quick overview of the parallel execution of bench is
described on Figure 2. First, during the initialization (1) the
program recovers the user-given parameter, the ionic models
and events to be computed. Then, for every timestep, (2) we
run the available events, if there are any. After that, (3) we
group, using the event schedule in the timer_manager,
all timesteps between two events in a single task. Next,
(4) we create the next batch of tasks using the different
implementations of the ionic model (at the beginning, the mesh



Timestep

Persistent
Event

Single timestep
Event

Host/Device
Data Transfer

Host

Device

Fig. 3. Host-device data transfer for the global data vectors depending on
the events. During persistent events, data is transferred at each timestep: the
figure only shows 3 couples of transfers but the rest is represented as “...”

elements are distributed equally between each task). Then (5)
the tasks are executed on the different devices with their data.
(6) The main loop will wait for each task to finish and then,
on hybrid executions, if there is a significant load imbalance
between CPUs and GPUs, (7) compute a new load distribution
from the execution time of the current task batch. This process
is repeated until all timesteps are computed.

A. Data Management

As described in Listing 1, the ionic model computation
consists of running the kernel loop on every mesh element
of a mesh element list Lm of size nb. In the code, Lm is
implemented as multiple data parallel vectors of size nb in a
similar fashion to a structure of array. Each mesh element has
an entry to two types of vectors:

• The state variable vector which stores all data that is
specific to the ionic model. This vector is unique and is
never used outside of the ionic model.

• The global data vectors which store data that are used
both inside and outside the ionic models computation.
They are used, for example, in most events. Note that
there are several instances of global data vectors.

When running in parallel, the mesh elements have to be
distributed across the different computing units. As a conse-
quence, when running on a hybrid architecture, since the state
variable vector is local to an ionic model, the only moment
where data from this vector may be transferred is during the
mesh distribution phase. On the other hand, when computing
any mesh element on GPU, the global data vectors require a
data transfer each time an event is triggered since events are
always executed on CPU.

Figure 3 shows how events incur data transfers on GPU-
based execution. Since ionic model computation modifies the
global data vectors at every timestep, any data partition that
is on GPU needs to be transferred to CPU before computing
an event. Similarly, since events can modify the global data
vectors, we need to send the data back to the GPU. As
a consequence, every non-persistent event requires 2 data
transfers. For persistent events, since they trigger the same
operations at each timestep for their entire duration d, they
require 2 ∗ d transfers. In other words, they incur back-and-
forth CPU-GPU data transfers at each timestep.

Since we know when every event will trigger before the
execution, we also know when we will need to transfer the
global data vector in advance. Therefore we only need to
transfer data when we know an event will happen, avoiding
useless data transfers.

B. Load Balancing

On hybrid architectures, we also have to address how
to handle workload distribution between the different types
of processing units. Since task granularity varies during the
execution depending on the event schedule and on the ionic
model, it is not possible to find a one-size-fits-all chunk size
that performs good in an application-agnostic way.

To distribute the work to each processing unit, we rely
on an adaptive partitioning algorithm [12]. The algorithm
implemented in OPENCARP consists in the following steps:

• CPU cores are grouped together in a first pool; GPUs are
grouped in a second pool.

• Initially, each pool is assigned a data partition correspond-
ing to a fixed percentage of 50%. Each device of a pool
is then assigned a uniform sub-partition of the pool.

• At each iteration, the ionic model kernel is applied once
by each device on its own assigned piece of data, with
the kernel version specifically compiled for that device
(e.g. MLIR-CPU, MLIR-CUDA, ...).
Such an application of the ionic model kernel by a single
device on its own piece of data at a single iteration
corresponds to a StarPU task. Recall that one iteration
can be either one individual simulation timestep, or a
consecutive series of merged timesteps.

• At each successive iteration, the partitioning ratio is
adapted by taking into account the execution time of each
individual task of the previous iteration considering the
size of the piece of data it received, so as to minimize
the imbalance in the next iteration.
Note that all CPU cores get the same ratio, and all GPUs
get the same ratio in our current implementation.

To make the CPUs sub-partitions more SIMD-friendly, we
align all chunk sizes to the SIMD vector size, with the
potential remainder assigned to the last CPU core.

Since re-partitioning can be costly because of the data
transfers it incurs, we choose to re-partition only if the
load imbalance (i.e. the relative difference in execution time
of the two partitions) is greater than a given threshold t.
Choosing a large t provides less accurate partitioning but
reduces the number of re-partitioning and incurs less data-
transfer overhead. The optimal threshold t varies from model
to model. We empirically found 10% to be the best average
threshold over all the models, therefore we set the default value
of t to 10%, but the user has the option of selecting t as an
optimization parameter.

C. Data Transfers

Whenever a synchronization triggered by an event happens,
the global data computed by the ionic models on the CPUs
and GPUs are gathered on the host and updated before the



Al
ie

vP
an

fil
ov

Pa
th

m
an

at
ha

n
M

itc
he

llS
ch

ae
ffe

r
Pl

on
se

y
Dr

ou
ha

rd
Ro

be
rg

e
Lu

oR
ud

y9
1

M
ac

Ca
nn

el
l

Fo
x

Ny
gr

en
In

ad
a

Ho
dg

ki
nH

ux
le

y
M

ah
aj

an
Sh

ife
ra

w
Co

ur
te

m
an

ch
e

te
nT

us
sc

he
rP

an
fil

ov
Ra

m
ire

z
Lu

oR
ud

y9
4

Ca
m

po
s

M
al

ec
ka

r
OH

ar
a

Di
Fr

an
ce

sc
oN

ob
le

W
an

gS
ob

ie
To

m
ek

Sk
ib

sb
ye

Iri
be

Ko
hl

St
ew

ar
d

Ku
ra

ta
Lo

ew
e

Gr
an

di
Au

gu
st

in
Gr

an
di

Pa
nd

itV
oi

gt

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

A100
V100

Fig. 4. Speedup of StarPU memory management over CUDA unified memory
on Nvidia V100 and A100 GPU

next time step, and sent back to the devices. Due to this
dependence, no prefetch can be used and data transfers cannot
be overlapped with computations.

The STARPU runtime system [1] provides application pro-
grammers with a task-oriented parallel programming model
targeting multicore nodes and accelerators. It proposes a
Distributed Shared Memory (DSM) abstraction, which relies
on data dependencies to transparently manage data transfers,
replications and prefetching between the main memory and
the memory spaces of the accelerator devices. The memory
consistency between the multiple replicates of a piece of
data is enforced through an MSI (Modified/Shared/Invalid)
algorithm-based distributed shared-memory module within
STARPU2. We thus have two options to handle data transfers,
either use the automatic mechanisms provided by STARPU
to handle dependencies, or handle such data transfers outside
of STARPU. We experimented with the two approaches, one
resorting to data copies managed by STARPU, and the other
relying on the unified memory mechanism from CUDA.

Previous works comparing explicit data copies and CUDA
unified memory [4], [9], [14] for Nvidia V100 and A100 GPUs
show that explicit memory management usually outperforms
implicit updates with unified memory, at the cost of a more
difficult code to write. Unified memory is on par or outper-
forms explicit copies only if data can be prefetched and an
overlap with other computations is possible.

For our application, Figure 4 shows the speedup obtained by
using StarPU for handling data transfers compared to unified
memory on a V100 and an A100 GPU. Ionic models on the
X-axis are sorted by their execution time on the baseline CPU
target. For the sake of the discussion, we further classify these
models into 3 duration categories according to the makespan

2While the STARPU runtime system also comes with hybrid task scheduling
and performance modeling modules, these optional services are not employed
here, to give precedence to the Dynamic Task Granularity management
presented here.

of an 8M elements mesh and 10k timesteps execution: small
models for a makespan lower than 1 min (models from
AlievPanfilov to Nygren), medium for a makespan between 1-5
min (Inada to Tomek) and large for a makespan above 5 min
(Skisbye and above).

On V100, the speedup can reach up to 3× on smaller models
but is less noticeable on larger models. This can simply be
explained by the fact that large models have much higher
operational intensity, and for this reason the difference in
memory transfer times are less noticeable. The difference in
performance is much smaller on the A100 GPU and only
benefits very small models. However, the speedup can reach up
to 1.6×, and no slowdown is observed on any model. Since we
observed that using STARPU provides better results on average
and no slowdown, we rely on STARPU for data transfers in
the remainder of the paper.

D. Resource Selection

One of the main issues we had to address while working on
the optimization of this application was how to deal with the
very different sets of computational intensities among ionic
models and possible experiments. While using all resources
for computation-heavy ionic models is generally a good idea,
it is not always the case for models with low computational
intensity. In such a case, it is often possible to obtain better
performance using fewer resources. We thus implemented a
greedy resource optimization heuristic to automatically and
transparently adapt the number of resources used during the
execution, which computes a preferred number of computing
units to use concurrently to approach the best possible perfor-
mance for the selected model.

We define a task wave as a set of tasks across the com-
puting units processing either the same standalone timestep or
the same contiguously aggregated timesteps. We rely on the
STARPU on-line performance profiler to compute the execu-
tion time of each task wave to estimate the performance on a
given configuration. We enforce a threshold of 300 timesteps to
ensure measurement stability even on small models. Since the
execution times are collected at the task wave boundaries, the
actual number of timesteps measured can be larger, depending
on the merged timesteps layout. In such a case, we normalize
the measurements to 300 timesteps.

Our heuristic applies a simplified dichotomic search to elect
a preferred number of resources to use, with one iteration
of the search applied every few timesteps. The heuristic can
choose any number of GPUs (from the available set of GPUs)
but selects either all or no CPU at all. This is because the
CPUs have less impact on the overall performance compared
to the GPUs.

The function used for our heuristic can be divided into two
steps : (i) find the number of GPUs and (ii) decide whether
using CPUs is beneficial.

In order to compute the number of GPUs, the algorithm first
measures the execution time of 300 timesteps on all GPUs
and no CPU. Then, at each iteration, the execution time of
another 300 timesteps is measured and compared against the



current best solution. The number of GPUs is then updated
according to the dichotomic search algorithm. Note that after
the algorithm finds a smaller configuration better than the
previous one, it will not test the configurations in between. For
instance, if using 4 GPUs is better than 8 GPUs, but also better
than 2 and 3 GPUs, it will assume that the best configuration
is 4 GPUs and will not test for 5, 6 and 7 GPUs. The same
way, if 2 is better than 4, then 3 will never be tested. We chose
this method in order for the algorithm to converge fast to a
good solution.

Once the number of GPUs is computed, the algorithm
compares the impact of using CPUs along with this number of
GPUs on the execution time. The configuration with the best
performance is then set.

V. EXPERIMENTS

The implementation is evaluated on two architectures:
• Plafrim’s sirocco 22-25 with 2x A100 GPUs, 2x 32-

cores AMD Zen3 (AVX2) and 512 GB of RAM. This
configuration will be called Sirocco in the following.

• Grid5000’s Gemini with 8x V100 GPUs, 2x 20-cores
Intel Xeon E5-2698v4 (AVX2) and 512 GB of RAM. This
configuration will be called Gemini in the following.

Our work is implemented on top of the OPENCARP source
from the git repository. Our experiments run on every stan-
dalone model (except models using the Rosenbrock function)
using the bench executable with 819, 200 cells and 10, 000
timesteps (equivalent to 100 ms of cardiac activity)3. Events
take place every 100 timesteps, this way the execution will
contains 100 task waves of equal size (100 timesteps). The
number of cells is close to what is expected for cardiac
simulation experiments. However, we use 10, 000 consecutive
timesteps to better evaluate the overhead of load balancing on
short executions whereas real experiments usually use more
timesteps.

We ran two kinds of experiments where the GPUs are
always used but the CPUs are not. In what we call the
multi-GPU experiments (Section V-A) the CPUs are only
used for the events computation, while in the hybrid version
(Section V-B) the CPUs can also be used for the kernel
computations.

Previously published work [23] presented the performance
in terms of Gflops/s of the MLIR-optimized ionic model
kernels. The results showed that their performance reach up to
8% of the peak performance of the target machine because of
their low compute intensity. For these reasons, we only focus
on the possible parallelization improvements of the models
compared to the current solution and show speedup plots.

A. Multi-GPU performance

The results of our benchmark for the multi-GPU version on
Gemini are shown in Figure 5. We plot the speedup obtained
using 1, 2, 4, and 8 GPUs compared to an execution using

3bench parameters are: -a 100 -n 819200 --numstim=0

the CPU target with 40 CPU cores. Models are sorted by
ascending execution time on the CPU target from left to right.

With 8 GPUs the multi-GPU version can reach up to 64.37
speedup, compared to 16.3 with 1 GPU. We notice that
while GPU numbers scale well on large models, many of the
smaller models lack sufficient computational intensity to take
advantage of 8 GPUs. For most of the smaller models, the best
number of GPUs is rather 4 among the configurations tested.
We observe that the geometric mean of the speedups when
considering all the models is 13.37 with 4 GPUs, while it is
only 12.28 with 8 GPUs. When considering only the large
models (starting from IribeKohl) the geometric mean of the
speedups is instead 23.31 for 4 GPUs and 38.01 for 8 GPUs.
Thus, using all available GPUs unconditionally may result in
a worse average performance than using just a limited number
of them.

Figure 5 also shows the performance of our resource selec-
tion heuristic (with hybrid disabled) labeled as Auto. We can
see that for most kernels, the performance with Auto GPUs
are close to the best observed performance. To further observe
whether the results of our heuristic are accurate, we check the
distance from the best solution, among the solutions tested, as
shown in Table I. In this Table, for each model, we rank all the
resource configurations for a given ionic model from worst to
best, including configurations with 3, 5, 6, or 7 GPUs. We then
compute the distance between the rank of the configuration
found by Auto and the rank of the best configuration among
those tested (i.e. if Auto finds the 3rd best configuration, the
distance is 2). Table I shows that Auto manages to find the
best configuration for 12 of the 30 models and the second best
one for 10 of them. Interestingly, the vast majority of cases
where the heuristic only finds the second best solution is due
to the dichotomic search skipping the best configuration: as
explained in Section IV-D, if the best configuration is 5 GPUs,
but 4 GPUs is better than 8, configurations with 5, 6 or 7
GPUs will be skipped. This comes down to a compromise
between accuracy and reducing the overhead from the research
time. Since the performance between the second and first best
solution tend to be close, the impact is limited. For 8 of the
30 ionic models, however, Auto results in a distance of 2 or
worse. We identified two different patterns in those 8 models:

• In a few cases, when the difference in configuration
performance is very small, the heuristic randomly picks
one configuration based on small timing variations. This
is the case on Maleckar for example. Thankfully in this
scenario, the impact on performance is negligible.

• In most cases, this is due to the ionic models relying
heavily on conditional instruction, making the use of a
greedy heuristic not well adapted.

Since our heuristic needs 1, 200 out of 10, 000 timesteps
(4 configurations to test for 300 timesteps each) to find the
best number of GPUs, the results of Auto are always slightly
slower than directly using the best configuration. Note that on
longer experiments, the research time of our heuristic is still
1, 200 timesteps, making the performance gap less significant.



M
itc

he
llS

ch
ae

ffe
r

Pa
th

m
an

at
ha

n
Al

ie
vP

an
fil

ov
Pl

on
se

y
Dr

ou
ha

rd
Ro

be
rg

e
Lu

oR
ud

y9
1

M
ac

Ca
nn

el
l

Fo
x

Ho
dg

ki
nH

ux
le

y
Ny

gr
en

Co
ur

te
m

an
ch

e
In

ad
a

Ra
m

ire
z

te
nT

us
sc

he
rP

an
fil

ov
Lu

oR
ud

y9
4

M
al

ec
ka

r
M

ah
aj

an
Sh

ife
ra

w
Di

Fr
an

ce
sc

oN
ob

le
Ca

m
po

s
W

an
gS

ob
ie

OH
ar

a
To

m
ek

Iri
be

Ko
hl

Sk
ib

sb
ye

Ku
ra

ta
St

ew
ar

d
Lo

ew
e

Gr
an

di
Au

gu
st

in
Gr

an
di

Pa
nd

itV
oi

gt
GE

OM
EA

N

0
5

10
15
20
25
30
35
40
45
50
55
60

Sp
ee

du
p

1 GPU
2 GPU
4 GPU
8 GPU
Auto

Fig. 5. Scalability on one Gemini node (eight V100) with different number of GPUs. The baseline is the CPU version (40 cores)

Overall, the geometric mean of speedups of Auto is 13.08 on
all models, and 36.29 on large models. This indicates that the
heuristic manages to provide similar performance to the best
average on all models. As a conclusion, our heuristic seems
to alleviate the need for the users to choose the number of
GPUs on the multi-GPUs version while still maintaining good
performance.

best 2nd-best 3rd-best 4th-best 5th-best

Gemini 12 10 2 3 3
Sirocco 25 2 0 3 N/A

TABLE I
SUCCESS OF THE HEURISTIC TO MATCH THE BEST CONFIGURATION (OR

THE X-BEST) ON THE DIFFERENT MODELS (EG. ON GEMINI THE
HEURISTIC FOUND THE 2ND-BEST SOLUTION ON 10 MODELS).

B. Hybrid performance

We ran our benchmark for the hybrid version on Sirocco.
The results are shown in Figure 6. Here we compare the
speedup obtained using 1 and 2 GPUs with and without CPUs
compared to an execution using the CPU target with 64 CPU
cores. Hybrid performance are shown only if they lead to
a speedup, otherwise only the GPU performance are shown.
Models are sorted by their makespan on the CPU target in
ascending order from left to right.

Figure 6 shows that the hybrid version can reach up to
33.45 speedup with 2 GPUs and 64 CPU cores, against 31.64
with only 2 GPUs. The geometric mean of speedups is 9.84
for the hybrid version against 9.69 for 2 GPUs. When using
only one GPU, most models benefit from using the hybrid
versions. However, when using 2 GPUs, some of the smaller
models perform better without CPU cores. These models tend

to be the models that also obtain better performance with
1 GPU compared to 2 GPUs suggesting that those models
lack computational intensity in the first place. This is the case
for models such as HodgkinHuxley or Plonsey.

However some smaller models such as LuoRudy91 seem
to benefit from an increase from 1 to 2 GPUs but a loss in
performance when we add CPUs. To further investigate this
behavior, we measured the execution time of each task wave of
LuoRudy91 on CPU and GPU separately as shown in Figure 7.
During load balancing, we use the default threshold of 10%
to check if we need to re-partition. We can see on Figure 7
that a single task wave execution for this model is very
short (around 18ms), making small deviations in execution
time significant enough to trigger re-partitioning, resulting in
multiple additional CPU-GPU data transfers thus lowering
performance. This indicates that the 10 % threshold is too
small in this case. Another situation where hybrid computation
brings poor results is with models where the GPUs compute
the kernel much faster than the CPUs, like the Maleckar
model.

Larger models, however, tend to perform better. Looking
at the results for the Skisbye models on Figure 8, models
that perform well tend to have timesteps large enough for
load balancing not to be easily swayed by minor variations
in execution time. In the example of Skisbye, timesteps are
around 10 times bigger than in the LuoRudy91 model, resulting
in a rapid stabilization of the load balance. In short, the load
balancing algorithm, while able to find a good load balance,
needs sufficient workload to be efficient.

In Figure 6, we also evaluate our resource selection heuris-
tic, labeled as Auto, this time enabling the option to take CPUs
into account. Again, we rank each configuration and evaluate



Al
ie

vP
an

fil
ov

Pl
on

se
y

Pa
th

m
an

at
ha

n
M

ac
Ca

nn
el

l
M

itc
he

llS
ch

ae
ffe

r
Dr

ou
ha

rd
Ro

be
rg

e
Lu

oR
ud

y9
1

Fo
x

Ny
gr

en
Ho

dg
ki

nH
ux

le
y

In
ad

a
M

ah
aj

an
Sh

ife
ra

w
Co

ur
te

m
an

ch
e

Ra
m

ire
z

te
nT

us
sc

he
rP

an
fil

ov
Lu

oR
ud

y9
4

Ca
m

po
s

M
al

ec
ka

r
Di

Fr
an

ce
sc

oN
ob

le
OH

ar
a

W
an

gS
ob

ie
To

m
ek

Iri
be

Ko
hl

Sk
ib

sb
ye

Ku
ra

ta
St

ew
ar

d
Lo

ew
e

Gr
an

di
Au

gu
st

in
Gr

an
di

Pa
nd

itV
oi

gt
GE

OM
EA

N

0

5

10

15

20

25

30

35
Sp

ee
du

p
1 GPU
2 GPU
+ CPU
Auto

Fig. 6. Speedup of hybrid versions on one Sirocco node (two A100). The baseline is the CPU version (64 cores). The speedup reached by the addition of
the CPU to 1 or 2 GPUs is shown by the orange bar

0 20 40 60 80 100
Task number

0

10000

20000

30000

40000

50000

Ex
ec

 ti
m

e 
(u

s)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

GP
U/

CP
U 

Ra
tio

CPU
GPU
Threshold
Ratio

Fig. 7. Execution time of the CPUs and GPUs for each task wave on the
LuoRudy91 model. GPU/CPU ratio at each timestep is represented with red
dots, the red lines represent the load-balancing threshold

the distance between the rank of the configuration found by
Auto and the best configuration, the resulting distances are
shown in Table I. On 25 out of 30 cases, Auto manages to
find the best configuration. However, Auto finds the 2nd best
solution for 2 models. This is because Auto finds the best
number of GPUs but not of CPUs. For instance, LuoRudy94
kernel starts at a high computational intensity. The heuristic
decides to use the CPU, but then, the arithmetic intensity drops
after the decision is made (and does not increase afterward).
Using a CPU is no longer needed, but the heuristic already

0 20 40 60 80 100
Task number

0

50000

100000

150000

200000

250000

300000

350000

Ex
ec

 ti
m

e 
(u

s)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

GP
U/

CP
U 

Ra
tio

CPU
GPU
Threshold
Ratio

Fig. 8. Execution time of the CPUs and GPUs for each task group on the
Skibsbye model. GPU/CPU ratio at each timestep is represented with red dots,
the red lines represent the load-balancing threshold

decided otherwise. Regarding the last models shown in Table I,
the heuristic selects the worst configuration on 3 of the 30
models. For all those models this is due to the arithmetic
intensity varying during execution, conflicting with the greedy
nature of our heuristic leading to bad decisions. Despite this
issue, the geometric mean of speedup on all models with the
Auto setting is 9.97, which on average, is better than simply
using all resources every time.



VI. RELATED WORKS

The literature contains a numbers of efforts to port car-
diac electrophysiology simulation to parallel architectures.
Myokit [5] is a tool designed for modeling and simulating
cardiac cellular electrophysiology. It supports model loading
from its native format and other formats such as CellML [6],
and offers export to CUDA, and OpenCL. Myokit does not
provide support for multi-device architectures but could benefit
from some of the implementations presented in our work.

Campos et al. [3] propose a GPU implementation of the
Lattice Boltzmann method for cardiac electrophysiology sim-
ulation. G-Heart. Zhang et al. [27] also propose a GPU-
based system for electrophysiological simulation. Both studies
include ionic model computation but only focus on single
GPU implementation. Langguth et al. [15] implement a sim-
ulator for 3D tissue of the human cardiac ventricle on the
supercalculator Tianhe-2. This implementation, however, is
highly optimized for Tianhe-2 usage of Intel Knight Corner
many-cores, which follow a markedly different paradigm than
accelerators such as Nvidia and AMD GPUs.

In term of dynamic load-balancing for hybrid architectures,
an extensive amount of work has already been done on the
subject. One common approach is to use task scheduling to
distribute works the different devices. Youness et al. [26]
propose a task-based load-balancing algorithm for the non-
blocked Householder transformation. HyGraph [11] is a job-
based dynamic load-balancing algorithm for CPU-GPU Hy-
brid architectures for graph processing. Other works focus on
distributing data over a set of resources according to their pro-
cessing powers. UIIMF [2] is a load-balancing framework that
provides multi-objective functions to target both performance
and energy consumption. Zhong et al. [28] offer a functional
performance model approach to data partitioning for hybrid
CPU/GPU plateforms. These studies are complementary to
our work because they focus on computing multiple kernels
on different devices instead of using all available devices to
compute a single data-parallel kernel.

Regarding task granularity management, some works ag-
gregate multiple fine-grained task into one coarse-grained
task [21]. Other studies take the opposite approach of starting
from coarse-grained and splitting them into finer-grained task
when appropriate [8], [25]. Granularity management, starting
from a DSL and generating code using STARPU runtime have
been studied in the particular context of linear algebra [7].
Splitting one task into as many tasks as devices has been
studied [13] as a compiler optimization and analysis, adapting
dynamically the subdomain given to each task in order to
tackle heterogeneity. Our approach is similar to this work,
starting from EasyML DSL and extending it with dynamic
GPU/CPU allocation.

EngineCL [18] [10] is an OpenCL framework that trans-
parently handles co-execution for heterogeneous architectures.
It allows both static and dynamic load-balancing, using the
HGuided scheduler, for performance or energy consump-
tion and supports CPU+GPU+FPGA Hybrid architectures.

SKMD [17] is a framework that allows dynamic load balanc-
ing for CPU-GPU co-execution of a single kernel by assigning
subsets of data-parallel workload over multiple CPUs and
GPUs. OmpSS [15] also comes with a scheduler to allow
transparently using all devices of a heterogeneous architecture
to compute a single kernel, it also comes with an auto-tuned
version of the HGuided scheduler. All these approaches only
consider using all available devices for computation, while our
implementation tries to use fewer resources when it would lead
to better performance.

VII. CONCLUSION

This paper presents a method to efficiently and transparently
run EasyML ionic models for heterogeneous architectures on
the OpenCARP framework. To perform well even on models
lacking computational intensity, we aggregate multiple kernel
calls into a single task and employ a dynamic load-balancing
strategy to distribute the workload. In addition, we propose
a resource selection heuristic to alleviate the need to select a
good number of computing resources for a given ionic model.

We evaluate our implementations on two architectures. Our
experimental results demonstrated that our method, when
using only GPUs, finds the best or second-best resource
configuration in 80% of the cases on 8 GPUs and reaches
a speedup of up to 62 compared to the CPU implementation.
The experiments on hybrid executions show that our method
finds the best or second-best resource configuration on 90%
of the models and reaches a speedup of up to 32.

As a future improvement, we would like to consider energy
consumption as an optimization target for our load-balancing
algorithm and resource optimization heuristic. Another area
of improvement we would like to work on is to be able to
transparently find the best load balancing threshold for each
ionic model.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using the
PlaFRIM experimental testbed, supported by Inria, CNRS (LABRI
and IMB), Université de Bordeaux, Bordeaux INP and Conseil
Régional d’Aquitaine (see https://www.plafrim.fr).

Experiments presented in this paper were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted
by Inria and including CNRS, RENATER and several Universities as
well as other organizations (see https://www.grid5000.fr)

This work was supported by the European High-Performance
Computing Joint Undertaking EuroHPC under grant agreement No
955495 (MICROCARD) co-funded by the Horizon 2020 programme
of the European Union (EU), the French National Research Agency
ANR, the German Federal Ministry of Education and Research, the
Italian ministry of economic development, the Swiss State Secretariat
for Education, Research and Innovation, the Austrian Research Pro-
motion Agency FFG, and the Research Council of Norway.

REFERENCES

[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures. CCPE - Concurrency and Computation: Practice and
Experience, Special Issue: Euro-Par 2009, 23:187–198, Feb. 2011.



[2] A. Cabrera, A. Acosta, F. Almeida, and V. Blanco. A dynamic
multi–objective approach for dynamic load balancing in heterogeneous
systems. IEEE Transactions on Parallel and Distributed Systems,
31(10):2421–2434, 2020.

[3] J. Campos, R. Oliveira, R. dos Santos, and B. Rocha. Lattice boltzmann
method for parallel simulations of cardiac electrophysiology using
gpus. Journal of Computational and Applied Mathematics, 295:70–
82, 2016. VIII Pan-American Workshop in Applied and Computational
Mathematics.

[4] S. Chien, I. Peng, and S. Markidis. Performance evaluation of advanced
features in cuda unified memory. In 2019 IEEE/ACM Workshop on
Memory Centric High Performance Computing (MCHPC), pages 50–
57, 2019.

[5] M. Clerx, P. Collins, E. de Lange, and P. G. Volders. Myokit: A simple
interface to cardiac cellular electrophysiology. Progress in Biophysics
and Molecular Biology, 120(1):100–114, 2016. Recent Developments
in Biophysics and Molecular Biology of Heart Rhythm.

[6] M. Clerx, M. T. Cooling, J. Cooper, A. Garny, K. Moyle, D. P.
Nickerson, P. M. F. Nielsen, and H. Sorby. Cellml 2.0. Journal of
Integrative Bioinformatics, 17(2-3):20200021, 2020.

[7] A. Duchâteau, D. A. Padua, and D. Barthou. Hydra: Automatic
algorithm exploration from linear algebra equations. In Code Generation
and Optimization, pages pp.1–10, Shenzhen, China, Feb. 2013.

[8] M. Faverge, N. Furmento, A. Guermouche, G. Lucas, R. Namyst,
S. Thibault, and P.-a. Wacrenier. Programming Heterogeneous Architec-
tures Using Hierarchical Tasks. Concurrency and Computation: Practice
and Experience, 35(25), 2023.

[9] M. González and E. Morancho. Multi-gpu systems and unified virtual
memory for scientific applications: The case of the nas multi-zone
parallel benchmarks. Journal of Parallel and Distributed Computing,
158:138–150, 2021.

[10] M. A. D. Guzmán, R. Nozal, R. G. Tejero, M. Villarroya-Gaudó, D. S.
Gracia, and J. L. Bosque. Cooperative cpu, gpu, and fpga heterogeneous
execution with enginecl. The Journal of Supercomputing, 75:1732 –
1746, 2019.

[11] S. Heldens, A. L. Varbanescu, and A. Iosup. Dynamic load balancing
for high-performance graph processing on hybrid cpu-gpu platforms.
In 2016 6th Workshop on Irregular Applications: Architecture and
Algorithms (IA3), pages 62–65, 2016.

[12] P. Huchant, D. Barthou, and M.-C. Counilh. Adaptive Partitioning
for Iterated Sequences of Irregular OpenCL Kernels. In SBAC-PAD
- 30th International Symposium on Computer Architecture and High
Performance Computing, Lyon, France, Sept. 2018.

[13] P. Huchant, M.-C. Counilh, and D. Barthou. Automatic OpenCL Task
Adaptation for Heterogeneous Architectures. In Euro-Par, Euro-Par
2016: Parallel Processing, pages 684 – 696, Grenoble, France, Aug.
2016.

[14] M. Knap and P. Czarnul. Performance evaluation of unified memory with
prefetching and oversubscription for selected parallel cuda applications
on nvidia pascal and volta gpus. The Journal of Supercomputing, 75,
11 2019.

[15] J. Langguth, Q. Lan, N. Gaur, X. Cai, M. Wen, and C.-Y. Zhang. En-
abling tissue-scale cardiac simulations using heterogeneous computing
on tianhe-2. In 2016 IEEE 22nd International Conference on Parallel
and Distributed Systems (ICPADS), pages 843–852, 2016.

[16] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko. MLIR:
Scaling compiler infrastructure for domain specific computation. In 2021
IEEE/ACM Int. Symp. on Code Generation and Optimization (CGO),
pages 2–14, 2021.

[17] J. Lee, M. Samadi, Y. Park, and S. Mahlke. Transparent cpu-gpu
collaboration for data-parallel kernels on heterogeneous systems. In
Proceedings of the 22nd International Conference on Parallel Architec-
tures and Compilation Techniques, pages 245–255, 2013.

[18] R. Nozal, J. L. Bosque, and R. Beivide. Towards co-execution on
commodity heterogeneous systems: Optimizations for time-constrained
scenarios. In 2019 International Conference on High Performance
Computing & Simulation (HPCS), pages 628–635, 2019.

[19] G. Plank, A. Loewe, A. Neic, C. Augustin, Y.-L. Huang, M. A. Gsell,
E. Karabelas, M. Nothstein, A. J. Prassl, J. Sánchez, G. Seemann, and
E. J. Vigmond. The openCARP simulation environment for cardiac
electrophysiology. Computer Methods and Programs in Biomedicine,
208:106223, 2021.

[20] M. Potse, E. Saillard, D. Barthou, and Y. Coudière. Feasibility of whole-
heart electrophysiological models with near-cellular resolution. In 2020
Computing in Cardiology, pages 1–4, 2020.

[21] C. Rossignon, H. Pascal, O. Aumage, and S. Thibault. A NUMA-
aware fine grain parallelization framework for multi-core architecture. In
PDSEC - 14th IEEE International Workshop on Parallel and Distributed
Scientific and Engineering Computing - 2013, Boston, United States,
May 2013.

[22] A. Thangamani, T. T. Jost, V. Loechner, S. Genaud, and B. Bramas.
Lifting code generation of cardiac physiology simulation to novel
compiler technology. In Proceedings of the 21st ACM/IEEE Interna-
tional Symposium on Code Generation and Optimization, CGO 2023,
page 68–80, New York, NY, USA, 2023. Association for Computing
Machinery.

[23] T. Trevisan Jost, A. Thangamani, R. Colin, V. Loechner, S. Genaud, and
B. Bramas. Gpu code generation of cardiac electrophysiology simulation
with mlir. In Euro-Par 2023: Parallel Processing: 29th International
Conference on Parallel and Distributed Computing, Limassol, Cyprus,
August 28 – September 1, 2023, Proceedings, page 549–563, Berlin,
Heidelberg, 2023. Springer-Verlag.

[24] E. Vigmond. EasyML. https://opencarp.org/documentation/examples/
01 ep single cell/05 easyml, 2021.

[25] W. Wu, A. Bouteiller, G. Bosilca, M. Faverge, and J. Dongarra. Hier-
archical DAG Scheduling for Hybrid Distributed Systems. In IEEE
International Parallel & Distributed Processing Symposium (IPDPS
2015), Hyderabad, India, May 2015.

[26] H. Youness, M. Osama, and a. Tarek. Load balancing on cpu-gpu
heterogeneous system. 12 2012.

[27] L. Zhang, K. Wang, W. Zuo, and C. Gai. G-heart: A gpu-based
system for electrophysiological simulation and multi-modality cardiac
visualization. Journal of Computers, 9(2):360–367, 2014.

[28] Z. Zhong, V. Rychkov, and A. Lastovetsky. Data partitioning on
heterogeneous multicore and multi-gpu systems using functional perfor-
mance models of data-parallel applications. In 2012 IEEE International
Conference on Cluster Computing, pages 191–199, 2012.


