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June 8, 2024

Abstract

We show that for spatially-temporally regional optimal control problems with affine constrained dynamics, the
Bang-Bang Principle does not hold even when the dynamics is continuous with respect to the state variable. However,
we show that there exist minimal time trajectories with extreme controls at the loci where the dynamics is differen-
tiable. We give two examples which exhibit singular arcs exactly at the loci of non-differentiability, ie at the boundaries
of the regions.

1 INTRODUCTION
The Bang-Bang Principle is a pillar of the theory of linear controlled systems (see [12, 15, 9, 13]). Consider a linear
dynamical system

Ẋ = A(t)X +B(t)u, X ∈ Rn, u ∈U ⊂ Rr (1)

where A(·), B(·) are time-measurable matrices of adequate dimensions, and U is a convex compact set. Denote E(U)
the set of extreme points of the set U . For any initial condition (t0,X0) in R+×Rn, the attainability set A (t), resp.
ABB(t), is defined as the set of X(t) where X(·) is the solution of (1) for the initial condition (t0,X0) and any time-
measurable controls u(·) that takes values in U , resp. in E(U). The Bang-Bang Principle states that A (t) and ABB(t)
coincide. This result has consequences in terms of controllability and the nature of trajectories that join two points of
the state space in minimal time.
Moreover, it is customary to consider optimal control problems under constraints. These problems usually contain
challenging difficulties – especially when it comes to applied areas – and the literature is wide and various, depending
on the formulation of the different kinds of constraints and the forms of necessary or sufficient optimality conditions.
A certain amount of cases is listed in detail in [10].
We shall consider in this paper spatially-temporally regional affine controlled systems, defined by a family of controlled
affine systems

Ẋ = fi(t,X) := Ai(t)X +B(t)u+Ci(t), i ∈ I

over a partition of Ω ⊂ R+ ×Rn (where Ω may be corresponding to the constraint time-state space), and whose
dynamics is given by one of these linear systems on each subset of the partition. Such a dynamics is in general
discontinuous and the question of well-posedness of solutions raises. In particular sliding modes [18] or Filippov
solutions [8] may be considered. Controllability of such systems has been well investigated in the literature (see
[4, 6, 14, 19]). In the present work, we shall assume that the dynamics are continuous with respect to X (but not
necessarily differentiable), which does not pose any problem to define unique solutions as for any Lipschitz continuous
differential equations. There is much less works dedicated to this precise setting [17].
One may wonder if the Bang-Bang Principle still holds in this simple setting, and if not where the control has to be
an non extreme point. It seems that this question has not addressed specifically in the literature, although the problem
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of regional optimal control has get recent interests in the literature (see [1, 2, 3]). For instance in [3], a minimal time
problem with piecewise affine dynamics is presented, but whose dynamics is discontinuous. Note that considering
a family of linear systems with the continuity assumption is very restrictive (as it imposes the common boundary of
two domains Pi, Pj to belongs to the kernel of Ai −A j). This is why we consider families of affine rather than linear
systems. This allows in particular to consider dynamics with saturation. Let us underline that applying directly the
Bang-Bang Principle for trajectories joining two points in a same subset Pi does not guarantee that the trajectory with
extreme controls remains in the same set Pi. This is precisely the first matter investigated in the present work. We
will then explore through examples the possible existence of singular arcs, also noticing that a constrained arc in this
framework will be seen as a singular arc.
The paper is organized as follows. In the next section, we make precise our notations and assumptions, making
distinctions between linear and affine Bang-Bang Principle for the minimal time control problem. In Section 3, we
give our main result. Section 4 is devoted to examples.

2 Preliminaries
In this section we present the framework of spatially-temporally regional affine systems, and highlight their similarities
and differences with classical linear systems.
We consider an non-autonomous system that is linear with respect to u :

Ẋ = F(t,X)+B(t)u (2)

where X ∈ Rn and u ∈U ⊂ Rr under the following assumptions.

Assumption 2.1. Given the time-state space Ω ⊂ R+×Rn such that Ω̊ is non-empty, connected, projtΩ = R+, and
there exists a partition

Ω =
⋃

i∈I

Pi

where the P̊i are pairwise disjoint, non-empty and connected sets for any i ∈ I (where I is countable), such that

F(t,X) = Ai(t)X +Ci(t), (t,X) ∈ Pi

where Ai and Ci are n× n− and n× 1− time measurable matrix-valued functions, B is a n× r− time measurable
matrix-valued function. Moreover F is continuous with respect to X for any t.

Let us stress that we do not impose any regularity of the boundaries of the sets Pi.

Assumption 2.2. U is a convex compact set.

We consider the minimum time problem to reach a compact target set Γ ⊂ Rn from an initial state (t0,X(t0)) ∈ Ω that
belongs to the attainability set of Γ, while fulfilling the constraint (t,X(t)) ∈ Ω for any time t. For this problem, the
Bang-Bang Principle is often stated for linear dynamics [11], as follows.

In the case where there is only one are (ie I = {α}), the dynamics is linear (ie Cα = 0), and there is no constraints (ie
Ω = R+×Rn), we have in fact a classical linear system

Ẋ(t) = Aα(t)X(t)+B(t)u(t) (3)

Theorem 2.1. If X0 belongs to the attainability set of Γ, then there exists a control function u(·) that takes values in
E(U) for which the associated trajectory of (3) reaches Γ in minimal time from the initial condition X(t0) = X0.

We recall that this statement holds true also for affine systems.

Lemma 2.2. Consider the affine system in Rn

Ẏ (t) = L(t)Y (t)+M(t)u(t)+N(t) (4)

where u(t) ∈U, a convex compact set of Rp, and L, M and N are n×n−, n× r− and n×1− time mesurable matrix-
valued functions. Then, the conclusion of Theorem 2.1 holds for dynamics (4).



Proof. The proof only consists in rewriting the affine system into an equivalent linear one in higher dimension, and we
explicitly construct it as follows :

˙̃Y (t) = L̃(t)Ỹ (t)+ M̃(t)u(t) (5)

where L̃ and M̃ are (n+1)× (n+1)− and (n+1)× r− matrix-valued functions. Let us set the additional state variable
:

ẏn+1(t) = 0 ,yn+1(0) = 1

Then we define Ỹ ∈ Rn+1 such that the j-th coefficient of Ỹ is Ỹj = Yj for all 1 ≤ j ≤ n, and Ỹn+1 = yn+1. We posit
L̃ ∈ Mn+1,n+1(R) such that the coefficients (k, j) are L̃k, j = Lk, j for all 1 ≤ k, j ≤ n, the coefficients (k,n+ 1) are
L̃k,n+1 = Nk for all 1 ≤ k ≤ n, and the coefficients (n+ 1, j) are L̃n+1, j = 0 for all 1 ≤ j ≤ n+ 1. We similarly define
M̃ ∈ Mn+1,r(R) such that the coefficients (k, j) are M̃k, j = Mk, j for all 1 ≤ k ≤ n and 1 ≤ j ≤ r, and the coefficients
(n+1, j) are M̃n+1, j = 0 for all 1 ≤ j ≤ r. With such a construction, we easily check that the system (5) describes the
same dynamics as the system (4).

We may now introduce the main issue of this work. Considering a time-optimal problem subject to the dynamics (2),
we will discuss about a revisit of the Bang-Bang principle for such settings. It is well known that for hybrid dynamical
systems or switched systems the optimal time trajectory may lie on the locus of discontinuity of the dynamics, and
it is called a sliding mode. In this work, the systems we consider might be seen as spatially hybrid systems (with a
non-autonomous regionalization), but with an additional condition of continuity at the boundaries. One may wonder
if such sliding mode behaviour is still possible with continuous piecewise affine dynamics. The Lemma 2.2 suggests
that the Theorem 2.1 should remain relevant where the dynamics of (2) is affine. However a direct application of the
Bang-Bang principle would fail, since we can not ensure that the obtained Bang-Bang trajectory doesn’t cross any
boundary (especially since these boundaries might be moving), which would thus modify the dynamics driving the
system. Therefore we have to be a bit more cautious and judiciously examine the evolution of the system in order to
locally apply the Bang-Bang principle, and then build a candidate Bang-Bang control step by step.
In the end, we still show that there exists an optimal solution composed of a succession of Bang-Bang arcs over time
intervals where the time-state trajectory belongs to a region P̊i, but an optimal trajectory may contain a portion located
in a boundary ∂Pi, thus consisting in singular arcs. We shall present in the Section IV examples where there is indeed
singular arcs (or even constrained-singular arcs), showing this way that the Bang-Bang principle is not true globally
for spatially-temporally regional affine problems, even when the dynamics is continuous with respect to the state.

Remark 2.3. We insist on the fact that this work does not focus on the question of the controllability of our systems,
and we will always assume that our problems are feasible.

3 Main results
Proposition 3.1. For a minimum-time control problem subject to the spatially-temporally regional affine settings (2),
If X0 belongs to the attainability set of the target Γ, then there exists an optimal solution composed of a succession of
Bang-Bang arcs over time interval where the trajectory belongs to a region P̊i.

Let u∗(·) ∈ U be an optimal solution of the time-optimal problem (2). Denote X∗(·) the associated optimal trajec-
tory and T ∗ ∈ R∗

+ the corresponding optimal time. Assume that there exists a time interval [a,b] ⊂ [0,T ∗] such that
(b,X∗(b)) ∈ ∂Pi where Pi is a fixed region of the partition, and (t,X∗(t)) ∈ P̊i for all t ∈ [a,b). For any [td , t f ]⊂ [a,b),
we study the evolution of the system over [td , t f ], thus following the dynamics of the region Pi :

Ẋ(t) = Ai(t)X(t)+B(t)u(t)+Ci(t) (6)

We aim to apply the Bang-Bang principle for affine systems, but we need to ensure that all the trajectories undergo the
same dynamics. To this aim we will have to study the local behaviour of trajectories and we will define an appropriate
neighbourhood of ζ[td ,t f ] = {(t,X∗(t)), t ∈ [td , t f ]} where the principle may be applied.

Lemma 3.2. With the notations above, for any [td , t f ]⊂ [a,b), there exists a Bang-Bang control such that its associated
trajectory Z(·) verifies :

Z(td) = X∗(td) , Z(t f ) = X∗(t f ) , (t,Z(t)) ∈ P̊i for all t ∈ [td , t f ]



Proof. In order to evaluate the distance from ζ[td ,t f ] to the boundary ∂Pi, we define the distance d by :

∀t, t ′ ∈ R+, ∀x,x′ ∈ Rn, d((t,x),(t ′,x′)) =
(
|t − t ′|2 +∥x− x′∥2

)1/2

where ∥·∥ denotes the euclidian norm. Then we have r = d(ζ[td ,t f ],∂Pi)> 0. Let us fix t̂ ∈ [td , t f ). Consider the problem
defined by the dynamics of (6) with the initial condition X(t̂) = X∗(t̂), and select an admissible control u(·). We want
to evaluate the difference between the associated trajectory X(·) and the reference trajectory X∗(·). In particular, we
are looking for a time t+ such that for all t ∈ [t̂, t+] we have ∥X(t)−X∗(t)∥< r. For t ≥ t̂ we have :

X(t)−X∗(t) = X(t)−X(t̂)− (X∗(t)−X∗(t̂))

=
∫ t

t̂
Ai(s)(X(s)−X∗(s))+B(s)(u(s)−u∗(s))ds

Then :

∥X(t)−X∗(t)∥ ≤ 2M(t − t̂) sup
s∈[a,b]

∥B(s)∥

+
∫ t

t̂
∥Ai(s)∥∥X(s)−X∗(s)∥ds

By the Grönwall lemma, we get :

∥X(t)−X∗(t)∥ ≤ 2M(t − t̂)KB
[a,b] exp

(∫ t

t̂
∥Ai(s)∥ds

)
≤ 2M(t − t̂)KB

[a,b] exp
(
(t − t̂)KA

[a,b]

)
where KA

[a,b] = sup
s∈[a,b]

∥Ai(s)∥<+∞ and KB
[a,b] = sup

s∈[a,b]
∥B(s)∥<+∞. Then there exists t+ ∈ (t̂, t f ] such that :

∥X(t)−X∗(t)∥< r ,∀t ∈ [t̂, t+]

Moreover, the duration δ = |t+− t̂| only depends on r. Then there exists N ∈N∗ such that td +(N−1)δ < t f ≤ td +Nδ ,
and we define a finite sequence (θk)0≤k≤N by :

θk = td + kδ , for 0 ≤ k ≤ N −1
θN = t f

Therefore from above we deduce that for any 0 ≤ k ≤ N −1, all the trajectories Yk(·) following the dynamics (6) with
initial condition Yk(θk) = X∗(θk) satisfy :

∥Yk(t)−X∗(t)∥< r ,∀t ∈ [θk,θk+1]

In particular, we have :
(t,Yk(t)) ∈ B((t,X∗(t)),r) ,∀t ∈ [θk,θk+1]

and thus
{(t,Y (t)), t ∈ [θk,θk+1]} ⊂

⋃
t∈[θk,θk+1]

B((t,X∗(t)),r)⊂ P̊i

As a consequence, we now may apply the Bang-Bang principle as follows. Consider the dynamics of (6) over the
whole space Rn, with the initial condition Yk(θk) = X∗(θk). By asumption, the target {X∗(θk+1)} is attainable at
the time θk+1, thus the Bang-Bang principle for linear time-optimal problems indicates that there exists a Bang-Bang
control ūk(·) such that the corresponding trajectory Ȳk(·) reaches X∗(θk+1) at the time θk+1. Furthermore, we know
from the well-chosen construction detailed above that this trajectory verifies :

{(t,Ȳ (t)), t ∈ [θk,θk+1]} ⊂ P̊i



Figure 1: Optimal Bang-Bang trajectory constructed from X∗(·) on [td , t f ]

Let us now define v(·) as the concatenation of the ūk(·) for 0 ≤ k ≤ N−1, and denote Z(·) the corresponding trajectory
(in Rn) as we can see in Fig. 1.
Finally, we showed that for any [td , t f ] ⊂ [a,b) the obtained control v(·) is a Bang-Bang control defined over [td , t f ],
and the associated trajectory Z(·) satisfies Z(td) = X∗(td), Z(t f ) = X∗(t f ) and :

{(t,Z(t)), t ∈ [td , t f ]} ⊂
⋃

0≤k≤N−1

( ⋃
t∈[θk,θk+1]

B((t,X∗(t)),r)

)
⊂ P̊i

Proof. (of Proposition 3.1) To conclude for the main statement, it then suffices to apply the previous Lemma 3.2 on
well-chosen time intervals. We set a sequence of times (σ j

f ) j≥0 by :

σ
j
f = b− (b−a)/2 j , for j ∈ N

We get a corresponding family of radiuses r j = d(ζ
[σ

j
f ,σ

j+1
f ]

,∂Pi)> 0, and the previous reasoning provides a family of

Bang-Bang controls (v j) j≥0, and their associated trajectories (Z j) j≥0, defined on each portion of time interval by :

v0 : [a,σ1
f ]−→U given by Lemma 3.2 over [a,σ1

f ]

with Z0(a) = X∗(a), Z0(σ1
f ) = X∗(σ1

f )

and {(t,Z0(t)), t ∈ [a,σ1
f ]} ⊂ P̊i

v j : [σ j
f ,σ

j+1
f ]−→U given by Lemma 3.2 over [σ j

f ,σ
j+1
f ]

with Z j(σ j
f ) = X∗(σ j

f ), Z j(σ j+1
f ) = X∗(σ j+1

f )

and {(t,Z j(t)), t ∈ [σ j
f ,σ

j+1
f ]} ⊂ P̊i



Finally, the control defined by a concatenation of the controls v j above is :

V (t) = v j(t) for t ∈ [σ j
f ,σ

j+1
f )

Thus V is well-defined over [a,b), is Bang-Bang, and its corresponding trajectory ξ (·) satisfies :

ξ (a) = X∗(a) , ξ (t)−→
t→b

X∗(b) , {(t,ξ (t)), t ∈ [a,b)} ⊂ P̊i

Hence the existence of an optimal solution composed of Bang-Bang arcs in the regions where the dynamics is differ-
entiable.

Remark 3.3. Since the classical Bang-Bang principle does not give information about the number of commutations,
we may have constructed an optimal Bang-Bang solution that has an infinite (countable) number of commutations.

Corollary 3.4. Consider a minimum-time control problem subject to the spatially-temporally regional affine settings
(2) with Ω = R+ ×Rn. Suppose that the system is subject to some state constraints Φk(t,X(t)) ≤ 0 for any time t
and for 1 ≤ k ≤ q. If the set {(t,X) ∈ R+×Rn, Φk(t,X) ≤ 0, 1 ≤ k ≤ q} is non-empty, connected, then there exists
an optimal solution composed of a succession of Bang-Bang arcs over time interval where the trajectory belongs
to a region (where the dynamics is differentiable), and possible singular and constraint arcs where the dynamics is
non-differentiable.

Corollary 3.5. Consider an optimal control problem subject to the spatially-temporally regional affine settings (2)
with Ω = R+×Rn. We fix a terminal time T > 0 and we seek to minimize the integral cost

J(u(·)) =
∫ T

0
l(t,X(t),u(t))dt

such that the function l : R+×Rn ×Rr → R is piecewise affine, continuous with respect to X, and linear with respect
to u. Then there exists an optimal solution composed of a succession of Bang-Bang arcs over time interval where the
trajectory belongs to a region where the dynamics and the function l are differentiable, and possible singular arcs at
the loci of non-differentiability of the dynamics or l.

4 Examples of non Bang-Bang trajectories
In this section we are going to present two examples. The first one is a very simple autonomous system driving an
optimal time problem where the geometry of the (constant) partition of the space gives the intuition of the existence of
a singular arc. The second one is from a crop irrigation model, and is written as a non-autonomous system driving an
optimization problem with a fixed terminal time, an integral cost, and constraints over the input and the state. Therefore
it is much more difficult to study the optimality of solutions, but since we can rewrite the system as a minimal time
problem with piecewise affine dynamics, we illustrate that for some setting there exists an optimal solution composed
of Bang, singular and constrained arcs.

4.1 Turnpike-like Example
Let us consider the following time-optimal control problem :

(P1) :


ẋ(t) = u(t)

ẏ(t) = F(x(t)) where F(x) =

{
x ,x ≤ 1
2− x ,x ≥ 1

This systems (P1) respects the framework of piecewise affine dynamics and continuous with respect to the state, the
states space being partitioned in two pieces separated by the line x = 1. We set the initial conditions x(0) = y(0) = 0,
and the target is the singleton (x f ,y f ) = (2,3). Moreover the control u(·) is a measurable function with values con-
strained in the compact U = [−1,1]. We seek to minimize the time to reach the target from the initial point.



Figure 2: Minimum time ”Bang-Singular-Bang” trajectory for (P1)

By definition, the magnitude of ẏ is maximum when x = 1, then the intuition would say that the trajectory will tend to
use this line as much as possible, in order to move as quickly as possible. We are going to show that this strategy (as
illustrated in Fig. 2) is indeed optimal.

Consider an optimal control u∗(·), with its associated trajectory (x∗(·),y∗(·)) and the corresponding optimal time T ∗.
By continuity, the trajectory has to cross the boundary x = 1. Define W = {t ≥ 0, st : x∗(t) = 1}, which is non-empty.
Denote t− = infW and t+ = supW . By definition of the dynamics of x, we have t− ≥ 1 and t+ ≤ T ∗−1.

Suppose that y∗(t−)> 1/2. Denoting C = {(x,y), y = x2/2}, we define Γ = {t ∈ [0, t−], st : (x∗(t),y∗(t)) ∈ C }. The
set Γ is non-empty since y∗(0) = (0,0), and we define t̂ = supΓ ∈ [0, t−). Then, for all t ∈ (t̂, t−), we have either
y∗(t)≥ 1/2 and x∗(t)< 1, or y∗(t)< 1/2 and y∗(t)− x∗(t)2/2 > 0. In the first case, we directly have ẏ∗(t)< 1, and in
the second case, we have x∗(t)<

√
2y∗(t), and the point (

√
2y∗(t),y∗(t))∈C is attainable from the point (x∗(t̂),y∗(t̂)).

As a consequence, we have ẏ∗(t)<
√

2y∗(t). Starting from the point (x∗(t̂),y∗(t̂)) at time t̂, we define a trajectory (x̃, ỹ)
driven by the control ũ(t) = 1 for t ∈ [t̂, t̂ +1− x∗(t̂)), and ũ(t) = 0 for t ∈ [t̂ +1− x∗(t̂), t̂ +1− x∗(t̂)+ y∗(t−)−1/2].
This trajectory follows the curb C until it reaches the point (1,1/2), then it goes straight up on the boundary x = 1
until the point (1,y∗(t−)). According to what was said above, we then have for all t ∈ (t̂, t̂ +1− x∗(t̂)+ y∗(t−)−1/2),
ẏ∗(t)< ˙̃y(t). We deduce that the trajectory (x̃, ỹ) reaches the point (x∗(t−),y∗(t−)) at a time t̃ < t−, which contradicts
the optimality of the trajectory (x∗(·),y∗(·)). Hence y∗(t−)≤ 1/2.

Moreover if y∗(t−) < 1/2, a brief study of reachability of (1,y∗(t−)) shows that the trajectory of y has to decrease,
and hence the trajectory of x has to go in the negative values. This way, it would exist a time s ∈ (0, t−) such that
x∗(s) = 0, y∗(s)< 0, and since s > 1/2−y∗(t−) (since the speed of movement of y is smaller around x = 0, and getting
|ẏ| = 1 in the area x < 0 would require to waste more than s = 1/2 of time). As a consequence, the time σ to reach
(1,y∗(t−)) has to verify σ ≥ 1+ s > 3/2− y∗(t−). Thus either the trajectory stays on the boundary x = 1 until the
point (1,1/2), or the quantity x grows. In the first case, the trajectory starting from (0,0) and following C would
be strictly faster to reach (1,1/2), and in the second case, we could make a similar argument as before by defining
D = {(x,y), y = −x2/2+ 2x+ 1} and considering ť = infΛ where Λ = {t ∈ (σ ,T ∗), st : (x∗(t),y∗(t)) ∈ D}. In any
case, we conclude that it would contradict the optimality of the trajectory (x∗(·),y∗(·)). Hence y∗(t−) = 1/2.

By mirroring these arguments for the end of the trajectory, we can show that y∗(t+) = 5/2. Finally, any trajectory
(x(·),y(·)) that does not stay on x(t) = 1 for all t ∈ [t−, t+] will necessarily present an interval I of non-null measure
where ẏ(t) < 1 for all t ∈ I. Therefore it will not reach the point (1,5/2) as fast as the trajectory remaining on x = 1.
Between (1,1/2) and (1,5/2), the singular control u∗ = 0 is then optimal.
To conclude, we necessarily have t− = 1, u∗(t) = 1 for all t ∈ [0,1), t+ = 3, u∗(t) = 0 for all t ∈ [1,3), and u∗(t) = 1
for all t ∈ [3,T ∗]. Furthermore, the optimal time is then T ∗ = 4.



4.2 Example from an Irrigation model
Let us define the following optimal control problem, denoted (P2), taken from a crop irrigation model (see [5]), and
evolving over a fixed time interval [0,T ].{

Ṡ(t) = k1(−ϕ(t)KS(S(t))− (1−ϕ(t))KR(S(t))+ k2u(t))
V̇ (t) = u(t)

with initial conditions S(0) = S0 ∈ (S∗,1], B(0) = 0 and V (0) = 0, and where the functions KS and KR are continuous
piecewise affine, as follows :

KS(S) =


0 ,S ∈ [0,Sw]
S−Sw
S∗−Sw

,S ∈ [Sw,S∗]
1 ,S ≥ S∗

KR(S) =

{
0 ,S ∈ [0,Sh]
S−Sh
1−Sh

,S ≥ Sh

with 0 < Sh < Sw < S∗ < 1. The control u(·) takes values in [0,1], and the constants verify k1 > 0 and k2 > 1 (local
controllability condition). The function ϕ is supposed to be C1, increasing, and taking values in [0,1]. The optimization
problem consists in fixing a terminal time T > 0 and aiming at a maximization of the integral cost∫ T

0
ϕ(t)KS(S(t))dt

under some target constraint V (T ) =Vinit , and some state inequality constraints Stol +F(t)≤ S(t)≤ 1 for all t ∈ [0,T ],
where F corresponds to a stronger constraint on the soil moisture (S(t)≥ S f lo > Stol) during the flowering period, and
it is defined by the following continuous function :

F(t) =


S f lo −Stol , t ∈ [0.4T,0.6T ]
(S f lo −Stol)

t−0.39T
0.4T−0.39T , t ∈ [0.39T,0.4T ]

(S f lo −Stol)
t−0.61T

0.6T−0.61T , t ∈ [0.6T,0.61T ]
0 ,otherwise

This system (P2) is a quite complex constrained optimization problem, and does not fulfill the framework of piecewise
affine time-optimal problems yet. In order to solve this issue, we first replace the integral cost by a terminal cost
through a new state variable :

Ḃ(t) = ϕ(t)KS(S(t)) , B(0) = 0

The optimization problem thus consists in maximizing B(T ). Then we cope with the state constraints. Following an
idea in [10], we replace the constraint by two additional state equations :

Ẏ (t) = min(0,S(t)− (Stol +F(t))) , Ż(t) = max(0,S(t)−1)

with complementary initial and final conditions :

Y (0) = Z(0) = 0 , Y (T ) = Z(T ) = 0

We obtain a system of five equations and additional initial and final conditions. The functions S 7→ min(0,S− (Stol +
F(t))) and S 7→ max(0,S−1) are piecewise affine and continuous with respect to the state. Moreover, the dynamics of
Y represents a time dependent partition whose boundary moves continuously over time.

Finally, let us assume that there exists an optimal solution of the problem (P2). In this case, there is a corresponding
optimal terminal cost B∗ > 0 and a final state S(T ) = S̃. We then consider that it gives in fact an additional terminal
condition for the state B(·), ie. B(T ) = B∗. Now we may replace all the terminal conditions by a target :

(S f ,Vf ,B f ,Yf ,Z f ) = (S̃,Vinit ,B∗,0,0)



With all these transformations, we now have a problem written as a spatially-temporally regional affine system with
continuous dynamics with respect to the state, and the previous optimization is thus by definition equivalent to a min-
imum time problem to reach the target. Indeed, if there exists t̂ < T such that B(t̂) = B∗ and V (t̂) = Vinit , then the
control u = 0 over [t̂,T ] would still get V (T ) = Vinit , and the dynamics of B would imply B(T ) > B(t̂), which would
contradict the optimality of B∗ in the initial formulation of the problem.

We refer to [7] for a sketch of proof for optimality of some irrigation structures while undergoing fixed state constraints.
The present case (with a continuously moving state constraint) can then be deduced by adapting the method. We
illustrate an example where the numerical resolution has been verified and computed via Bocop (see [16]), as shown
in Fig. 3.

Figure 3: Optimal mixed Bang and singular trajectory and corresponding control for (P2)

5 CONCLUSIONS
We focused our study here on a discussion about the validity of the Bang-Bang principle in a spatially-temporally
regional affine framework, under constraints. As we saw, an optimal solution may in general be composed of Bang
arcs inside the areas of the partition of the time-state space, and eventual singular arcs on the boundaries. For future
perspectives, we may wonder about deriving the non-smooth Pontryagin principle for a continuous piecewise affine
system, especially we may interest in the conditions of occurence of such singular arcs, and we can discuss about the
possible difficulty to compute the value of such singular controls. Moreover, generalized gradients may arise from
the derivation of the Hamiltonian, and the behaviour of the adjoints over time intervals where the state runs through a
non-differentiable locus of the dynamics is therefore non-trivial. A more precise description of this situation may be
considered as the next step for the study of continuous piecewise affine systems.
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