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1.  INTRODUCTION 

The integration of movement ecology into wildlife 
conservation has been recognized as a major step 

towards the implementation of appropriate and flex-
ible management actions, especially for endangered 
migratory species (Hays et al. 2019). Such species 
may undertake large-scale movements that link a 
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ABSTRACT: Implementing effective conservation measures to manage migratory populations is 
challenging, especially in a relatively inaccessible dynamic environment such as the ocean. With lim-
ited financial and human resources, efforts must be intelligently prioritized to achieve conservation 
success and reduce uncertainties of conservation efforts. The southwest Indian Ocean (SWIO) hosts 
some of the world’s most important breeding grounds for the Critically Endangered hawksbill turtle 
Eretmochelys imbricata. However, knowledge gaps remain about the movement patterns of this spe-
cies. Between 2007 and 2022, we deployed 17 satellite tags onto hawksbill turtles from scattered loca-
tions in the SWIO: 16 nesting females — Granitic Islands, Seychelles (n = 9); north Madagascar (n = 
5); Moheli, Comoros (n = 1); Juan de Nova, Terres australes et antarctiques françaises (n = 1) — and 
1 female bycaught in fisheries (east Madagascar). We found strong variability in migratory move-
ments amongst individuals, particularly in terms of distance and movement persistence. Detailed 
analysis of movement persistence reveals that these individuals behave differently in neritic and 
oceanic habitats, with a lower movement persistence in neritic habitats. We identified a total of 12 for-
aging areas scattered throughout the SWIO, both in coastal and open-sea neritic habitats. These re-
sults  reinforce the need to consider the importance of neritic habitats, for both migration and 
foraging, in conservation policies. The quantification of the degree of migratory variability is par-
ticularly important to developing conservation plans and strategies at both the national and interna-
tional level, including the delineation of regional management units (RMUs) in the Indian Ocean.  
 
KEY WORDS:  Eretmochelys imbricata · Movement persistence · Migration · Foraging habitat · 
Southwest Indian Ocean 

OPENPEN
 ACCESSCCESS

https://crossmark.crossref.org/dialog/?doi=10.3354/esr01309&amp;domain=pdf&amp;date_stamp=2024-03-14


Endang Species Res 53: 379–393, 2024

mosaic of habitats distributed across a heterogeneous 
seascape. The concept of ecological neighborhoods 
assumes that animal behavior can shape habitats and, 
conversely, that the structuring of landscape features 
influences their movement (Grober-Dunsmore et al. 
2009, Pittman et al. 2018). Therefore, to understand 
the environmental component of movement, it is 
essential to understand how target species respond to 
landscape structure and environmental conditions 
(Keeley et al. 2021). 

Sea turtles connect the land to the sea but, in a more 
diffuse manner, also connect seascapes (Fache et al. 
2022). Throughout their life cycle, sea turtles under-
take long-distance migrations connecting different 
functional habitats, especially nesting and foraging 
areas. Because these areas may be in different territo-
rial waters, sea turtles not only connect habitats, but 
also require harmonization of policies and conserva-
tion strategies among the various territories and 
nations that share the turtle resource. Thus, identify-
ing connections seems to be a prerequisite to imple-
ment coordinated, coherent and continuous manage-
ment actions, especially in regions with a complex 
transboundary context such as in the southwest 
Indian Ocean (SWIO) (Levin et al. 2018, Barkley et al. 
2019). Indeed, cooperative conservation between 
countries is recognized as key to effective manage-
ment of mobile species (UNEP-Nairobi Convention & 
WIOMSA 2015). The identification of populations of 
marine endangered species shared between neigh-
boring countries could enhance the potential for 
cooperation in the SWIO region. 

Among sea turtles, the hawksbill turtle Eretmoche-
lys imbricata faces many threats, such as habitat de -
gradation, fisheries bycatch or even the trade in 
stuffed specimens. It was listed in Appendix I of the 
Convention on International Trade in Endangered 
Species of Wild Fauna and Flora (CITES) in 1977 and 
has been recognized as a Critically Endangered spe-
cies on the International Union for Conservation of 
Nature (IUCN) Red List since 1996 (Meylan & Don-
nelly 1999, Mortimer & Donnelly 2008, Mortimer et 
al. 2022). The SWIO is one of the most important 
hawksbill nesting areas in the world (Mortimer et al. 
2022). In particular, the Seychelles and Chagos Archi-
pelagos host 97% of the estimated number of nesting 
females in the region (Mortimer et al. 2020). The wide 
distribution of coral or rocky reef areas in the SWIO 
offers many habitats for hawksbill turtles (Houghton 
et al. 2003, von Brandis et al. 2010, 2014), but knowl-
edge of habitat structure and movement patterns be-
tween nesting and foraging habitats is still in -
complete (van de Geer et al. 2022). The published 

knowledge on movement patterns of adult hawksbill 
turtles in the SWIO is mostly based on 2 satellite-
tracking studies of post-nesting females conducted 
from the Seychelles (Mortimer & Balazs 2000) and 
from the Chagos Archipelago (Hays et al. 2022), and 
is consistent with the widely held belief that post-
nesting hawksbill turtles may tend to migrate shorter 
distances than other marine turtle species (Cuevas et 
al. 2008, Parker et al 2009, Gaos et al. 2012b, Marco-
valdi et al. 2012, Hoenner et al. 2016, Fossette et al. 
2021). Nonetheless, certain studies conducted in 
other ocean basins suggest a dicho tomy in migratory 
stra tegies, with some individuals exhibiting restricted 
migrations near the coast, and others migrating long 
distances across territorial waters of multiple nations 
(Hawkes et al. 2012, Moncada et al. 2012, Nivière et 
al. 2018). These observations suggest intraspecific 
variability in hawksbill turtles within the same life-
stage, as previously reported for green turtles Chelo-
nia mydas (Barkley et al. 2019). Documenting this var-
iability in migratory movements is critical to evaluate 
the degree of habitat connectivity (Hertel et al. 2020), 
an important component to consider when designing 
a conservation plan to adapt actions to the level of 
threat at different scales (Dunn et al. 2019). 

Here we describe the movements of 17 adult female 
hawksbill turtles from scattered sites throughout the 
SWIO. We documented the individual variability in 
migratory movements to explore the relationship 
between environmental context and movement and 
to assess habitat connectivity in the region. 

2.  MATERIALS AND METHODS 

2.1.  Satellite tracking 

Seventeen hawksbill turtles — nesting females (n = 
16) and 1 female caught by fisheries — were equipped 
with Argos satellite tags (SPLASH10-344/SPLASH10-
385/MK-10AF GPS tag, Wildlife Computers; K2G376E, 
KiwiSat Glue On Series, Lotek) at various habitats be-
tween 2007 and 2022 (Table 1). The bycaught female 
was tagged and released from the Kelonia rescue 
center (Reunion Island) in 2015 after being caught in 
longline fishery off the east coast of Madagascar. Of 
the 16 post-nesting females: 5 were tagged in north-
western Madagascar in 2021 (in the Nosy Hara and 
Ankivonjy marine protected areas); 1 at Juan de Nova 
in 2011; 1 in Moheli (Parc National de Mohéli), Como-
ros in 2021; and 9 in Seychelles, including 6 individuals 
deployed at Mahé Island in 2007, 2009 and 2022 and 3 
at Sainte-Anne Island in 2021–2022 (see Fig. 1). 
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For each individual, the minimum curved carapace 
length (CCLmin) was measured from the anterior 
point at the midline (nuchal scute) to the posterior 
notch at the midline between the supracaudals 
(Bolten 1999). Turtles were photo-identified accord-
ing to the method developed by Jean et al. (2010). 

2.2.  Data filtering and interpolation 

A first filtering step was applied to the Argos loca-
tion data by discarding low-quality data (class Z) and 
removing positions located on land. Then, we applied 
a second filter based on unrealistic velocities (i.e. 
>5 km h–1, set from the literature, e.g. Hart et al 2019) 
and unlikely spikes (i.e. if the angle between 3 con-
secutive locations is either <15° with 1 of the 2 dis-
tances >2500 m, or <25° with 1 of the 2 distances 
>5000 m; Hawkes et al. 2011). In cases of duplicated 
locations, the best quality class was selected within a 
minimum lag of 60 s. From this pre-filtered data, we 
estimated predicted locations every 12 h by applying 
a continuous-time correlated random walk state-
space model (aniMotum R package; R Core Team 
2022, Jonsen et al. 2023). 

2.3.  Segmentation of tracks 

The classification of movement allows us to de scribe 
the switch between different behavioral states on a 
phase scale (Nathan et al. 2008). To detect changes 
in movement data, step lengths and turning angles 
were computed between each location using the 
 moveHMM R package (Michelot et al. 2016). We used 
a hidden Markov model (HMM) to identify 2 discrete 
behaviors (residence or transit) based on distributions 
of gamma step lengths and von Mises turning angles. 
The state of residence was characterized by small step 
lengths and large turning angles, whereas the transit 
state exhibited greater step lengths but smaller turn-
ing angles. The initial parameters of step length and 
turning angles were determined by selecting the 
model that gave the best Akaike information criterion 
(AIC) value among several implementations with ran-
dom parameters. Finally, we classified the resident 
and transit states identified along the tracks into 
meaningful biological categories: inter-nesting (res-
ident movements identified prior to the migration de-
parture), foraging (resident movements identified at 
the end of the migration), stopovers (resident move-
ments between migration departure and the end of 
the migration), migration (transit movements between 

departure from either the inter-nesting habitat [for 
nesting females] or the release point [for bycaught in-
dividuals] and the first location on the foraging area), 
and finally foraging shift (transit movement after arri-
val at the foraging area). Data collected during the 
inter-nesting period were not considered in the analy-
ses. Final foraging areas were defined as sites where a 
turtle re mained in a resident state for more than a 
month (Schofield et al. 2010). To characterize the ap-
parent foraging areas, we followed the definition of 
Schofield et al. (2010): neritic coastal if the area was 
within 2 km of shore and <40 m bathymetry, neritic 
open-sea if the area was >2 km from shore at a depth 
of <200 m, and finally oceanic when depth exceeded 
200 m. We calculated the centroids of the minimum 
convex polygon (MCP) for foraging locations to de-
termine the bathymetry (extracted from GEBCO 
Compilation Group 2021) and the distance to the 
shore. The female (#136823) released from Kelonia 
rescue center (Table 1) traveled directly to the coast of 
Madagascar, probably to resume its original journey. 
Therefore, to avoid any behavioral bias due to the re-
lease away from the place of capture, tracking data 
collected between Reunion Island and Madagascar 
were not included in the analyses (for the complete 
track, see Fig. 2q). 

2.4.  Movement analysis 

To better understand the movement along the path-
ways, we used 2 different behavioral indices: the move-
ment persistence index and the straightness index. 

First, we fitted a move persistence model to the pre-
dicted locations (aniMotum R package; Jonsen et al. 
2023). The movement persistence parameter (γt) rep-
resents changes in movement pattern at a step scale 
(i.e. between 2 successive locations) along a con-
tinuum (from 0 to 1) (Jonsen et al. 2019). Based on the 
autocorrelation in speed and direction between suc-
cessive locations, this time-varying behavioral index 
allows us to identify segments with a low persistence 
or a high persistence (Jonsen et al. 2020). High move-
ment persistence indicates a tendency towards con-
sistent directionality associated with higher speed, 
whereas a low persistence indicates more variability 
in directionality and slower speed between steps. In 
this study, we removed data with a movement persis-
tence standard error beyond the 90th quantile of the 
entire dataset. This approach was taken to eliminate 
movement persistence values for which behavioral 
state estimation may have been hampered by lack 
of movement contrast. We used a non-parametric 
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 Kruskal-Wallis test to compare the movement persis-
tence between individuals. Then, we estimated the 
tortuosity of the paths with a straightness index, cal-
culated as the ratio between the beeline distance from 
the first and last point of the trajectory and the total 
distance of displacement. 

2.5.  Relation between environmental data and 
movement persistence 

To infer the response of hawksbill turtles to their 
environmental context during migration, we used a 
move persistence mixed-effects model (mpmm R 
package; Jonsen et al. 2019). This modeling approach 
allowed us to derive the linear relationship between 
the previously estimated movement persistence and 
the environmental parameters, considering the indi-
vidual variability. This allows the animal behaviors to 
be linearly contextualized with time-varying environ-
mental parameters (Eisaguirre et al. 2019, Jonsen et 
al. 2019, Riaz et al. 2021, Grecian et al. 2022). Such an 
approach is particularly valuable to study the move-
ment of sea turtles, where individuals move through a 
complex seascape. Environmental data included a 
static parameter, the bathymetry (extracted from 
GEBCO Compilation Group 2021), and 3 dynamic 
environmental parameters: sea surface current (1/12° 
high resolution PSY4 Mercator global model; Gas-
parin et al. 2018; the current velocity and directional-
ity were calculated from the u and v geostrophic cur-
rent component), sea surface height (SSH) (1/12° 
high-resolution PSY4 Mercator global model) and sea 
surface temperature (SST) (1/12° high-resolution 
PSY4 Mercator global model). We specified the indi-
vidual ID as a random factor and selected the best 
model, based on the AIC scores. 

3.  RESULTS AND DISCUSSION 

3.1.  Variability in migratory movements 

The 17 females showed strong individual variability 
in migration routes (Figs. 1 & 2), especially among 
those tracked from northwestern Madagascar. All 3 
females equipped in the Ankivonjy marine protected 
area migrated north, with 2 (#205570, #205572, 
Fig. 2j,k) making a short coastal migration along the 
northern west coast, and the third (#205571, Fig. 2l) 
following the shore all the way to the east coast of Mad-
agascar (Sainte Marie Island). In contrast, the 2 hawks-
bills equipped in Nosy Hara National Park left 10 d 

apart, but both traveled south along the west coast of 
Madagascar. The first one (#205568, Fig. 2m) headed 
to the East African coast before continuing its migra-
tion along the southern coast of Mozambique and set-
tling near the Pomene National Land Reserve, while 
the second one (#205569, Fig. 2n) settled at the edge of 
the continental shelf of Madagascar. The nesting 
female tracked from Moheli (#223937, Fig. 2o) settled 
northeast of Madagascar, while the female released 
from Juan de Nova (#53202, Fig. 2p) migrated west and 
reached the continental coast of Mozambique. 

Of the 9 post-nesting females tracked from the 
Granitic Seychelles, 7 remained on the Seychelles 
Bank after traveling only short beeline distances 
(mean ± SD: 130 ± 61 km), thus corroborating pre-
vious findings of Mortimer & Balazs (2000). Two 
individuals, however, left the Seychelles Bank and 
undertook longer-distance migrations. One (#20558, 
Fig. 2i) traveled a beeline distance of 1291 km to the 
Nazareth Bank at the south end of the Mascarene 
Plateau. The other (#78360, Fig. 2h) traveled a bee-
line distance of 1354 km to the northwest coast of 
Madagascar, making stopovers between the islands 
of Mahé and Madagascar, notably spending 3 d at 
Farquhar Atoll and 5 d near Platte Island. Of the 7 
females that remained on the Seychelles Bank, 2 
(#205560, #205564, Fig. 2a,b) adopted a looping 
behavior to wards the south of the Seychelles (result-
ing in 888 and 1417 km total distance traveled, and 
192 and 239 km beeline distance, respectively), 
spending between 3 and 9 d in different localized 
areas before settling down. Such transit phases be -
tween multiple foraging areas have previously been 
observed in the eastern Indian Ocean (Fossette et al. 
2021) and the Bahamas (Hawkes et al. 2012). The 
unpredictability of re sources, exacerbated by climate 
change, was hypothesized to account for this type of 
nomadic behavior (Teitelbaum & Mueller 2019), but 
it could be also interpreted as searching behavior for 
navigation (Hays et al. 2020).  

Finally, the female bycaught off the east coast of 
Madagascar and later released from Reunion Island 
(#136823, Fig. 2q) reached the Seychelles Bank trav-
eling up along the east coast of Madagascar without 
any stopovers. As the end of the migration could be 
identified and the turtle appeared to engage in forag-
ing activities, we consider that this female reached 
her adult foraging habitat in the same manner as did 
the 16 known post-nesting females in this study. This 
female may have come from one of the sea turtle nest-
ing sites identified in the south of Madagascar, in par-
ticular the Beheloka-Besambay nesting site on the 
west coast (south of Toliara), recognized as a hawks-
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bill turtle nesting site, or beaches north of Tolagnaro 
on the east coast, a known nesting site for loggerhead 
turtle and unknown species (Humber et al. 2017). 
Interestingly, this individual headed towards the east 
coast of Madagascar after its release from La Reunion 
with a straight trajectory, suggesting a homing back 
to its migratory route. It has been considered that the 
post-nesting tracks of adult turtles may reflect their 
drifting experiences in the ocean as juveniles (Scott 
et al. 2014). If this is the case, then we could hypothe-
size that the variability in drift patterns of juvenile 
hawksbills in the SWIO could lead to contrasting life 
history traits in adulthood and explain why some indi-
viduals travel short distances, and others longer dis-
tance from the same territory. 

With an average of 72.8% of the time during female 
migration spent on the continental shelf, our tracking 
data indicate a potential affinity to use neritic waters 
during their migration. Furthermore, individuals 

crossing oceanic basins tend to favor the shortest 
route to the coast over the shortest route to their des-
tination (#205568, #136823, #53202). 

3.2.  Movement persistence during  
regional movements 

Estimating the movement persistence along the 
tracks of the females highlights locations where the in-
dividuals either spend more time with a tortuous 
movement pattern or less time with a direct movement 
pattern (Fig. 2). Movement persistence was signifi-
cantly different between females during post-nesting 
migration (mean ± SD: 0.67 ± 0.22; Kruskal-Wallis 
χ2 = 234, p < 0.001, effect size of 20%, Fig. 3), with the 
straightness index varying from 0.17 to 0.90. Thus, 
some individuals would have a lower mean movement 
persistence than others, spending more time on the 
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Fig. 1. Tracks of hawksbill turtles tagged from (a) the Seychelles (post-nesting females, n = 9); (b) Madagascar (post-nesting 
 females, n = 5); female bycaught in fisheries (n = 1; #136823; dashed black line: unanalyzed section of trajectory), Moheli  

(post-nesting female, n = 1), and Juan de Nova (post-nesting female, n = 1). See Table 1 for individual tracking details
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way to their final foraging area. This provides an in-
sight into the migration performance and habitat use 
along the route. This variability among individuals is 
an important finding that could be explained by a 
combination of factors, such as foraging opportunities 
and strategies, navigational cues, physical constraints, 
or life history traits. Thus, there is a need to better 
under stand the responses to the environmental 
context. The best-supported model for explaining 
changes in movement persistence in cluded the fixed 
effects of bathymetry, SST and SSH, with individual 
turtles as a random effect. Bathy metry was the only 
supported environmental predictor of changes in the 
persistence of female movements during migration 
(Z = –3.96, p < 0.001). No significant re sponse was 
found for either SST (Z = –0.05, p = 0.96) or SSH (Z = 
1.49, p = 0.14). Although these 2 para meters have been 
described as key environmental drivers for hawksbill 
turtles’ habitat preference (Marshall et al. 2020), our 
results suggest that the drivers of movement persis-
tence may be different and this needs further investi-
gation. Nonetheless, this indicates that the changes in 
movement persistence could be related to bathy metry, 
with females exhibiting the lowest movement persis-
tence in neritic waters. This result is consistent with 
the study of Sequeira et al. (2018), which in di cates that 
movements across different taxa tend to be more com-
plex within coastal habitats. Indeed, the complexity of 

habitat structure in the neritic waters of the SWIO pro-
vides diverse food resources for hawksbill turtles, but 
also shelters to hide from predators. Hawksbill turtles 
may also use the landscape features to facilitate their 
orientation towards their final foraging area (Hays et 
al. 2020, 2022). Although it has been shown that the ef-
fect of currents on the trajectories of sea turtles, while 
variable, is rarely negligible (Gaspar et al. 2006, Girard 
et al. 2006, Luschi et al. 2007, Lambardi et al. 2008, Sale 
& Luschi 2009), the coarse resolution of the nearshore 
 current velocity data from the PSY4 model may have 
limited our ability to detect a relationship with this 
 parameter (Mukherjee et al. 2022). 

3.3.  Distribution of foraging areas 

We identified 12 foraging areas scattered through-
out the western Indian Ocean (Fig. 4). The locations 
of these sites are in Seychelles (5), off Northern Mad-
agascar (5), off Mozambique (1), and on the Masca-
renes plateau (1) (Fig. 4). Individuals were recorded at 
their foraging sites for periods ranging from 82 to 
581 d (mean of 244 d; Table 1). 

The importance of the entire Seychelles Bank as 
foraging habitat for mature hawksbill turtles is espe-
cially high, as indicated by the distribution of forag-
ing areas across the shallow plateau: 4 sites were in 
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Fig. 3. Movement persistence (γt) during hawksbill turtle migration (post-nesting females, n = 16; longline-bycaught female 
#136823, n = 1). The upper and lower limits of the box represent the 75th and 25th percentile respectively, horizontal line in the  

box is the median, the whiskers are the minimum and maximum values, grey shading is the distribution of numerical data
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the Amirantes to Fortune Bank Area of Outstanding 
Natural Beauty (AONB), including 1 on Adelaide 
Bank, and another on Le Constant Bank. Another for-
aging area was located between Mahé and Praslin 
Islands on the Mahe Plateau (of the Seychelles Bank), 
but in an area not part of the AONB. Seychelles 
waters were shown to provide suitable foraging hab-
itat for hawksbill turtles, with tracked individuals 
nesting in the inner islands of Seychelles remaining in 
Seychelles waters to forage (Mortimer & Balazs 2000). 
An initial study of the diet of hawksbill turtles in the 
western Indian Ocean identified demosponges and 
anthozoans as the dominant items for hawksbill tur-
tles foraging in the Seychelles in waters adjacent to 
islands (von Brandis et al. 2014). To date, however, lit-
tle is known about the foraging habitats and food 
items consumed by adult hawksbills at remote sites 
located distant to land masses, and in deeper waters; 
moreover, few studies have documented foraging 
habitats in the western Indian Ocean. 

Five foraging areas were in the Mozambique Chan-
nel: 4 along the northwestern coast of Madagascar, 
indicating the importance of this region for hawksbill 
turtles in terms of foraging habitat, and 1 along the 

continental coast of Mozambique, near the Pomene 
National Reserve. One other foraging site was identi-
fied at Sainte-Marie Island along the northern east 
coast of Madagascar, a site previously recognized for 
its hawksbill foraging activity (Obura et al. 2010). 
A potential foraging area was identified off the coast 
of Mozambique, close to the Primeras & Segundas 
protected areas. This site is not included in our list of 
foraging areas because the individual stayed for only 
18 d on site. However, this does confirm the presence 
of foraging hawksbill turtles in this part of the Chan-
nel, as already suggested by fishery bycatch data 
(Hamann et al. 2022, van de Geer et al. 2022).  In sum-
mary, 11 foraging areas were located on coastal 
neritic sites and 1 foraging area was found in open-sea 
neritic waters on the Nazareth Bank south of the Mas-
carene Plateau. 

3.4.  Conservation implications 

One of the important outcomes of this study is the 
identification of habitat connectivity between nesting 
(n = 6) and foraging areas (n = 12) across the Western 
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Indian Ocean. Two foraging areas were located near 
the Nosy Hara National Park and 2 others near the 
marine protected area of Ankarea in Madagascar 
(Fig. 4). Collecting additional observations could pro-
vide a basis for re-drawing these protected areas. In 
the Seychelles, we identified 6 foraging areas in the 
Amirantes to Fortune Bank AONB and 1 between 
Mahe and Praslin islands, outside a protected area. 
All the foraging areas were in neritic habitats, con-
firming the importance of neritic waters, coastal and 
open-sea, as foraging habitats for hawksbill turtles 
and their vulnerability to important threats, particu-
larly targeted illegal fishing and bycatch (Bourjea et 
al. 2008, van de Geer et al. 2022). 

The IUCN’s Marine Turtle Specialist Group has de -
veloped a conservation approach, referred to as 
regional management units (RMUs), to evaluate and 
prioritize conservation actions for sea turtles (Wal-
lace et al. 2010, 2011, 2023). Most RMUs are defined 
by a combination of nesting records, genetic data, and 
information about migratory patterns derived from 
satellite or metal flipper tags. However, some RMUs 
have been defined as putative, i.e. based on nesting 
re  cords but lacking other biologic or genetic evi -
dence (Wallace et al. 2010, 2023). While the SWIO 
RMU for hawksbills is not considered putative, it is 
situated adjacent to 3 other Indian Ocean hawksbill 
RMUs that are — the Northwest Indian, Northeast 
Indian, and Southeast Indian RMUs, representing a 
research priority. Female tracking data clearly links 
the nesting and foraging sites located on the Sey-
chelles Bank with nesting and foraging habitats 
throughout the SWIO, including the Mascarene Pla-
teau and Madagascar. Our study thus provides new 
key data to support the assessment of RMUs for 
hawksbill turtles in the Indian Ocean. 

Due to the heterogeneity of tracks scattered across 
the western Indian Ocean, our study makes a signifi-
cant contribution to confirm the integration of habitat 
connectivity for hawksbill turtles into conservation 
strategies in the region (Mazor et al. 2016). The 2 
tracks identified along the East African coast may 
help fill in the scientific gap in the migratory behavior 
of hawksbill turtles in relation to the continental coast 
(van de Geer et al. 2022). Functional connectivity will 
depend in part on the resource landscape and the dis-
tribution of qualitative habitats (Hodgson et al. 2009). 
As the spatial distribution of resources changes over 
time, it is therefore important to consider the func-
tional connectivity in light of the spatial and temporal 
scales. Uncertainties related to the measurement of 
connectivity need to be carefully addressed to avoid 
overestimation of connectivity, which may lead to 

underestimation of conservation needs (Kool et al. 
2013). While satellite tracking provides real-time and 
accurate information at individual turtle level, pop-
ulation genetics can also be used to measure connec-
tivity on a larger temporal scale over multiple genera-
tions. Current knowledge suggests 2 genetic clusters 
in the Indian Ocean: the Persian Gulf and the 
 Seychelles–Chagos (Mortimer & Broderick 1999, 
Vargas et al. 2016, Arantes et al. 2020). However, phy-
logeographic studies in the SWIO, especially in the 
complex oceanographic system of the Mozambique 
Channel, are needed to fully understand hawksbill 
population dynamics in the region (Anastácio & 
Pereira 2017). 

In addition to international and regional coopera-
tion, the recognition of local practices and the in -
volvement of local communities in decision making 
are essential to achieve positive conservation out-
comes in the long term (Hill et al. 2020, Vierros et al. 
2020, Dawson et al. 2021). The knowledge acquired 
about hawksbill turtles in territories throughout the 
SWIO in this study will enhance our ability to imple-
ment adequate local actions and community-driven 
conservation. 

4.  CONCLUSION 

The movement persistence index was used to reveal 
the magnitude of changes in the movement of hawks-
bill turtles and offers a new way to quantify move-
ment variability between individuals. This study 
 demonstrated strong individual variability in the 
migratory movements of post-nesting hawksbill tur-
tles in the SWIO, revealing other strategies than 
those already observed in the Seychelles and the 
Chagos. The heterogeneity of movement trajectories 
suggests a promising capacity of adaptation in the 
context of localized threats. Nevertheless, analysis of 
the movement behavior of females also highlighted 
the importance of neritic habitats during migration 
and confirms the high vulnerability of this species to 
coastal human activities even during the migratory 
phase. The identification of 12 foraging areas across 
the wider SWIO basin indicates a dichotomy in the 
foraging strategy between coastal and open-sea for-
aging. It would be interesting to complement move-
ment persistence with the dive pattern and habitat 
description to unravel the behavioral change link to 
their habitat use. While hawksbill turtles are known 
to forage mainly on shallow coral reefs (Horrocks et 
al. 2011, Marcovaldi et al. 2012), other habitats have 
been identified as mangrove estuaries or seagrass 
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meadows (Bjorndal & Bolten 2009, Gaos et al. 2012a, 
Hoenner et al. 2016, Martínez-Estévez et al. 2022) and 
mud flats (Mortimer & Donnelly 2008). Thus, one of 
the next steps is to characterize the ecosystems used 
by hawksbill turtles in these remote foraging areas 
identified by satellite-tracking data. Our results in -
ferred from small numbers of tracked animals under-
score the importance of continuing to acquire ad -
ditional data to limit bias in our understanding of 
population and habitat connectivity. Further genetic 
analysis will supplement these results for a better 
understanding of population dynamics. 
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