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Abstract

Recently, Miller and Wu introduced the positive λ-calculus, a call-by-value λ-calculus with sharing obtained by assigning proof
terms to the positively polarized focused proofs for minimal intuitionistic logic. The positive λ-calculus stands out among λ-
calculi with sharing for a compactness property related to the sharing of variables. We show that—thanks to compactness—the
positive calculus neatly captures the core of useful sharing, a technique for the study of reasonable time cost models.
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1 Introduction

Andreoli’s focusing is a technique for restricting the space of proofs to a subset with good structural
properties, called focused proofs [14]. Notably, it helps in the proof search approach to computation.

Focused proof systems have quickly become a widespread tool in proof theory and—via the Curry-
Howard isomorphism—in the study of λ-calculi. They are used well beyond proof search, for instance,
in connection to pattern matching by Zeilberger [41] and Krishnaswami [24], proof nets and expansion
proofs by Chaudhuri et al. [18,17], synthetic connectives by Chaudhuri [16], abstract machines by Brock-
Nannestad et al. [15], decidability of contextual equivalence for sum types by Scherer and Rémy [36] and
Scherer [35], contextual equivalence by Rioux and Zdancewic [31], synthetic inference rules by Marin et al.
[27], refinement types by Economou et al. [21], and certainly in even more studies. The present paper adds
one more instance, studying a connection between focusing and sharing for λ-terms.

Positive Focusing and λ-Terms. In [28], Miller and Wu show how the focused intuitionistic proof system
LJF by Liang and Miller [26] can be used to design term structures. In LJF, formulas are polarized. A key
theorem of LJF is that different polarizations do not affect provability: if a formula is provable (resp. not
provable) in LJ, then the formula is provable (resp. not provable) in LJF with any polarization. Different
polarizations of a provable formula, however, induce focused proofs of very different shapes.

Via annotations of proofs with proof terms, Miller and Wu study the shape of polarized proofs of
minimal intuitionistic logic, that is, for the logic of implications, which is the basic setting of the Curry-
Howard isomorphism. They consider the two natural uniform polarizations having either all atomic formulas
polarized negatively, or positively (non-atomic formulas are all negative, because implication is negative).
Two very different term structures arise. The negative polarity assignment yields the usual λ-calculus. The
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positive polarity assignment, instead, yields a quite different syntax, with a restricted form of application
and accounting for sharing via a notion of explicit substitution.

The Positive λ-Calculus. Based on this positively-polarized syntax, Wu introduced the positive λ-
calculus λpos [40], a calculus with explicit substitutions endowed with call-by-value (shortened to CbV)
evaluation, because substituting applications (as in call-by-name) would break the shape of positive terms.

The positive λ-calculus is an unusual calculus and the aim of this paper is to show its relevance. At
first sight, it is yet another sharing-based presentations of CbV evaluation. It stands out, however, for a
peculiar treatment of variables in relation to sharing, here dubbed compactness, that to our knowledge is
new. The main contribution of this paper is to show that compactness considerably simplifies the definition
and the study of useful sharing, a form of shared evaluation first introduced by Accattoli and Dal Lago [5]
to study reasonable time cost models for the λ-calculus.

In order to properly explain the novelty of the positive λ-calculus, we are now going to outline three
concepts: sharing-based presentations of CbV evaluation, the sharing of variables, and useful sharing.

700 Sharing-Based Presentations of CbV Evaluation. In the literature, sharing is an overloaded word.
The most basic form of sharing is sub-term sharing, which can be obtained by simply adding to the standard
syntax of the λ-calculus a let x = u in t construct, which shares u between all the occurrences of x in t.
The use of let-expressions is pervasive in presentations of CbV λ-calculi, typically in Moggi [29,30]. In
let x = u in t, it is usually assumed that u shall be evaluated before t, but such an assumption is often
dropped when studying sharing. Additionally, let x = u in t is often rather more concisely noted as an
explicit substitution t[x�u] (in this paper, meta-level substitution is noted t{x�u}).

In a CbV setting, having both explicit substitutions t[x�u] and applications tu is somewhat redundant,
as explicit substitutions can be used to constrain the shape of applications. It is possible, indeed, to have
only values v for one or both sub-terms of applications tu, that is, they can be constrained to be of shape
vu (or tv, or even vv′). The idea is to apply a transformation J · K turning tu into (xJuK)[x�JtK] with x fresh
(or into (JtKx)[x�JuK], or (xy)[x�JtK][y�JuK] with y fresh). It is typical of CbV (rather than call-by-name),
because, for the restriction to be stable by reduction, it should be forbidden to substitute applications.
Instances of CbV calculi with restrained applications abound, two notable examples being the calculus
of A-normal forms by Sabry and Felleisen [32,22] and the fine-grained CbV calculus by Levy et al. [25].
Applications are also restricted in Sestoft’s study of call-by-need [37], or that of Walker’s on substructural
type systems [38].

We shall follow Accattoli et al. [3] and refer to these decompositions of applications as to crumbled cal-
culi. By tweaking the rewriting rules, one can also further restrict the immediate sub-terms of applications
to be variables (rather than values). This gives rise to at least nine different CbV calculi, one with ordinary
application tu and eight crumbled variants vu, xu, tv′, vv′, xv′, ty, vy, and xy. One can also decide at
least (each choice doubling the number of possible presentations):

• Nested vs flattened ES : whether explicit substitutions can be nested (as in t[x�u[y�r]]) or have to be
flattened (as in t[x�u][y�r]);

• Granularity of substitutions: whether evaluation is small-step (substitution acts on all occurrences of
a variable at once) or micro-step (variable occurrences are replaced one at a time);

• Variables vs values: whether variables are values, and thus can trigger substitution redexes, or not,
that is, only abstractions can be substituted.

None of these choices affects the expressivity of the calculus, but the various calculi have different properties
and degrees of manageability. In particular, the proof that a crumbled calculus is as expressive as the full
one depends on the choices, and the proof might be non-trivial, as we shall see.

According to this classification, Wu’s positive λ-calculus is a crumbled calculus with applications of
shape xy (the minimalistic one), flattened substitutions, micro-step, and where variables are not values.
It distinguishes itself from all these calculi, however, because it also has a new compactness feature that
solves a pervasive issue of sub-term sharing.

Sharing of Variables and Compactness. In λ-calculi with sharing, usually variables can be shared, that

2



Accattoli and Wu

is t[x�y] is a valid term. This leads to the possibility of having renaming chains, such as:

t[x1�x2][x2�x3] . . . [xn−1�xn] (1)

These chains are an issue because they lead to both space and time inefficiencies. Optimizations to prevent
their creation are adopted for instance by Sands et al. [34], Wand [39], Friedman et al. [23], and Sestoft
[37]. The first systematic study of renaming chains is by Accattoli and Sacerdoti Coen [13], with respect to
time, where they show that it is enough to remove variables from values to avoid time inefficiencies related
to renaming chains. Recently, Accattoli et al. have shown that the dynamic removal of renaming chains is
essential for the only known reasonable notion of logarithmic space in the λ-calculus [6].

The new feature of the positive λ-calculus λpos is that it does not share variables, that is, t[x�y] does
not belong to the syntax of λpos. This fact removes the issue of renaming chains altogether, with no need
to design optimizations to prevent their creations, or removing variables from values, because renaming
chains simply cannot be expressed.

In fact, λpos pushes things one step further, forging a sort of syntactical duality with respect to sharing:
• Variables cannot appear in explicit substitutions and, additionally, are the only constructors beside

explicit substitutions;
• Dually, abstractions and applications appear in explicit substitutions but not out of them.

That is, x is a positive term but, for instance, xy and λx.x are not positive terms, only z[z�xy] and
z[z�λx.x] (or more generally u[z�xy] and u[z�λx.x], where u is a positive term) are positive terms. This
removes the further issue of whether xy and z[z�xy] are distinct terms, which is relevant in the study of
CbV program equivalences, see Accattoli et al. [7]. One might argue that a similar approach to applications
is already present in calculi related to the sequent calculus (in the style of Curien and Herbelin [19]), but
to our knowledge the extension of this approach to abstractions is new, and relevant for useful sharing, see
Sect. 5.

We dub compactness the fact that variables are not shared and are the only terms out of ESs. With
compact sub-term sharing, terms have shape x1[x1�u1] . . . [xn�u1], where each of the u1,. . . , un is an
abstraction or an application (which do not belong to the grammar of terms).

Useful Sharing. Our aim here is promoting the compactness of λpos by showing its impact on useful
sharing, a concept apparently unrelated to focusing. Useful sharing is a technique introduced by Accattoli
and Dal Lago [5], and then refined in call-by-value by Accattoli et al. [4], to study reasonable time cost
models for λ-calculi. It works at the level of micro-step evaluation, that is, of replacements of single variable
occurrences. The basic idea is that (in CbV) one should replace a variable occurrence with a copy of a
shared abstraction only when it is useful to create β-redexes, that is, in the following case:

(xt)[x�λy.u] → ((λy.u)t)[x�λy.u] (2)

While one should avoid replacements that do not create β-redexes, i.e. are not useful, as the following one:

(tx)[x�λy.u] → (t(λy.u))[x�λy.u] (3)

Avoiding non-useful replacements leads to considerable speed-ups, that can even be exponential for some
terms, in the case of strong evaluation (that is, when evaluation goes under abstraction) [5,4].

While the intuition behind useful sharing is easy to convey, the technical details are complex, because
cases (2) and (3) are not the only possible ones, and various complications arise. A first simplified setting
for useful sharing is given by crumbled λ-calculi where arguments can only be variables (that is, with
applications of shape ty, vy, or xy), since then non-useful replacements such as those in (3) cannot be
expressed and are then ruled out. This is already known and used by Accattoli et al. [4].

One of the complex aspects of useful sharing is related to renaming chains (as in (1)). They force the
distinction between steps as in (2), which are directly useful, and steps over a renaming chain such as:

(x1t)[x1�x2] . . . [xn−1�xn][xn�λy.u] → (x1t)[x1�x2] . . . [xn−1�λy.u][xn�λy.u] (4)
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These replacements are indirectly useful : they do not directly create a β-redex and yet they contribute
to the future creation of β-redexes. Continuing with evaluation, indeed, λy.u shall replace the content of
all the explicit substitutions in the chain and finally be substituted for x1, creating a β-redex. Indirectly
useful steps cannot be avoided, otherwise some β-redexes are never created, and evaluation gets stuck.

Thanks to compactness, the positive λ-calculus λpos has no renaming chains and thus indirectly useful
replacements are simply ruled out. Evaluation is not stuck in λpos, though, because indirectly useful steps
somehow transform into directly useful steps in λpos, as explained in Sect. 6. Since λpos also has minimalistic
applications of shape xy, non-useful replacements are ruled out as well. Therefore, λpos has only useful
replacements, and only the directly useful ones (hence the title). Essentially, λpos captures the core of
useful sharing, ruling out the technicalities.

Open CbV. Concretely, we develop our study with respect to Accattoli and Guerrieri’s framework of
Open CbV [8], that is, we consider weak evaluation (i.e. not under abstraction) and possibly open terms.
It is an intermediate setting between:

(i) Weak evaluation and closed terms, where many subtleties of useful sharing are not observable, and
(ii) Strong evaluation (which implies dealing with open terms), where further technicalities arise.

The same approach is followed by other works on useful sharing by Accattoli and co-authors [12,9,10]—see
in particular the introduction of [10] for an extensive discussion of this choice.

Architecture of Our Study. After all these preliminary explanations, we can now explain our results. As
a reference for a sharing-based λ-calculus for CbV, we take (a micro-step presentation of) Accattoli and
Paolini’s value substitution calculus (VSC) [11], which is also the reference for the study of CbV reasonable
time and useful sharing by Accattoli et al. [4]. The VSC has (possibly nested) explicit substitutions and
ordinary applications of shape tu. We then define (our slight variant of) Wu’s positive λ-calculus λpos.

Intuitively, the paper is devoted to proving the equivalence of the Open λpos and the Open VSC. Often,
the equivalence of two calculi is stated as a bisimulation property. For crumbled calculi ruling out some
steps—as it is the case for the positive λ-calculus—this is not possible, because the ruled out steps cannot
be simulated. A finer approach is needed.

We thus define a core sub-calculus of the Open VSC, which has only directly useful replacements, and
prove a factorization theorem for the Open VSC, stating that every reduction sequence can be factored
into a core one followed by a non-core one. Moreover, we provide a theorem ensuring that the Open VSC
and the Core Open VSC are termination equivalent.

Next, we define a translation J · K from the VSC to λpos and show that:

(i) Simulation: it induces a simulation of the Core Open VSC by the Open λpos, and
(ii) Normal forms: it sends core normal forms into appropriate normal forms of λpos.

From these properties, it follows that the Core Open VSC and the Open λpos are termination equivalent.
This proof technique is an original contribution of the paper. In particular, it is the first time that

usefulness is justified via a factorization theorem.
Lastly, we show that the compactness of λpos induces a further relevant property: its open evaluation

has the diamond property, a strong form of confluence, which is not true for the (micro-step) Open VSC.

Proofs. Proofs are in the Appendix.

2 Preliminaries: Rewriting Notions and Notations

Given a rewriting relation →r, we write d : t →∗
r u for a →r-reduction sequence from t to u, the length of

which is noted |d|. Moreover, we use |d|a for the number of a-steps in d, for a sub-relation →a of →r.
A term t is weakly r-normalizing if d : t →∗

r u with u r-normal; and t is strongly r-normalizing if there
are no diverging r-sequences from t, or, equivalently, if all its reducts are strongly r-normalizing.

Given two reductions →1 and →2 we use →1→2 for their composition, defined as t →1→2 u if t →1

r →2 u for some r. We also write, e.g., →1→2⊆→∗
3 to state that t→1→2 u implies t→∗

3 u
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Language Contexts

Terms t, u, r, q, p ::= v | tu | t[x�u] Subst. L,L′ ::= ⟨·⟩ | L[x�u]

Values v, v′ ::= x | λx.t Open O,O′ ::= ⟨·⟩ | Ot | tO | t[x�O] | O[x�u]

Answers a, a′ ::= L⟨λx.t⟩

Reduction rules

Multiplicative L⟨λx.t⟩u 7→m L⟨t[x�u]⟩
Exponential O⟨⟨x⟩⟩[x�L⟨v⟩] 7→e L⟨O⟨⟨v⟩⟩[x�v]⟩

Garbage coll. t[x�L⟨v⟩] 7→gc L⟨t⟩ if x /∈ fv(t)

Notation →ovsc := →om ∪ →oe ∪ →ogc

Contextual closure

t 7→a t′ a∈{m, e, gc}
O⟨t⟩ →oa O⟨t′⟩

Fig. 1. The Open (Micro-Step) Value Substitution Calculus λovsc.

Diamond Property. According to Dal Lago and Martini [20], a relation →r is diamond if u1 r← t→r u2
and u1 ̸= u2 imply u1 →r r r← u2 for some r. If →r is diamond then:

(i) Confluence: →r is confluent, that is, u1 ∗
r← t→∗

r u2 implies u1 →∗
r r

∗
r← u2 for some r;

(ii) Length invariance: all r-reduction sequences to normal form with the same start term have the same
length (i.e. if d : t→∗

r u and d′ : t→∗
r u with u →r-normal then |d| = |d′|);

(iii) Uniform normalization: t is weakly r-normalizing if and only if it is strongly r-normalizing.

Basically, the diamond property captures a more liberal form of determinism.

3 The (Micro-Step) Open Value Substitution Calculus

In this section, we present our system of reference for Open CbV, Accattoli and Paolini’s value substitution
calculus [11] (shortened to VSC). We shall adopt a micro-step presentation (explained below) of the open
fragment, that is, of weak evaluation on possibly open terms. This variant is defined in Fig. 1 and shall
be denoted with λovsc. We also recall some of its basic properties, which shall either be used in the next
section or used to compare λovsc with the positive λ-calculus.

Terms. The VSC is a CbV λ-calculus extended with let-expressions, similarly to Moggi’s CbV calculus
[29,30]. We do however write a let-expression let x = u in t as a more compact explicit substitution t[x�u]
(ES for short), which binds x in t. Moreover, our let/ES does not fix an order of evaluation between t and
u, in contrast to many papers in the literature (e.g. Sabry and Wadler [33] or Levy et al. [25]) where u
is evaluated first. Intuitively, t[x�u] is a construct for sub-term sharing, as for instance is evident when
comparing tt and (xx)[x�t], where t is shared in the latter.

The set of free variables of a term t is denoted by fv(t) and terms are identified up to α-renaming. We
use t{x�u} for the capture-avoiding substitution of t for each free occurrence of x in t.

Contexts. We shall use (many notions of) contexts, i.e. terms with a hole, noted ⟨·⟩. The most general
notion of context used here is open contexts O, for which the hole cannot appear under abstraction and
where the adjective open means possibly open (that is, possibly with occurrences of free variables), and
not necessarily open. We shall also extensively use substitution contexts L, which are simply lists of ESs.
Plugging a term t in a context O is noted O⟨t⟩ and can capture variables, for instance (λx.λy.⟨·⟩)⟨xy⟩ =
λx.λy.xy (while (λx.λy.z){z�xy} = λx′.λy′.xy); we use O⟨⟨t⟩⟩ when we want to prevent it.

Substitution contexts are in particular used to define answers, which are abstractions surrounded by a
list of substitutions. Answers shall play a key role in relating λovsc with the positive λ-calculus in Sect. 7.
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Reduction Rules. The reduction rules of VSC are slightly unusual as they use contexts both to allow one
to reduce redexes located in sub-terms, which is standard, and to define the redexes themselves, which is
less standard—this kind of rules is called at a distance. The rewriting rules at a distance of λovsc are related
to cut-elimination on proof nets, via the CbV translation (A ⇒ B)v = !(Av ⊸ Bv) of intuitionistic logic
into linear logic, see Accattoli [1]. The linear logic connection is also the reason behind the multiplicative
and exponential terminology for the rewriting rules.

The multiplicative root rule 7→m turns a β-redex (at a distance, because of the substitution context L)
into an ES. Note that there is no by-value restriction, rule 7→m can fire also if the argument is not a value.
The by-value restriction is part of rules 7→e and 7→gc which take care of the substitution process.

The VSC usually appears with a single small-step substitution / exponential rule, where small-step
refers to the fact that it is based on meta-level substitution t{x�v}, which replaces all the occurrences of
the bound variable x at once. Here, we adopt a micro-step presentation: the exponential rule 7→e replaces
a single variable occurrence at a time, and there is an additional garbage collection rule 7→gc for removing
ESs bounding variables with no occurrences. These two rules can duplicate / erase only values. Both root
rules are at a distance in that they involve a substitution context L, which is not duplicated / erased.

The rewriting relation →ovsc of λovsc is obtained by closing the root rewriting rules 7→m, 7→e, and 7→gc

by open contexts O and by taking the union of the obtained rules.

Confluence and Lack of Diamond. The VSC is confluent and the open small-step VSC even has the
diamond property (defined in Sect. 2), see Accattoli and Paolini [11]. In the literature, there is no proof
that the variant λovsc used here is confluent, but this can be easily proved by adjusting the proof in [11].
We omit the details since the proof is absolutely standard. For the study in this paper, instead, it is worth
pointing out that λovsc is not diamond, as the following diagram shows:

O⟨⟨x⟩⟩[x�y][y�v] O⟨⟨x⟩⟩[x�v][y�v]

O⟨⟨y⟩⟩[x�y][y�v] O⟨⟨v⟩⟩[x�v][y�v]O⟨⟨y⟩⟩[x�v][y�v]

oe

oe oe

oe oe

Postponement of Garbage Collection. A typical property of micro-step λ-calculi at a distance is the pos-
sibility of postponing garbage collection (GC). In our setting, the postponement preserves both the number
of non-GC steps (which is standard) and the number of GC steps (which is not always the case) because
GC steps cannot be duplicated in call-by-value weak evaluation (since only values are duplicated, but GC
steps cannot take place inside values because of weakness). As it is standard, the (global) postponement
of GC is obtained by iterating a local form of postponement. Notation: →o¬gc := →om ∪ →oe.

Proposition 3.1 (Local postponement of garbage collection, proof at p. 20) For a ∈ {m, e}, If
t→ogc→oa u, then t→oa→ogc u.

Proposition 3.2 (Postponement of garbage collection, proof at p. 24) If d : t →∗
o u, then there

exist reduction sequences e : t→∗
o¬gc u

′ and f : u′ →∗
ogc u with |e|om = |d|om, |e|oe = |d|oe, and |f | = |d|ogc.

Local Termination. As it is often the case when β-reduction is decomposed into smaller rules, every
single rule of λovsc is strongly normalizing separately (it is only together that they may diverge, namely
→o¬gc diverges on some terms).

Proposition 3.3 (Local termination, proof at p. 24) Let a ∈ {m, e, gc}. Relation →oa is strongly
normalizing. Moreover, →oe ∪ →ogc is strongly normalizing.

Renaming Chains. In λovsc, there can be renaming chains such as t[x1�x2][x2�x3] . . . [xn−1�xn]. The
issue with these chains is that some terms dynamically create longer and longer chains, slowing down the
evaluation process. The simplest term on which the issue can be observed is the looping combinator Ω:
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var
Γ, x : A ⊢ x : A

Γ, x : A ⊢ t : A
set(y : A, z : A) ⊆ Γ app

Γ ⊢ t[x�yz] : A

Γ, y : A ⊢ u : A Γ, x : A ⊢ t : A
abs

Γ ⊢ t[x�λy.u] : A

Fig. 2. The term formation rules for positive λ-terms.

Terms t, u, r ::= x | t[x�yz] | t[x�λy.u]

Evaluation Ctxs E ::= ⟨·⟩ | E[x�yz] | E[x�λy.t]

Root reduction rules

E⟨t[x�yz]⟩[y�λw.E′⟨w′⟩] 7→eme+ E⟨E′⟨t{x�w′}⟩{w�z}⟩[y�λw.E′⟨w′⟩]
t[x�λy.u] 7→gc+ t if x /∈ fv(t)

Notation →o+ :=→oeme+ ∪ →ogc+
Ctx closure t 7→a t′

a∈{eme+, gc+}
E⟨t⟩ →oa E⟨t′⟩

Fig. 3. The open positive λ-calculus λpos.

Ω = (λx.xx)(λx.xx) →om (x1x1)[x1�λx.xx]

→oe ((λx.xx)x1)[x1�λx.xx] →om (x2x2)[x2�x1][x1�λx.xx]

→oe (x1x2)[x2�x1][x1�λx.xx] →oe ((λx.xx)x2)[x2�x1][x1�λx.xx]

→om (x3x3)[x3�x2][x2�x1][x1�λx.xx] →oe (x2x3)[x3�x2][x2�x1][x1�λx.xx]

→oe (x1x3)[x3�x2][x2�x1][x1�λx.xx] →oe ((λx.xx)x3)[x3�x2][x2�x1][x1�λx.xx] · · ·

Note that after each→om step, evaluation does a sequence of→oe steps having length equal to the number
of preceeding →om steps. Easy calculations show that the number of →oe steps is then quadratic in the
number of →om steps, for these sequences. This quadratic overhead was first pointed out and studied by
Accattoli and Sacerdoti Coen [13]. They show that it is enough to remove variables from values (as it
is done in most implementative studies, but usually without an explanation for this choice), in order to
remove this issue, since evaluation then rather proceeds as follows:

Ω = (λx.xx)(λx.xx) →om (x1x1)[x1�λx.xx]

→oe ((λx.xx)x1)[x1�λx.xx] →om (x2x2)[x2�x1][x1�λx.xx]

→oe (x2x2)[x2�λx.xx][x1�λx.xx] →oe ((λx.xx)x2)[x2�λx.xx][x1�λx.xx]

→om (x3x3)[x3�x2][x2�λx.xx][x1�λx.xx] →oe (x3x3)[x3�λx.xx][x2�λx.xx][x1�λx.xx]

→oe ((λx.xx)x3)[x3�λx.xx][x2�λx.xx][x1�λx.xx] →om · · ·

And it is easily seen that the number of →oe steps is now linear in the number of →om steps. The positive
λ-calculus of the next section shall subsume this approach, by forbidding altogether ESs containing a
variable, thus also removing the ambiguity of whether variables are values or not.

4 The (Explicit) Open Positive λ-Calculus

Here, we present the open fragment λopos of Wu’s positive λ-calculus λpos, and then slightly refine it into
an explicit variant λoxpos. The definition of λopos is in Fig. 3. Terms of λpos are a subset of VSC terms.
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Terms. In λopos, as in the λ-calculus, there are only three constructors, variables, applications, and
abstractions. There are however, various differences, namely:

• Applications are only between variables, that is, of the shape yz;
• Applications and abstractions are always shared, that is, standalone applications and abstractions are

not allowed in the grammar. They can only be introduced by the explicit substitution constructs
[x�yz] and [x�λy.u];

• Positive sharing is peculiar as positive terms are not shared in general, that is, t[x�u] is not a positive
term. There are only two distinct sharing constructors for applications and abstractions, but no
construct for sharing variables or applications/abstractions with top-level sharing;

Contexts. The notions of substitution contexts L and open contexts O of the λovsc pleasantly collapse
onto a single notion of evaluation contexts E in λopos, because the additional clauses for O in λovsc (for
the sub-terms of applications and inside ESs) do not make sense in λopos, due to the restricted shape of
terms. As it is immediately seen from the grammar of positive terms, every positive term t can be written
uniquely as E⟨x⟩ for some x and E, with E possibly capturing x.

Rewriting Rules. There are two rewriting rules at a distance, based on open contexts and defined in
Fig. 3. Rule →ogc+ handles garbage collection and is standard. Rule →oeme+ is quite heavy, essentially
it is a macro reduction step concatenating two steps of the VSC plus a meta-level substitution. Let us
explain it (it is not necessary to grasp it completely, since right after we shall introduce a slight variant of
the positive calculus that has simpler rewriting rules). Rule→oeme+ does three operations, and also adopts
some notations to respect the constrained shape of terms:

(i) Useful exponential step: it does the useful 3 replacement of an applied occurrence of y, i.e. it acts on
y on E⟨t[x�yz]⟩, by an abstraction λw.u.

(ii) Created multiplicative step: since t[x�(λw.u)z] is not a construct of λpos, the rule has to also do
on-the-fly what in the VSC is a multiplicative step, which would create the ES u[w�z].

(iii) Further meta-level substitution: but since u[w�z] is not a construct of λpos either, the step also does
on-the-fly the meta-level substitution associated to [w�z].

(iv) Respecting the syntax : to write the reduct, one needs to respect the constrained shape of positive
terms, which requires to write u as E′⟨w′⟩ and then do the re-arrangement of the term structure and
the meta-level substitutions of variables specified by the rule in Fig. 3.

Working with such a rule is heavy. A first reason is that, quite simply, it involves a lot of symbols. Another
reason is that, by concatenating steps of different nature of the VSC, λopos is not conservative over λovsc

in the sense that it breaks one of its key property, namely local termination (stated by Prop. 3.3). Rule
→oeme+ can indeed diverge by itself, as in the following representation of the looping term Ω in λopos:

x[x�yy][y�λz.w[w�zz]] →oeme+ x[x�yy][y�λz.w[w�zz]] →oeme+ · · ·

We are then going to decompose →oeme+ into two rules, by adding a new constructor to the calculus.

The Explicit Positive λ-Calculus. The explicit positive calculus λoxpos is defined in Fig. 4. The idea is to
extend λopos by adding the intermediate construct t[x�(λw.u)z] which allows us to decompose rule 7→eme+
in two, separating the first operation, the useful exponential step, now noted 7→e+ , from the rest of the rule,
now noted 7→m+ . Rule 7→m+ still corresponds to two actions (the multiplicative step of the VSC and the
meta-level substitution of the variable), but it is one of the key points of λopos that variable substitutions
disappear, so we shall not decompose the rule further. Intuitively, the new construct t[x�(λw.u)z] plays a
similar (but dual) role to the introduction of ESs in the λ-calculus to decompose β-redexes in two, as it is
an explicit β-redex. This is why we refer to the obtained calculus as to the explicit positive calculus. One
might also see it as switching the shape of (compact) applications of λpos from xy to vy.

Clearly, λoxpos simulates λopos: if t→oeme+ u then t→oe+→om+ u.
3 Useful steps shall be defined and studied in the next section. Here we rest on the intuitive description given in
the introduction.
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Terms t, u, r ::= x | t[x�yz] | t[x�λy.u] | [x�(λy.u)z]

Evaluation Ctxs E ::= ⟨·⟩ | E[x�yz] | E[x�λy.t] | E[x�(λy.t)z]

Root reduction rules

t[x�(λy.E⟨z⟩)w] 7→m+ E⟨t{x�z}⟩{y�w}
E⟨t[x�yz]⟩[y�λw.u] 7→e+ E⟨t[x�(λw.u)z]⟩[y�λw.u]

t[x�λy.u] 7→gc+ t if x /∈ fv(t)

Notation →ox+ :=→om+ ∪ →oe+ ∪ →ogc+
Ctx closure t 7→a t′

a∈{m+, e+, gc+}
E⟨t⟩ →oa E⟨t′⟩

Fig. 4. The open explicit positive λ-calculus λoxpos.

Proposition 4.1 λoxpos simulates λopos.

Diamond. A difference between λovsc and λoxpos is that the latter is diamond, as we now show, while
the first is not (see Sect. 3). The proof uses the following basic lemma.

Lemma 4.2 (Stability under renamings) Let t and u be λoxpos terms. If t→ox+ u then t{x�y} →ox+
u{x�y} for any x and y.

Theorem 4.3 (Positive diamond, proof at p. 24) Relation →ox+ is diamond.

Postponement of GC and Local Termination. In terms of properties, λoxpos is conservative with respect
to λovsc, as postponement of GC and local termination still hold. Notation: →ox+¬gc:=→om+ ∪ →oe+ .

Proposition 4.4 (Local postponement of garbage collection, proof at p. 25) Let t and u be
λoxpos terms and a ∈ {m+, e+}. If t→ogc+→oa u, then t→oa→ogc+ u.

Proposition 4.5 (Postponement of garbage collection, proof at p. 26) Let t and u be λoxpos

terms, d : t →∗
ox+ u. Then there exist reduction sequences e : t →∗

ox+¬gc u′ and f : u′ →∗
ogc+

u with
|e|om+ = |d|om+ , |e|oe+ = |d|oe+, and |f | = |d|ogc+.

Proposition 4.6 (Local termination, proof at p. 26) Let a ∈ {m+, e+, gc+}. Relation →oa is
strongly normalizing. Moreover, →oe+ ∪ →ogc+ is strongly normalizing.

Absence of Renaming Chains. At the end of Sect. 3, we discussed renaming chains and their dynamic
creations by the looping term Ω. The following term is the representation of Ω in λoxpos, together with its
evaluation, where evidently the number of →oe+ steps is linear in the number of →om+ steps:

w[w�(λx.y[y�xx])z][z�λx.y[y�xx]] →om+ w[w�zz][z�λx.y[y�xx]]

→oe+ w[w�(λx.y[y�xx])z][z�λx.y[y�xx]] →om+ w[w�zz][z�λx.y[y�xx]]

→oe+ w[w�(λx.y[y�xx])z][z�λx.y[y�xx]] · · ·

5 Dissecting λovsc: Variable and Useful Steps

In this section, we isolate various sub-reductions of λovsc in order to relate λovsc and λoxpos in the next
section. Essentially, some steps of λovsc cannot be expressed in λoxpos, and some are instead absorbed, that
is, mapped to identities rather than being simulated. We then have to partition the rewriting rules of λovsc

into sub-rules as to identify the steps that cannot be expressed, those that are absorbed, and those that
are simulated by λoxpos. In particular, the partition of steps leads us to discuss useful sharing.
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Exp. root rule for abstractions O⟨⟨x⟩⟩[x�L⟨λy.t⟩] 7→eabs L⟨O⟨⟨λy.t⟩⟩[x�λy.t]⟩
Exp. root rule for variables O⟨⟨x⟩⟩[x�L⟨y⟩] 7→evar L⟨O⟨⟨y⟩⟩[x�y]⟩

GC root rule for abstractions t[x�L⟨λy.u⟩] 7→gcabs L⟨t⟩ if x /∈ fv(t)

GC root rule for variables t[x�L⟨y⟩] 7→gcvar L⟨t⟩ if x /∈ fv(t)

Ctx closure t 7→a t′
a∈{eabs, evar, gcabs, gcvar}E⟨t⟩ →oa E⟨t′⟩

Fig. 5. Dissected rewriting rules for λovsc.

Variable Substitutions. In λoxpos, there is no way to represent an ES t[x�y] containing a variable, and
there is also no way of simulating a variable exponential step such as O⟨⟨x⟩⟩[x�y] →e O⟨⟨y⟩⟩[x�y] or a
variable GC step t[x�y] →e t with x /∈ fv(t). These steps shall be absorbed by our translation from λovsc

to λoxpos, that is, they shall be mapped to identities. To properly state this fact later on, we split now
the root exponential rule 7→e in two rules 7→eabs and 7→evar , depending on whether the replacing value is an
abstraction or a variable, and similarly for GC. The split rules are defined in Fig. 5.

Of two sub-rules 7→eabs and 7→gcabs that are not absorbed, 7→gcabs shall be closed by all open context and
simply factored-out via the postponement of GC (Prop. 3.2). The other sub-rule 7→eabs is where usefulness
plays a role, discussed next.

Useful Steps, First Intuitions. Another difference between the two calculi is that in λoxpos exponential
steps can only be directly useful. Let us overview usefulness in a bit more detail than in the introduction.
Replacements of variable occurrences out of ESs by abstractions amount to three direct cases, in the λovsc:

Directly useful (xt)[x�λy.u] 7→eabs ((λy.u)t)[x�λy.u]

Directly non-useful 1 (tx)[x�λy.u] 7→eabs (t(λy.u))[x�λy.u]

Directly non-useful 2 x[x�λy.u] 7→eabs (λy.u)[x�λy.u]

(5)

The terminology useful refers to the fact that the exponential step creates a new multiplicative redex,
namely (λy.u)t, and it is used to contrast with non-useful, or useless exponential steps (we shall prefer
non-useful in this paper, as to denote them concisely with the letter n, given that useful and useless both
start with u) that instead do not create multiplicative steps.

The reason why one considers usefulness with respect to multiplicative steps is that the number of
multiplicative steps is a reasonable cost model in CbV [12,9,4], and that this fact is proved by an evaluation
strategy that crucially avoids non-useful substitution steps, since non-useful substitution steps can at times
add an exponential overhead, breaking the reasonability of the cost model.

In λoxpos, directly useful steps can be simulated, while the two kinds of direct non-useful step cannot
be expressed. The first kind because of the shape of positive applications, which can only have a variable
as an argument. The second kind because abstractions cannot appear out of ESs in λoxpos (this is the
relevance of the second aspect of the compactness of λpos/λoxpos mentioned in the introduction).

There are (at least) two technical difficulties in defining the useful steps of λovsc precisely. Before
diving into them, we provide a disclaimer. Useful sharing is complex and takes different shapes in different
settings (i.e. call-by-name/value/need). For this reason, the only two works distinguishing into useful
and non-useful steps, one in call-by-name [5] and one in CbV [12], rest on slightly different definitions
concerning indirectly (non-)useful steps (defined below). On purpose, later papers avoid these definitions,
despite implementing useful sharing [9,4,10]. Here, we are going to define the two kinds of steps, but our
definition (and terminology) shall—once more—be slightly different from [5,12]. The only thing on which
all these works agree are the notions of direct useful steps, which is what λoxpos captures.

Difficulty 1: Indirect Useful Steps. In λovsc, there are also indirect cases to consider, given by when
there is a renaming chain connecting the acting ESs and the end variable occurrence. Consider for instance
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the following three indirect cases, mimicking the direct ones above via a renaming chain of length 1:

Indirectly useful (xt)[x�z][z�λy.u] 7→eabs (xt)[x�λy.u][z�λy.u]

Indirectly non-useful 1 (tx)[x�z][z�λy.u] 7→eabs (tx)[x�λy.u][z�λy.u]

Indirectly non-useful 2 x[x�z][z�λy.u] 7→eabs x[x�λy.u][z�λy.u]

(6)

The first step does not create a multiplicative redex, but it is usually considered as useful because it
contributes anyway to the future creation of the multiplicative redex that shall happen after that step.
Similarly, the other two cases are usually considered as non-useful. This indirect aspect is quite difficult to
work with. In λoxpos, the indirect phenomenon disappears, because ESs such as [x�z], which are the cause
of the indirection, do not exist. This is a considerable improvement.

It remains, however, the issue of relating indirectly useful steps in λovsc with (directly useful) steps
in λoxpos. We somewhat circumvent this issue by departing from the literature and considering indirect
useful steps as non-useful. Therefore, all the indirect cases above are non-useful, in this paper. This is not
cheating, as we shall explain, it is related to the core factorization theorem of the next section.

For the sake of completeness, one should also consider the replacements in which the end variable is
inside an ES. The first two cases of both (5) and (6) are unaffected. The third one instead amounts to
extend a chain, and then can become any of the three cases in (6).

Difficulty 2: Contextual Closure. The other difficulty is that the directly useful steps of λovsc cannot
be defined at the root level and then closed by evaluation contexts, since sometimes the useful aspect is
contributed by the evaluation context itself. Consider the following root step:

x[x�λy.u] 7→eabs (λy.u)[x�λy.u]

As a root step it is not useful. But when plugged in the evaluation context O = ⟨·⟩t, it gives rise to
the following useful step, since now the steps creates a multiplicative redex in the reduct, because of the
definition at a distance of these redexes:

x[x�λy.u]t 7→eabs (λy.u)[x�λy.u]t

Therefore, usefulness of a →oeabs step depends also on the evaluation contexts surrounding the root step.

Useful Contexts and Steps. Useful exponential steps are defined via useful contexts by putting together
the context used to isolate the replaced variable and the surrounding evaluation context. We also define
non-useful contexts N , whose first two clauses cover the two direct cases in (5) and whose third clause
cover the three indirect cases in (6).

Definition 5.1 Useful and non-useful contexts of λovsc are defined as follows:

Useful ctxs U ::= O⟨Lt⟩ Non-useful ctxs N ::= L | O⟨tL⟩ | O⟨t[x�L]⟩

When taking into account the evaluation context, an →oeabs step has the following shape:

O1⟨O2⟨⟨x⟩⟩[x�L⟨λy.t⟩]⟩ →oeabs O1⟨L⟨O2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩
Such a →oeabs step is useful if O1⟨O2[x�L⟨λy.t⟩]⟩ is a useful context, and non-useful otherwise.

Properties of Useful Contexts. In symbols, we use predicates usef and nusef: usef(O) means that O
is useful while nusef(O) means that O is non-useful. Similarly, we use the predicate sub (resp. nsub) for
substitution contexts (resp. non-substitution contexts).

The following immediate lemma states how useful contexts depend on their sub-contexts, stressing that
the only subtle case is the first one.

Lemma 5.2 (Useful sub-contexts)

(i) usef(Ot)⇔ usef(O) ∨ sub(O).
(ii) usef(tO)⇔ usef(O).
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Useful exp. rule O1⟨O2⟨⟨x⟩⟩[x�L⟨λy.t⟩]⟩ →oeu O1⟨L⟨O2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩ if usef(O1⟨O2⟩)
Non-useful exp. rule O1⟨O2⟨⟨x⟩⟩[x�L⟨λy.t⟩]⟩ →oenu O1⟨L⟨O2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩ if nusef(O1⟨O2⟩)

Fig. 6. Definition of useful and non-useful exponential variants of →oeabs , based on Lemma 5.4.1.

(iii) usef(O[x�t])⇔ usef(O).
(iv) usef(t[x�O])⇔ usef(O).

As a sanity check, we show that the definitions of useful and non-useful contexts provide a partition
of open contexts. The proof is an easy induction on the open context O, the only non immediate case of
which is the one for O = O′t, as it can be guessed by Lemma 5.2.

Lemma 5.3 (Useful partitions open, proof at p. 26) A VSC open context O is either useful or non-
useful.

The next easy lemma collects a few properties that are helpful in proofs. The first point says that in a
→oeabs step the usefulness of the context does not depend on the acting substitution [x�L⟨λy.t⟩] but only
on the composition of the inner and outer open contexts O1 and O2. The definition of (non-)useful steps
is then re-stated in Fig. 6.

Lemma 5.4 (Context plugging and usefulness, proof at p. 26)

(i) usef(O1⟨L⟨O2⟩⟩)⇔ usef(O1⟨O2⟩).
(ii) usef(O1⟨O2⟩)⇔ usef(O2) ∨ (sub(O2) ∧ usef(O1)).
(iii) nusef(O1⟨O2⟩)⇔ nusef(O2) ∧ (sub(O2)⇒ nusef(O1).

6 Core Factorization, or Postponing Non-Useful Steps

Since non-useful steps cannot be simulated by the positive calculus, the translation from λovsc to λoxpos of
the next section cannot induce a bisimulation—we need a finer approach. The idea is that any reduction
sequence in λovsc can be factored into a core part (that includes useful steps, that is, →oeu) and a non-
useful part, and that the evaluation of a term terminates if and only if its core evaluation terminates. In
this section, we prove these two facts. In the next one, we shall give a translation from λovsc and λoxpos

inducing a simulation between the core part of λovsc and λoxpos, and a termination equivalence result.

Core Reduction. The (open) core reduction→ocore of λovsc is defined as→ocore:=→om ∪ →oeu ∪ →oevar ,
and we dub Core λovsc the set of VSC terms endowed with →ocore. Beyond multiplicative and useful
exponential steps, which shall be simulated by λoxpos, it includes also→oevar steps, which—on purpose—we
have not been classified as useful or non-useful (in another departure from the literature) and which are
going to be absorbed. As we explain next, they are crucial for our core factorization theorem.

Non-Useful Postponement. Factorization can be seen as a postponement property, in this case of non-
useful steps. Similarly to how we dealt with GC, we first give a local form of postponement of →oenu steps.
The proof of local postponement is simple but more involved than for GC steps, since it requires to check
all the (many!) possible cases for a core step following a →oenu step, which are quite technical to list given
the many contexts involved in the definition of (non-)useful rewriting steps. There is also a case of tricky
local postponement diagram, where the swap postponing →oenu requires to do two core steps (this case is
taken into account in Prop. 6.1.(ii) below):

(xt)[x�y][y�λz.u] (xt)[x�λz.u][y�λz.u]

(yt)[x�y][y�λz.u] ((λz.u)t)[x�λz.u][y�λz.u]((λz.u)t)[x�y][y�λz.u]

oenu

oevar oeu
oeu oenu
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Translation of substitution contexts

J⟨·⟩K := (⟨·⟩, ·) JL[x�t]K := (E′⟨E{x�y}⟩, σ{x�y}) where JLK = (E, σ) and JtK = E′⟨y⟩

Translation of terms

JxK := x

Jλx.tK := y[y�λx.JtK]

Jt[x�u]K := E⟨JtK{x�y}⟩ where JuK = E⟨y⟩
JL⟨λx.t⟩uK := E⟨E′⟨y[y�(λx.JtKσ)z]⟩⟩ where JLK = (E, σ) and JuK = E′⟨z⟩

JtuK := E⟨E′⟨y[y�xz]⟩⟩ where JtK = E⟨x⟩ and JuK = E′⟨z⟩, if t is not an answer

Fig. 7. The translation from λovsc to λoxpos.

This diagram actually justifies both our avoidance of indirect useful steps in the λovsc and the fact that
→oevar steps are not labeled as useful/non-useful. Note that the solid lines are exactly what would usually
be an indirectly useful step followed by a directly useful one, and that for us they are instead a non-useful
step followed by a (directly) useful one. The point is that the sequence can always be re-arranged as shown
by the diagram, using →oevar as to turn the replacement on [x�y] into a directly non-useful one.

Proposition 6.1 (Local postponement of →oenu, proof at p. 27) Let t and u be VSC terms. If
t→oenu→ocore u then t→ocore→oenu u or t→ocore→ocore→oenu u. More precisely:

(i) →oenu→om ⊆ →om→oenu ;
(ii) →oenu→oeu ⊆ →oeu→oenu ∪ →oevar→oeu→oenu ;
(iii) →oenu→oevar ⊆ →oevar→oenu .

Obtaining the global postponement property from the local one is easy because, although the number
of core steps can grow with local swaps, the number of non-useful steps is preserved, and can be easily
exploited for the induction lifting the local diagrams to the global property.

Theorem 6.2 (Core Factorization / Postponement of non-useful steps, proof at p. 32) Let t
and u be VSC terms. If d : t→∗

o¬gc u, then e : t→∗
ocore→∗

oenu u with |e|om = |d|om.

Lastly, we use the postponement property to prove that the core sub-system of λovsc is termination-
equivalent to the whole of λovsc, justifying the core terminology.

Theorem 6.3 (Termination equivalence of λovsc and Core λovsc , proof at p. 33)

(i) t has a diverging →ovsc sequence if and only if t has a diverging →ocore sequence;
(ii) t is →ovsc-weakly normalizing if and only if t is →ocore-weakly normalizing.

7 Translating λovsc to λoxpos and Simulating Core Steps

In this section, we define a translation J · K from λovsc to λoxpos and show that it induces a simulation of the
core reduction →ocore of λovsc by λoxpos. There are various delicate points, concerning both the definition
and the simulation, discussed all along this section.

Subtlety 1: Absorption of Variables. Since ESs in λovsc can contain variables (as e.g. in t[x�y]) but
ESs in λoxpos cannot, the translation J · K that we shall define turns these ESs of λovsc into meta-level
substitutions of λoxpos. For instance, we shall have Jt[x�y]K = JtK{x�y}.

Subtlety 2: Answers. It is natural to define J · K as introducing sharing points for every non-variable
sub-term (as in Accattoli et al. [4]), which gives the following definition (where the meta-level substitution
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{x�y} in the last case is due to the absorption of variables):

JxK := x JtuK := E⟨E′⟨x⟩[x�yz]⟩ where JtK := E⟨y⟩ and JuK = E′⟨z⟩

Jλx.tK := y[y�λx.JtK] Jt[x�u]K := E⟨JtK{x�y}⟩ where JuK = E⟨y⟩

Unfortunately, such a definition does not induce a simulation. For instance, consider the following eu-step:

t := (xx)[x�λy.u] →oeu ((λy.u)x)[x�λy.u] =: t′

Using the above definition of J · K, one would need to have:

JtK = z[z�xx][x�λy.JuK] →∗
ox+ z[z�wx][w�λy.JuK][x�λy.JuK] = Jt′K

Note, however, that such a duplication of ESs cannot be performed in λoxpos. Therefore, we rather adopt a
modified translation that behaves differently on applied abstractions—more precisely, on applied answers
(answers are defined in Fig. 1, page 5). The new translation is defined in Fig. 7. In fact, the translation JtK of
terms is defined by mutual induction with the translation JLK of substitution contexts, which is used in the
case of applied answers. Because of the absorption of variables, the translation JLK of substitution contexts
L is not simply an evaluation context of λoxpos but a pair of an evaluation context E and a renaming σ,
that is, a meta-level substitution of variables for variables. For instance, J⟨·⟩[x�λy.t][w�z]K = (E, σ) with
E := ⟨·⟩[x�λy.JtK] and σ := {w�z}.

The next lemma shows that such a translation of substitution contexts is compositional. It is proved
by a straightforward induction on L.

Lemma 7.1 Let L⟨t⟩ be a VSC term and JLK = (E, σ). Then JL⟨t⟩K = E⟨JtKσ⟩.

Simulation. Core reduction →ocore is made out of three kinds of steps, namely →om, →oeu , and →oevar .
Given the special role of answers in the definition of J · K, the proof of the simulation becomes tricky when
core steps can turn an applied non-answer into an applied answer. This can happen with →om and →oeu
steps, which are then discussed in detail in the next paragraphs. Rule →oevar , instead, does not alter
whether sub-terms are answers, and so the proof that →oevar steps are absorbed is smooth.

Lemma 7.2 (Absorption of variable exponentials, proof at p. 34) Let t and u be VSC terms. If
t→oevar u then JtK = JuK.

Subtlety 3: Simulation of Multiplicative Steps. Root multiplicative steps are simulated smoothly.

Lemma 7.3 (Simulation of root multiplicative steps, proof at p. 34) Let t and u be VSC terms.
If t 7→m u then JtK→om+ JuK.

A complication arises for the contextual closure of multiplicative steps, because in a root step
L⟨λx.t⟩u 7→m L⟨t[x�u]⟩ the redex is not an answer but the reduct might be one, if t is an abstrac-
tion. Thus, if the root step is applied to a further argument r, the reduction turns an applied non-answer
into an applied answer, changing the clause of the translation that is used for the application to r. This
phenomenon is handled by doing two additional rewriting steps in λoxpos. The simplest case is the following
one, where t = y, u = z, r = w, and L = ⟨·⟩ and x′, y′, z′ are variables introduced by the translation:

(λx.λy.y)zw (λy.y)[x�z]w

x′[x′�y′w][y′�(λx.z′[z′�λy.y])z] x′[x′�(λy.y)w]x′[x′�z′w][z′�λy.y] x′[x′�(λy.y)w][z′�λy.y]

om

J · K J · K
om+ oe+ ogc+

In general, we have the following simulation of multiplicative steps, where the first case isolates exactly
when applied non-answers are turned into applied answers.

Proposition 7.4 (Simulation of →om steps, proof at p. 35) Let t and u be VSC terms and t 7→m u.

(i) If u is an answer and usef(O) then JO⟨t⟩K→om+→oe+→ogc+ JO⟨u⟩K;
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Useful exp. root rule 1 U⟨⟨x⟩⟩[x�L⟨λy.t⟩] 7→eu1
L⟨U⟨⟨λy.t⟩⟩[x�λy.t]⟩

Useful exp. root rule 2 L1⟨L2⟨⟨x⟩⟩[x�L3⟨λy.t⟩]⟩u 7→eu2
L1⟨L3⟨L2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩u

Ctx closure t 7→a t′
a∈{eu1 , eu2}O⟨t⟩ →oa O⟨t′⟩

Fig. 8. Two root rules for →oeu .

(ii) Otherwise, JO⟨t⟩K→om+ JO⟨u⟩K.

Subtlety 4: Simulation of Useful Exponential Steps. Exponential steps can turn applied non-answers
into applied answers too: these cases actually are the very definition of useful exponential steps. In contrast
to the multiplicative case, the simulation does not need extra steps, it simply maps one →oeu step in λovsc

to one →oe+ step in λoxpos. What is tricky in this case is that the definition of useful steps needs the
surrounding open context of the root step, as explained in Sect. 5, so it does not seem possible to prove
the simulation for a root case and then extending the property with an induction on the context closure.

To get around this issue, in Fig. 8 we give an alternative definition of →oeu resting on two root rules,
where the second rule captures the cases when the argument of the created redex is provided by the context.
With these two root rules, useful exponential steps can then be defined via a closure by any open context,
thus bypassing the global aspect of the definition that we gave in Sect. 5. The reader probably wonders
why we did not do it already in Sect. 5. The reason is that the global definition is preferable for proving
local postponement (Prop. 6.1). The alternative definition is justified by the following lemma.

Lemma 7.5 (Alternative presentation of useful steps, proof at p. 37) →oeu=→oeu1
∪ →oeu2

.

The simulation is then proved smoothly via the alternative definition.

Proposition 7.6 (Simulation of useful exponential steps, proof at p. 38) Let t and u be VSC
terms. If t→oeu1

u or t→oeu2
u then JtK→oe+ JuK.

Summing Up. We can now put together the simulations of single core steps, and also iterate over
reduction sequences. Since at times one source multiplicative step is simulated by more than one target
step, the simulation does not preserve evaluation lengths. An important point to note, however, is that
the number of multiplicative steps—which is the cost model of λovsc—is preserved. More generally, the
increment in length is only linear.

Theorem 7.7 (Simulation of core sequences) Let d : t →∗
ocore t′ be a reduction sequence in λovsc.

Then there exists e : JtK→∗
ox+ Jt′K in λoxpos such that |e|om+ = |d|om and |d|om,oeu ≤ |e| ≤ 3 · |d|.

8 Core Normal Forms and Termination Equivalence

Lastly, we show that the translation J · K preserves and reflects termination. Reflection is a consequence of
the simulation theorem: if JtK terminates then t cannot diverge, because JtK can simulate it. Preservation
instead is proved by showing that→ocore normal forms are mapped to (non-erasing) positive normal forms,
i.e., →ox+¬gc-normal forms, which is proved via a (technical) characterization of core normal forms.

Characterization of Core Normal Forms. For characterizing core normal forms, we need a few auxiliary
definitions. We start by defining two sets of variables for terms.

Definition 8.1 The set ofv(t) of open free variables of a VSC term t is the set of variables of t having
occurrences out of all abstractions, formally defined as follows:

ofv(x) := {x} ofv(tu) := ofv(t) ∪ ofv(u)
ofv(λx.t) := ∅ ofv(t[x�u]) := (ofv(t) \ {x}) ∪ ofv(u)
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The set aofv(t) of applied open free variables of a VSC term t is the set of variables of t having applied
occurrences out of all abstractions, formally defined as follows:

aofv(x) = aofv(λx.t) := ∅ aofv(tu) := aofv(t) ∪ aofv(u) ∪ {x} if t = L⟨⟨x⟩⟩
aofv(t[x�u]) := (aofv(t) \ {x}) ∪ aofv(u) aofv(tu) := aofv(t) ∪ aofv(u) otherwise

We also need a weakened notion of answer.

Definition 8.2 An almost answer is an answer or a VSC term of the form L⟨L′⟨x⟩[x�t]⟩ where t is an
answer.

Finally, we can provide a characterization of core normal forms, based on the following grammar.

Grammar of core normal terms

n = v

| nn′ with n not an almost answer

| n[x�n′] with n′ = L⟨λy.t⟩ and x /∈ aofv(n)

| n[x�n′] with n′ = L⟨y⟩ and x /∈ ofv(n)

| n[x�n′] with n′ = L⟨tu⟩

Proposition 8.3 (Characterization of core normal forms, proof at p. 39) Let t be a VSC term. t
is →ocore-normal if and only if it is a n term.

Via a few technical lemmas in Appendix G (p. 39), we obtain the following preservation property.

Proposition 8.4 (Preservation of core normal forms, proof at p. 41) Let t be a VSC term. If t is
→ocore-normal then JtK is →ox+¬gc-normal.

Theorem 8.5 (Termination equivalence of Core λovsc and λoxpos , proof at p. 41) Let t be a VSC
term.

(i) t has a diverging →ocore sequence if and only if JtK has a diverging →ox+ sequence.
(ii) t is →ocore-weakly normalizing if and only if JtK is →ox+-weakly normalizing.

As a corollary, we can prove uniform normalization (see Sect. 2) for λovsc and Core λovsc. Uniform nor-
malization follows immediately from the diamond property, thus it holds for λoxpos (Thm. 4.3). Concerning
λovsc and Core λovsc, the proof is instead not immediate, because they are not diamond (see the diagram
at page 6). But we can obtaining it by lifting the one of λoxpos via the proved termination equivalences.

Corollary 8.6 (Proof at p. 42) λovsc and Core λovsc are uniformly normalizing.

9 Conclusions

This paper studies Wu’s positive λ-calculus λpos, which at first sight looks simply as yet another call-by-
value λ-calculus with sharing. It has, however, a new feature that distinguishes it among similar calculi,
called here compactness and concerning the treatment of variables.

Our main contribution is showing that compactness allows one to elegantly capture the essence of useful
sharing (in an open setting), circumventing the main technicalities of this notion. What is remarkable is
that λpos has not arisen as an incremental refinement of useful sharing, but as an outcome of the completely
unrelated study of focalization for minimal intuitionistic logic by Miller and Wu [28].

We believe that the positive λ-calculus is a sharp tool deserving to be studied further, in particular with
respect to program transformations and optimizations, and also endowed with call-by-need evaluation.

16



Accattoli and Wu

References

[1] Accattoli, B., Proof nets and the call-by-value λ-calculus, Theor. Comput. Sci. 606, pages 2–24 (2015).
https://doi.org/10.1016/j.tcs.2015.08.006

[2] Accattoli, B., Exponentials as substitutions and the cost of cut elimination in linear logic, Log. Methods Comput. Sci. 19
(2023).
https://doi.org/10.46298/LMCS-19(4:23)2023

[3] Accattoli, B., A. Condoluci, G. Guerrieri and C. Sacerdoti Coen, Crumbling abstract machines, in: E. Komendantskaya,
editor, Proceedings of the 21st International Symposium on Principles and Practice of Programming Languages, PPDP
2019, Porto, Portugal, October 7-9, 2019, pages 4:1–4:15, ACM (2019).
https://doi.org/10.1145/3354166.3354169

[4] Accattoli, B., A. Condoluci and C. Sacerdoti Coen, Strong call-by-value is reasonable, implosively, in: 36th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–14,
IEEE (2021).
https://doi.org/10.1109/LICS52264.2021.9470630

[5] Accattoli, B. and U. Dal Lago, (leftmost-outermost) beta reduction is invariant, indeed, Log. Methods Comput. Sci. 12
(2016).
https://doi.org/10.2168/LMCS-12(1:4)2016

[6] Accattoli, B., U. Dal Lago and G. Vanoni, Reasonable space for the λ-calculus, logarithmically, in: C. Baier and D. Fisman,
editors, LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022,
pages 47:1–47:13, ACM (2022).
https://doi.org/10.1145/3531130.3533362

[7] Accattoli, B., C. Faggian and A. Lancelot, Normal form bisimulations by value, CoRR abs/2303.08161 (2023). 2303.
08161.
https://doi.org/10.48550/arXiv.2303.08161

[8] Accattoli, B. and G. Guerrieri, Open call-by-value, in: A. Igarashi, editor, Programming Languages and Systems - 14th
Asian Symposium, APLAS 2016, Hanoi, Vietnam, November 21-23, 2016, Proceedings, volume 10017 of Lecture Notes
in Computer Science, pages 206–226 (2016).
https://doi.org/10.1007/978-3-319-47958-3_12

[9] Accattoli, B. and G. Guerrieri, Abstract machines for open call-by-value, Sci. Comput. Program. 184 (2019).
https://doi.org/10.1016/J.SCICO.2019.03.002

[10] Accattoli, B. and M. Leberle, Useful open call-by-need, in: F. Manea and A. Simpson, editors, 30th EACSL Annual
Conference on Computer Science Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference),
volume 216 of LIPIcs, pages 4:1–4:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPICS.CSL.2022.4

[11] Accattoli, B. and L. Paolini, Call-by-value solvability, revisited, in: T. Schrijvers and P. Thiemann, editors, Functional and
Logic Programming - 11th International Symposium, FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings, volume
7294 of Lecture Notes in Computer Science, pages 4–16, Springer (2012).
https://doi.org/10.1007/978-3-642-29822-6_4

[12] Accattoli, B. and C. Sacerdoti Coen, On the relative usefulness of fireballs, in: 30th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 141–155, IEEE Computer Society (2015).
https://doi.org/10.1109/LICS.2015.23

[13] Accattoli, B. and C. Sacerdoti Coen, On the value of variables, Information and Computation 255, pages 224–242 (2017).
https://doi.org/10.1016/j.ic.2017.01.003

[14] Andreoli, J., Logic programming with focusing proofs in linear logic, J. Log. Comput. 2, pages 297–347 (1992).
https://doi.org/10.1093/LOGCOM/2.3.297

[15] Brock-Nannestad, T., N. Guenot and D. Gustafsson, Computation in focused intuitionistic logic, in: M. Falaschi
and E. Albert, editors, Proceedings of the 17th International Symposium on Principles and Practice of Declarative
Programming, Siena, Italy, July 14-16, 2015, pages 43–54, ACM (2015).
https://doi.org/10.1145/2790449.2790528

[16] Chaudhuri, K., Focusing strategies in the sequent calculus of synthetic connectives, in: I. Cervesato, H. Veith and
A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning, 15th International Conference, LPAR
2008, Doha, Qatar, November 22-27, 2008. Proceedings, volume 5330 of Lecture Notes in Computer Science, pages 467–
481, Springer (2008).
https://doi.org/10.1007/978-3-540-89439-1_33

17

https://doi.org/10.1016/j.tcs.2015.08.006
https://doi.org/10.46298/LMCS-19(4:23)2023
https://doi.org/10.1145/3354166.3354169
https://doi.org/10.1109/LICS52264.2021.9470630
https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.1145/3531130.3533362
2303.08161
2303.08161
https://doi.org/10.48550/arXiv.2303.08161
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1016/J.SCICO.2019.03.002
https://doi.org/10.4230/LIPICS.CSL.2022.4
https://doi.org/10.1007/978-3-642-29822-6_4
https://doi.org/10.1109/LICS.2015.23
https://doi.org/10.1016/j.ic.2017.01.003
https://doi.org/10.1093/LOGCOM/2.3.297
https://doi.org/10.1145/2790449.2790528
https://doi.org/10.1007/978-3-540-89439-1_33


Accattoli and Wu

[17] Chaudhuri, K., S. Hetzl and D. Miller, A multi-focused proof system isomorphic to expansion proofs, J. Log. Comput. 26,
pages 577–603 (2016).
https://doi.org/10.1093/LOGCOM/EXU030

[18] Chaudhuri, K., D. Miller and A. Saurin, Canonical sequent proofs via multi-focusing, in: G. Ausiello, J. Karhumäki,
G. Mauri and C. L. Ong, editors, Fifth IFIP International Conference On Theoretical Computer Science - TCS 2008,
IFIP 20th World Computer Congress, TC 1, Foundations of Computer Science, September 7-10, 2008, Milano, Italy,
volume 273 of IFIP, pages 383–396, Springer (2008).
https://doi.org/10.1007/978-0-387-09680-3_26

[19] Curien, P. and H. Herbelin, The duality of computation, in: M. Odersky and P. Wadler, editors, Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal, Canada, September 18-21,
2000, pages 233–243, ACM (2000).
https://doi.org/10.1145/351240.351262

[20] Dal Lago, U. and S. Martini, The weak lambda calculus as a reasonable machine, Theor. Comput. Sci. 398, pages 32–50
(2008).
https://doi.org/10.1016/J.TCS.2008.01.044

[21] Economou, D. J., N. Krishnaswami and J. Dunfield, Focusing on refinement typing, ACM Trans. Program. Lang. Syst.
45, pages 22:1–22:62 (2023).
https://doi.org/10.1145/3610408

[22] Flanagan, C., A. Sabry, B. F. Duba and M. Felleisen, The essence of compiling with continuations, in: R. Cartwright,
editor, Proceedings of the ACM SIGPLAN’93 Conference on Programming Language Design and Implementation (PLDI),
Albuquerque, New Mexico, USA, June 23-25, 1993, pages 237–247, ACM (1993).
https://doi.org/10.1145/155090.155113

[23] Friedman, D. P., A. Ghuloum, J. G. Siek and O. L. Winebarger, Improving the lazy krivine machine, High. Order Symb.
Comput. 20, pages 271–293 (2007).
https://doi.org/10.1007/S10990-007-9014-0

[24] Krishnaswami, N. R., Focusing on pattern matching, in: Z. Shao and B. C. Pierce, editors, Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January
21-23, 2009, pages 366–378, ACM (2009).
https://doi.org/10.1145/1480881.1480927

[25] Levy, P. B., J. Power and H. Thielecke, Modelling environments in call-by-value programming languages, Inf. Comput.
185, pages 182–210 (2003).
https://doi.org/10.1016/S0890-5401(03)00088-9

[26] Liang, C. C. and D. Miller, Focusing and polarization in linear, intuitionistic, and classical logics, Theor. Comput. Sci.
410, pages 4747–4768 (2009).
https://doi.org/10.1016/J.TCS.2009.07.041

[27] Marin, S., D. Miller, E. Pimentel and M. Volpe, From axioms to synthetic inference rules via focusing, Ann. Pure Appl.
Log. 173, page 103091 (2022).
https://doi.org/10.1016/J.APAL.2022.103091

[28] Miller, D. and J. Wu, A positive perspective on term representation (invited talk), in: B. Klin and E. Pimentel, editors,
31st EACSL Annual Conference on Computer Science Logic, CSL 2023, February 13-16, 2023, Warsaw, Poland, volume
252 of LIPIcs, pages 3:1–3:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023).
https://doi.org/10.4230/LIPICS.CSL.2023.3

[29] Moggi, E., Computational λ-Calculus and Monads, LFCS report ECS-LFCS-88-66, University of Edinburgh (1988).
http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/ECS-LFCS-88-66.pdf

[30] Moggi, E., Computational lambda-calculus and monads, in: Proceedings of the Fourth Annual Symposium on Logic in
Computer Science (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989, pages 14–23, IEEE Computer Society
(1989).
https://doi.org/10.1109/LICS.1989.39155

[31] Rioux, N. and S. Zdancewic, Computation focusing, Proc. ACM Program. Lang. (ICFP) 4, pages 95:1–95:27 (2020).
https://doi.org/10.1145/3408977

[32] Sabry, A. and M. Felleisen, Reasoning about programs in continuation-passing style, in: J. L. White, editor, Proceedings
of the Conference on Lisp and Functional Programming, LFP 1992, San Francisco, California, USA, 22-24 June 1992,
pages 288–298, ACM (1992).
https://doi.org/10.1145/141471.141563

18

https://doi.org/10.1093/LOGCOM/EXU030
https://doi.org/10.1007/978-0-387-09680-3_26
https://doi.org/10.1145/351240.351262
https://doi.org/10.1016/J.TCS.2008.01.044
https://doi.org/10.1145/3610408
https://doi.org/10.1145/155090.155113
https://doi.org/10.1007/S10990-007-9014-0
https://doi.org/10.1145/1480881.1480927
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/J.TCS.2009.07.041
https://doi.org/10.1016/J.APAL.2022.103091
https://doi.org/10.4230/LIPICS.CSL.2023.3
http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/ECS-LFCS-88-66.pdf
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1145/3408977
https://doi.org/10.1145/141471.141563


Accattoli and Wu

[33] Sabry, A. and P. Wadler, A Reflection on Call-by-Value, ACM Trans. Program. Lang. Syst. 19, pages 916–941 (1997).
https://doi.org/10.1145/267959.269968

[34] Sands, D., J. Gustavsson and A. Moran, Lambda Calculi and Linear Speedups, in: The Essence of Computation,
Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones, pages 60–84 (2002).
https://doi.org/10.1007/3-540-36377-7_4

[35] Scherer, G., Deciding equivalence with sums and the empty type, in: G. Castagna and A. D. Gordon, editors, Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017, pages 374–386, ACM (2017).
https://doi.org/10.1145/3009837.3009901

[36] Scherer, G. and D. Rémy, Which simple types have a unique inhabitant?, in: K. Fisher and J. H. Reppy, editors, Proceedings
of the 20th ACM SIGPLAN International Conference on Functional Programming, ICFP 2015, Vancouver, BC, Canada,
September 1-3, 2015, pages 243–255, ACM (2015).
https://doi.org/10.1145/2784731.2784757

[37] Sestoft, P., Deriving a lazy abstract machine, J. Funct. Program. 7, pages 231–264 (1997).
https://doi.org/10.1017/S0956796897002712

[38] Walker, D., Substructural Type Systems, in: Advanced Topics in Types and Programming Languages, The MIT Press
(2004), ISBN 9780262281591. https://direct.mit.edu/book/chapter-pdf/186357/9780262281591_caa.pdf.
https://doi.org/10.7551/mitpress/1104.003.0003

[39] Wand, M., On the correctness of the krivine machine, High. Order Symb. Comput. 20, pages 231–235 (2007).
https://doi.org/10.1007/S10990-007-9019-8

[40] Wu, J., Proofs as terms, terms as graphs, in: C. Hur, editor, Programming Languages and Systems - 21st Asian Symposium,
APLAS 2023, Taipei, Taiwan, November 26-29, 2023, Proceedings, volume 14405 of Lecture Notes in Computer Science,
pages 91–111, Springer (2023).
https://doi.org/10.1007/978-981-99-8311-7_5

[41] Zeilberger, N., Focusing and higher-order abstract syntax, in: G. C. Necula and P. Wadler, editors, Proceedings of the 35th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008, pages 359–369, ACM (2008).
https://doi.org/10.1145/1328438.1328482

19

https://doi.org/10.1145/267959.269968
https://doi.org/10.1007/3-540-36377-7_4
https://doi.org/10.1145/3009837.3009901
https://doi.org/10.1145/2784731.2784757
https://doi.org/10.1017/S0956796897002712
https://direct.mit.edu/book/chapter-pdf/186357/9780262281591_caa.pdf
https://doi.org/10.7551/mitpress/1104.003.0003
https://doi.org/10.1007/S10990-007-9019-8
https://doi.org/10.1007/978-981-99-8311-7_5
https://doi.org/10.1145/1328438.1328482


Accattoli and Wu

A Double Contexts and A Lemma

This section develops definitions and technical tools that are used in the proofs of the following sections to
manage contexts, namely the outside-in order on contexts, contexts with two holes (called double contexts),
and a lemma about context predicates.

Definition A.1 [Outside-in context order, disjoint contexts] We define the partial outside-in order ≺ over
contexts as follows:

⟨·⟩ ≺ O
O ≺ O′

O′′⟨O⟩ ≺ O′′⟨O′⟩
And say that O is outer than O′ if O ≺ O′. If O ̸≺ O′ and O′ ̸≺ O we say that O and O′ are disjoint, and
write O ∥ O′.

Double Contexts. Double contexts shall be used to compare two contexts on the same term. They have
as base cases binary constructors (that is, applications and ESs) having contexts replacing their sub-terms,
and as inductive cases they are simply closed by an ordinary context.

Definition A.2 [Double contexts] Double contexts C are defined by the following grammar.

Double contexts O ::= OO′ | O[x�O′] | O⟨O⟩

Some easy facts about double contexts.
• Plugging : the plugging O⟨t, u⟩ of two terms t and u into a double context O is defined as expected

and gives a term. The two ways of plugging one term O⟨t, ⟨·⟩⟩ and O⟨⟨·⟩, u⟩ into a double context give
instead a context.

• Pairs of disjoint positions and double contexts: every pair of positions O⟨t⟩ = O′⟨u⟩ which are dis-
joint, that is, such that O ∥ O′, gives rise to a double context OOO

′ such that OO,O′⟨·, u⟩ = O and
OO,O′⟨t, ·⟩ = O′.

Lemma A.3 Let O be a double context, and t and t′ be two terms. Let O = O⟨⟨·⟩, t⟩ (resp. O⟨t, ⟨·⟩⟩) and
O′ = O⟨⟨·⟩, t′⟩ (resp. O⟨t′, ⟨·⟩⟩). Then:

∀pred ∈ {sub, usef, nusef}, pred(O)⇔ pred(O′)

Proof. Straightforward by induction on O. 2

B Proofs of Sect. 3 (The Open (Micro-Step) Value Substitution Calculus)

Proposition 3.1 (Local postponement of garbage collection, originally at p. 6) For a ∈ {m, e},
If t→ogc→oa u, then t→oa→ogc u.

Proof. Assume t = O⟨t′[x�L⟨v⟩]⟩ →ogc O⟨L⟨t′⟩⟩ = r →oa u.

(i) r = O1⟨L′⟨λy.q⟩p⟩ →om O1⟨L′⟨q[y�p]⟩⟩ = u. The situation is then as follows:

t = O⟨t′[x�L⟨v⟩]⟩ O⟨L⟨t′⟩⟩ = r =O1⟨L′⟨λy.q⟩p⟩

O1⟨L′⟨q[y�p]⟩⟩ = u

ogc

om

Cases of the positioning of O1 with respect to the other shape of r, namely O⟨L⟨t′⟩⟩:
• O1 ∥ O. Then there exists a double context O such that O⟨⟨·⟩, L′⟨λy.q⟩p⟩ = O and O⟨L⟨t′⟩, ⟨·⟩⟩ =
O1. Then:
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t = O⟨t′[x�L⟨v⟩], L′⟨λy.q⟩p⟩ O⟨L⟨t′⟩, L′⟨λy.q⟩p⟩ = r

O⟨t′[x�L⟨v⟩], L′⟨q[y�p]⟩⟩ O⟨L⟨t′⟩, L′⟨q[y�p]⟩⟩ = u

ogc

om om
ogc

• O ≺ O1. That is, O1 = O⟨O2⟩ for some O2. We have then L⟨t′⟩ = O2⟨L′⟨λy.q⟩p⟩. Sub-cases:
· L ∥ O2. Then there exists a double context O such that O⟨⟨·⟩, t′⟩ = O2 and O⟨L′⟨λy.q⟩p, ⟨·⟩⟩ = L.

Let L′′ := O⟨L′⟨q[y�p]⟩, ⟨·⟩⟩. We have:

t = O⟨t′[x�

=L⟨v⟩︷ ︸︸ ︷
O⟨L′⟨λy.q⟩p, v⟩]⟩ O⟨

=L⟨t′⟩︷ ︸︸ ︷
O⟨L′⟨λy.q⟩p, t′⟩⟩ = r

O⟨t′[x�O⟨L′⟨q[y�p]⟩, v⟩︸ ︷︷ ︸
=L′′⟨v⟩

]⟩ O⟨O⟨L′⟨q[y�p]⟩, t′⟩︸ ︷︷ ︸
=L′′⟨t′⟩

⟩ = u

ogc

om om

ogc

· O2 ≺ L. That is, L = O2⟨O3⟩ for some O3. We have then O3⟨t′⟩ = L′⟨λy.q⟩p. Since O3 is a
substitution context, O3⟨t′⟩ can only be an application when O3 is empty, which in turn implies
L = O2. This shall be treated in the following case.
· L ≺ O2. That is, O2 = L⟨O3⟩ for some O3. We have then t′ = O3⟨L′⟨λy.q⟩p⟩. Then:

t = O⟨O3⟨L′⟨λy.q⟩p⟩[x�L⟨v⟩]⟩ O⟨L⟨O3⟨L′⟨λy.q⟩p⟩⟩⟩ = r

O⟨O3⟨L′⟨q[y�p]⟩⟩[x�L⟨v⟩]⟩ O⟨L⟨O3⟨L′⟨q[y�p]⟩⟩⟩⟩ = u

ogc

om om
ogc

• O1 ≺ O. That is, O = O1⟨O2⟩ for some O2. We have then O2⟨L⟨t′⟩⟩ = L′⟨λy.q⟩p. Note that the
case where O2 is empty has already been treated. Sub-cases:
· O2 = O3p for some O3. We have then O3⟨L⟨t′⟩⟩ = L′⟨λy.q⟩. Sub-cases:
∗ O3 ∥ L′. Then there exists a double context O such that O⟨⟨·⟩, λy.q⟩ = O3 and O⟨L⟨t′⟩, ⟨·⟩⟩ = L′.

Let L′′ := O⟨t′[x�L⟨v⟩], ⟨·⟩⟩. Then:

t = O1⟨

=L′′⟨λy.q⟩︷ ︸︸ ︷
O⟨t′[x�L⟨v⟩], λy.q⟩ p⟩ O1⟨

=L′⟨λy.q⟩︷ ︸︸ ︷
O⟨L⟨t′⟩, λy.q⟩ p⟩ = r

O1⟨O⟨t′[x�L⟨v⟩], q[y�p]⟩︸ ︷︷ ︸
=L′′⟨q[y�p]⟩

⟩ O1⟨O⟨L⟨t′⟩, q[y�p]⟩︸ ︷︷ ︸
=L′⟨q[y�p]⟩

⟩ = u

ogc

om om

ogc

∗ O3 ≺ L′. That is, L′ = O3⟨O4⟩ for some O4 (note that O3 and O4 are both substitution contexts
in this case). We have L⟨t′⟩ = O4⟨λy.q⟩. Sub-cases:

(a) L ∥ O4. Impossible since O4 is also a substitution context.
(b) L ≺ O4. That is, O4 = L⟨O5⟩ for some O5 (note that O5 is a substitution context in this case).

We have t′ = O5⟨λy.q⟩. Let L′′ := O3⟨O5[x�L⟨v⟩]⟩. Then:

t = O1⟨
=L′′⟨λy.q⟩︷ ︸︸ ︷

O3⟨O5⟨λy.q⟩[x�L⟨v⟩]⟩ p⟩ O1⟨
=L′⟨λy.q⟩︷ ︸︸ ︷

O3⟨L⟨O5⟨λy.q⟩⟩⟩ p⟩ = r

O1⟨O3⟨O5⟨q[y�p]⟩[x�L⟨v⟩]⟩︸ ︷︷ ︸
=L′′⟨q[y�p]⟩

⟩ O1⟨O3⟨L⟨O5⟨q[y�p]⟩⟩⟩︸ ︷︷ ︸
=L′⟨q[y�p]⟩

⟩ = u

ogc

om om

ogc

(c) O4 ≺ L. That is, L = O4⟨O5⟩ for some O5. The case where O5 is empty, that is, L = O4,
has already been treated. Assume then that O5 is non-empty. We have O5⟨t′⟩ = λy.q, which is
impossible since O5 is open and non-empty.
∗ L′ ≺ O3. That is, O3 = L′⟨O4⟩ for some O4. Note that the case where O4 is empty, that is,
O3 = L′, has already been treated. Assume then that O4 is non-empty. We have O4⟨L⟨t′⟩⟩ =
λy.p, which is impossible since O4 is open and non-empty.
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· O2 = L′⟨λy.q⟩O3 for some O3. We have then O3⟨L⟨t′⟩⟩ = p. Then:

t = O1⟨L′⟨λy.q⟩O3⟨t′[x�L⟨v⟩]⟩⟩ O1⟨L′⟨λy.q⟩O3⟨L⟨t′⟩⟩⟩ = r

O1⟨q[y�O3⟨t′[x�L⟨v⟩]⟩]⟩ O1⟨q[y�O3⟨L⟨t′⟩⟩]⟩ = u

ogc

om om
ogc

(ii) r = O1⟨O2⟨y⟩[y�L′⟨v′⟩]⟩ →oe O1⟨L′⟨O2⟨v′⟩[y�v′]⟩⟩ = u. The situation is then as follows:

t = O⟨t′[x�L⟨v⟩]⟩ O⟨L⟨t′⟩⟩ = r =O1⟨O2⟨y⟩[y�L′⟨v′⟩]⟩

O1⟨L′⟨O2⟨v′⟩[y�v′]⟩⟩ = u

ogc

oe

Cases of the positioning of O1 with respect to the other shape of r, namely O⟨L⟨t′⟩⟩:
• O1 ∥ O. Then there exists a double context O such that O⟨⟨·⟩, L⟨t′⟩⟩ = O1 and
O⟨O2⟨y⟩[y�L′⟨v′⟩], ⟨·⟩⟩ = O. Then:

t = O⟨O2⟨y⟩[y�L′⟨v′⟩], t′[x�L⟨v⟩]⟩ O⟨O2⟨y⟩[y�L′⟨v′⟩], L⟨t′⟩⟩ = r

O⟨L′⟨O2⟨v′⟩[y�v′]⟩, t′[x�L⟨v⟩]⟩ O⟨L′⟨O2⟨v′⟩[y�v′]⟩, L⟨t′⟩⟩ = u

ogc

oe oe
ogc

• O ≺ O1. That is, O1 = O⟨O3⟩ for some O3. We have then L⟨t′⟩ = O3⟨O2⟨y⟩[y�L′⟨v′⟩]⟩. Sub-cases:
· L ∥ O3. Then there exists a double context O such that O⟨⟨·⟩, O2⟨y⟩[y�L′⟨v′⟩]⟩ = L and
O⟨t′, ⟨·⟩⟩ = O3. Let L′′ := O⟨⟨·⟩, L′⟨O2⟨v′⟩[y�v′]⟩⟩. Then:

t = O⟨t′[x�

=L⟨v⟩︷ ︸︸ ︷
O⟨v,O2⟨y⟩[y�L′⟨v′⟩]⟩]⟩ O⟨

=L⟨t′⟩︷ ︸︸ ︷
O⟨t′, O2⟨y⟩[y�L′⟨v′⟩]⟩⟩ = r

O⟨t′[x�O⟨v, L′⟨O2⟨v′⟩[y�v′]⟩⟩︸ ︷︷ ︸
=L′′⟨v⟩

]⟩ O⟨O⟨t′, L′⟨O2⟨v′⟩[y�v′]⟩⟩︸ ︷︷ ︸
=L′′⟨t′⟩

⟩ = u

ogc

oe oe

ogc

· O3 ≺ L. That is, L = O3⟨O4⟩ for some O4 (note that O3 and O4 are both substitution contexts
in this case). We have then O4⟨t′⟩ = O2⟨y⟩[y�L′⟨v′⟩]. Sub-cases:
∗ O4 ∥ ⟨·⟩[y�L′⟨v′⟩]. Impossible since O4 is also a substitution context.
∗ ⟨·⟩[y�L′⟨v′⟩] ≺ O4. That is, O4 = O5[y�L′⟨v′⟩] for some O5 (note that O5 is a substitution

context in this case). We have then O5⟨t′⟩ = O2⟨y⟩. Sub-cases:
(a) O5 ∥ O2. Then there exists a double context O such that O⟨⟨·⟩, y⟩ = O5 and O⟨t′, ⟨·⟩⟩ = O2.

Let L′′ = O3⟨L′⟨O⟨⟨·⟩, v′⟩[y�v′]⟩⟩. Then:

t = O⟨t′[x�

=L⟨v⟩︷ ︸︸ ︷
O3⟨O⟨v, y⟩[y�L′⟨v′⟩]⟩]⟩ O⟨

=L⟨t′⟩︷ ︸︸ ︷
O3⟨O⟨t′, y⟩[y�L′⟨v′⟩]⟩⟩ = r

O⟨t′[x�O3⟨L′⟨O⟨v, v′⟩[y�v′]⟩⟩︸ ︷︷ ︸
=L′′⟨v⟩

]⟩ O⟨O3⟨L′⟨O⟨t′, v′⟩[y�v′]⟩⟩︸ ︷︷ ︸
=L′′⟨t′⟩

⟩ = u

ogc

oe oe

ogc

(b) O5 ≺ O2. That is, O2 = O5⟨O6⟩ for some O6. We have then O6⟨y⟩ = t′. This is impossible
since y is bound in O4 (thus in L).

(c) O2 ≺ O5. That is, O5 = O2⟨O6⟩ for some O6. Assume that O6 is non-empty (the case where
O6 = ⟨·⟩, that is, O5 = O2, has already been treated). We have O6⟨t′⟩ = y, which is impossible
since O6 is non-empty.
∗ O4 ≺ ⟨·⟩[y�L′⟨v′⟩]. That is, ⟨·⟩[y�L′⟨v′⟩] = O4⟨O5⟩ for some O5. The case where O5 is empty,

that is, O4 = ⟨·⟩[y�L′⟨v′⟩] has already been treated in the case ⟨·⟩[y�L′⟨v′⟩] ≺ O4 above, and
the case where O4 = ⟨·⟩, that is, L = O3, will be treated in the case L ≺ O3 below.

· L ≺ O3. That is, O3 = L⟨O4⟩ for some O4. We have then t′ = O4⟨O2⟨y⟩[y�L′⟨v′⟩]⟩. Then:
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t = O⟨O4⟨O2⟨y⟩[y�L′⟨v′⟩]⟩[x�L⟨v⟩]⟩ O⟨L⟨O4⟨O2⟨y⟩[y�L′⟨v′⟩]⟩⟩⟩ = r

O⟨O4⟨L′⟨O2⟨v′⟩[y�v′]⟩⟩[x�L⟨v⟩]⟩ O⟨L⟨O4⟨L′⟨O2⟨v′⟩[y�v′]⟩⟩⟩⟩ = u

ogc

oe oe
ogc

• O1 ≺ O. That is, O = O1⟨O3⟩ for some O3. We have then O3⟨L⟨t′⟩⟩ = O2⟨y⟩[y�L′⟨v′⟩]. Sub-cases:
· O3 ∥ ⟨·⟩[y�L′⟨v′⟩]. Then there exists a double context O such that O⟨⟨·⟩, O2⟨y⟩⟩ = O3 and
O⟨L⟨t′⟩, ⟨·⟩⟩ = ⟨·⟩[y�L′⟨v′⟩]. Cases of the position of L⟨t′⟩ in ⟨·⟩[y�L′⟨v′⟩]:
∗ L⟨t′⟩ is a subterm of L′. Then there exists a double context O′ such that O′⟨L⟨t′⟩, ⟨·⟩⟩ = L′ and
O⟨⟨·⟩1, ⟨·⟩2⟩ = ⟨·⟩2[y�O′⟨⟨·⟩1, v′⟩]. Let L′′ := O′⟨t′[x�L⟨v⟩], ⟨·⟩⟩. Then:

t = O1⟨

=O2⟨y⟩[y�L′′⟨v′⟩]︷ ︸︸ ︷
O⟨t′[x�L⟨v⟩], O2⟨y⟩⟩⟩ O1⟨

=O2⟨y⟩[y�L′⟨v′⟩]︷ ︸︸ ︷
O⟨L⟨t′⟩, O2⟨y⟩⟩⟩ = r

O1⟨O′⟨t′[x�L⟨v⟩], O2⟨v′⟩[y�v′]⟩︸ ︷︷ ︸
=L′′⟨O2⟨v′⟩[y�v′]⟩

⟩ O1⟨O′⟨L⟨t′⟩, O2⟨v′⟩[y�v′]⟩︸ ︷︷ ︸
=L′⟨O2⟨v′⟩[y�v′]⟩

⟩ = u

ogc

oe oe

ogc

∗ L⟨t′⟩ is of the form L1⟨v′⟩ with L′ = L2⟨L1⟩ for some L2, and we have O⟨⟨·⟩1, ⟨·⟩2⟩ =
⟨·⟩2[y�L2⟨⟨·⟩1⟩]. It is easy to see that t′ is of the form L3⟨v′⟩ with L⟨L3⟩ = L1. Let
L′′ = L2⟨L3[x�L⟨v⟩]⟩. Then:

t = O1⟨

=O2⟨y⟩[y�L′′⟨v′⟩]︷ ︸︸ ︷
O⟨t′[x�L⟨v⟩], O2⟨y⟩⟩⟩ O1⟨

=O2⟨y⟩[y�L′⟨v′⟩]︷ ︸︸ ︷
O⟨L⟨t′⟩, O2⟨y⟩⟩⟩ = r

O1⟨L2⟨L3⟨O2⟨v′⟩[y�v′]⟩[x�L⟨v⟩]⟩︸ ︷︷ ︸
=L′′⟨O2⟨v′⟩[y�v′]⟩

⟩ O1⟨L2⟨L⟨L3⟨O2⟨v′⟩[y�v′]⟩⟩⟩︸ ︷︷ ︸
=L′⟨O2⟨v′⟩[y�v′]⟩

⟩ = u

ogc

oe oe

ogc

· ⟨·⟩[y�L′⟨v′⟩] ≺ O3. That is, O3 = O4[y�L′⟨v′⟩] for some O4. We have then O4⟨L⟨t′⟩⟩ = O2⟨y⟩.
Sub-cases:
∗ O4 ∥ O2. Then there exists a double context O such that O⟨⟨·⟩, y⟩ = O4 and O⟨L⟨t′⟩, ⟨·⟩⟩ = O2.

Then:
t = O1⟨O⟨t′[x�L⟨v⟩], y⟩[y�L′⟨v′⟩]⟩ O1⟨O⟨L⟨t′⟩, y⟩[y�L′⟨v′⟩]⟩ = r

O1⟨L′⟨O⟨t′[x�L⟨v⟩], v′⟩[y�v′]⟩⟩ O1⟨L′⟨O⟨L⟨t′⟩, v′⟩[y�v′]⟩⟩ = u

ogc

oe oe
ogc

∗ O4 ≺ O2. That is, O2 = O4⟨O5⟩ for some O5. We have then L⟨t′⟩ = O5⟨y⟩. Sub-cases:
(a) y is a subterm of L. Then there exists a double context O such that O⟨⟨·⟩, y⟩ = L and

O⟨t′, ⟨·⟩⟩ = O5. Then:

t = O1⟨O4⟨t′[x�O⟨v, y⟩]⟩[y�L′⟨v′⟩]⟩ O1⟨O4⟨O⟨t′, y⟩⟩[y�L′⟨v′⟩]⟩ = r

O1⟨L′⟨O4⟨t′[x�O⟨v, v′⟩]⟩[y�v′]⟩⟩ O1⟨L′⟨O4⟨O⟨t′, v′⟩⟩[y�v′]⟩⟩ = u

ogc

oe oe
ogc

(b) y is a subterm t′. That is, t′ = O6⟨y⟩ for some O6, and we have O5 = L⟨O6⟩. Then:

t = O1⟨O4⟨O6⟨y⟩[x�L⟨v⟩]⟩[y�L′⟨v′⟩]⟩ O1⟨O4⟨L⟨O6⟨y⟩⟩⟩[y�L′⟨v′⟩]⟩ = r

O1⟨L′⟨O4⟨O6⟨v′⟩[x�L⟨v⟩]⟩[y�v′]⟩⟩ O1⟨L′⟨O4⟨L⟨O6⟨v′⟩⟩⟩[y�v′]⟩⟩ = u

ogc

oe oe
ogc

∗ O2 ≺ O4. That is, O4 = O2⟨O5⟩ for some O5. Assume that O5 is non-empty (the case where
O5 = ⟨·⟩, that is, O2 = O4, has already been treated). We have O5⟨L⟨t′⟩⟩ = y, which is
impossible since O5 is non-empty.

· O3 ≺ ⟨·⟩[y�L′⟨v′⟩]. That is, ⟨·⟩[y�L′⟨v′⟩] = O3⟨O4⟩ for some O4. Then either O3 or O4 is empty.
Both cases have already been treated.
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2

Proposition 3.2 (Postponement of garbage collection, originally at p. 6) If d : t →∗
o u, then

there exist reduction sequences e : t →∗
o¬gc u′ and f : u′ →∗

ogc u with |e|om = |d|om, |e|oe = |d|oe, and
|f | = |d|ogc.

Proof. Straightforward proof by induction on |d| using Prop. 3.1. 2

Proposition 3.3 (Local termination, originally at p. 6) Let a ∈ {m, e, gc}. Relation→oa is strongly
normalizing. Moreover, →oe ∪ →ogc is strongly normalizing.

Proof. For→om and→ogc it is trivial, because the number of constructors decreases. For→oe, one needs
a standard measure, omitted here. In Accattoli [2], the interested reader can find all the details for a
similar and more general case. The moreover part follows the fact that given a →oe ∪ →ogc-sequence one
can postpone →ogc preserving the number of steps of both →oe and →ogc (Prop. 3.2), thus reducing the
strong normalization of →oe ∪ →ogc to that of →oe and →ogc separately. 2

C Proofs from Sect. 4 (The (Explicit) Open Positive λ-Calculus)

Theorem 4.3 (Positive diamond, originally at p. 9) Relation →ox+ is diamond.

Proof. Suppose that t1 ox+← t →ox+ t2 with t1 ̸= t2. We prove that there exists t3 such that t1 →ox+
t3 ox+← t2 by induction on the reduction step t →ox+ t1 and by case analysis on the step t →ox+ u. The
base cases:

• t = u[x�(λy.E⟨z⟩)w] 7→m+ E⟨u{x�z}⟩{y�w} = t1. Since reduction is weak, the step t→ox+ t2 takes
place entirely in u, and by Lemma 4.2 we have:

u[x�(λy.E⟨z⟩)w] E⟨u{x�z}⟩{y�w}

u′[x�(λy.E⟨z⟩)w] E⟨u′{x�z}⟩{y�w}

m+

ox+ ox+
m+

• t = E⟨u[x�yz]⟩[y�λw.r] 7→e+ E⟨u[x�(λw.r)z]⟩[y�λw.r] = t1. Cases of t→ox+ t2:
· It is a 7→e+ step involving the same acting abstraction and a different receiving application. If the

receiving application is in E, then E = E1⟨E2[x
′�yz′]⟩. The diagram then closes as follows:

E1⟨E2⟨u[x�yz]⟩[x′�yz′]⟩[y�λw.r] E1⟨E2⟨u[x�(λw.r)z]⟩[x′�yz′]⟩[y�λw.r]

E1⟨E2⟨u[x�yz]⟩[x′�(λw.r)z′]⟩[y�λw.r] E1⟨E2⟨u[x�(λw.r)z]⟩[x′�(λw.r)z′]⟩[y�λw.r]

e+

e+ e+
e+

If the receiving application is in u, then the diagram closes similarly.
· It takes place entirely in E, then we have:

E⟨u[x�yz]⟩[y�λw.r] E⟨u[x�(λw.r)z]⟩[y�λw.r]

E′⟨u[x�yz]⟩[y�λw.r] E′⟨u[x�(λw.r)z]⟩[y�λw.r]

e+

ox+ ox+
e+

· It takes place entirely in u. The diagram is analogous to the previous one.
· It is a →oe+ step where the acting abstraction is in E and the receiving application is in u. Then
E = E′⟨E′′[y′�λw′.r′]⟩ and u = E′′′⟨u′[x′�y′z′]⟩. The diagram then closes as follows:

E′⟨E′′⟨E′′′⟨u′[x′�y′z′]⟩[x�yz]⟩[y′�λw′.r′]⟩[y�λw.r] E′⟨E′′⟨E′′′⟨u′[x′�y′z′]⟩[x�(λw.r)z]⟩[y′�λw′.r′]⟩[y�λw.r]

E′⟨E′′⟨E′′′⟨u′[x′�(λw′.r′)z′]⟩[x�yz]⟩[y′�λw′.r′]⟩[y�λw.r] E′⟨E′′⟨E′′′⟨u′[x′�(λw′.r′)z′]⟩[x�(λw.r)z]⟩[y′�λw′.r′]⟩[y�λw.r]

e+

oe+ oe+
e+
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· It is a →ogc+ step with the abstraction in E and the ’body’ of the step containing u. That is,
Then E = E′⟨E′′[y′�λw′.r′]⟩ with y′ /∈ fv(E′′⟨u[x�yz]⟩). Then:

E′⟨E′′⟨u[x�yz]⟩[y′�λw′.r′]⟩[y�λw.r] E′⟨E′′⟨u[x�(λw.r)z]⟩[y′�λw′.r′]⟩[y�λw.r]

E′⟨E′′⟨u[x�yz]⟩⟩[y�λw.r] E′⟨E′′⟨u[x�(λw.r)z]⟩⟩[y�λw.r]

e+

ogc+ ogc+
e+

• t = u[x�λy.r] 7→gc+ u = t1. Then the step t→ox+ t2 takes place in u and we have:

u[x�λy.r] u

u′[x�λy.r] u′

gc+

ox+ ox+
gc+

For the inductive cases,
• t = u[x�λy.r]→ox+ u1[x�λy.r] = t1 with u→ox+ u1. Cases of t→ox+ t2:
· It takes place entirely in u. Then it follows by the i.h.
· It is a root step involving [x�λy.r]. Then it is an already treated root case.

• t = u[x�(λy.E⟨z⟩)w]→ox+ u1[x�(λy.E⟨z⟩)w] = t1 with u→ox+ u1. Similar to the previous case.
2

Proposition 4.4 (Local postponement of garbage collection, originally at p. 9) Let t and u be
λoxpos terms and a ∈ {m+, e+}. If t→ogc+→oa u, then t→oa→ogc+ u.

Proof. Assume t = E⟨t1[x�λy.t2]⟩ →ogc+ E⟨t1⟩ = r. Cases of r →oa u:
• It takes place entirely in E, then we have:

E⟨t1[x�λy.t2]⟩ E⟨t1⟩

E′⟨t1[x�λy.t2]⟩ E′⟨t1⟩

gc+

a a
gc+

• It takes place entirely in t1, then we have:

E⟨t1[x�λy.t2]⟩ E⟨t1⟩

E⟨t′1[x�λy.t2]⟩ E⟨t′1⟩

gc+

a a
gc+

• It is a →oe+ step where the acting abstraction is in E and the receiving application is in t1. Then
E = E1⟨E2[z�λw.t3]⟩ and t1 = E3⟨t′1[x′�zy′]⟩, and we have:

E1⟨E2⟨E3⟨t′1[x′�zy′]⟩[x�λy.t2]⟩[z�λw.t3]⟩ E1⟨E2⟨E3⟨t′1[x′�zy′]⟩⟩[z�λw.t3]⟩

E1⟨E2⟨E3⟨t′1[x′�(λw.t3)y
′]⟩[x�λy.t2]⟩[z�λw.t3]⟩ E1⟨E2⟨E3⟨t′1[x′�(λw.t3)y

′]⟩⟩[z�λw.t3]⟩

gc+

a a
gc+

• It is a →om+ step with E = E1⟨E2[z�(λw.E′⟨x′⟩)y′]⟩. Then we have:

E1⟨E2⟨t1[x�λy.t2]⟩[z�(λw.E′⟨x′⟩)y′]⟩ E1⟨E2⟨t1⟩[z�(λw.E′⟨x′⟩)y′]⟩

E1⟨E′⟨E2⟨t1[x�λy.t2]⟩{z�x′}⟩{w�y′}⟩ E1⟨E′⟨E2⟨t1⟩{z�x′}⟩{w�y′}⟩

gc+

m+ m+

gc+

2
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Proposition 4.5 (Postponement of garbage collection, originally at p. 9) Let t and u be λoxpos

terms, d : t →∗
ox+ u. Then there exist reduction sequences e : t →∗

ox+¬gc u′ and f : u′ →∗
ogc+

u with
|e|om+ = |d|om+, |e|oe+ = |d|oe+, and |f | = |d|ogc+.

Proof. Straightforward proof by induction on |d| using Prop. 4.4. 2

Proposition 4.6 (Local termination, originally at p. 9) Let a ∈ {m+, e+, gc+}. Relation →oa is
strongly normalizing. Moreover, →oe+ ∪ →ogc+ is strongly normalizing.

Proof. As for Prop. 3.3. 2

D Proofs from Sect. 5 (Dissecting λovsc: Variable and Useful Steps)

Lemma 5.3 (Useful partitions open, originally at p. 12) A VSC open context O is either useful or
non-useful.

Proof. By induction on O. The empty context ⟨·⟩ is non-useful and not useful. For the inductive cases,
the only interesting one is the following:

• O = O′t. By i.h., O′ is either useful or non-useful.
· O′ is useful and not non-useful, which means that it can be written as O′

1⟨Lu⟩. Then we have
O = O1⟨Lu⟩ with O1 = O′

1t. Therefore, O is useful. We now show that it is not non-useful.
Obviously, O is not a substitution context. If it is of the form O2⟨tL⟩ (resp. O2⟨t[x�L]⟩) for some
O2, then O2 is of the form O′

2t with O′ = O′
2⟨tL⟩ (resp. O′ = O′

2⟨t[x�L]⟩), which contradicts the
hypothesis that O′ is not non-useful. Then, O is not non-useful.
· O′ is non-useful. We distinguish three cases:

O′ = L. Then O is useful and not non-useful.
O′ = O1⟨uL⟩. Then O is non-useful and not useful.
O′ = O1⟨u[x�L]⟩. Then O is non-useful and not useful.

• All the remaining cases can be treated in a similar way.
2

Lemma D.1 sub(O1⟨L⟨O2⟩⟩)⇔ sub(O1⟨O2⟩).

Proof. Straightforward by induction on O1. 2

Lemma D.2 sub(O1⟨O2⟩)⇔ sub(O1) ∧ sub(O2).

Proof. Straightforward by induction on O1. 2

Lemma 5.4 (Context plugging and usefulness, originally at p. 12)

(i) usef(O1⟨L⟨O2⟩⟩)⇔ usef(O1⟨O2⟩).
(ii) usef(O1⟨O2⟩)⇔ usef(O2) ∨ (sub(O2) ∧ usef(O1)).
(iii) nusef(O1⟨O2⟩)⇔ nusef(O2) ∧ (sub(O2)⇒ nusef(O1).

Proof.

(i) By induction on O1. The base case is trivial by Lemma 5.2.iii. For the inductive cases:
• O1 = O′

1u. By Lemma 5.2.i, usef(O1⟨L⟨O2⟩⟩) ⇔ usef(O′
1⟨L⟨O2⟩⟩) ∨ sub(O′

1⟨L⟨O2⟩⟩) and
usef(O1⟨O2⟩)⇔ usef(O′

1⟨O2⟩) ∨ sub(O′
1⟨O2⟩). We then conclude by i.h. and Lemma D.1.

• The remaining cases are straightforward by i.h. and Lemma 5.2.
(ii) By induction on O1. The base case is trivial. For the inductive cases:

• O1 = O′
1t. We have: usef(O′

1⟨O2⟩t)
L.5.2⇐==⇒ sub(O′

1⟨O2⟩) ∨ usef(O′
1⟨O2⟩)

L.D.2 and i.h.⇐========⇒ usef(O2) ∨

(sub(O2) ∧ usef(O′
1)) ∨ (sub(O′

1) ∧ sub(O2))
L.5.2⇐==⇒ usef(O2) ∨ (sub(O2) ∧ usef(O1)).
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• O1 = tO′
1. We have: usef(tO′

1⟨O2⟩)
L.5.2⇐==⇒ usef(O′

1⟨O2⟩)
i.h.⇐=⇒ usef(O2) ∨ (sub(O2) ∧

usef(O′
1))

L.5.2⇐===⇒ usef(O2) ∨ (sub(O2) ∧ usef(O1)).

• O1 = O′
1[x�t]. We have: usef(O′

1⟨O2⟩[x�t])
L.5.2⇐==⇒ usef(O′

1⟨O2⟩)
i.h.⇐=⇒ usef(O2) ∨ (sub(O2) ∧

usef(O′
1))

L.5.2⇐==⇒ usef(O2) ∨ (sub(O2) ∧ sub(O1)).

• O1 = t[x�O′
1]. We have: usef(O1⟨O2⟩)⇔ usef(t[x�O′

1⟨O2⟩])
L.5.2⇐==⇒ usef(O′

1⟨O2⟩)
i.h.⇐=⇒ usef(O2)∨

(sub(O2) ∧ usef(O′
1))

L.5.2⇐===⇒ usef(O2) ∨ sub(O2) ∧ usef(O1).

(iii) This is a consequence of Lemma 5.3 and the previous point.
2

E Proofs from Sect. 6 (Core Factorization, or Postponing Non-Useful Steps)

Proposition 6.1 (Local postponement of →oenu, originally at p. 13) Let t and u be VSC terms. If
t→oenu→ocore u then t→ocore→oenu u or t→ocore→ocore→oenu u. More precisely:

(i) →oenu→om ⊆ →om→oenu ;
(ii) →oenu→oeu ⊆ →oeu→oenu ∪ →oevar→oeu→oenu ;
(iii) →oenu→oevar ⊆ →oevar→oenu .

Proof. Assume that t = O1⟨O2⟨x⟩[x�L⟨v⟩]⟩ →oenu O1⟨L⟨O2⟨v⟩[x�v]⟩⟩ = r →ocore u where v is an
abstraction. The situation is then as follows: We now consider different cases of the reduction r →ocore u.

(i) r = O3⟨L′⟨λy.q⟩p⟩ →om O3⟨L′⟨q[y�p]⟩⟩ = u. The situation is then as follows:

t = O1⟨O2⟨x⟩[x�L⟨v⟩]⟩ O1⟨L⟨O2⟨v⟩[x�v]⟩⟩ = r =O3⟨L′⟨λy.q⟩p⟩

O3⟨L′⟨q[y�p]⟩⟩ = u

oenu

om

Cases of the positioning of O3 with respect to the other shape of r, namely O1⟨L⟨O2⟨v⟩[x�v]⟩⟩:
• O3 ∥ O1. Then there exists a double context O such that O⟨⟨·⟩, L′⟨λy.q⟩p⟩ = O1 and
O⟨L⟨O2⟨v⟩[x�v]⟩, ⟨·⟩⟩ = O3. We have:

t = O⟨O2⟨x⟩[x�L⟨v⟩], L′⟨λy.q⟩p⟩ O⟨L⟨O2⟨v⟩[x�v]⟩, L′⟨λy.q⟩p⟩ = r

O⟨O2⟨x⟩[x�L⟨v⟩], L′⟨q[y�p]⟩⟩ O⟨L⟨O2⟨v⟩[x�v]⟩, L′⟨q[y�p]⟩⟩ = u

oenu

om om

oenu

Where the bottom side of the diagram is non-useful because O⟨O2, L
′⟨λy.q⟩p⟩ non-useful implies

O⟨O2, L
′⟨q[y�p]⟩⟩ non-useful by Lemma A.3.

• O1 ≺ O3. That is, O3 = O1⟨O′
3⟩ for some O′

3. We have then L⟨O2⟨v⟩[x�v]⟩ = O′
3⟨L′⟨λy.q⟩p⟩.

Sub-cases:
· O′

3 ∥ L. Then there exists a double context O such that O⟨⟨·⟩, L′⟨λy.q⟩p⟩ = L and
O⟨O2⟨v⟩[x�v], ⟨·⟩⟩ = O′

3. Let L′′ := O⟨⟨·⟩, L′⟨q[y�p]⟩⟩. Then:

t = O1⟨O2⟨x⟩[x�

=L⟨v⟩︷ ︸︸ ︷
O⟨v, L′⟨λy.q⟩p⟩]⟩ O1⟨

=L⟨O2⟨v⟩[x�v]⟩︷ ︸︸ ︷
O⟨O2⟨v⟩[x�v], L′⟨λy.q⟩p⟩⟩ = r

O1⟨O2⟨x⟩[x�O⟨v, L′⟨q[y�p]⟩⟩︸ ︷︷ ︸
=L′′⟨v⟩

]⟩ O1⟨O⟨O2⟨v⟩[x�v], L′⟨q[y�p]⟩⟩︸ ︷︷ ︸
=L′′⟨O2⟨v⟩[x�v]⟩

⟩ = u

oenu

om om

oenu

and clearly the bottom step is non-useful because the top step is.
· L ≺ O′

3. Then in fact L⟨⟨·⟩[x�v]⟩ ≺ O′
3, that is, O′

3 = L⟨O4[x�v]⟩ for some O4. We have then
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O2⟨v⟩ = O4⟨L′⟨λy.q⟩p⟩. Sub-cases:
∗ O4 ∥ O2. Then there exists a double context O such that O⟨⟨·⟩, L′⟨λy.q⟩p⟩ = O2 and O⟨v, ⟨·⟩⟩ =
O4. Then:

t = O1⟨O⟨x, L′⟨λy.q⟩p⟩[x�L⟨v⟩]⟩ O1⟨L⟨O⟨v, L′⟨λy.q⟩p⟩[x�v]⟩⟩ = r

O1⟨O⟨x, L′⟨q[y�p]⟩⟩[x�L⟨v⟩]⟩ O1⟨L⟨O⟨v, L′⟨q[y�p]⟩⟩[x�v]⟩⟩ = u

oenu

om om

oenu

Where the bottom side of the diagram is non-useful because O1⟨O⟨⟨·⟩, L′⟨λy.q⟩p⟩⟩ non-useful
implies O1⟨O⟨⟨·⟩, L′⟨q[y�p]⟩⟩⟩ non-useful by Lemma A.3.
∗ O2 ≺ O4. Impossible, because then L′⟨λy.q⟩p would occur in v, that is, under abstraction,

against the fact that O3 is open.
∗ O4 ≺ O2. Sub-cases:
(a) O2 = O4⟨L′⟨λy.q⟩O5⟩ for some O5. Then:

t = O1⟨O4⟨L′⟨λy.q⟩O5⟨x⟩⟩[x�L⟨v⟩]⟩ O1⟨L⟨O4⟨L′⟨λy.q⟩O5⟨v⟩⟩[x�v]⟩⟩ = r

O1⟨O4⟨L′⟨q[y�O5⟨x⟩]⟩⟩[x�L⟨v⟩]⟩ O1⟨L⟨O4⟨L′⟨q[y�O5⟨v⟩]⟩⟩[x�v]⟩⟩ = u

oenu

om om

oenu

By Lemma 5.2, L′⟨λy.q⟩O5 non-useful implies L′⟨q[y�O5]⟩ non-useful. Then by Lemma 5.4,
O1⟨O4⟨L′⟨λy.q⟩O5⟩⟩ non-useful implies O1⟨O4⟨L′⟨q[y�O5]⟩⟩⟩ non-useful, justifying the bottom
step of the diagram.

(b) O2 = O4⟨O5p⟩ for some O5 such that O5⟨v⟩ = L′⟨λy.q⟩. Sub-cases:
- L′ ≺ O5 or O5 ≺ L′. Then necessarily L′ = O5 and v = λy.q, but this is impossible, because
then the step:

t = O1⟨O4⟨L′⟨x⟩p⟩[x�L⟨λy.q⟩]⟩ →oenu O1⟨O4⟨L′⟨λy.q⟩p⟩[x�L⟨λy.q⟩]⟩ = r

is useful, against hypothesis.
- L′ ∥ O5. Then there exists a double context O such that O⟨⟨·⟩, λy.q⟩ = O5 and O⟨v, ⟨·⟩⟩ = L′.
Let L′′ := O⟨x, ⟨·⟩⟩. Then:

t = O1⟨O4⟨
L′′⟨λy.q⟩︷ ︸︸ ︷

O⟨x, λy.q⟩ p⟩[x�L⟨v⟩]⟩ O1⟨L⟨O4⟨
L′⟨λy.q⟩︷ ︸︸ ︷

O⟨v, λy.q⟩ p⟩[x�v]⟩⟩ = r

O1⟨O4⟨O⟨x, q[y�p]⟩︸ ︷︷ ︸
L′′⟨q[y�p]⟩

⟩[x�L⟨v⟩]⟩ O1⟨L⟨O4⟨O⟨v, q[y�p]⟩︸ ︷︷ ︸
L′⟨q[y�p]⟩

⟩[x�v]⟩⟩ = u

oenu

om om

oenu

Let us show that the bottom step is indeed non-useful. Since the top step is non-useful,
O1⟨O4⟨O⟨⟨·⟩, λy.q⟩p⟩⟩ is non-useful. Therefore, O⟨⟨·⟩, λy.q⟩ is non-useful. Then by Lemmas A.3
and 5.4, O1⟨O4⟨O⟨⟨·⟩, q[y�p]⟩⟩⟩ is non-useful.

· O′
3 ≺ L. Since inside O′

3 there is the application L′⟨λy.q⟩p, it can only be L = O′
3. But then the

case is impossible, because inside L there is O2⟨v⟩[x�v], which is not an application.
• O3 ≺ O1. Then in fact O3⟨⟨·⟩p⟩ ≺ O1, that is, O1 = O3⟨O′

1p⟩ for some O′
1. We have then

O′
1⟨L⟨O2⟨v⟩[x�v]⟩⟩ = L′⟨λy.q⟩. Sub-cases:

· O′
1 ∥ L′. Then there exists a double context O such that O⟨λy.q, ⟨·⟩⟩ = O′

1 and
O⟨⟨·⟩, O2⟨x⟩[v�L⟨v⟩]⟩ = L′. Let L′′ := O⟨⟨·⟩, O2⟨x⟩[x�L⟨v⟩]⟩. The diagram closes as follows:

t = O3⟨
=L′′⟨λy.q⟩︷ ︸︸ ︷

O⟨λy.q,O2⟨x⟩[x�L⟨v⟩]⟩ p⟩ O3⟨
=L′⟨λy.q⟩︷ ︸︸ ︷

O⟨λy.q, L⟨O2⟨v⟩[x�v]⟩⟩ p⟩ = r

O3⟨O⟨q[y�p], O2⟨x⟩[x�L⟨v⟩]⟩︸ ︷︷ ︸
=L′′⟨q[y�p]⟩

⟩ O3⟨O⟨q[y�p], L⟨O2⟨v⟩[x�v]⟩⟩︸ ︷︷ ︸
=L′⟨q[y�p]⟩

⟩ = u

oenu

om om

oenu

Let us show that the bottom step is indeed non-useful. Since the top step is non-useful,
O⟨λy.q,O2⟩ is non-useful. Then O := O⟨q[y�p], O2⟩ is non-useful by Lemma A.3. Since O
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is not a substitution context, plugging it in O3 gives a non-useful context by Lemma 5.4.
· L′ ≺ O′

1. This case is impossible, because inside L′ there is λy.q so that it must be that O′
1 = L′

but then the content O2⟨v⟩[x�v] of O′
1 does not coincide with the content of L′.

· O′
1 ≺ L′. Then L′ = O′

1⟨L′′⟩ for some L′′. Cases of L′′ and L:
∗ L′′ ≺ L. This case is impossible, for the same reason as case L′ ≺ O′

1 above.
∗ L ≺ L′′. Then in fact L⟨⟨·⟩[x�v]⟩ ≺ L′′, because L′′ contains an abstraction. Then L′′ =
L⟨L′′′[x�v]⟩ for some L′′′. Now, one should analyze the various possibilities for L′′′ and O2, but
such an analysis is an instance of what is done above for O4 and O2.

(ii) r = O3⟨O4⟨y⟩[y�L′⟨v′⟩]⟩ →oeu O3⟨L′⟨O4⟨v′⟩[y�v′]⟩⟩ = u where v′ is an abstraction.
The situation is then as follows:

t = O1⟨O2⟨x⟩[x�L⟨v⟩]⟩ O1⟨L⟨O2⟨v⟩[x�v]⟩⟩ = r =O3⟨O4⟨y⟩[y�L′⟨v′⟩]⟩

O3⟨L′⟨O4⟨v′⟩[y�v′]⟩⟩ = u

oenu

oeu

Cases of the positioning of O3 with respect to the other shape of r, namely O1⟨L⟨O2⟨v⟩[x�v]⟩⟩:
• O3 ∥ O1. Then there exists a double context such that O⟨⟨·⟩, L⟨O2⟨v⟩[x�v]⟩⟩ = O3 and
O⟨O4⟨y⟩[y�L′⟨v′⟩], ⟨·⟩⟩ = O1. We have:

t = O⟨O4⟨y⟩[y�L′⟨v′⟩], O2⟨x⟩[x�L⟨v⟩]⟩ O⟨O4⟨y⟩[y�L′⟨v′⟩], L⟨O2⟨v⟩[x�v]⟩⟩ = r

O⟨L′⟨O4⟨v′⟩[y�v′]⟩, O2⟨x⟩[x�L⟨v⟩]⟩ O⟨L′⟨O4⟨v′⟩[y�v′]⟩, L⟨O2⟨v⟩[x�v]⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step is indeed useful. Let O′ = O⟨O4, ⟨·⟩⟩. Since the right step is useful,
O′⟨⟨·⟩, L⟨O2⟨v⟩[x�v]⟩⟩ is useful. Then by Lemma A.3, O′⟨⟨·⟩, O2⟨x⟩[x�L⟨v⟩]⟩ is useful. Now let
us show that the bottom step is indeed non-useful. Let O′′ = O⟨⟨·⟩, O2⟩. Since the top step is
non-useful, O′′⟨O4⟨y⟩[y�L′⟨v′⟩], ⟨·⟩⟩ is non-useful. Then by Lemma A.3, O′′⟨L′⟨O4⟨v′⟩[y�v′]⟩, ⟨·⟩⟩
is non-useful.

• O1 ≺ O3. That is, O3 = O1⟨O5⟩ for some O5. We have then L⟨O2⟨v⟩[x�v]⟩ =
O5⟨O4⟨y⟩[y�L′⟨v′⟩]⟩. Sub-cases:
· O5 ∥ L. Then there exists a double context O such that O⟨⟨·⟩, O4⟨y⟩[y�L′⟨v′⟩]⟩ = L and
O⟨O2⟨v⟩[x�v], ⟨·⟩⟩ = O5. Let L′′ := O⟨⟨·⟩, L′⟨O4⟨v′⟩[y�v′]⟩⟩. Then:

t = O1⟨O2⟨x⟩[x�O⟨v,O4⟨y⟩[y�L′⟨v′⟩]⟩]⟩ O1⟨O⟨O2⟨v⟩[x�v], O4⟨y⟩[y�L′⟨v′⟩]⟩⟩ = r

O1⟨O2⟨x⟩[x�O⟨v, L′⟨O4⟨v′⟩[y�v′]⟩⟩︸ ︷︷ ︸
L′′⟨v⟩

]⟩ O1⟨O⟨O2⟨v⟩[x�v], L′⟨O4⟨v′⟩[y�v′]⟩⟩︸ ︷︷ ︸
L′′⟨O2⟨v⟩[x�v]⟩

⟩ = u

oenu

oeu oeu

oenu

The bottom step is clearly non-useful as O1⟨O2⟩ is non-useful by assumption. Let us show
that the left step is indeed useful. Since the right step is useful, O1⟨O⟨O2⟨v⟩[x�v], O4⟩⟩ is
useful. Then by Lemma 5.4, O⟨O2⟨v⟩[x�v], O4⟩ is useful (it cannot be a substitution con-
text since O⟨⟨·⟩, O4⟨y⟩[y�L′⟨v′⟩]⟩ = L). Then by Lemma A.3, O⟨v,O4⟩ is useful, and so is
O1⟨O2⟨x⟩[x�O⟨v,O4⟩]⟩.
· L = O5. We have O2⟨v⟩[x�v] = O4⟨y⟩[y�L′⟨v′⟩]. Therefore, v′ = v, L′ = ⟨·⟩, x = y, and
O2⟨v⟩ = O4⟨x⟩. Then there exists a double context O such that O⟨⟨·⟩, x⟩ = O2 and O⟨v, ⟨·⟩⟩ = O4.
Then:

t = O1⟨O⟨x, x⟩[x�L⟨v⟩]⟩ O1⟨L⟨O⟨v, x⟩[x�v]⟩⟩ = r

O1⟨L⟨O⟨x, v⟩[x�v]⟩⟩ O1⟨L⟨O⟨v, v⟩[x�v]⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step is indeed useful. Since the right step is useful, O1⟨L⟨O⟨v, ⟨·⟩⟩⟩⟩ is
useful. Then by Lemmas A.3 and 5.4, O1⟨O⟨x, ⟨·⟩⟩⟩ is useful. Now let us show that the bottom
step is indeed non-useful. Since the top step is non-useful, O1⟨O⟨⟨·⟩, x⟩⟩ is non-useful. Then by
Lemmas A.3 and 5.4, O1⟨L⟨O⟨⟨·⟩, v⟩⟩⟩ is non-useful.
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· L ≺ O5 and L ̸= O5. Then in fact L⟨⟨·⟩[x�v]⟩ ≺ O5. That is, O5 = L⟨O6[x�v]⟩ for some O6.
We have O2⟨v⟩ = O6⟨O4⟨y⟩[y�L′⟨v′⟩]⟩. Sub-cases:
∗ O6 ∥ O2. Then there exists a double context O such that O⟨⟨·⟩, v⟩ = O6 and
O⟨O4⟨y⟩[y�L′⟨v′⟩], ⟨·⟩⟩ = O2. We have:

t = O1⟨O⟨O4⟨y⟩[y�L′⟨v′⟩], x⟩[x�L⟨v⟩]⟩ O1⟨L⟨O⟨O4⟨y⟩[y�L′⟨v′⟩], v⟩[x�v]⟩⟩ = r

O1⟨O⟨L′⟨O4⟨v′⟩[y�v′]⟩, x⟩[x�L⟨v⟩]⟩ O1⟨L⟨O⟨L′⟨O4⟨v′⟩[y�v′]⟩, v⟩[x�v]⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step is indeed useful. Since the right step is useful,
O1⟨L⟨O⟨O4, v⟩⟩[x�v]⟩ is useful. By Lemma 5.4, O1⟨O⟨O4, v⟩⟩ is useful. Then by Lemmas A.3
and 5.4, a O1⟨O⟨O4, x⟩[x�L⟨v⟩]⟩ is useful. Now let us show that the bottom step is indeed
non-useful. Since the top step is non-useful, O1⟨O⟨O4⟨y⟩[y�L′⟨v′⟩], ⟨·⟩⟩⟩ is non-useful. Then by
Lemmas A.3 and 5.4, O1⟨O⟨L′⟨O4⟨v′⟩[y�v′]⟩, ⟨·⟩⟩⟩ is non-useful.
∗ O2 ≺ O6. Impossible, because then O4⟨y⟩[y�L′⟨v′⟩] would occur in v, that is, under abstraction,

against the fact that O3 is open.
∗ O6 ≺ O2. Then O2 = O6⟨O7⟩ for some O7. We have O7⟨v⟩ = O4⟨y⟩[y�L′⟨v′⟩]. Sub-cases:
(a) v is a subterm of O4. Then there exists a double context O such that O⟨⟨·⟩, y⟩[y�L′⟨v′⟩] = O7

and O⟨v, ⟨·⟩⟩ = O4. We have:

t = O1⟨O6⟨O⟨x, y⟩[y�L′⟨v′⟩]⟩[x�L⟨v⟩]⟩ O1⟨L⟨O6⟨O⟨v, y⟩[y�L′⟨v′⟩]⟩[x�v]⟩⟩ = r

O1⟨O6⟨L′⟨O⟨x, v′⟩[y�v′]⟩⟩[x�L⟨v⟩]⟩ O1⟨L⟨O6⟨L′⟨O⟨v, v′⟩[y�v′]⟩⟩[x�v]⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step indeed useful. Since the right step is useful,
O1⟨L⟨O6⟨O⟨v, ⟨·⟩⟩⟩[x�v]⟩⟩ is useful. By Lemma 5.4, O1⟨O6⟨O⟨v, ⟨·⟩⟩⟩⟩ is useful. Then by
Lemmas A.3 and 5.4, O1⟨O6⟨O⟨x, ⟨·⟩⟩⟩[x�L⟨v⟩]⟩ is useful. Now let us show that the bot-
tom step is indeed non-useful. Since the top step is non-useful, O1⟨O6⟨O⟨⟨·⟩, y⟩[y�L′⟨v′⟩]⟩⟩ is
non-useful. By Lemma 5.4, O1⟨O6⟨O⟨⟨·⟩, y⟩⟩⟩ is non-useful. Then by Lemmas A.3 and 5.4,
O1⟨O6⟨L′⟨O⟨⟨·⟩, v′⟩⟩[y�v′]⟩⟩ is non-useful.

(b) v is a subterm of L′. Then there exists a double context O such that O4⟨y⟩[y�O⟨⟨·⟩, v′⟩] = O7

and O⟨v, ⟨·⟩⟩ = L′. By Lemma A.3, O⟨x, ⟨·⟩⟩ = L′′ for some L′′. Then:

t = O1⟨O6⟨O4⟨y⟩[y�O⟨x, v′⟩]⟩[x�L⟨v⟩]⟩ O1⟨L⟨O6⟨O4⟨y⟩[y�O⟨v, v′⟩]⟩[x�v]⟩⟩ = r

O1⟨O6⟨O⟨x,O4⟨v′⟩[y�v′]⟩⟩[x�L⟨v⟩]⟩ O1⟨L⟨O6⟨O⟨v,O4⟨v′⟩[y�v′]⟩⟩[x�v]⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step is indeed useful. Since the right step is useful, O1⟨L⟨O6⟨O4⟩[x�v]⟩⟩
is useful. By Lemma 5.4, O1⟨O6⟨O4⟩[x�L⟨v⟩]⟩ is useful. Now let us show that the bottom step
is indeed non-useful. Since the top step is non-useful, O1⟨O6⟨O4⟨v′⟩[v′�O⟨⟨·⟩, v′⟩]⟩⟩ is non-
useful. Then O⟨⟨·⟩, v′⟩ is non-useful. It is clear that O⟨⟨·⟩, v′⟩ is not a substitution context as
O⟨v, ⟨·⟩⟩ = L′. Then by Lemmas A.3 and 5.4, O1⟨O6⟨O⟨⟨·⟩, O4⟨v′⟩[y�v′]⟩⟩⟩ is non-useful.

(c) v = v′ with O7 = O4⟨y⟩[y�L′]. We have:

t = O1⟨O6⟨O4⟨y⟩[y�L′⟨x⟩]⟩[x�L⟨v⟩]⟩ O1⟨L⟨O6⟨O4⟨y⟩[y�L′⟨v⟩]⟩[x�v]⟩⟩ = r

O1⟨O6⟨L′⟨O4⟨x⟩[y�x]⟩⟩[x�L⟨v⟩]⟩

O1⟨L⟨O6⟨L′⟨O4⟨v⟩[y�x]⟩⟩[x�v]⟩⟩ O1⟨L⟨O6⟨L′⟨O4⟨v⟩[y�v]⟩⟩[x�v]⟩⟩ = u

oenu

oevar

oeu

oeu

oenu

Let us show that the second left step is indeed useful. Since the right step is useful,
O1⟨L⟨O6⟨O4⟩[x�v]⟩⟩ is useful. By Lemma 5.4, O1⟨O6⟨O4⟩⟩ is useful. Then, by Lemma 5.4
again, O1⟨O6⟨L′⟨O4[y�x]⟩⟩⟩ is useful. The bottom step is clearly non-useful by the definition
of non-useful contexts.

· O5 ≺ L and L ̸= O5. Then in fact O5⟨⟨·⟩[y�L′⟨v′⟩]⟩ ≺ L, that is , L = O5⟨O6[y�L′⟨v′⟩]⟩ for
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some O6. We have O6⟨O2⟨v⟩[x�v]⟩ = O4⟨y⟩. Also note that O5 and O6 are both substitution
contexts. Sub-cases:
∗ O6 ∥ O4. Then there exists a double context O such that O⟨⟨·⟩, y⟩ = O6 and
O⟨O2⟨v⟩[x�v], ⟨·⟩⟩ = O4. We have:

t = O1⟨O2⟨x⟩[x�O5⟨O⟨v, y⟩[y�L′⟨v′⟩]⟩]⟩ O1⟨O5⟨O⟨O2⟨v⟩[x�v], y⟩[y�L′⟨v′⟩]⟩⟩ = r

O1⟨O2⟨x⟩[x�O5⟨L′⟨O⟨v, v′⟩[y�v′]⟩⟩]⟩ O1⟨O5⟨L′⟨O⟨O2⟨v⟩[x�v], v′⟩[y�v′]⟩⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step is indeed useful. Since the right step is useful,
O1⟨O5⟨O⟨O2⟨v⟩[x�v], ⟨·⟩⟩⟩⟩ is useful. By Lemmas A.3 and 5.4, O1⟨O5⟨O⟨v, ⟨·⟩⟩⟩⟩ is useful.
Note that O⟨v, ⟨·⟩⟩ is not a substitution context since O⟨⟨·⟩, y⟩ = O6 is a substitution context.
Then by Lemma 5.4, O⟨v, ⟨·⟩⟩ is useful and so is O1⟨O2⟨x⟩[x�O5⟨O⟨v, ⟨·⟩⟩⟩]⟩. The bottom step
is clearly non-useful since O1⟨O2⟩ is non-useful by assumption.
∗ O4 ≺ O6. Clearly impossible.
∗ O6 ≺ O4. That is, O4 = O6⟨O7⟩ for some O7. We have O2⟨v⟩[x�v] = O7⟨y⟩, which is impossible

as y is bound in L.
• O3 ≺ O1. That is, O1 = O3⟨O5⟩ for some O5. We have O5⟨L⟨O2⟨v⟩[x�v]⟩⟩ = O4⟨y⟩[y�L′⟨v′⟩].

Sub-cases:
· O5 ∥ ⟨·⟩[y�L′⟨v′⟩]. Then the subterm L⟨O2⟨v⟩[x�v]⟩ has to be a subterm of L′, which implies the

existence of a double context O such that O⟨L⟨O2⟨v⟩[x�v]⟩, ⟨·⟩⟩ = L′ and O4⟨y⟩[y�O⟨⟨·⟩, v′⟩] =
O5. We have:

t = O3⟨O4⟨y⟩[y�O⟨O2⟨x⟩[x�L⟨v⟩], v′⟩]⟩ O3⟨O4⟨y⟩[y�O⟨L⟨O2⟨v⟩[x�v]⟩, v′⟩]⟩ = r

O3⟨O⟨O2⟨x⟩[x�L⟨v⟩], O4⟨v′⟩[y�v′]⟩⟩ O3⟨O⟨L⟨O2⟨v⟩[x�v]⟩, O4⟨v′⟩[y�v′]⟩⟩ = u

oenu

oeu oeu
oenu

The left step is clearly useful as O3⟨O4⟩ is useful by assumption. Let us show that the bottom step
is indeed non-useful. Since the top step is non-useful, O⟨O2, v

′⟩ is non-useful. By Lemma A.3,
O⟨O2, O4⟨v′⟩[y�v′]⟩ is non-useful. Moreover, O⟨O2, O4⟨v′⟩[y�v′]⟩ is not a substitution context
since O⟨L⟨O2⟨v⟩[x�v]⟩, ⟨·⟩⟩ = L′. Then by Lemma 5.4, O3⟨O⟨O2, O4⟨v′⟩[y�v′]⟩⟩ is non-useful.
· ⟨·⟩[y�L′⟨v′⟩] ≺ O5. Then there exists O6 such that O5 = O6[y�L′⟨v′⟩]. We have
O6⟨L⟨O2⟨v⟩[x�v]⟩⟩ = O4⟨y⟩. Sub-cases:
∗ O6 ∥ O4. Then there exists a double context O such that O⟨⟨·⟩, y⟩ = O6 and
O⟨L⟨O2⟨v⟩[x�v]⟩, ⟨·⟩⟩ = O4. We have:

t = O3⟨O⟨O2⟨x⟩[x�L⟨v⟩], y⟩[y�L′⟨v′⟩]⟩ O3⟨O⟨L⟨O2⟨v⟩[x�v]⟩, y⟩[y�L′⟨v′⟩]⟩ = r

O3⟨L′⟨O⟨O2⟨x⟩[x�L⟨v⟩], v′⟩[y�v′]⟩⟩ O3⟨L′⟨O⟨L⟨O2⟨v⟩[x�v]⟩, v′⟩[y�v′]⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step is indeed useful. Since the right step is useful,
O3⟨O⟨L⟨O2⟨v⟩[x�v]⟩, ⟨·⟩⟩⟩ is useful. By Lemmas A.3 and 5.4, O3⟨O⟨O2⟨x⟩[x�L⟨v⟩], ⟨·⟩⟩⟩ is
useful. Now let us show that the bottom step is indeed non-useful. Since the top step is non-
useful, O3⟨O⟨O2, y⟩[y�L′⟨v′⟩]⟩ is non-useful. By Lemmas A.3 and 5.4, O3⟨L′⟨O⟨O2, v

′⟩[y�v′]⟩⟩
is non-useful.
∗ O4 ≺ O6. Clearly impossible.
∗ O6 ≺ O4. That is, O4 = O6⟨O7⟩ for some O7. We have L⟨O2⟨v⟩[x�v]⟩ = O7⟨y⟩. Sub-cases:
(a) y is a subterm of L. Then there exists a double context O such that O⟨⟨·⟩, y⟩ = L and

O⟨O2⟨v⟩[x�v], ⟨·⟩⟩ = O7. We have:

t = O3⟨O6⟨O2⟨x⟩[x�O⟨v, y⟩]⟩[y�L′⟨v′⟩]⟩ O3⟨O6⟨O⟨O2⟨v⟩[x�v], y⟩⟩[y�L′⟨v′⟩]⟩

O3⟨L′⟨O6⟨O2⟨x⟩[x�O⟨v, v′⟩]⟩[y�v′]⟩⟩ O3⟨L′⟨O6⟨O⟨O2⟨v⟩[x�v], v′⟩⟩[y�v′]⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step is indeed useful. Since the right step is useful,
O3⟨O6⟨O⟨O2⟨v⟩[x�v], ⟨·⟩⟩⟩⟩ is useful. Note that O⟨O2⟨v⟩[x�v], ⟨·⟩⟩ is not a substitution context
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since O⟨⟨·⟩, y⟩ = L. Then by Lemma 5.4, O⟨O2⟨v⟩[x�v], ⟨·⟩⟩ is useful. By Lemma A.3, O⟨v, ⟨·⟩⟩
is useful, and so is O3⟨O6⟨O2⟨x⟩[x�O⟨v, ⟨·⟩⟩]⟩⟩. Now let us show that the bottom step is in-
deed non-useful. Since the top step is non-useful, O3⟨O6⟨O2⟩[y�L′⟨v′⟩]⟩ is non-useful. Then by
Lemma 5.4, O3⟨L′⟨O6⟨O2⟩[y�v′]⟩⟩ is non-useful.

(b) y is a subterm of O2. Then there exists a double context O such that O⟨⟨·⟩, y⟩ = O2 and
L⟨O⟨v, ⟨·⟩⟩[x�v]⟩ = O7. We have:

t = O3⟨O6⟨O⟨x, y⟩[x�L⟨v⟩]⟩[y�L′⟨v′⟩]⟩ O3⟨O6⟨L⟨O⟨v, y⟩[x�v]⟩⟩[y�L′⟨v′⟩]⟩ = r

O3⟨L′⟨O6⟨O⟨x, v′⟩[x�L⟨v⟩]⟩[y�v′]⟩⟩ O3⟨L′⟨O6⟨L⟨O⟨v, v′⟩[x�v]⟩⟩[y�v′]⟩⟩ = u

oenu

oeu oeu

oenu

Let us show that the left step is indeed useful. Since the right step is useful,
O3⟨O6⟨L⟨O⟨v, ⟨·⟩⟩[x�v]⟩⟩⟩ is useful. Then by Lemmas A.3 and 5.4, O3⟨O6⟨O⟨x, ⟨·⟩⟩⟩[x�L⟨v⟩]⟩
is useful. Now let us show that the bottom step is indeed non-useful. Since the top
step is non-useful, O3⟨O6⟨O⟨⟨·⟩, y⟩⟩[y�L′⟨v′⟩]⟩ is non-useful. Then by Lemmas A.3 and 5.4,
O3⟨L′⟨O6⟨O⟨·⟩v′⟩[y�v′]⟩⟩ is non-useful.

· O5 ≺ ⟨·⟩[y�L′⟨v′⟩]. Sub-cases:
∗ O5 = ⟨·⟩. Then O1 = O3 and this sub-case is treated in the case where O1 ≺ O3.
∗ O5 = ⟨·⟩[y�L′⟨v′⟩]. This sub-case is treated in the case where ⟨·⟩[y�L′⟨v′⟩] ≺ O5.

(iii) r = O3⟨O4⟨y⟩[y�L′⟨z⟩]⟩ →oevar O3⟨L′⟨O4⟨z⟩[y�z]⟩⟩ = u. We can proceed as in the case of eu. Note
that the most complex form does not exist in this case.

2

Theorem 6.2 (Core Factorization / Postponement of non-useful steps, originally at p. 13)
Let t and u be VSC terms. If d : t→∗

o¬gc u, then e : t→∗
ocore→∗

oenu u with |e|om = |d|om.

Proof. Let |d|core and |d|nu be the number of core and non-useful steps in d, respectively. We prove the
following refined statement: there exist a reduction sequence e : t →∗

ocore→
|d|nu
oenu u with |e|om = |d|om. By

induction on the pair (|d|nu, |d|core) ordered lexicographically. If d is empty the statement trivially holds
by taking e as the empty sequence. If d is non-empty, decompose it as follows:

d : t→∗
o¬gc r︸ ︷︷ ︸
d′

→o¬gc u

Cases of r →o¬gc u:

(i) r →oenu u. Then |d′|nu = |d|nu − 1. By i.h. (first component) applied to d′, we obtain:

e : t→∗
ocore→

|d|nu−1
oenu r →oenu u

which satisfies the statement.
(ii) r →ocore u. Then |d′|core = |d|core − 1. By i.h. (second component) applied to d′, we obtain:

t→∗
ocore→

|d|nu
oenu r →ocore u

If |d|nu = 0 then the statement holds. Otherwise, we isolate the last →oenu step:

t→∗
ocore→

|d|nu−1
oenu →oenu r →ocore u

and apply the local postponement property (Prop. 6.1) to the last two steps, obtaining:

t→∗
ocore→

|d|nu−1
oenu →+

ocore→oenu u

Lastly, we apply the i.h. (first component) to the central sequence →|d|nu−1
oenu →+

ocore, obtaining a se-
quence that satisfies the statement:

e : t→∗
ocore→+

ocore→
|d|nu−1
oenu r →oenu u

The preservation of multiplicative steps follows from the two i.h. and the fact that local postponement
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also preserves the number of multiplicative steps.
2

Theorem 6.3 (Termination equivalence of λovsc and Core λovsc , originally at p. 13)

(i) t has a diverging →ovsc sequence if and only if t has a diverging →ocore sequence;
(ii) t is →ovsc-weakly normalizing if and only if t is →ocore-weakly normalizing.

Proof.

(i) Direction ⇐ is trivial because →ocore is a special case of →ovsc.
For direction ⇒, let t have a →ovsc-diverging reduction sequence d. We prove that t has a →ocore-

diverging sequence e. Consider the finite prefixes dn : t→∗
ovsc un for n ∈ N of d. By local termination

(Prop. 3.3), the number of multiplicative steps in dn tends to infinity when n grows. By postponing
first→ogc (Prop. 4.5) and then→oenu (Thm. 6.2), all the sequences dn can be re-organized as sequences
en : t→∗

ocore→∗
oenu→

∗
gc un in a way that preserves the number of multiplicative steps, which are all in

the →ocore-prefix. Then, t is →ocore-diverging.
(ii) For direction ⇒, let d : t→∗

ovsc u be a reduction sequence to →ovsc normal form. By postponing first
→ogc (Prop. 4.5) and then→oenu (Thm. 6.2), we obtain a reduction sequence d : t→∗

ocore r →∗
oenu→

∗
ogc

u for some r. Now, it is easily seen that →oenu and →ogc cannot remove →ocore redexes. Thus, r is
→ocore-normal.

For direction ⇐, let d : t →∗
ocore u be a reduction sequence to →ocore normal form. By local

termination, →oenu ∪ →ogc is strongly normalizing, thus u→∗
ocore r for some r that is a →oenu ∪ →ogc

normal form. It is easily seen that →oenu and →ogc cannot create →ocore redexes. Thus, r is →ovsc-
normal.

2

F Proofs from Sect. 7 (Translating λovsc to λoxpos and Simulating Core Steps)

Proposition F.1 (Translation and free variables)
• For any VSC term t, fv(JtK) ⊆ fv(t).
• For any VSC substitution context L, if JLK = (E, σ), then fv(E) ⊆ fv(L) and range(σ) \ (dom(σ) ∪
bv(E)) ⊆ fv(L).

Proof. By induction on the translation of terms and substitution contexts. The base cases (the empty
context and variables) are trivial. For the inductive cases:

• JL[x�t]K = (E′⟨E{x�y}⟩, σ{x�y}) where JLK = (E, σ) and JtK = E′⟨y⟩. Let z ∈ fv(E′⟨E{x�y}⟩).
Two cases to consider:
· z ∈ fv(E) and z ̸= x. By i.h., z ∈ fv(L). Therefore, we have z ∈ fv(L[x�t]).
· z ∈ fv(E′) or (z = y and y /∈ bv(E′)). Then z ∈ fv(E′⟨y⟩) = fv(JtK). By i.h., z ∈ fv(t) ⊆ fv(L[x�t]).

Now let w ∈ range(σ{x�y}) \ (dom(σ{x�y}) ∪ bv(E′⟨E{x�y}⟩)). Two cases to consider:
· w ∈ range(σ). Then w ∈ (range(σ)\(dom(σ)∪bv(E)))\{x}. By i.h., w ∈ fv(L)\{x} ⊆ fv(L[x�t]).
· w = y and w /∈ bv(E′). Then w ∈ fv(E′⟨y⟩). By i.h., w ∈ fv(t) ⊆ fv(L[x�t]).

• Jt[x�u]K = E⟨JtK{x�y}⟩ where JuK = E⟨y⟩. Let z ∈ fv(E⟨JtK{x�y}⟩). Two cases to consider:
· z ∈ fv(JtK) and z ̸= x. By i.h., z ∈ fv(t). Therefore, z ∈ fv(t[x�u]).
· z ∈ fv(E) or (z = y and y /∈ bv(E)). Then z ∈ fv(E⟨y⟩). By i.h., z ∈ fv(u) ⊆ fv(t[x�u]).

• Jλx.tK = y[y�λx.JtK]. Then fv(Jλx.tK) = fv(JtK) \ {x} ⊆ fv(t) \ {x} = fv(λx.t) by i.h..
• JL⟨λx.t⟩uK = E⟨E′⟨y[y�(λx.JtKσ)z]⟩⟩ where JLK = (E, σ) and JuK = E′⟨z⟩. Let w ∈
fv(E⟨E′⟨y[y�(λx.JtKσ)z]⟩⟩). Four cases to consider:
· w ∈ fv(E′) or (w = z and z /∈ bv(E′)). Then w ∈ fv(E′⟨z⟩). By i.h., w ∈ fv(u) ⊆ fv(L⟨λx.t⟩u).
· w ∈ fv(E). By i.h., w ∈ fv(L) ⊆ fv(L⟨λx.t⟩u).
· w ∈ fv(JtK) and w /∈ dom(σ)∪{x} = bv(L)∪{x}. By i.h., w ∈ fv(t)\(bv(L)∪{x}) ⊆ fv(L⟨λx.t⟩u).
· w ∈ range(σ) \ (dom(σ) ∪ bv(E)). By i.h., w ∈ fv(L) ⊆ fv(L⟨λx.t⟩u).
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• JL⟨t⟩uK = E⟨E′⟨y[y�xz]⟩⟩ where JL⟨t⟩K = E⟨x⟩ and JuK = E′⟨z⟩. Let w ∈ fv(E⟨E′⟨y[y�xz]⟩⟩). Two
cases to consider:
· w ∈ fv(E) or (w = x and x /∈ bv(E)). Then w ∈ fv(E⟨x⟩). By i.h., w ∈ fv(L⟨t⟩) ⊆ fv(L⟨t⟩u).
· w ∈ fv(E′) or (w = z and z /∈ bv(E′)). Then w ∈ fv(E′⟨z⟩). By i.h., w ∈ fv(u) ⊆ fv(L⟨t⟩u).

2

Lemma 7.2 (Absorption of variable exponentials, originally at p. 14) Let t and u be VSC terms.
If t→oevar u then JtK = JuK.

Proof. By induction on t→oevar u. Cases:
• Root step: O⟨⟨x⟩⟩[x�L⟨y⟩] 7→evar L⟨O⟨⟨y⟩⟩[x�y]⟩. Let JLK = (E, σ). By Lemma 7.1, JL⟨y⟩K = E⟨yσ⟩.

Then:
JO⟨⟨x⟩⟩[x�L⟨y⟩]K = E⟨JO⟨⟨x⟩⟩K{x�yσ}⟩

= E⟨JO⟨⟨x⟩⟩{x�yσ}K⟩
= E⟨JO⟨⟨yσ⟩⟩{x�yσ}K⟩
= E⟨JO⟨⟨yσ⟩⟩K{x�yσ}⟩
= E⟨JO⟨⟨y⟩⟩K{x�y}σ⟩
= E⟨JO⟨⟨y⟩⟩[x�y]Kσ⟩
=L.7.1 JL⟨O⟨⟨y⟩⟩[x�y]⟩K

• Inductive cases: the statement follows immediately from the i.h. and the definition of the translation.
2

Lemma 7.3 (Simulation of root multiplicative steps, originally at p. 14) Let t and u be VSC
terms. If t 7→m u then JtK→om+ JuK.

Proof. Let t = L⟨λx.r⟩q 7→m L⟨r[x�q]⟩ = u and let the translations of L and the sub-terms be JLK =
(E, σ), JqK = E′⟨y⟩, and JrK = E′′⟨w⟩. By Lemma 7.1,

JL⟨r[x�q]⟩K = E⟨Jr[x�q]Kσ⟩ = E⟨E′⟨JrK{x�y}⟩σ⟩ = E⟨E′⟨JrKσ{x�y}⟩⟩
since dom(σ) ∩ fv(JqK) ⊆ bv(L) ∩ fv(q) = ∅ by Prop. F.1. Then:

JL⟨λx.r⟩qK = E⟨E′⟨z[z�(λx.JrKσ)y]⟩⟩
= E⟨E′⟨z[z�(λx.E′′⟨w⟩σ)y]⟩⟩
= E⟨E′⟨z[z�(λx.E′′σ⟨wσ⟩)y]⟩⟩
→om+ E⟨E′⟨E′′σ⟨z{z�wσ}⟩{x�y}⟩⟩
= E⟨E′⟨E′′σ⟨wσ⟩{x�y}⟩⟩
= E⟨E′⟨E′′⟨w⟩σ{x�y}⟩⟩
= E⟨E′⟨JrKσ{x�y}⟩⟩
= E⟨E′⟨JrK{x�y}⟩σ⟩
= E⟨Jr[x�q]Kσ⟩
=L.7.1 JL⟨r[x�q]⟩K

2

To extend the simulation of root steps to general steps we shall need the following lemma that guarantees
that simulating steps in λoxpos that are obtained by i.h. can be extended to the translation of the larger
term, despite the term re-arrangement done by the definition of the translation J · K.
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Lemma F.2 (Contextual lifting of positive rewriting steps) Let E be such that it does not capture
variables of E′′, v′′, and z, and let a ∈ {m+, e+, gc+}.
(i) If E⟨x⟩ →oa E′⟨x′⟩, then:

(a) E⟨E′′⟨y[y�xz]⟩⟩ →oa E′⟨E′′⟨y[y�x′z]⟩⟩,
(b) E′′⟨E⟨y[y�v′′x]⟩⟩ →oa E′′⟨E′⟨y[y�v′′x′]⟩⟩,
(c) E⟨E′′⟨z⟩{w�x}⟩ →oa E′⟨E′′⟨z⟩{w�x′}⟩, and
(d) E′′⟨E⟨x⟩{w�z}⟩ →oa E′′⟨E′⟨x′⟩{w�z}⟩.

(ii) If E⟨x[x�v]⟩ →oa E′⟨x[x�v′]⟩, then E⟨E′′⟨y[y�vz]⟩⟩ →oa E′⟨E′′⟨y[y�v′z]⟩⟩.

Proof. Trivial for e+ and gc+ as they take place entirely in E. For a = m+, we prove the second point
here (the first point can be treated similarly). It is clear that E is of the form E1⟨E2[w�(λx′.E3⟨y′⟩)z′]⟩
and we have

E1⟨E2⟨x[x�v]⟩[w�(λx′.E3⟨y′⟩)z′]⟩ →om+ E1⟨E3⟨E2⟨x[x�v]⟩{w�y′}⟩{x′�z′}⟩.
Therefore, E′ = E1⟨E3⟨E2{w�y′}⟩{x′�z′}⟩ and v′ = v{w�y′}{x′�z′}. Then we have:

E⟨E′′⟨y[y�vz]⟩⟩ = E1⟨E2⟨E′′⟨y[y�vz]⟩⟩[w�(λx′.E3⟨y′⟩)z′]⟩
→om+ E1⟨E3⟨E2⟨E′′⟨y[y�vz]⟩⟩{w�y′}⟩{x′�z′}⟩
= E′⟨E′′⟨y[y�vz]⟩{w�y′}{x′�z′}⟩
= E′⟨E′′⟨y[y�v′z]⟩⟩

The last equality holds since both w and x′ are not free in E′′ or z. 2

Proposition 7.4 (Simulation of →om steps, originally at p. 14) Let t and u be VSC terms and
t 7→m u.

(i) If u is an answer and usef(O) then JO⟨t⟩K→om+→oe+→ogc+ JO⟨u⟩K;
(ii) Otherwise, JO⟨t⟩K→om+ JO⟨u⟩K.

Proof. By induction on O. The base case, for which O = ⟨·⟩ and thus O is non-useful and case (ii)
should hold, is treated in Lemma 7.3. Note that if t 7→m u then t is not an answer. Cases (the first is the
interesting / difficult one):

• O = O′t′. This case is the difficult one because the shape of the translations of O⟨t⟩ and O⟨u⟩ depends
on O′ and whether u is an answer.
(i) Let u be an answer and usef(O). By Lemma 5.2, we have usef(O′) or sub(O′):
(a) If usef(O′) then JO′⟨t⟩K→om+→oe+→ogc+ JO′⟨u⟩K by i.h. Let JO′⟨t⟩K = E1⟨x⟩, JO′⟨u⟩K = E4⟨x′⟩.

Note that usef(O′) implies ¬sub(O′). Thus, whether O′⟨u⟩ is an answer is independent of u and
depends only on O′, that is, O′⟨u⟩ is an answer if and only if O′⟨t′⟩ is an answer for every t′.
Therefore, O′⟨t⟩ and O′⟨u⟩ are either both answers or both non-answers. In both cases, then the
statement easily follows from the i.h., lifting step using Lemma F.2.2 if both are answers, and
using Lemma F.2.1.(a) if instead they are not.

(b) If sub(O′) then let us use L for O′. Since t 7→m u, for some r and q we have:
t = L′⟨λx.r⟩q 7→m L′⟨r[x�q]⟩ = u

Since u is an answer, we also have r = L′′⟨λy.p⟩ for some p, so that:
t = L′⟨λx.L′′⟨λy.p⟩⟩q 7→m L′⟨L′′⟨λy.p⟩[x�q]⟩ = u.

Note that L⟨u⟩ is an answer while L⟨t⟩ is not. This is the tricky case of this proof. Let
· JLK = (E, σL);
· JL′K = (E′, σ′);
· JL′′K = (E′′, σ′′) and JrK = JL′′⟨λy.p⟩K = E′′⟨z′[z′�λy.JpKσ′′]⟩;
· JqK = E′′′⟨z⟩;
We then have:

JtK = JL′⟨λx.r⟩qK
= E′⟨E′′′⟨w[w�(λx.JrKσ′)z]⟩⟩
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and
JL⟨t⟩K = JL⟨L′⟨λx.r⟩q⟩K

= E⟨JL′⟨λx.r⟩qKσ⟩
= E⟨E′⟨E′′′⟨w[w�(λx.JrKσ′)z]⟩⟩σ⟩
= E⟨E′σ⟨E′′′σ⟨w[w�(λx.JrKσ′σ)z]⟩⟩⟩

As well as:
JuK = JL′⟨L′′⟨λy.p⟩[x�q]⟩K

= E′⟨JL′′⟨λy.p⟩[x�q]Kσ′⟩
= E′⟨E′′′⟨JL′′⟨λy.p⟩K{x�z}⟩σ′⟩
= E′⟨E′′′⟨E′′⟨y′[y′�λy.JpKσ′′]⟩{x�z}⟩σ′⟩
= E′⟨E′′′σ′⟨E′′{x�z}σ′⟨y′[y′�λy.JpKσ′′{x�z}σ′]⟩⟩⟩

and
JL⟨u⟩K = E⟨JL′⟨L′′⟨λy.p⟩[x�q]⟩Kσ⟩

= E⟨E′⟨E′′′σ′⟨E′′{x�z}σ′⟨y′[y′�λy.JpKσ′′{x�z}σ′]⟩⟩⟩σ⟩
= E⟨E′σ⟨E′′′σ′σ⟨E′′{x�z}σ′σ⟨y′[y′�λy.JpKσ′′{x�z}σ′σ]⟩⟩⟩⟩

Let Jt′K = Et′⟨w′⟩. We have:

JO′⟨t⟩t′K = JL⟨L′⟨λx.r⟩q⟩t′K
= E⟨E′σ⟨E′′′σ⟨Et′⟨y′[y′�ww′]⟩[w�(λx.JrKσ′σ)z]⟩⟩⟩
= E⟨E′σ⟨E′′′σ⟨Et′⟨y′[y′�ww′]⟩[w�(λx.E′′⟨z′[z′�λy.JpKσ′′]⟩σ′σ)z]⟩⟩⟩
= E⟨E′σ⟨E′′′σ⟨Et′⟨y′[y′�ww′]⟩[w�(λx.E′′σ′σ⟨z′[z′�λy.JpKσ′′σ′σ]⟩)z]⟩⟩⟩
→om+ E⟨E′σ⟨E′′′σ⟨E′′σ′σ⟨Et′⟨y′[y′�z′w′]⟩[z′�λy.JpKσ′′σ′σ]⟩{x�z}⟩⟩⟩
= E⟨E′σ⟨E′′′σ⟨E′′σ′σ{x�z}⟨Et′⟨y′[y′�z′w′]⟩[z′�λy.JpKσ′′σ′σ{x�z}]⟩⟩⟩⟩
→oe+ E⟨E′σ⟨E′′′σ⟨E′′σ′σ{x�z}⟨Et′⟨y′[y′�(λy.JpKσ′′σ′σ{x�z})w′]⟩[z′�λy.JpKσ′′σ′σ{x�z}]⟩⟩⟩⟩
→ogc+ E⟨E′σ⟨E′′′σ⟨E′′σ′σ{x�z}⟨Et′⟨y′[y′�(λy.JpKσ′′σ′σ{x�z})w′]⟩⟩⟩⟩⟩
= E⟨E′σ⟨E′′′σ⟨E′′{x�z}σ′σ⟨Et′⟨y′[y′�(λy.JpKσ′′{x�z}σ′σ)w′]⟩⟩⟩⟩⟩
= JL⟨L′⟨L′′⟨λy.p⟩[x�q]⟩⟩t′K
= JL⟨u⟩t′K
= JO′⟨u⟩t′K

(ii) nusef(O). By Lemma 5.2.i, we have nusef(O′) and nsub(O′). Note that nsub(O′) implies that
whether O′⟨u⟩ is an answer is independent of u and depends only on O′, that is, O′⟨u⟩ is an answer
if and only if O′⟨t′⟩ is an answer for every t′. Therefore, O′⟨t⟩ and O′⟨u⟩ are either both answers or
both non-answers. By i.h., JO′⟨t⟩K→om+ JO′⟨u⟩K. In both cases, then the statement easily follows
from the i.h., lifting step using Lemma F.2.2 if both are answers, and using Lemma F.2.1.(a) if
instead they are not.

(iii) u is not an answer. We have that both t and u are not answers, so O′⟨t⟩ is an answer if and only
if O′⟨u⟩ is, and the details go as in the previous case.

• O = t′O′.
(i) usef(O) and u is an answer. By Lemma 5.2.ii, we have usef(O′) and then JO′⟨t⟩K→om+→oe+→ogc+

JO′⟨u⟩K by i.h. The statement easily follows from the i.h., lifting step using Lemma F.2.1.(b).
(ii) nusef(O) or u is not an answer. If u is not an answer we can apply the i.h. If u is an answer note

that then nusef(O) holds, which implies nusef(O′) by Lemma 5.2.ii, so that we can apply the i.h.
anyway. Therefore, JO′⟨t⟩K→om+ JO′⟨u⟩K by i.h. Then it goes exactly as Point 1, except that only
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one rewriting step (instead of three) is transported by the extension of the evaluation context.
• O = O′[x�t′].

(i) usef(O) and u is an answer. By Lemma 5.2.iii, we have usef(O′) and then JO′⟨t⟩K→om+→oe+→ogc+

JO′⟨u⟩K by i.h. The statement easily follows from the i.h., lifting step using Lemma F.2.1.(d).
(ii) nusef(O) or u is not an answer. If u is not an answer we can apply the i.h. If u is an answer note

that then nusef(O) holds, which implies nusef(O′) by Lemma 5.2.iii, so that we can apply the i.h.
anyway. Therefore, JO′⟨t⟩K→om+ JO′⟨u⟩K by i.h. Then it goes exactly as Point 1, except that only
one rewriting step (instead of three) is transported by the extension of the evaluation context.

• O = t′[x�O′]. As the previous case, except that the use of Lemma 5.2.iii is replaced by Lemma 5.2.iv,
and the use of Lemma F.2.1.(d) is replaced by Lemma F.2.1.(c).

2

Simulation of Useful Exponential Steps.

Lemma 7.5 (Alternative presentation of useful steps, originally at p. 15) →oeu=→oeu1
∪ →oeu2

.

Proof. It is clear that →oeu1
∪ →oeu2

⊆→oeu . It suffices to prove the other inclusion. An eu step has the
form:

O1⟨O2⟨x⟩[x�L⟨λy.t⟩]⟩ →oeu O1⟨L⟨O2⟨λy.t⟩[x�λy.t]⟩⟩
with O1⟨O2⟩ useful. By Lemma 5.4.2, there are two cases:

• O2 is useful. In this case, we have O1⟨O2⟨x⟩[x�L⟨λy.t⟩]⟩ →oeu1
O1⟨L⟨O2⟨λy.t⟩[x�λy.t]⟩⟩.

• O2 is left and O1 is useful. Since O1 is useful, it can be written as O⟨L′u⟩ for some O, L′, and u. Then
we have O1⟨O2⟨x⟩[x�L⟨λy.t⟩]⟩ = O⟨L′⟨O2⟨x⟩[x�L⟨λy.t⟩]⟩u⟩ →oeu2

O⟨L′⟨L⟨O2⟨λy.t⟩[x�λy.t]⟩⟩t⟩ =
O1⟨L⟨O2⟨λy.t⟩[x�λy.t]⟩⟩

2

For the simulation of →oeu1
, we need the following auxiliary lemma, which characterizes the shape of

the translation of values in useful contexts.

Proposition F.3 (Translation of useful contexts surrounding values) Let U be a useful VSC con-
text. Then there exist E, t, and z such that for all values v satisfying fv(v) ∩ bv(U) = ∅ the translation
verifies JU⟨v⟩K = E⟨t[y�JvKz]⟩.

Proof. By definition U = O⟨Lt⟩. The proof is by induction on O.
• Base case, that is, O = ⟨·⟩ and U = Lt. Let JLK = (E, σ) and JtK = E′⟨z⟩. Cases of v:
· Variable, that is, v = x /∈ bv(U) ⊇ bv(L). Then JL⟨x⟩K = E⟨xσ⟩ = E⟨x⟩. Therefore, JU⟨x⟩K =
E⟨E′⟨y[y�xz]⟩⟩.
· Abstraction, that is, v = λw.u. Note that the hypothesis fv(λw.u) ∩ bv(U) = ∅ and Prop. F.1

imply that JuKσ = JuK. Then: JU⟨λw.u⟩K = JL⟨λw.u⟩tK = E⟨E′⟨y[y�(λw.JuKσ)z]⟩⟩ =
E⟨E′⟨y[y�(λw.JuK)z]⟩⟩.

• U = U ′r. By i.h., there exist E, t, and z such that for all v satisfying fv(v) ∩ bv(U ′) = ∅ the
translation verifies JU ′⟨v⟩K = E⟨t[y�JvKz]⟩. Let JrK = E′⟨x′⟩. There are two cases to consider,
depending on whether U ′⟨v⟩ is an answer. Note that U ′ by definition is not a substitution context, so
that U ′⟨v⟩ being an answer is independent from whether v is a variable or an abstraction. Cases:
· U ′⟨v⟩ is an answer L⟨λy′.p⟩. Let JLK = (E′′, σ). We know that E⟨t[y�JvKz]⟩ = JU ′⟨v⟩K =

JL⟨λy′.p⟩K =L.7.1 E′′⟨z′[z′�λy′.JpKσ]⟩ for some E′′ and z′. Therefore, t is of the form
E′′′⟨z′[z′�λy′.JpKσ]⟩ for some E′′′ satisfying E′′ = E⟨E′′′[y�JvKz]⟩. Then the statement holds:

JU ′⟨v⟩rK = E′′⟨E′⟨z′[z′�(λy′.JpKσ)x′]⟩⟩
= E⟨E′′′⟨E′⟨z′[z′�(λy′.JpKσ)x′]⟩⟩[y�JvKz]⟩.

· t = U ′⟨v⟩ is not an answer. We have E⟨t[y�JvKz]⟩ = JU ′⟨v⟩K = E′′⟨z′⟩ for some E′′ and z′.
Therefore, t is of the form E′′′⟨z′⟩ for some E′′′ satisfying E′′ = E⟨E′′′[y�JvKz]⟩. Then the
statement holds:
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JU ′⟨v⟩rK = E′′⟨E′⟨w[w�z′x′]⟩⟩
= E⟨E′′′⟨E′⟨w[w�z′x′]⟩⟩[y�JvKz]⟩.

• U = rU ′. By i.h., there exist E, t, and z such that for all v satisfying fv(v)∩bv(U ′) = ∅ the translation
verifies JU ′⟨v⟩K = E⟨t[y�JvKz]⟩. There are two cases to consider, depending on whether r is an answer.
Cases:
· r is an answer L⟨λw.q⟩. Let JLK = (E′, σ). Let t = E′′⟨x′⟩. Then the statement holds:

JrU ′⟨v⟩K = E′⟨E⟨E′′⟨y′[y′�(λw.JqKσ)x′]⟩[y�JvKz]⟩⟩.

· r is not an answer. Let JrK = E′⟨w⟩ and t = E′′⟨x′⟩. Then the statement holds:

JrU ′⟨v⟩K = E′⟨E⟨E′′⟨y′[y′�wx′]⟩[y�JvKz]⟩⟩.

• U = r[w�U ′]. By i.h., there exist E, t, and z such that for all v satisfying fv(v) ∩ bv(U ′) = ∅ the
translation verifies JU ′⟨v⟩K = E⟨t[y�JvKz]⟩. Let t = E′⟨x′⟩. Then the statement holds:

Jr[w�U ′⟨v⟩]K = E⟨E′⟨JrK{w�x′}⟩[y�JvKz]⟩.

• U = U ′[w�r]. By i.h., there exist E, t, and z such that for all v satisfying fv(v) ∩ bv(U ′) = ∅ the
translation verifies JU ′⟨v⟩K = E⟨t[y�JvKz]⟩. Let JrK = E′⟨x′⟩. Since w ∈ bv(U), w /∈ fv(v) ⊃ fv(JvK)
by Prop. F.1. Then the statement holds:

JU ′⟨v⟩[w�r]K = E′⟨E⟨t[y�JvKz]⟩{w�x′}⟩
= E′⟨Eσ⟨tσ[y�JvK(zσ)]⟩⟩

where σ = {w�x′}.
2

Proposition 7.6 (Simulation of useful exponential steps, originally at p. 15) Let t and u be
VSC terms. If t→oeu1

u or t→oeu2
u then JtK→oe+ JuK.

Proof. The root cases:
• Useful exponential root rule 1 : U⟨⟨x⟩⟩[x�L⟨λy.t⟩] 7→eu L⟨U⟨⟨λy.t⟩⟩[x�λy.t]⟩. Let JLK = (E, σ). By

Lemma 7.1, JL⟨λy.t⟩K = E⟨z[z�λy.JtKσ]⟩. By Prop. F.3, there exist E′′, u, and x′ such that JU⟨⟨x⟩⟩K =
E′′⟨u[w�xx′]⟩ and JU⟨⟨(λy.t)⟩⟩K = E′′⟨u[w�(λy.JtK)x′]⟩. Then:

JU⟨⟨x⟩⟩[x�L⟨λy.t⟩]K =L.7.1 E⟨JU⟨⟨x⟩⟩K{x�z}[z�λy.JtKσ]⟩
=Pr. F.3 E⟨E′′⟨u[w�xx′]⟩{x�z}[z�λy.JtKσ]⟩
= E⟨E′′⟨u[w�zx′]⟩{x�z}[z�λy.JtKσ]⟩
→oe+ E⟨E′′⟨u[w�(λy.JtKσ)x′]⟩{x�z}[z�λy.JtKσ]⟩
= E⟨E′′⟨u[w�(λy.JtK)x′]⟩{x�z}[z�λy.JtK]σ⟩
=Pr. F.3 E⟨JU⟨⟨λy.t⟩⟩K{x�z}[z�λy.JtK]σ⟩
= E⟨JU⟨λy.t⟩[x�λy.t]Kσ⟩
=L.7.1 JL⟨U⟨λy.t⟩[x�λy.t]⟩K

• Useful exponential root rule 2 : L1⟨L2⟨⟨x⟩⟩[x�L3⟨λy.t⟩]⟩u 7→eu2
L1⟨L3⟨L2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩u.

Let JL1K = (E1, σ1), JL2K = (E2, σ2), JL3K = (E3, σ3), JtK = E⟨z⟩, and JuK = E′⟨w⟩.
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By Lemma 7.1, JL3⟨λy.t⟩K = E3⟨x′[x′�λy.JtKσ3]⟩. Then:

JL1⟨L2⟨⟨x⟩⟩[x�L3⟨λy.t⟩]⟩K = E1⟨JL2⟨⟨x⟩⟩[x�L3⟨λy.t⟩]Kσ1⟩
= E1⟨E3⟨JL2⟨⟨x⟩⟩K{x�x′}[x�λy.JtKσ3]⟩σ1⟩
=α E1⟨E3⟨JL2⟨⟨x⟩⟩K[x�λy.JtKσ3]⟩σ1⟩
=x/∈dom(σ2) E1⟨E3⟨E2⟨⟨x⟩⟩[x�λy.JtKσ3]⟩σ1⟩
= E1⟨E3σ1⟨E2σ1⟨⟨x⟩⟩[x�λy.JtKσ3σ1]⟩⟩

and since L1⟨L2⟨⟨x⟩⟩[x�L3⟨λy.t⟩]⟩ is not an answer,
JL1⟨L2⟨⟨x⟩⟩[x�L3⟨λy.t⟩]⟩uK = E1⟨E3σ1⟨E2σ1⟨E′⟨x′[x′�xw]⟩⟩[x�λy.JtKσ3σ1]⟩⟩.

Similarly, keeping in mind that L2 does not capture any variable of λy.t, we have:

JL1⟨L3⟨L2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩K = E1⟨JL3⟨L2⟨⟨λy.t⟩⟩[x�λy.t]⟩Kσ1⟩
= E1⟨E3⟨JL2⟨⟨λy.t⟩⟩[x�λy.t]Kσ3⟩σ1⟩
= E1⟨E3⟨JL2⟨⟨λy.t⟩⟩K[x�λy.JtK]σ3⟩σ1⟩
= E1⟨E3⟨E2⟨x′[x′�λy.JtK]⟩[x�λy.JtK]σ3⟩σ1⟩
= E1⟨E3σ1⟨E2σ1⟨x′[x′�λy.JtKσ3σ1]⟩[x�λy.JtKσ3σ1]⟩⟩

and, since L1⟨L3⟨L2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩ is an answer, we have:
JL1⟨L3⟨L2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩uK = E1⟨E3σ1⟨E2σ1⟨E′⟨x′[x′�(λy.JtKσ3σ1)w]⟩⟩[x�λy.JtKσ3σ1]⟩⟩.

Then, it is clear that JL1⟨L2⟨⟨x⟩⟩[x�L3⟨λy.t⟩]⟩uK→oe+ JL1⟨L3⟨L2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩uK.

For the inductive cases, note that 7→eu1
and 7→eu2

cannot alter the shape of answers and non-answers. Then,
the statement follows immediately from the i.h., the definition of the translation, and the lifting given by
Lemma F.2. 2

G Proofs from Sect. 8 (Core Normal Forms and Termination Equivalence)

Proposition 8.3 (Characterization of core normal forms, originally at p. 16) Let t be a VSC
term. t is →ocore-normal if and only if it is a n term.

Proof. Direction ⇒: by induction on t. Cases:
• Value, i.e. t = v. v is →ocore-normal and a n term.
• Application, i.e. t = ur. By i.h., u and r are n terms. Note that u cannot be an almost answer,

otherwise t would have a root multiplicative redex or an →oeu-redex. Then t is a n term.
• ES, i.e. t = u[x�r]. By i.h., u and r are n terms. Cases of r:
· r is an answer L⟨λy.r′⟩. Then x /∈ aofv(u), otherwise there would be a →oeu step. Then t is a n

term.
· r has shape L⟨y⟩. Then x /∈ ofv(u), otherwise there would be a →oevar step. Then t is a n term.
· r has shape L⟨r1r2⟩. Then t is a n term.

Direction ⇐: by induction on t. Cases:
• Value, i.e. t = v. v is a n term and →ocore-normal.
• Application, i.e. t = ur with u not an almost answer. By i.h., u and r are →ocore-normal. Thus, the

only possible core redex of t must be at the root. Since u is not an almost answer, there is neither
root multiplicative redex nor →oeu-redex. Then t is →ocore-normal.

• ES, i.e. t = u[x�r]. By i.h., u and r are →ocore-normal. Thus, the only possible core redexes of t
must involve the ES at the root. Cases of t:
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· r is an answer L⟨λy.r′⟩ and x /∈ aofv(u). Then the root ES is not involved in any →oeu redex
(because x /∈ aofv(u)) nor any →oevar redex (because r ̸= L⟨z⟩). Then t is →ocore-normal.
· r has shape L⟨y⟩ and x /∈ ofv(u). Then the root ES is not involved in any →oeu redex (because r

is not an answer) nor any →oevar redex (because x /∈ ofv(u)). Then t is →ocore-normal.
· r has shape L⟨r1r2⟩. Then the root ES is not involved in any →oeu redex (because r is not an

answer) nor any →oevar redex (because r ̸= L⟨z⟩). Then t is →ocore-normal.
2

Now we need some lemmas that shall be used to prove that →ocore normal forms are mapped on
→ox+¬gc normal forms by J · K.

Lemma G.1
• ofv(JtuK) = ofv(JtK) ∪ ofv(JuK).

• aofv(JtuK) =
{
aofv(JtK) ∪ aofv(JuK) ∪ {x} if JtK = E⟨⟨x⟩⟩
aofv(JtK) ∪ aofv(JuK) otherwise

• ofv(Jt[x�u]K) =


(ofv(JtK) \ {x}) ∪ ofv(JuK) if x ∈ ofv(JtK)
ofv(JtK) ∪ (ofv(JuK) \ {y}) if x /∈ ofv(JtK) and JuK = E⟨y⟩ with y /∈ ofv(E)

ofv(JtK) ∪ ofv(JuK) otherwise

• aofv(Jt[x�u]K) =


aofv(JtK) ∪ aofv(JuK) if x /∈ aofv(JtK)
(aofv(JtK) \ {x}) ∪ aofv(JuK) ∪ {y} if x ∈ aofv(JtK) and JuK = E⟨⟨y⟩⟩
(aofv(JtK) \ {x}) ∪ aofv(JuK) otherwise

Proof. Straightforward by definition. 2

Proposition G.2

(i) For any VSC term t, ofv(JtK) ⊆ ofv(t).
(ii) For any n term t, aofv(JtK) ⊆ aofv(t).

Proof.

(i) By induction on t. Cases:
• t = x. Then ofv(JtK) = {x} = ofv(t).
• t = λx.u. Then ofv(JtK) = ofv(y[y�λx.JuK]) = ∅ = ofv(t).
• t = ur. Then by Lemma G.1, ofv(JtK) = ofv(JuK) ∪ ofv(JrK) ⊆i.h. ofv(u) ∪ ofv(r) = ofv(t).
• t = u[x�r]. Then by Lemma G.1, ofv(JtK) ⊆ (ofv(JuK) \ {x}) ∪ ofv(JrK) ⊆i.h. (ofv(u) \ {x}) ∪
ofv(r) = ofv(t).

(ii) By induction on t. Cases:
• t = v. Then aofv(JtK) = ∅ = aofv(t).
• t = nn′ with n not an almost answer. By i.h., aofv(JnK) ⊆ aofv(n) and aofv(Jn′K) ⊆ aofv(n′).

Sub-cases:
· n is of the form L⟨⟨x⟩⟩. Then JnK is of the form E⟨⟨x⟩⟩ by Lemma G.3. By Lemma G.1, we have
aofv(JtK) = aofv(JnK) ∪ aofv(Jn′K) ∪ {x} ⊆ aofv(n) ∪ aofv(n′) ∪ {x} = aofv(t).
· Otherwise, JnK is not of the form E⟨x⟩ by Lemma G.3. By Lemma G.1, we have aofv(JtK) =
aofv(JnK) ∪ aofv(Jn′K) ⊆ aofv(n) ∪ aofv(n′) = aofv(t).

• t = n[x�n′]. By i.h., aofv(JnK) ⊆ aofv(n) and aofv(Jn′K) ⊆ aofv(n′). Sub-cases:
· n′ = L⟨λy.u⟩ and x /∈ aofv(n). Then x /∈ aofv(n) and by Lemma G.1, we have
aofv(Jn[x�n′]K) = aofv(JnK) ∪ aofv(Jn′K) ⊆ aofv(n) ∪ aofv(n′) = aofv(t).
· n′ = L⟨y⟩ and x /∈ ofv(n). Then x /∈ aofv(n) ⊇ aofv(JnK) and by Lemma G.1, we have
aofv(JtK) = aofv(JnK) ∪ aofv(Jn′K) ⊆ aofv(n) ∪ aofv(n′) = aofv(t).
· n′ = L⟨t1t2⟩. Let Jn′K = E⟨y⟩. It is clear, by definition, that y is bound in E. Then by

Lemma G.1, we have aofv(JtK) = (aofv(JnK) \ {x})∪ aofv(Jn′K) ⊆ (aofv(n) \ {x})∪ aofv(n′) =
aofv(t).

2
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Lemma G.3 If JtK is of the form E⟨⟨x⟩⟩ then t is of the form L⟨⟨x⟩⟩.

Proof. Straightforward by induction on t. 2

Lemma G.4 JtK is of the form E⟨E′⟨⟨x⟩⟩[x�λy.u]⟩ if and only if there exists an almost answer t′ such that
t→∗

oevar t
′.

Proof. Direction ⇒: by induction on t. Cases:
• Variables, i.e. t = z. Trivial because JzK is not in the desired form.
• Abstraction, i.e. t = λy.r. Then JtK is in the desired form and t′ := t satisfies the statement.
• Application, i.e. t = rq. Then JtK is not in the desired form.
• ESs, i.e. t = r[x�q]. Let JqK = E⟨y⟩. Then JtK = E⟨JrK{x�y}⟩. If JtK is in the desired form, we have

one of the following cases:
· JrK is in the desired form. Then by i.h., r →∗

oevar r′ for some almost answer r′. We have t =
r[x�q]→∗

oevar r
′[x�q] which is an almost answer.

· JqK is in the desired form and JrK is of the form E′⟨⟨x⟩⟩. By Lemma G.3, r is of the form L⟨⟨x⟩⟩.
By i.h., q →∗

oevar q
′ for some almost answer q′. Cases of q′:

(i) q′ is an answer. Then t = L⟨⟨x⟩⟩[x�q]→∗
oevar L⟨⟨x⟩⟩[x�q′] which is an almost answer.

(ii) q′ is an almost answer L′⟨L′′⟨⟨z⟩⟩[z�q′′]⟩ with q′′ an answer. Then:
t = L⟨⟨x⟩⟩[x�q]→∗

oevar L⟨⟨x⟩⟩[x�L′⟨L′′⟨⟨z⟩⟩[z�q′′]⟩]→oevar L
′⟨L′′⟨L⟨⟨z⟩⟩⟩[z�q′′]⟩

which is an almost answer.
2

Proposition 8.4 (Preservation of core normal forms, originally at p. 16) Let t be a VSC term.
If t is →ocore-normal then JtK is →ox+¬gc-normal.

Proof. By induction on the grammar of t. Cases:
• t = v. Trivial.
• t = nn′ with n not an almost answer. By i.h., JnK and Jn′K are →ox+¬gc-normal. Let JnK = E⟨x⟩ and

Jn′K = E′⟨z⟩. Since n is not an answer, JtK = E⟨E′⟨y[y�xz]⟩⟩. Knowing that there is no →ox+¬gc-
redex within E and E′, the only possible →ox+¬gc-redex in JtK would be an →oeu-redex corresponding
to the applicative occurrence of x, in the case where JnK is in the desired form of Lemma G.4. This
would imply that n is an almost answer (since it is →ocore-normal), which is not the case.

• t = n[x�n′] with n′ = L⟨λy.u⟩ and x /∈ aofv(n). By i.h., JnK and Jn′K are →ox+¬gc-normal. Let
JLK = (E, σ). Then JtK = E⟨JnK[x�λy.JuKσ]⟩, which is →ox+¬gc-normal since x /∈ aofv(JnK) by
Prop. G.2.

• t = n[x�n′] with n′ = L⟨y⟩ and x /∈ ofv(n). By i.h., JnK and Jn′K are →ox+¬gc-normal. Let
JLK = (E, σ). Then JtK = E⟨JnK{x�yσ}⟩, which is →ox+¬gc-normal since x /∈ ofv(JnK) by Prop. G.2.

• t = n[x�n′] with n′ = L⟨tu⟩. This case is straightforward by i.h..
2

Theorem 8.5 (Termination equivalence of Core λovsc and λoxpos , originally at p. 16) Let t be a
VSC term.

(i) t has a diverging →ocore sequence if and only if JtK has a diverging →ox+ sequence.
(ii) t is →ocore-weakly normalizing if and only if JtK is →ox+-weakly normalizing.

Proof. We split each of the two statements in its two directions and shuffle the order, since one of the
directions of Point 2 is used to prove one of the directions of Point 1.

1⇒ If t is →ocore-diverging then JtK is →ox+-diverging. If t has an infinite →ocore reduction sequence d
then by local termination (Prop. 3.3) there is an infinity of multiplicative steps in d. By the simulation
of core sequences (Thm. 7.7), JtK also has a diverging reduction sequence.
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2⇒ If t is →ocore-weakly normalizing then JtK is →ox+-weakly normalizing. If t has an →ocore reduction
sequence d : t →∗

ocore u with u →ocore-normal, then by the simulation of core sequences (Thm. 7.7)
there is a reduction sequence e : JtK →∗

ox+ JuK. By Prop. 8.4, JuK is →ox+¬gc-normal. Since →ogc+ is
strongly normalizing (by local termination Prop. 4.6), JuK→∗

ogc+
r with r →ox+-normal.

1⇐ If JtK is→ox+-diverging then t is→ocore-diverging. If t is→ocore weakly normalizing then, by direction
2⇒, JtK is →ox+ weakly normalizing, which is absurd because →ox+ is diamond (Thm. 4.3) and thus
uniformly normalizing. Then t is →ocore diverging.

2⇐ If JtK is →ox+-weakly normalizing then t is →ocore-weakly normalizing. If t has a diverging →ocore

sequence then, by direction 1⇒, JtK has a diverging →ox+ sequence, which is absurd because →ox+ is
diamond (Thm. 4.3) and thus uniformly normalizing. Then t has no diverging →ocore sequences, i.e.
it is strongly normalizing.

2

Corollary 8.6 (Originally at p. 16) λovsc and Core λovsc are uniformly normalizing.

Proof. By Thm. 8.5.2, if t has a →ocore normalizing reduction then JtK has a →ox+ normalizing reduc-
tion. Now, t cannot have a →ocore-diverging reduction, otherwise JtK has a →ox+ diverging reduction by
Thm. 8.5.1, against uniform normalization of →ox+ . Then t is →ocore strongly normalizing.

For λovsc, one repeats the same argument now using →ocore as the uniformly normalizing reduction
(instead of →ox+) and Thm. 6.3 (instead of Thm. 8.5) to transfer reduction sequences between λovsc and
Core λovsc. 2
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