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Common structures of optimal solutions for a crop irrigation problem
under various constraints and criteria*

Ruben Chenevat1, Bruno Cheviron2, Sébastien Roux1 and Alain Rapaport1

Abstract— We consider a simplified crop irrigation model
written as a non-autonomous, non-smooth controlled system.
Different operating contexts and objectives lead to the study
of optimal control problems with various state constraints,
criterion and targets. We look for feedback solutions and
we derive the optimality necessary conditions for the unified
formulation. We show that there are only two parametrized
time-varying feedback strategies consisting of the best and
the worst practices, independent of the chosen objective, and
suitable for numerical analysis.

I. INTRODUCTION

In the present context where the world population keeps
growing and climate tensions intensify, one has to wonder
about natural resources management, especially in agri-
culture. In particular there is an increase of areas where
irrigation needs to complement rainfalls for crop production,
while the amount of available water per capita is expected
to decrease in the near future. In order to match with the
upcoming need to step up the world food production while
adapting to environmental pressures, different approaches
of improvement exist. It is possible to deal with saving
water through agronomic or technological levers (choice
of species, equipment, planning). The latter seems to have
promising water saving potential in the crucial context of
deficit irrigation (see [15], [20]).

Several mathematical models have been developed to
study crop irrigation. A certain amount of them are more
or less complex numerical models describing quite precisely
the physiological processes of the crop evolution ([10], [8],
[3], [12], [19]). On the other hand, some more parsimonious
models are adapted to a simpler dynamical system model
and decision making through a limited number of decision
variables. These models have inspired several mathematical
formulations of optimal control problems for crop irrigation
in order to derive analytical results (see [1], [9], [13], [18],
[21], [22]). They typically use a water balance with few
hypotheses on the functions modeling the biological process,
enabling a general study of their problem (maximizing a
financial cost or minimizing the water used to keep the soil
moisture above a threshold). Some of these models give
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a more detailed description of the evapotranspiration and
maximizes the production of biomass under the context of
water scarcity.

The interest of analytical results is to eventually pro-
vide strategies describing optimal irrigation through time-
varying feedback control suited to the limited number of
observed variables and manipulated inputs on the field. Many
agronomic objectives can be of interest : maximizing the
biomass under water constraint, minimizing the water used
for reaching a target of biomass, maximizing a financial cost,
keeping the soil moisture above a stress threshold.

In this work, we aim at studying these problems. To
this aim, we choose to use the formulation from [1] but
with different criteria and different constraints. We extend
its work to the aforementioned objectives, and we will not
only look for the best strategies, but we will also investigate
the worst strategies since it seems crucial to be able to
quantify the potential gain margin that we might expect from
an appropriate water management. Moreover we consider a
constraint on lower values of water stress to preserve crops
in good health guaranteeing the quality of the harvested
biomass at the end of the season. These different criteria and
constraint are gathered to define six optimization problems
(three objectives, best and worst cases) that we seek to
analyze them in a unified way. Through an analysis of the
necessary conditions of optimality, we wonder if there exists
a unified optimal structure for the optimal strategies, in
terms of state feedback. These feedback strategies are then
expected to be implemented and tested in situations closer to
real world, and tested on more complex numerical models.

In the Section II, we describe the model with its general
hypotheses, and we present the different problems (de-
pending on their different objectives) that we investigate
altogether through a unified formulation. After some general
results on the trajectories of the solutions to our system,
we are able to show some necessary properties on optimal
solutions that we present in Section III. Then we apply the
non-smooth Pontryagin Maximum Principle and we derive
and exploit the necessary conditions of optimality in Section
IV, to finally obtain optimal structures for the best and the
worst strategies. We then illustrate the theoretical results with
numerical simulations in Section V and we discuss about
their application.

II. MODEL AND FRAMEWORK
A. Model Description

We consider the simple crop model inspired by previous
existing literature ([1], [14], [17]), representing a soil mois-



ture balance in terms of soil evaporation, plant transpiration
and water contribution through irrigation, and biomass pro-
duction being influenced by water stress.

Ṡ(t)= k1(−ϕ(t)KS(S(t))−(1−ϕ(t))KR(S(t))+k2u(t)) (1)

Ḃ(t) = ϕ(t)KS(S(t)) (2)

V̇ (t) = u(t) (3)

The system evolves over a fixed time interval [0,T ] repre-
senting the total season from sowing to harvest, S denotes the
relative soil water content, B denotes the biomass production,
V denotes the water consumption from the beginning of
the season, with initial conditions B(0) = 0 and V (0) = 0.
The normalizing positive constants k1 and k2 come from
agronomical properties (and we assume that k2 > 1 to ensure
the local controllability of the system). The renormalized
controls are measurable functions defined on [0,T ] and
taking values in [0,1]. The function ϕ represents the evo-
lution of the radiation interception efficiency related to the
plant cover rate, and it is supposed to be C1, increasing,
and taking values in [0,1]. The functions KS and KR are
continuous, piecewise affine, non-decreasing, and defined by
the following expressions :

KS(S) =


0 ,S ∈ [0,Sw]
S−Sw
S∗−Sw

,S ∈ [Sw,S∗]
1 ,S ≥ S∗

(4)

KR(S) =

{
0 ,S ∈ [0,Sh]
S−Sh
1−Sh

,S ≥ Sh
(5)

where 0 < Sh < Sw < S∗ < 1 are soil water limits thresholds
depending on soil and plant properties (hygroscopic point,
wilting point, and hydric stress threshold). Thus defined, the
functions KS and KR describe respectively the behaviour of
the soil and the plant when subject to different moisture
levels, especially when the plant suffers from water stress.

B. Targets and Constraints

The system will be subject to both biological and operating
constraints. First the soil moisture has to belong to [0,1].
Moreover the operator might want to prevent plants to
undergo too much of a water stress, therefore we add a tol-
erance threshold Sw < Stol < S∗ and the following constraint
:

∀t ∈ [0,T ], Stol ≤ S(t)≤ 1 (6)

As different objectives may be aimed at by the operator, we
introduce different problems corresponding to these different
targets.

• (B1) : Maximizing the biomass production using a
limited quota of water. This means maximizing B(T )
under the terminal condition V (T )≤Vinit where Vinit is
the initial quantity of available water.

• (B2) : Minimizing the water consumption to reach
a certain biomass production. This means minimizing
V (T ) under the terminal condition B(T )≥ Btarget where
Btarget is the objectif of biomass production.

• (B3) : Maximizing a financial balance between biomass
sellings and water consumption cost. This means maxi-
mizing g(B(T ))−c(V (T )) where g and c are functions
representing the earnings and spendings of the exploita-
tion, and satisfy g(0) = c(0) = 0, g′ > 0 and c′ > 0.

For application considerations, we would like to assess the
potential margin that an operator could obtain by solving
these problems, then we introduce their mirror problems
where we aim for the worst possible outcome according to
the objective.

• (W1) : Minimizing the biomass production using at least
a certain quota of water. This means minimizing B(T )
under the terminal condition V (T )≥Vinit .

• (W2) : Maximizing the water consumption to reach
at most a certain biomass production. This means
maximizing V (T ) under the terminal condition B(T )≤
Btarget .

• (W3) : Minimizing the financial balance between
biomass sellings and water consumption cost, i.e. min-
imizing g(B(T ))− c(V (T )).

C. Framework

Since the soil is conveniently refilled in water during
winter, we consider S0 ∈ (S∗,1] as the initial state of the
soil moisture. In the following, we denote Sti,Si,u(·)(·) the
trajectory of S induced by the control u with initial time ti
and initial condition Si. We introduce the times t∗ = sup{t ∈
[0,T ], S0,S0,0(t) > S∗} and ttol = sup{t ∈ [0,T ], S0,S0,0(t) >
Stol}, we assume that these times are lower than T , and we
define the following controls :

U∗(t) =

{
0 , t ∈ [0, t∗)
using(t,S∗) , t ∈ [t∗,T ]

(7)

Utol(t) =

{
0 , t ∈ [0, ttol)

using(t,Stol) , t ∈ [ttol ,T ]
(8)

where we used the expression of the control forcing the soil
moisture to remain constant at a value S̃ ∈ [0,1] :

using(t, S̃) =
ϕ(t)KS(S̃)+(1−ϕ(t))KR(S̃)

k2
∈ [0,1] (9)

Notice that this control is feasible under the assumption k2>
1. We then see that the control U∗ represents a situation
where the plant does not suffer from water stress, and the
control Utol corresponds to an extreme trajectory according
to the state constraint (6). We define the following notations
:

V ∗ =
∫ T

0
U∗(t)dt , Vtol =

∫ T

0
Utol(t)dt (10)

Bmin =
∫ T

0
ϕ(t)KS(S0,S0,Utol(·)(t))dt , Bmax =

∫ T

0
ϕ(t)dt

(11)
The terminal conditions for the different problems have
to be reachable, and we place our work in the context
of water scarcity (or deficit irrigation, as in [11], [16]),
meaning that we are not able to maintain a sufficient soil



moisture to prevent any hydric stress (when we try to do the
best possible). Consequently, we can precise the terminal
conditions for our different problems :

• (B1),(W1) : Vtol <Vinit <V ∗

• (B2),(W2) : Bmin < Btarget < Bmax

III. THE OPTIMIZATION PROBLEM

As we seek to apply the Pontryagin Maximum Principle,
we have to deal with the state constraint (6) first. Following
an idea in [7], we replace the constraint by additional state
equations :

Ẏ (t) =min(0,S(t)−Stol) , Ż(t) =max(0,S(t)−1) (12)

with complementary initial and final conditions :

Y (0) = Z(0) = 0 , Y (T ) = Z(T ) = 0 (13)

We then rewrite our system of equations as follows :

Ṡ(t) = k1(−ϕ(t)KS(S(t))− (1−ϕ(t))KR(S(t))+ k2u(t))
Ḃ(t) = ϕ(t)KS(S(t))
V̇ (t) = u(t)
Ẏ (t) = min(0,S(t)−Stol) = fY (S(t))
Ż(t) = max(0,S(t)−1) = fZ(S(t))

(14)
with initial conditions S(0) = S0, B(0) = V (0) = Y (0) =
Z(0) = 0 and terminal conditions according to the problem
we investigate. Denoting X = (S,B,V,Y,Z) and KB j (resp.
KW j), for j = 1, ...,3, the target set for the problem (B j)
(resp. (W j)), we say that a control u(·) is feasible for the
problem (B j) (resp. (W j)) if the corresponding solution
of (14) satisfies the terminal condition X(T ) ∈ KB j (resp.
KW j). We denote FB j (resp. FW j) the set of the feasible
controls for the problem (B j) (resp. (W j)).

A. General Formulation

We are now able to write the general formulation for our
problems :

(P)

 opti
u(·)∈F

Ω(X(T ))

X(T ) ∈ K
(15)

where X is a solution to the system (14), opti stands for in f
or sup according to the problem, and F , Ω and K are the
corresponding feasible set, terminal cost and target set. We
can sum all this up as in Table I.

TABLE I
PROBLEMS SETTINGS

P opti F Ω(X) K

B1 sup FB1 B R×R×]−∞,Vinit ]×{0,0}
B2 inf FB2 V R× [Btarget ,+∞[×R×{0,0}
B3 sup FB3 g(B)− c(V ) R×R×R×{0,0}
W1 inf FW1 B R×R× [Vinit ,+∞[×{0,0}
W2 sup FW2 V R×]−∞,Btarget ]×R×{0,0}
W3 inf FW3 g(B)− c(V ) R×R×R×{0,0}

Because of lack of space, we shall give only parts of the
proofs. We refer the reader to the preprint [2] that provides
detailed proofs.

B. Preliminary Results

We begin with a result of comparison between trajectories
for the soil moisture and consequences on the water con-
sumption.

Lemma 3.1: Let (S1,B1,V1,Y1,Z1) and (S2,B2,V2,Y2,Z2)
be two solutions of the system (14) on [t1, t2] with 0 ≤ t1 <
t2 ≤ T , and denote u1,u2 their respective associated control.
Assume that S1(t1) = S2(t1) and S1(t) ≥ S2(t) for all t ∈
[t1, t2]. Then :

∀t ∈ [t1, t2],
∫ t

t1
u1(τ)dτ ≥

∫ t

t1
u2(τ)dτ (16)

Moreover if the trajectories of S1 and S2 belong to [Sh,1],
then the inequality (16) is strict unless S1 and S2 are
identical.

Proof: Let t ∈ [t1, t2]. One has :

S1(t)−S2(t) = k1

∫ t

t1
ϕ(τ)

(
KS(S2(τ))−KS(S1(τ))

)
dτ

+ k1

∫ t

t1
(1−ϕ(τ))

(
KR(S2(τ))−KR(S1(τ))

)
dτ

+ k1k2

∫ t

t1
u1(τ)−u2(τ)dτ

Since KS and KR are non-decreasing in S, we get :

0 ≤ S1(t)−S2(t)≤ k1k2

∫ t

t1
u1(τ)−u2(τ)dτ (17)

Moreover for any fixed t ∈ [0,T ] the function S 7→
ϕ(t)KS(S)+ (1−ϕ(t))KR(S) is increasing over [Sh,1], then
if S1(·) and S2(·) belong to [Sh,1] the inequality (17) is strict
unless S1 = S2.

This result guarantees that for any Vinit ∈ (Vtol ,V ∗) there
exists an admissible control such that the corresponding tra-
jectory satisfies the contraint (6) and such that V (T ) =Vinit .
Furthermore we easily have a similar property stating that
S1 ≥ S2 ⇒ B1(T )≥ B2(T ), then for any Btarget ∈ (Bmin,Bmax)
there exists an admissible control such that the corresponding
trajectory verifies (6) and B(T ) = Btarget . This leads to the
unavoidable classical result on the existence of an optimal
solution to the optimization problems (P).

Lemma 3.2: Under the framework described in section
II.C, for each problem (P) with its corresponding setting
in Table I, there exists u∗P an optimal solution.

C. Properties of Optimal Solutions

Before applying the PMP, we can already give some prop-
erties on the optimal solutions to our different problems only
using arguments based on improving the cost by building
well-chosen controls.

Proposition 3.3: Let u∗B j be the optimal controls of their
respective problems (with j = 1, ...,3), and denote the corre-
sponding solutions by (SB j,BB j,VB j,YB j,ZB j). Then :

u∗B j(t) = 0, for a.e. t ∈ [0, t∗] (18)



∀t ∈ [t∗,T ], SB j(t)≤ S∗ (19)
Proof: For any feasible control v(·), consider

Sv(·),Bv(·),Vv(·) the corresponding solutions. Suppose that
v is optimal for (B j). Let E = {t ∈ [0,T ], Sv(t) ≤ S∗} and
t̂ = infE ≥ t∗. One has :∫ t̂

0
U∗(t)dt ≤

∫ t̂

0
v(t)dt and KS(S0,S0,U∗(·)(t)) = 1

The inequality
∫ T

t̂ v(t)dt ≥
∫ T

t̂ U∗(t)dt is thus not possible for
(B1) or (B2), and in the case (B3) we would have :

g(Bv(T ))− c(Vv(T ))≤ g(Bmax)− c(V ∗)

which means that v would not be optimal for (B3).
Then consider that

∫ T
t̂ v(t)dt <

∫ T
t̂ U∗(t)dt, one necessarily

has t̂ < T . We set :

E1 = {t ∈ [t̂,T ], v(t)< 1}

The set E1 has non null measure, because U∗(t) < 1 on
[t̂,T ], and the intersection E ∩E1 has also non null measure
(otherwise we would have v= 1 a.e. in E , which would imply
S increasing over E , that prevents S to reach the domain
below S∗).
Assume that t̂ > t∗. Then

∫ t̂
0 U∗(t)dt <

∫ t̂
0 v(t)dt. We con-

sider the control y(·), and its corresponding solutions
Sy(·),By(·),Vy(·), defined by :

y(t) =U∗(t) , t ∈ [0, t̂)
y(t) = v(t) , t ∈ [t̂,T ]\ (E ∩E1) and Sy(t)< 1
y(t) = min(v(t),1/k2) , t ∈ [t̂,T ]\ (E ∩E1) and Sy(t) = 1
y(t) ∈ [v(t),1] , t ∈ E ∩E1

with :

0 <
∫

E∩E1

y(t)− v(t)dt <
∫ t̂

0
v(t)−U∗(t)dt

Then we have :

Vy(T ) =
∫ t̂

0
U∗(t)dt +

∫
E∩E1

y(t)dt +
∫
[t̂,T ]\(E∩E1)

y(t)dt

<
∫ t̂

0
v(t)dt +

∫
E∩E1

v(t)dt +
∫
[t̂,T ]\(E∩E1)

v(t)dt

The associated solution Sy(·) satisfies :

∀t ∈ [0,T ], Sy(t)≤ 1 and ∀t ∈ [t̂,T ], Sy(t)≥ Sv(t)

with : ∫
E∩E1

Sy(t)dt >
∫

E∩E1

Sv(t)dt

Moreover one has Sv(t) ≤ S∗ over E ∩E1, and there exists
J ⊂ E ∩E1 of non null measure such that Sv(t)< S∗ over
J . Then :∫

E∩E1

ϕ(t)KS(Sy(t))dt >
∫

E∩E1

ϕ(t)KS(Sv(t))dt

This leads to :

By(T )>
∫ t̂

0
ϕ(t)KS(Sv(t))dt +

∫
E∩E1

ϕ(t)KS(Sv(t))dt

+
∫
[t̂,T ]\(E∩E1)

ϕ(t)KS(Sv(t))dt

To conclude, we have :

Vy(T )<Vv(T ) and By(T )> Bv(T )

Thus the control y(·) is feasible for (B j), and the control v(·)
is therefore non optimal for (B j). Hence t̂ = t∗ and (18) is
proven.

Next, for any feasible control v(·) such that v(t) = 0
over [0, t∗], we denote Sv(·),Bv(·),Vv(·) the corresponding
trajectories. Suppose that v is optimal for (B j), and consider
the sets E and E1 as before. We set :

G = {t ∈ [t∗,T ], Sv(t)> S∗}

Assume that G ̸= /0. Then we have :∫
G

using(t,S∗)dt <
∫

G
v(t)dt

Let us consider the following control z(·), and its associated
solution Sz(·),Bz(·),Vz(·), defined by :

z(t) = 0 , t ∈ [0, t∗]
z(t) = using(t,S∗) , t ∈ G

z(t) = v(t) , t ∈ E \E1 and Sz(t)< 1
z(t) = min(v(t),1/k2) , t ∈ E \E1 and Sz(t) = 1
z(t) ∈ [v(t),1] , t ∈ E ∩E1

with :

0 <
∫

E∩E1

z(t)− v(t)dt <
∫

G
v(t)−using(t,S∗)dt

By similar arguments as above, we get :

Vz(T )<Vv(T ) and Bz(T )> Bv(T )

Thus the control z(·) is feasible for (B j), and the control v(·)
is therefore non optimal for (B j). Hence G = /0 and (19) is
proven.

The next result indicates that the terminal conditions of
the different problems with a target are saturated (a detailed
proof can be found in [2]).

Proposition 3.4: Let u∗B1,u
∗
B2,u

∗
W1,u

∗
W2 be the optimal

controls of their respective problems, and denote the cor-
responding solutions as before. Then :

VB1(T ) =VW1(T ) =Vinit (20)

BB2(T ) = BW2(T ) = Btarget (21)

IV. OPTIMAL SYNTHESIS

We are going to apply the Pontryagin Maximum Principle
for nonsmooth systems (see [5]). According to the dynamics
(14) and the optimization problem (15), we can write a
unified Hamiltonian for all our settings :

HP =λ
S
Pk1(k2u− (ϕ(t)KS(S)+(1−ϕ(t))KR(S)))

+λ
B
P ϕ(t)KS(S)+λ

V
P u+λ

Y
P fY (S)+λ

Z
P fZ(S)



We have its following adjoint equations :

λ̇ S
P(t) ∈ ϕ(t)(λ S

P(t)k1 −λ B
P )∂CKS(S(t))

+(1−ϕ(t))λ S
P(t)k1∂CKR(S(t))

−λY
P ∂C fY (S(t))−λ Z

P ∂C fZ(S(t))
λ̇ B

P = 0
λ̇V

P = 0
λ̇Y

P = 0
λ̇ Z

P = 0

(22)

where ∂C denotes the Clarke generalized gradient (see [5]).
Thus, for any optimal solution u∗P,X

∗
P of (15), there exists

a vector ΛP = (λ S
P ,λ

B
P ,λ

V
P ,λY

P ,λ
Z
P ) which is an absolutely

continuous solution of (22) that maximizes the Hamiltonian
HP, and satisfies for all t ∈ [0,T ] :

|λ S
P(t)|+ |λ B

P (t)|+ |λV
P (t)|+ |λY

P (t)|+ |λ Z
P (t)| ̸= 0 (23)

and the transversality condition :

ΛP(T ) ∈ −NK (X∗
P(T ))− sgn(m)∇Ω(X∗

P(T )) (24)

where NK (X) is the normal cone to the set K at the point

X , and sgn :

{
min 7→ 1
max 7→ −1

. More precisely, these conditions

are detailed in Table II.

TABLE II
TRANSVERSALITY CONDITIONS

P λ S
P(T ) λ B

P (T ) λV
P (T ) λY

P (T ) λ Z
P (T )

B1 0 1 ≤ 0 ∈ R ∈ R
B2 0 ≥ 0 −1 ∈ R ∈ R
B3 0 g′(BP (T )) −c′(VP (T )) ∈ R ∈ R
W1 0 −1 ≥ 0 ∈ R ∈ R
W2 0 ≤ 0 1 ∈ R ∈ R
W3 0 −g′(BP (T )) c′(VP (T )) ∈ R ∈ R

Defining the switching function :

φP(t) = λ
S
P(t)k1k2 +λ

V
P (25)

the maximization of HP gives for a.e. t ∈ [0,T ] :
u∗P(t) = 0 if φP(t)< 0
u∗P(t) ∈ [0,1] if φP(t) = 0
u∗P(t) = 1 if φP(t)> 0

(26)

A. Optimality Necessary Conditions

First we show that the signs of the adjoints λ S
P do not

change over time.
Proposition 4.1: We have :

∀t ∈ [0,T ], λ
S
B j(t)≥ 0 and λ

S
W j(t)≤ 0 (27)

Proof: Suppose that there exists t̂ ∈ [0,T ] such that
λ S

B j(t̂)< 0. Then there exists ε > 0 such that λ S
B j(t)< 0 for all

t ∈ (t̂−ε, t̂+ε). Therefore φB j(t)< 0 for all t ∈ (t̂−ε, t̂+ε),
and the function SB j(·) is decreasing over this interval.
Since the trajectory of SB j(·) verifies the constraint (6), then

we deduce that SB j(t) ∈ (Stol ,1) for all t ∈ (t̂ − ε, t̂ + ε). As
a consequence, one has for t ∈ (t̂ − ε, t̂ + ε) :

λ̇
S
B j(t) ∈ ϕ(t)(λ S

B j(t)k1 −λ
B
B j)∂CKS(SB j(t))

+(1−ϕ(t))λ S
B j(t)k1∂CKR(SB j(t))

Since 0 ≤ ϕ ≤ 1, λ B
B j ≥ 0, ∂CKS ⊂R+ and ∂CKR ⊂R+, then

one has :

λ̇
(B j)
S (t) ∈ R− , ∀t ∈ (t̂ − ε, t̂ + ε)

Let A = {t ∈ [0,T ], λ S
B j(t)< 0}.

The function λ S
B j(·) is then non increasing over A , which

contradicts the necessary terminal condition λ S
B j(T ) = 0.

Hence λ S
B j(t)≥ 0 for all t ∈ [0,T ].

Next, suppose that there exists ť ∈ [0,T ] such that λ S
W j(ť)>

0. Then there exists δ > 0 such that λ S
W j(t) > 0 for all t ∈

(ť −δ , ť +δ ). Therefore φW j(t)> 0 for all t ∈ (ť −δ , ť +δ ),
and the function SW j(·) is increasing over this interval. Since
the trajectory of SW j(·) verifies the constraint (6), then we
deduce that SW j(t) ∈ (Stol ,1) for all t ∈ (ť − δ , ť + δ ). As a
consequence, one has for t ∈ (ť −δ , ť +δ ) :

λ̇
S
W j(t) ∈ ϕ(t)(λ S

W j(t)k1 −λ
B
W j)∂CKS(SW j(t))

+(1−ϕ(t))λ S
W j(t)k1∂CKR(SW j(t))

Since 0 ≤ ϕ ≤ 1, λ B
W j ≤ 0, ∂CKS ⊂R+, and ∂CKR ⊂R+, then

one has :

λ̇
S
W j(t) ∈ R+ , ∀t ∈ (ť −δ , ť +δ )

Let B = {t ∈ [0,T ],λ S
W j(t)> 0}.

From above, we deduce that the function λ S
W j(·) is non

decreasing over B, which contradicts the necessary terminal
condition λ S

W j(T ) = 0. Hence λ S
W j(t)≤ 0 for all t ∈ [0,T ].

The other ajoints are constant according to the equations
(21), and we can precise that there is no null adjoint amongst
the λ B

P and λV
P (a detailed proof can be found in [2]).

Proposition 4.2: We have :

λ
V
B1 < 0 , λ

B
B2 > 0 , λ

V
W1 > 0 , λ

B
W2 < 0 (28)

B. Singular Arcs

The next property is a crucial remark enabling us to state
that singular arcs are associated to trajectories where S(·)
remain constant. Moreover there is only some particular
values of S where a singular arc can occur.

Proposition 4.3: A singular arc for a problem (P) satisfies
SP(t) = S̃ where S̃ is a non-differentiable point of one of the
functions KS,KR, fY , fZ .

Proof: Consider a closed interval I = [t1, t2] of non-null
measure, such that φP(t) = 0 on I. This implies to have λ S

P

being constant equal to λ̃ S
P = − λV

P
k1k2

̸= 0 on this interval. If
the functions KS, KR, fY and fZ are differentiable at S(t̂)
where t̂ ∈ I̊, then by construction the quantities ∂CKS(SP(t)),
∂CKR(SP(t)), ∂C fY (SP(t)) and ∂C fZ(SP(t)) are constant equal
to K′

S(SP(t̂)), K′
R(SP(t̂)), f ′Y (SP(t̂)) and f ′Z(SP(t̂)) on a neigh-

borhood (t̂ − ε, t̂ + ε) of t̂. More precisely, since we know
that Stol ≤ SP(t)≤ 1, one has K′

R(SP(t̂))> 0 and f ′Y (SP(t̂)) =



f ′Z(SP(t̂)) = 0. Thus, from the equation verified by λ S
P , we

get for a.e. t ∈ I ∩ (t̂ − ε, t̂ + ε) :

0 ̸=−λ̃
S
Pk1K′

R(SP(t̂))

= ϕ(t)
(
(λ̃ S

Pk1 −λ
B
P )K

′
S(SP(t̂))− λ̃

S
Pk1K′

R(SP(t̂))
)

As the function ϕ is increasing, we deduce that this equality
cannot be satisfied for a.e. t ∈ I∩(t̂−ε, t̂+ε). Consequently,
a singular arc can only occur at a point SP = S̃ where one
of the functions KS, KR, fY or fZ is not differentiable.

Remark 4.4: If a singular arc happens at the value S = S̃,
we notice that the associated singular control is in fact known
and its expression is ũ(t) = using(t, S̃).

Furthermore, the set of possible singular points can even
be improved thanks to the following result (a detailed proof
can be found in [2]).

Proposition 4.5: For a problem (B j), a singular arc can
only occur at S̃ = Stol or S̃ = S∗.
For a problem (W j), a singular arc can only occur at S̃ = Stol
or S̃ = 1.

C. Structures of Optimal Solutions

The following proposition is the final key for describing
precisely the optimal structures, since it will help to deter-
mine the amount and nature of the different bang arcs (a
detailed proof can be found in [2]).

Proposition 4.6: For a problem (B j), the set χB j = {t ∈
[t∗,T ], φB j(t)≥ 0} is connected.
For a problem (W j), the set χW j = {t ∈ [0,T ], φW j(t)≤ 0}
is connected.

We define now the Ψ+ (resp. Ψ−) strategy, and we prove
that the optimal controls for the problems (B j) (resp. (W j))
belong to this class of time-varying feedbacks.

Definition 4.1: For td ,Vc, tc, we define the following time-
varying feedback control :

Ψ
+
td ,Vc,tc(t,X)=


0 if (S ≥ Stol ∧ t ≤ td)∨V =Vc ∨ t ≥ tc
using(t,Stol) if S = Stol ∧ t ≤ td
using(t,S∗) if S = S∗∧V <Vc ∧ t < tc
1 otherwise

Theorem 4.7: In the framework of the problem (B j), there
exists td ∈ [t∗,T ), Vc ∈ (0,Vinit ], tc ∈ (td ,T ) such that the
feedback control Ψ

+
td ,Vc,tc is optimal for (B j).

Proof: Let u∗B j(·) be an optimal control for the problem
(B j). As seen above, the set χB j is non-empty and connected,
and since the function φB j(·) is continuous, we deduce that
χB j is an interval [ta, tc] where 0 ≤ ta < tc ≤ T , and the
control u∗B j(·) is null outside this interval. From previous
results, we know that ta ≥ t∗ and tc < T . At any t ∈ χB j the
switching function φB j is non-negative, then for a.e. t ∈ χB j
one has either u∗B j(t) = 1 or u∗B j(t) = using(t, S̃) where S̃ ∈
{Stol ,S∗}. As a consequence, the quantity VB j(·) is increasing
on χB j and SB j(·) is non-decreasing on χB j. Furthermore, the
trajectory SB j(·) is thus composed of an increasing part (with
u∗B j = 1) and possible singular parts (with u∗B j = using and
SB j = Stol or SB j = S∗). The increasing part is thus over an
interval [td , t f ] with ta ≤ td < t f ≤ tc. At t = tc, we know that

SB j(tc) ≤ S∗ and since VB j is increasing on χB j we deduce
that tc and V (tc) are equivalently defined. We call tc the ”cut-
off time” and we set Vc =V (tc). According to what was said
above, we then have either ta = td or ta fully determined by
the trajectory S0,S0,0(·) such that S0,S0,0(ta) = Stol . Moreover,
the time t f is either equal to tc or fully determined by the
trajectory Std ,S(td),1(·) such that Std ,S(td),1(t f )= S∗. Finally, the
control u∗B j(·) is fully determined by the two parameters td
and tc (or equivalently td and Vc), and we easily check that it
fulfills u∗B j(t) = Ψ

+
td ,Vc,tc(t,S(t),B(t),V (t)) for a.e. t ∈ [0,T ].

The corresponding structure and optimality for the prob-
lems (W j) are obtained in a similar way.

Definition 4.2: For Vd ,Vc, tc, we define the following time-
varying feedback control :

Ψ
−
Vd ,Vc,tc(t,X)=


1 if (V <Vd ∧S < 1)∨Vc −V = T − t
using(t,1) if V <Vd ∧S = 1
using(t,Stol) if S = S∗∧V <Vc ∧ t < tc
0 otherwise

Theorem 4.8: In the framework of the problem (W j),
there exists Vd ∈ [0,Vinit), Vc ∈ [Vd ,Vinit), tc ∈ (0,T ) such that
the feedback control Ψ

−
Vd ,Vc,tc is optimal for (W j).

V. NUMERICAL ILLUSTRATIONS

Thanks to theoretical anaysis we can easily find the
optimal solutions by scouting the low dimensionned sets of
Ψ+ and Ψ− strategies. We then numerically compute (and
verify with BOCOP [23]) optimal solutions of examples to
visualize their structure. We have considered a parametrized
increasing function ϕ = ϕa,b (inspired by the shape of the
leaf area index in [4]) such that ϕa,b(0) = 0 and ϕa,b(T ) = 1
by :

∀t ∈ [0,T ], ϕa,b(t) =
γa,b(t)− γa,b(0)
γa,b(1)− γa,b(0)

where γa,b(t) = 1/
(
1+exp

(
a−2a(t/T )b

))
with a> 0,b> 0.

Then we have chosen a plausible set of (eventually rescaled)
values for the model parameters. In order to illustrate an
example of trajectories and control for the problems (B1)
and (W1), we made sure to select Vinit ∈ (Vtol ,V ∗), and the
set of parameters can be found in Table III.

TABLE III
PARAMETERS FOR (B1) AND (W1)

T S0 k1 k2 Sh Sw S∗ a b Stol Vinit

150 0.9 0.02 3 0.2 0.4 0.7 3.8 1 0.5 30

By implementing the parametrized strategies Ψ
+
td ,Vc,tc and

Ψ
−
Vd ,Vc,tc , we numerically found the optimal trigger times

tB1 = 58.4 and tW1 = 28.5 to obtain the corresponding max-
imal biomass BB1 = 67.6 and minimal biomass BW1 = 33.6.
We present the trajectories and their associated controls in
Fig. 1, Fig. 2, Fig. 3 and Fig. 4.

Moreover we can associate for each admissible initial
condition Vinit two values of biomass : BB1(T ) corresponding



Fig. 1. Optimal trajectory of SB1 for the initial condition Vinit = 30

Fig. 2. Optimal control u∗B1 for the initial condition Vinit = 30

Fig. 3. Optimal trajectory of SW1 for the initial condition Vinit = 30

Fig. 4. Optimal control u∗W1 for the initial condition Vinit = 30

to the best amount of biomass attainable using exactly the
quota Vinit , and BW1(T ) corresponding to the worst amount of
biomass attainable using exactly the quota Vinit . This leads to
draw two production curves as in Fig. 5 that we may compare
in order to quantify the difference between the strategies.

Fig. 5. Production curves for (B1) and (W1)

We can also illustrate the problem with a financial cost.
Using the definition of the functions g and c, we notice that
an optimal solution of (B3) has to verify VB3(T ) ∈ [Vtol ,v∗]
and BB3(T )∈ [Bmin,Bmax]. Then, for any Ṽ ∈ [Vtol ,V ∗] we can
associate a quantity BB1(T |Ṽ ) ∈ [Bmin,Bmax] corresponding
to the biomass production with the optimal strategy from
the problem (B1) where Vinit = Ṽ . We can draw the graph
of Ṽ 7→ g(BB1(T |Ṽ )) − c(Ṽ ), and the summit gives the
value of the maximal cost for (B3). It is then possible
to read the optimal coordinates of the problem (B3) on
this graph, see an example in Fig. 6, computed with the
parameters (T,S0,k1,k2,Sh,Sw,S∗,a,b,Stol) given in Table
III and renormalized costs functions as follows (the sales
of biomass is considered concave and the cost of water is
considered convex, according to recent behaviour) :

g(B) = B0.8 and c(V ) = 0.15∗V 1.2

The values of VB3 and g(BB3)− c(VB3) can also be di-
rectly computed by exploring the whole set of parametrized
Ψ

+
td ,Vc,tc strategies, and we numerically obtain VB3 = 33.4 and

g(BB3)− c(VB3) = 20.6.

Fig. 6. Production curve for (B3)

VI. CONCLUSION
Considering six optimization problems based on the same

set of dynamics of a simplified crop model, we have high-



lighted two structures for optimal strategies depending on the
criterion and target. These strategies can be implemented as
parametrized controls in small dimension, hence the optimal
solutions can be computed numerically and efficiently. The
perspectives are first to perform a numerical exploration with
a large number of parameter sets in order to determine the
respective influence of the different variables on the problem,
and then to assess the potential gain margin between the best
and the worst theoretical practices in order to bring decision
support with quantitative results in a concrete application.
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