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Abstract

Component-Based Software Engineering (CBSE) is a methodology that assembles pre-existing, re-
usable software components into new applications, which is particularly relevant for fast moving, data-
intensive fields such as bioinformatics. While Perl was used extensively in this field until a decade
ago,more recent applications opt for a Bioconductor/R or Python. This trend represents a significantly
missed opportunity for the rapid generation of novel bioinformatic applications out of pre-existing
components since Perl offers a variety of abstractions that can facilitate composition. In this paper,
we illustrate the utility of Perl,for CBSE through a combination of Object Oriented (OO) frameworks,
the Perl Data Language (PDL) and facilities for interfacing with non-Perl code through Foreign Function
Interfaces (FFI) and inlining of foreign source code. To do so, we enhance Polyester, a RNA sequencing
simulator written in R, and edlib a fast sequence similarity search library based on text edit distance.
The first case study illustrates the near effortless authoring of new, highly performant Perl modules for
the simulation of random numbers using the GNU Scientific Library (GSL) and PDL, and proposes Perl
and Perl/C alternatives to the Python tool cutadapt that is used to ”trim” polyA tails from biological
sequences. For the edlib case, we leverage the power of metaclass programming to endow edlib with
coarse, process based parallelism, through the Many Core Engine (MCE) module and fine grained
parallelism through OpenMP, a C/C++/Fortran Application Programming Interface (API) for shared
memory multithreaded processing. These use cases provide proof-of-concept for the Bio::SeqAlignment
framework, which can organize heterogeneous components in complex memory and command-line based
workflows for the construction of novel bionformatic tools to analyze data from the long-read sequencing,
e.g. Nanopore, sequencing platforms.

1 Introduction

Component-Based Software Engineering (CBSE), assembles pre-existing, reusable software components into
new applications. CBSE for scientific applications (SCBSE) has the potential to instill novel functionalities
in existing, extensively tested components with the promise of rapid development cycles that are particularly
relevant for fast moving, data-intensive fields such as bioinformatics. Dynamically typed, scripting, languages
have played a particularly crucial role in SCBSE by acting as glue that integrates and coordinates hetero-
geneous components or by facilitating communication of components that are organized as filters in complex
data flows. These languages confer additional benefits such as rapid prototyping and support for multiple
programming paradigms, that in turn allow effortless exploration of multiple architectural alternatives before
settling to a final design.

2 Perl in Bioinformatics

Perl was traditionally the go-to dynamically typed, scripting language in bioinformatics (“BioPERL”)
due to its robust text manipulation capabilities, which was credited with saving the Human Genome
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Project nearly 30 years ago [24]. Subsequently, Perl provided a platform independent way to construct
pipeline frameworks, i.e. a series of transformations between the output and input of (usually) command
line tools organised in filters[13]. With the winding down of the Human Genome Project in the early
2000s, the needs of bioinformaticians shifted partially away from sequencing to gene quantification and
experimental analysis using statistical tools. This shift in needs provided an opportunity for languages that
were deemed more appropriate for data analytics (e.g. Bioconductor/R initially and later Python) to enter
this space. These structural changes combined with the reputation of Perl as a read-only language and the
language’s overall declining overall popularity has led to a diminishing creation of new Perl modules targeting
bionformatics. The under-utilization of Perl in bioinformatics represents a significant missed opportunity to
enhance applications in the field by leveraging:

1. the vast resources of Comprehensive Perl Archive Network (CPAN) featuring

� a versatile and rich choice of Object Oriented (OO) modules that facilitate composition, while
promoting creative component reuse.

� an extensive, robust framework (Alien1) to fight the nemesis of dependency handling when
building Perl applications that utilize external/foreign libraries or tools,

� multiple mature frameworks for interfacing with foreign libraries. Such applications can also
leverage Perl’s rigorous framework for interacting with libraries in non-Perl languages using
Foreign Function Interfaces (FFI, e.g. Platypus::FFI2 for dynamic linking and the Inline3

modules for both dynamic and static linking. These frameworks provide in-script, alternatives to
the more conventional bridges[11] between Perl and C/C++ (XS, eXtendable Subroutine, SWIG,
Simplified Wrapper and Interface Generator) that often require including additional, or highly
technical in the case of XS, interface files in one’s modules.

� the Perl Data Language (PDL4), a performant, auto-parallelizable, vectorized array extension
that adds capabilities for multidimensional array handling, visualization, advanced numerical and
statistical calculations to Perl[10]

2. a shift away from traditional command-line, filter (in the Unix sense) communication based schemes
for components of complex data flows. While the command line still reigns supreme in this area[6,
14, 12], many novel algorithms [21, 7, 28] are delivered as both command-line tools AND libraries
suitable for embedding into other applications. This feature offers a unique opportunity for memory-
based alternatives to the traditional filter-based communication scheme that has been the mainstream
approach in bioinformatics[13].

3. the increasing realization that complex, production bioinformatic pipelines will benefit from evolving
towards abstract class-based APIs for defining task dependencies that execute on multicore hardwre
platforms or the cloud.

Perl’s support for multiple computing paradigms, including procedural, functional, object oriented and
even distributed, process based, programming seems ideally suited for this new world for bioinformatic
applications. As previously pointed out, class-based approaches will be needed to achieve ”a high level of
granularity in terms of the concurrent processing of data”[13]. It is precisely this insight, and the context
of the author’s applied work (Section 3.1) that provided the impetus of the Perl based object oriented and
metaclass programming approach for bioinformatic tasks (Section 3.2) described in this report.

3 Problem Description and Requirements

In this section we will provide a general, overview of the real world, applied problem of analysing data
from long-read sequencing[16], followed by the Perl solutions that were developed to address a few of the

1https://metacpan.org/pod/Alien
2https://metacpan.org/pod/FFI::Platypus
3https://metacpan.org/dist/Inline/view/lib/Inline.pod
4https://metacpan.org/pod/PDL
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challenges we encountered during the introduction of a new protocol for RNA sequencing (PALS-NS)[17].To
decouple the presentation of the Perl solutions from the specifics of the PALS-NS sequencing workflow, we
will utilize two case studies that highlight a newfound relevance of the language for rapid composition of
solutions for what is currently the largest ”market” in Bioinformatics, namely sequencing applications.

3.1 Of DNA and RNA Sequencing

Next Generation Sequencing (NGS) is an experimental methodology for the characterization of the genetic
information (DNA sequencing) of an individual (human, animal, plant, or even cell). These techniques which
evolved[9] from manual identification of ”ladder patterns” and radioactive detection on gel electrophoresis in
the 1970s and 1980s to semi-automatic methods for the analyses of distinct color patterns in capillary
electrophoresis devices (mid 1980s to 1990s), followed by pattern recognition of images of biochemical
reactions on the surface of two dimensional ”flow cells” (2000s to today). These techniques have continued to
evolve since the first report of the sequencing of the genomes of Craig Venter, the leader of the private group
that competed in the original Human Genome product, followed a few years later by the DNA pioneer James
Watson[26]. While the Human Genome Project required 100 million dollars and a multi-national effort over
nearly a decade, Professor Watson’s sequencing ony took the effort of a handful scientists for four months
and a price tag of 1.5 million dollars in 2008; fast forward in time, it is expected that the $100 genome will be
be widely available to everyone before the end of the present decade. Sequencing runs generate an enormous
amount of data, e.g. obtaining one’s one genome at the industry standard of x30-50 coverage (meaning each
base, or ”letter” in the DNA sequence is read 30-40 times) amounts to the equivalent of 100-150 GB of
processed text per person; the actual amount of raw data is closer to 200GB, necessitating computationally
efficient workflows for processing and interpretation.
Over the course of the last 2 decades the scope of sequencing expanded from genomic (DNA) to transcriptomic
(RNA) sequencing, allowing one to peek beyond the ”storage” of genetic information to the ”trascription” of
said information and the regulation of multiple genetic and epigenetic phenomena through RNA molecular
intermediates. RNA sequencing, which often proceeds biochemically through in-vitro DNA biochemistry
comes with its own set of unique challenges for the bioinformatic analyst:

1. each RNA molecule will be present in variable amounts in the original sample, and this unequal
representation creates issue for the identification of rare RNA species in the context of sequencing errors
(equivalent to text corruption). In constrast, this unequal coverage is not present when sequencing
DNA, considerably simplifying the ue of information for biological inferences.

2. while the linear structure of the genome is more or less constant, RNA species are often scrambled
(e.g. rearranged, ”cut & pasted” versions of their genomic counterparts. Hence, even the choice of the
database used during searching can have a a large influence on the final results.

3. statistical techniques for identifying the evolutionary relationship between two DNA sequences are not
well adapted to the problem of ”similarity searching”, a form of approximate text matching, between
a given RNA sequence and the potential universe of RNA molecules it could have come from. This
in turn requires the researcher to be open to explore algorithmic alternatives to traditional similarity
search methods. In such a fluid environment, the need for new, more accurate and more performant
software will almost never be satisfied.

4. each of the previous steps have to be carried out independently for the tens of millions of sequences
generated by a single RNA sequencing run. However, approximate text matching/similarity searching
is a computationally demanding technique; the gold standard of sequence(text) alignment between a
query of length m letters and a reference sequence of length n in a database exhibits worst case space
and time complexity that scales as O(mn). A large array of heuristic methods to execute such searches
have been proposed over the last four decades in the literature[23, 22, 5, 19], with no clear path to
make a choice between methods that are slow but reliable, and those that are fast by cutting corners.
More importantly, an analyst that would like to propose and evaluate new (or hybrid) methods for
similarity searching will often lack a versatile framework to compose new software for these analyses
out of pre-existing components.
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3.1.1 Third Generation Sequencing Methods

Third generation sequencing approaches were introduced at the end of the 2000s [1, 25] and provided a
significant amount of innovation over the 2nd generation ones: the ability to generate longer reads (making
it potentially easier to identify a given nucleic acid sequence) using a variety of a single molecule detection
methodologies in real time, leading to lower cost, smaller, even portable devices (e.g. Oxford Nanopore
Technologies Minion and Flongle platforms). In contrast to early generation methods, the length of the
sequences from long read platforms is not uniform complicating the filtering of sequence features introduced
by the biochemical reactions of the sequencing protocols. Furthermore, open platforms such as Nanopore
sequencing don’t confine the developer into a single biochemical workflow; in fact, one may devise nearly
countless protocols that target detection of specific RNA modules, modifying the number and nature of
the steps until the sample is loaded on the sequencer device. Invariably these modifications will end up
introducting additional features to the sequences, i.e. additional text that will have to be filtered out
prior to analysis. And here lies a problem: while computational pipelines for 2nd generation NGS could
rely on positional information for such filtering (e.g. trim the first X and the last Y letters in a given
sequence), long-read methods have to rely to some extent to approximate text matching/similarity searching
to both filter out artificial sequence features AND identify (or map) the filtered text to the genome or
transcriptome (the collection of RNA species in a given organism). To make some of the issues more
concrete let us consider the computational requirements for the analysis of sequencing data from the PALS-
NS protocol[17], a modification of the original SMART RNA sequencing protocol[27] that was patented
by the author for the simultaneous profiling of the entire universe of RNAs present in a cell. The basic
idea of PALS-NS (Figure 1) is to artificially tag all RNA molecules in a given sample by attaching a long
stretch of adenine bases polyA tail, thus extending the scope of SMART from messenger RNA molecules
(that naturally harbor such tails) to all RNA species; the polyA tail is an indispensable component of the
biochemistry of the protocol, which allows capture and amplification of RNAs by the polymerase reaction.
Each step in the biochemical wet lab workflow modifies the sequence present in the original sample (”inserts”
in Figure 1) by introducing various artificial features. These extraneous features such as the polyA tail, as
well as the ”adapters” used to amplify sequences during PCR are nuisance ”decorators”, which have to
be computationally removed from the text that is generated by the sequencers before a given insert can
be mapped. Removal of the decorators is particularly important for short (20-30 letters long), regulatory
RNAs, e.g. microRNAs that are 7-10 times shorter than the decorators and the polyA tails used to ”fish”
them out from the biological sample. These shorter RNAs are highly relevant for the development of
new clinical diagnostics, for understanding complex biology and for the development of RNA interfering
therapies. Hence, getting their identification just right is crucial for a wide spectrum of applications.
The original computational pipeline to remove the decorators in sequences generated by PALS-NS was written
in Python as a collection of scripts that hardwired particular choices (e.g. the use of the software BLAST[6]
for similarity searching. While these choices deemed justified at the time, a closer re-examination of the
problem needs reveal significant shortcomings in some of the initial component choices, which unfortunately
had locked us in the design of the pipeline. A subsequent (non-public) rewrite in Perl suggested substantial
potential for flexible parameterization of the programming interface for nearly all steps in Figure 1C.
Such parameterization could avoid hardwiring the algorithm for similarity searching for decorators, or the
technique used to remove/trim the polyA tails, facilitating the exploration of multiple potential alternatives.
In summary, the increasing popularity and open nature of the 3rd generation sequencing
methods, create an everlasting need for versatile, customizable and parallelizable software for
the analysis of data that are generated by these methods.

3.2 Perl for SCBSE in Bioinformatics for the 21st century

The preceding exposition provides the general background of the challenges faced by anyone introducing a
novel biochemical analysis workflow that requires the development of a more or less custom computational
data flow and pipeline. The relevant issues are worth summarizing in a concise form in order to understand
the rationale of the use cases we selected to work on:

Write the Software that Writes the Tests. One needs a way to generate test data for the algorithmic
innovations (or compositions!) one would like to throw at the computational workflow such as the one
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Figure 1: PALS-NS experimental workflow (A), text- based model of a well-formed read (B) and custom
bioinformatics pipeline (C) to remove decorators. Dashed boxes indicate modifications to biochemical
protocols, read models and bioinformatics pipeline for the SMART protocol. Abbreviations: SSP, Strand
Switching Primer, PCR, Polymerase Chain Reaction, RT, Reverse Transcription, VNP, poly-thymidine based
primer. Figure reproduced from [17], available under the CC-BY 4.0 International license.
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shown in Figure 1C. While actual bench work following the steps outlined in Figure 1A are crucial,
real world experiments take money and effort to generate and analyse. Often one would like to test
an algorithm against some known ground truth, and the easiest way to generate such data is through
simulations. Sequencing simulators have been indispensable in evaluating new algorithms in the field,
but they tend to target mature experimental workflows. For novel workflows, one will often need to
modify an existing simulator, rather than write it from scratch, leading to the first case study we
consider below, i.e. the modification of the Polyester RNA sequencing simulator.

Fool Around to Find Out. One needs a framework for rapidly combining components that may had not
been tried out before to do something great (e.g. to provide an accurate, performant pipeline for the
tasks shown in Figure 1C). At a minimum one should be free to step out of the traditional Unix filter
approach for making components communicate. The amount of DRAM available in our computers
means that one SHOULD do as many tasks as possible in memory, rather than relying on disk IO.
At the same time, the number of processor cores available in compute platforms from cell phones to
servers and from cell phones to GPU accelerators increases year by year, so why not farm out tasks
to them? In the second case study, we thus take an existing, highly performant implementation for
similarity searching and show how one can go beyond its command line version, to construct parallel
sequence mappers. Both the extent and the granularity (process vs thread) of parallelism are tightly
controlled by the user through the Perl programmer interface.

Abstract and Parallelize. We propose (and implemented) abstract classes for the two data flows that
cover the vast majority (if not all) of sequence mapping scenarios scenarios. These scenarios illustrate
the tremendous potential of Perl for abstraction of parallel applications using the Task::Kensho

modules for Enlightened Perl development.

Work with NUMA. Non Uniform Memory Access (NUMA) machines, are a significant hardware player in
bioinformatics. In fact, for the memory bound sequence similarity algorithms, the NUMA architecture
may exert a considerable influence on performance[15]. Therefore, our benchmarking was undertaken
in the most accessible NUMA mchine, a dual socket Xeon workstation (see Appendix for the technical
specifications) and certain benchmarking results were directly related to the NUMA topology of our
target hardware.

A unifying theme of the two case studies is the use of Perl’s ligher object oriented modules to raise the level
of abstraction during component composition. For the more challenging second case study we leveraged
Perl’s meta-programming frameworks in order to properly and rigorously abstract the problem of creating a
sequence mapping application. The two case studies are conceptually linked through the polyA tagging of
biological sequences and the need to remove them. We thus opted to highlight a couple of solutions for this
task under the first case study.

3.3 Case Study 1: Polyester

Polyester[8] is an R based RNA sequencing simulation of key steps in a RNA-seq experiment, including
fragmentation, reverse-complementing, and sequencing, and produces files of RNA reads out of a set of
reference sequences (usually in the FASTA flat text format). Polyester can simulate differential expression
of similar versions of the same RNA (”isoforms”) for a variety of experimental designs at the read level.
This feature allows one to use the output of Polyester to test methods for mapping and RNA quantification
of rather similar RNAs. One of the main technical advantages of Polyester over more recent simulators
is the ability to simulate smaller RNA sequencing (RNA-seq) datasets, reducing the computing resources
and time required to generate such datasets. To do so, Polyester does not provide methods to attach
polyA tails (or the decorating features of SMART protocols), rather focusing on generating abbreviated and
error-prone of the sequences of interest (inserts in Figure 1B). A straightforward enhacement of Polyester
to enable the simulation of sequences with polyA tails would attach those to the reference sequences before
those were provided to the software. To do so from within Perl one would need to implement (or get from
CPAN) modules that can:

1. read, manipulate and write FASTA files in a performant manner. While the BioPerl and FAST:BIO

distributions provide modules for reading such files, these implementations are geared towards the
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highly annotated reference sequences biological databases, instead of the featureless FASTA files that
Polyester needs. The BioX:Seq modules introduced in the early 2020s are not only more light, but
they target FASTA files generated by sequencers and were thus chosen to provide the relevant IO
functionalities.

2. simulate random lengths of polyA tails using a variety of truncated statistical distributions. Truncated
distributions restrict the random lengths to lie within certain windows, as one would expect from
biochemical and biological processes. There are currently no modules in CPAN that can simulate
truncated distributions; even R with its extensive statistical computing capabilities does not offer
many choices for this task. Hence the simulation of such random variables had to be implemented
from scratch in an extensible manner (and the first version of a new PDL module!).

3. a way to keep track of the modifications (length of the RNA tail) introduced by the polyA tail simulation
step, so that algorithms for the trimming of the polyA tails could be evaluated against the ground
truth.

3.4 Case Study 2: Edlib

Edlib[28] is an extremely fast lightweight C++ library for the alignment of two sequences and the assessment
of their similarity using the Levenshtein (edit) distance[2]. The edit distance is he minimum number of
single-character edits (insertions, deletions or substitutions) required to change one sequence into the other;
two identical sequences will have an edit distance of zero, with an increasing distance indicating increasing
dissimilarity. The edit distance is a metric over strings, that has applications in any area in which one requires
approximate string matching, e.g. natural language processing, bioinformatics or even optical character
recognition. One of the fastest algorithms for implementing edit distance searching is that by Myers[20] that
improved over the search implemented by Unix’s agrep utility. Edlib improved upon the Myers algorithm.
The codebase available at the github repository provides build files that generate static and dynamic libraries,
as well as a command line tool that can support a limited form of database search: that of searching a large
number of queries against a single target. To allow edlib in all its incarnations to be used in production, we:

1. abstracted the data flows during sequence mapping applications, treating the software component
performing the sequence search as a black box.

2. overcome the limited ability of the Edlib command-line aligner to carry out database searches and
highlight the ability of the abstract class design to operate with command-line tools and heavy disk
IO and with libraries exchanging data across languages.

3. used our abstractions to embed Edlib into a Perl application that exhibits user controlled levels of
coarse and fine grained parallelism.
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4 Results and Discussion

4.1 Enhancing Polyester

The main module created for this use case provides an application, command-line tool that wraps over the
Polyester simulator, which by itself is a Bioconductor package in R[8]. This application was created under
the namespace Bio::SeqAlignment::Applications::Sequencing::Simulators::RNASeq::Polyester. It
consists of two executable command line scripts:

1. a Perl script (polyester polyA.pl) that parses command line arguments with Getopt::Long. These
include ALL the arguments that one would provide to the top level simulation function of the Polyester
Bioconductor package from within R AND the parameters that control the stochastic simulation of
the polyA tails.

2. the Perl application then calls a companion R script(polyester.R) through the command line providing
the arguments required by the simulation function in Polyester, generates the simulated sequencing
data and writes them out to the disk.

Using the command line to communicate comes with certain benefits: a) the interface of the two scripts is
modeled after the arguments of the top level simulation function in Polyester, so that the additional
documentation could be kept to a minimum b) the option parsing packages in R, getopt, and Perl,
Getopt::Long are so similar, that an AI ChatBot can be used to generate the code to parse the argument list
in one language from the argument parsing sequence in the other (in fact, we first wrote the R command-line
API and had Github Copilot generate the Perl version of the argument parsing code). The application itself
is very simple, with a very simple pipeline structure which should, at some point, be re-written using only
CPAN pipeline modules).

## P i p e l i n e Segment 1 : read sequences from the f a s t a f i l e
my $b i o s e q o b j e c t s = r e a d f a s t x s e q u e n c e s ( $ f a s t a f i l e ) ;

## P i p e l i n e Segment 2 : s e t up var i ous d e f a u l s i f not provided
. . .

## P i p e l i n e Segment 3 : adds polyA t a i l s to the sequences & record what was done
my $modi f icat ions HoH =

add polyA ( $b i o s e q o b j e c t s , $ t a i l d i s t , $seed , @distparams ) ;

## P i p e l i n e Segment 4 : wr i t e the modi f i ed sequences to a new f a s t a f i l e
. . .

## P i p e l i n e Segment 5 : s imulate reads with R
Po lye s t e r run ( . . . ) ;

## P i p e l i n e Segment 6 : s t o r e the m o d i f i c a t i o n s in to a f i l e f o r f u tu r e use
my $mod fname = s t o r e m o d i f i c a t i o n s (

mods => $modif icat ions HoH ,
b i o s e q f i l e => $ f a s t a f i l e ,
format => $modformat

) ;

## P i p e l i n e Segment 7 : s p l i t f i l e s i n to sma l l e r f i l e s
. . .

## P i p e l i n e Segment 8 : c leanup
unlink $ r e a d s f i l e unless $h a s r e a d f i l e ;
unlink $ f a s t a f i l e ;

Listing 1: Pipeline logic of the polyester polyA.pl application.

To use the script one must provide a FASTA file of reference sequences (e.g. myseq.fasta), the distribution
(argument taildist, one of the distributions in the GNU Scientific Library, GSL) that provides an appropriate
model for the length of the polyA tail, the distribution parameters (including the left and the right truncation
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limits as the last elements of the distparams list), and the data persistence format used to record the
modifications (currently one of YAML, JSON or MessagePack). The remaining arguments are those that
the Polyester expects; sensible default values are defined for most parameters and may be omitted from
the command-line interface. An example invocation will look something like:

po lye s t e r po lyA . p l == f a s t a f i l e myseq . f a s t a == t a i l d i s t gamma \
==distparams 125 .0 1 .0 0 .0 250 .0 ==f r a g l e n 100 ==f r ag sd 10 \
==numreps 1 ==s t randspec TRUE ==r ead l en 75 ==pa i red F \
==maxseqs 1000 ==modformat YAML ==outd i r /path/ to / output

During the construction of the enhanced simulator we implemented several modules under the namespace
Bio::SeqAlignment::Components. Table 1, shows a some of these modules that either support (e.g. read
sequences using the BioX::Seq module) or are supported by the simulator. The complete list of modules
may be found in the CPAN module Bio::SeqAlignment::Examples::TailingPolyester.

Table 1: Sample of modules supporting or supported by the Enhanced Polyester

Package Name Functionality Implementation Details

x ::TrimTail Provides a generic interface to tail trimming
operations. Pluggable module supporting IO from
disk (traditional Unix filter) or from memory
(mixed modes are also supported).

Inherits from the CPAN
module Moo.

x ::TrimTail::Regex Plugin for the TrimTail module that uses regular
expression pattern matching to tril tails from
sequences

Inherits from the CPAN
module Moo::Role

x ::TrimTail::ChangePointCInline Plugin for TrimTail that applies statistical
methods for changepoint detection to identify and
trim polyA tails.

Inherits from the CPAN
module Moo::Role and uses
Inline::C to provide a
naive C implementation for
changepoint detection.

x ::Conversions::BioXFASTX Handles the conversion of in-memory lists of
BioX::Seq objects to FASTX (where X is either
A or Q indicating a FASTA or a FASTQ) file in
the disk.

Inherits from the CPAN
moduleMoo::Role.

x stands for Bio::SeqAlignment::Components

4.2 A Tiny Role for Randomness

The enhanced simulator requires the user to specify the randomness they want to appear in the sequence
tails, but how does the module itself generate random numbers under exact specifications? While one can
use custom methods to simulate random numbers from (truncated) distributions, there is one truly generic
method that can be applied to all distributions, i.e. the inverse CDF5 method. Given a random variable
X with CDF FX(x), the method is based on the principle that if U is a uniform random variable on (0, 1),
then X = F−1

X (U) has the same distribution as X.This method requires that the CDF FX(x) is invertible,
which is the case for most continuous distributions. For discrete distributions, the method can be adapted
by using the inverse of the discrete CDF. Here is what is the inverse CDF algorithm looks like:

1. Generate a uniform random number u in the interval (0, 1) for the non-truncated case. To sample from
the distribution of a random variable X that is truncated to the interval [L,R] one draws the uniform
random value in the interval (FX(L), CDF (FXR)) .

2. Compute x = F−1
X (u), where F−1

X (u) is the inverse of the CDF function6 of X.

3. The number x is a random number distributed according to the distribution of X.

5As one may recall from introductory statistics, the CDF of a real-valued random variable X, evaluated at x, is the probability
function that X will take a value less than or equal to x

6The inverse CDF function is also known as the quantile or the percentile function of the distribution
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The necessary components for the algorithm are thus: a) methods to compute FX(x) and F−1
X (x) for

an specific distribution X and b) facilities to draw uniform random numbers. One reasonably clean way to
pack this logic into a software component is to

1. import all the relevant definitions from a module that provides methods for the CDF and inverse CDF
methods for a very large collection of random distributions into a new module

2. compose a role for the inverse CDF method into the module of the previous step

3. provide the module for the simulation with a plugin for the random number simulator

With this design, one examine the performance gains of different codings of the inverse CDF method,
i.e. by composing modules for stochastic simulation that compose alternatives roles AND different random
number simulators. The latter is particularly important as there alternatives for the underlying engine that
draws the random uniform numbers that differ in speed of generation, statistical correctness and (less relevant
for our application) cryptographic security. In Perl, two modules PDL::GSL::CDF and Math::GSL::CDF

provide interfaces to the CDF functions of the (very large) collection of random distributions in the GSL
library. The main difference between the two packages is that the former provides access to these distributions
via a PDL interface, while the latter is a pure Perl module. The PDL also provides alternatives to the Perl
rand function for the uniform random number generator (RNG); one can also use the RNG from the GSL
itself, or PDL’s builtin replacement random that is based on the highly performant, but not cryptographically
secure, Xoshiro generators [3], a family of RNGs with implementations in numerous programming languages
https://prng.di.unimi.it/ .
This is the role that provides the interface to the native Perl RNG:

use s t r i c t ;
use warnings ;

package Bio : : SeqAlignment : : Examples : : T a i l i n g P o l y e s t e r : :PERLRNG;
use Role : : Tiny ;

sub i n i t { undef ; }

sub random {
my ( $ s e l f , $random dim ) = @ ;
my $num rand values = 1 ;
$num rand values *= $ for @$random dim ;
my @retva l s = map { rand ( ) } 1 . . $num rand values ;
\@retva l s ;

}

sub seed {
my ( $ s e l f , $seed ) = @ ;
i f ( $seed ) {

$ s e l f =>{seed } = $seed ;
srand ( $seed ) ;

}
$ s e l f =>{seed } ;

}
1 ;

Listing 2: A simple OO API for random number generation.

The user can ask for random numbers over a number of dimensions and the random function will return
them as a flat array reference. The interfaces to the PDL and the GSL7 generators are defined analogously,
i.e. they include a random and seed methods.
The role for simulating, possibly truncated, distributions using vectorized PDL instructions is shown at
Listing 3. The role requires that any modules consuming it provide a few methods, i.e. random for uniform
random number generation, cdf, inv cdf for the calculation of the CDF and the inverse CDF functions,and
finally has distr to check whether the distribution to be simulated from is provided by the consuming

7The GSL generator also requires an explicit initialization step, since that library supports multiple concurrent seeded
generators by design
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module. The method simulate truc receives its methods through a hash, and missing arguments are set
to sensible default values. This allows us for example to return a single random number if the user does
not specify how many they need, while also simulating left, right, and non-truncated versions if the relevant
arguments are not provided by the caller.

use s t r i c t ;
use warnings ;

package Bio : : SeqAlignment : : Examples : : T a i l i n g P o l y e s t e r : : SimulateTruncatedRNGPDL ;

use Carp ;
use PDL;
use Role : : Tiny ;
r e q u i r e s qw( random h a s d i s t r cd f i n v c d f ) ;

sub s imu la t e t runc {
my $ s e l f = sh i f t ;
my %args = @ ;
my $random dim = $args {random dim} | | [ 1 ] ; ## d e f a u l t to 1 random number
my $d i s t r = $args { d i s t r } | | ’ f l a t ’ ;
my $ l e f t t r u n c l m t = $args { l e f t t r u n c l m t } | | ’ mis s ing ’ ;
my $ r i g h t t r u n c l m t = $args { r i g h t t r u n c l m t } | | ’ mis s ing ’ ;
my $params = $args {params} | | ’ mis s ing ’ ;
my $ c d f v a l a t l e f t t r u n c l m t ;
my $ c d f v a l a t r i g h t t r u n c l m t ;

## s e t up san i ty checks
croak ”The  d i s t r i b u t i o n  $d i s t r  i s  not  a v a i l a b l e ”

unless $ s e l f =>h a s d i s t r ( $d i s t r ) ; ## d i s t r must e x i s t
i f ( $params eq ’ miss ing ’ && $d i s t r ne ’ f l a t ’ ) {

croak ”Must  prov ide  parameters  f o r  the  d i s t r i b u t i o n  $d i s t r ” ;
} ##and parameters cannot be miss ing u n l e s s i t i s a f l a t d i s t r i b u t i o n

## s e t up CDF computations at the t runcat i on l i m i t s
i f ( $ l e f t t r u n c l m t eq ’ miss ing ’ ) {

$ c d f v a l a t l e f t t r u n c l m t = pdl ( 0 ) ;
}
else {

$ l e f t t r u n c l m t = pdl ( $ l e f t t r u n c l m t ) ;
$ c d f v a l a t l e f t t r u n c l m t =

$ s e l f =>cd f ( $d i s t r , $ l e f t t r u n c l m t , $params ) ;

}
i f ( $ r i g h t t r u n c l m t eq ’ miss ing ’ ) {

$ c d f v a l a t r i g h t t r u n c l m t = pdl ( 1 ) ;
}
else {

$ r i g h t t r u n c l m t = pdl ( $ r i g h t t r u n c l m t ) ;
$ c d f v a l a t r i g h t t r u n c l m t =

$ s e l f =>cd f ( $d i s t r , $ r i gh t t runc lmt , $params ) ;
}
my $doma in l engh t runc d i s t r =

$ c d f v a l a t r i g h t t r u n c l m t = $ c d f v a l a t l e f t t r u n c l m t ;

## now s imulate the truncated d i s t r i b u t i o n
. . .

}

1 ;

Listing 3: An API for the Inverse CDF method.

The API of the cdf, inv cdf is very simple: these methods receive the name of the distribution whose
(inverse)CDF value is requested, followed by the value of the random value we are asking the calculation
at and finally the parameters of the distribution as an array reference. As shown in Listing 4, coding the
actual inverse CDF calculation using PDL takes four lines of code and can happen efficiently and with a single
memory allocation because of PDL’s capabilities for vectorized, in-place mathematical operations.
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## now s imulate the truncated d i s t r i b u t i o n
my $ s imu la t ed va lue s = $ s e l f =>random ( $random dim ) ;
$ s imulated va lues=>i np lace=>mult ( $doma in l engh t runc d i s t r ) ;
$ s imulated va lues=>i np lace=>plus ( $ c d f v a l a t l e f t t r u n c l m t ) ;
return $ s e l f =>i n v c d f ( $d i s t r , $ s imulated va lues , $params ) ;

Listing 4: The inverse CDF calculations in PDL.

In base Perl, one can either have their cake (use map to effectively vectorize the calculation, but forego
in-place operations while paying the price of multiple memory allocations for each successive map) or eat it
(use a for loop to modify things in place). For the comparator timings discussed below, we decided to eat
the cake and opted for the C-like code shown in Listing 5. This is the largest change one has to make to
Listing 3 to code the inverse CDF method in base Perl.

## now s imulate the truncated d i s t r i b u t i o n = non v e c t o r i z e d code
my $ s imu la t ed va lue s = $ s e l f =>random ( $random dim ) ;
my $num rand values = scalar $ s imulated va lues=>@* ;
for my $ i ( 0 . . $num rand values = 1 ) {

$ s imulated va lues =>[$ i ] =
$ s imulated va lues =>[$ i ] * $doma in l engh t runc d i s t r +
$ c d f v a l a t l e f t t r u n c l m t ;

$ s imulated va lues =>[$ i ] =
$ s e l f =>i n v c d f ( $d i s t r , $ s imulated va lues =>[$ i ] , $params ) ;

}
return $ s imu la t ed va lue s ;

Listing 5: The inverse CDF calculations in base Perl.

The consumer of the previously defined roles, requires a collection of statistical distributions (collector),
but it’s API is not affected by the choice of a specific collector. To keep things simple we hardwired collector
in the consumer code. The version that consumes Listing 3 is shown at Listing 6.

use s t r i c t ;
use warnings ;

package Bio : : SeqAlignment : : Examples : : T a i l i n g P o l y e s t e r : : SimulatePDLGSL ;

use Package : : Stash ;
use PDL : : L i t e ;
use PDL : : GSL : :CDF;
use subs qw ( seed h a s d i s t r random i s r n g a n o b j e c t ) ;
use Class : : Tiny qw( seed h a s d i s t r seed ) , { random => sub { } } ;
use Role : : Tiny : : With ;
with ’ Bio : : SeqAlignment : : Examples : : T a i l i n g P o l y e s t e r : : SimulateTruncatedRNGPDL ’ ;

sub h a s d i s t r {
my ( $ s e l f , $d i s t r ) = @ ;
return exists $ s e l f =>{d i s t r i b u t i o n s}=>{$d i s t r } ;

}

sub cd f {
my ( $ s e l f , $d i s t r , $lmt , $params ) = @ ;
return $ s e l f =>{d i s t r i b u t i o n s}=>{$d i s t r }{ cd f}=>( $lmt , $params=>@* ) ;

}

sub i n v c d f {
my ( $ s e l f , $d i s t r , $lmt , $params ) = @ ;
return $ s e l f =>{d i s t r i b u t i o n s}=>{$d i s t r }{ i n v c d f}=>( $lmt , $params=>@* ) ;

}

sub BUILD {
. . .

}

1 ;

Listing 6: Consumer module for truncated random number generation.
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Internally the consumer uses a two level hash (reference) for book-keeping: the key of the first level is
the name of the distribution, and that of the second level is the type of the function stored, i.e. one of ”cdf”
or ”inv cdf”. The BUILD method of the consumer illustrates a few features that reduce needless typing and
increase flexibility and choice for the programmer to sugarcoat the hard-wiring of the collector8 :

1. the ingestion of the collector (in this case the module PDL::GSL::PDF), and the parsing of the name
of the distributions from its own symbol table to populate the aforementioned hash structure, using
Package::Stash.

2. the impossibility of ingesting the distributions without an consistent nomenclature for the latter in
collector modules

3. the application of the random number generator at runtime using an RNG plugin with appropriate
initialization and seeding

sub BUILD {
my ( $ s e l f , $args ) = @ ;
die ” seed  must  be  a  number” unless $ s e l f =>{seed } =˜ /ˆ[0=9]+$ / ;
my @symbols in GSL =

Package : : Stash=>new( ’PDL : : GSL : :CDF’)=> l i s t a l l s y m b o l s ( ’CODE’ ) ;
for ( @symbols in GSL ) {

i f (/ g s l c d f (\w+) Pinv /) {
$ s e l f =>{d i s t r i b u t i o n s}=>{$1} = {

cd f => $PDL : : GSL : :CDF: : { ” g s l c d f $ 1 P ” } ,
i n v c d f => $PDL : : GSL : :CDF: : { $ }

} ;
} ## s t o r e the CDF and i n v e r s e CDF f u n c t i o n s

}
## i n i t i a l i z e and s t o r e the RNG here

i f ( $args=>{RNG init parameters } ) {
$ s e l f =>{ i s r n g a n o b j e c t } = 1 ;
$ s e l f =>{r n g o b j e c t } =
$args=>{rng p lug in}=> i n i t ( $args=>{RNG init parameters } ) ;

}
die ”RNG p lug in  does  not  prov ide  the  ’ random ’  r o l e ”

unless $args=>{rng p lug in}=>can ( ’ random ’ ) ;
Role : : Tiny=>a p p l y r o l e s t o o b j e c t ( $ s e l f , $args=>{rng p lug in } ) ;

}

Listing 7: BUILD method for the consumer module for truncated random number generation.

The code below shows how one can use the consumer API: first one initializes a random number generator
(a pattern that should be familiar to users of the GSL library or Intel’s oneAPI library for machine learning)
and then simulates from a given distribution (in this case the lognormal one with mean parameter log(125),
scale parameter 1, truncating it to the interval [0, 250].

my $d i s t r = ’ lognormal ’ ;
my $params = [ log (125) , 1 ] ;
my $ l o w e r t r u n c l i m i t = 0 ;
my $u p p e r t r u n c l i m i t = 250 ;
my $samples = 1000000;

my $rng = SimulatePDLGSL=>new(
seed => 3 ,
rng p lug in => ’PERLRNGPDL’ ) ;

my $pdl = $rng=>s imu la t e t runc (
random dim => [ $samples ] ,
d i s t r => $d i s t r ,
params => $params ,
l e f t t r u n c l m t => $ l o w e r t r u n c l i m i t ,
r i g h t t r u n c l m t => $u p p e r t r u n c l i m i t ) ;

At this point one may question the complexity of the design with separate roles for the inverse CDF
algorithm and the uniform RNG, and a consumer module that wraps over statistical distributions for
consumption. Wouldn’t it be much simpler to just code the ”meat” code simulate trunc as a subroutine,
provide two code references as arguments and get it over and done with? Or even use an eval string, or just

8The code in Listing 7 can easily be modified see e.g. the CPAN documentation for Package::Stash to avoid hardwiring
the collector.
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hard wire the random number simulators? Indeed, any of the above methods would have been much simpler to
write, but it would have made a performance evaluation of PDL v.s. base Perl, or comparisons among different
RNGs more verbose to write and more complicated to understand. The script testRN performance.pl

found under the scripts folder in the Bio::SeqAlignment::Examples::TailingPolyester CPAN module,
evaluates 8 different combinations to simulate from the lognormal distribution using the API we presented in
fewer than 200 lines (most of the ”lines” are just there for formatting purposes and/or to set up recording of
the execution times of the alternatives to truncted distribution simulation). To undertake a cross-language
performance evaluations we turned to the language R, which has a very similar to Perl approach for managing
entries in symbol tables, while also having access to an implementation of the Xoshiro family of RNGs
available in the package dqrng9. In Appendix B we provide code for these three ”easier” implementations,
i.e. obtaining functions through symbolic reference search over the visible stashes10, eval strings, or plain
old fixing of the name of the dependency in the code. In the absence of checks for valid arguments the code
is indeed shorter, but the part of the code that does the actual calculations (last four lines in each function
at Appendix B) is exactly the same length as the PDL code in Listing 4.
In Figure 2 we show violin plots, i.e. smoothed histograms of absolute timings for generating 1 million
truncated lognormal random variables using six different implementations in R and 8 in Perl. To assess
variability in performance, we generated one thousand replicates of this task for each implementation in
either language. There are a few noteworthy observations to be made about this data:

1. Lack of vectorization is the major impediment to high performance Perl scripts for numerical or
statistical calculations for big data. This is clearly seen when comparing the performance of the
1) MathMLGSL PERLRNG implementations that use base Perl for both random number generation
and for coding of the inverse CDF method by Listing 5 to that of 2) PDLGSL PERLRNG that
generate random numbers through base Perl, but use the PDL code in Listing 4 nd 3) the pure PDL
implementations PDLGSL PDLUNIF.

2. The speed of the vectorized PDL implementation that also used the PDL RNG were competitive with
the R code that used the Xoshiro implementation.

3. The Xoshiro based implementations achieved the best performance in either language. In R the
difference is largely due to the speed of the RNG relative to the one builtin the language, whereas
in Perl the difference can be attributed to the non-vectorized nature of base Perl and the RNG. The
former is the biggest source of performance drop as can be seen from the comparison of the lower four
violin plots in the lower panel of Figure 2, which swapped the Xoshiro for the GSL default RNG, but
kept vectorization for calculations.

4. Object construction (contrast violin plots ”WO OC” vs ”WITH OC”) had negligible effect on the
relative performance of all Perl implementations.

5. Despite appeals to avoid ”eval” strings in R, the choice of method to access dependencies (e.g. the
inverse CDF method, or the RNG) had minimal effect on performance.

In summary, these observations should prompt a re-examination of the combination of Perl
and PDL in data analytics. The PDL packages offer a bewildering array of performant modules for
numerical and statistical calculations that nicely complement Perl’s metaclass programming facilities.

9https://github.com/daqana/dqrng
10This is accomplished via the R function get which can do a search for a symbol entry in a specific environment, or all the

environments that are within scope at the current point in the code. The environment is R’s version of a Perl’s package.

14

https://github.com/daqana/dqrng


Figure 2: Performance evaluation of Random Number Generation in R (upper panel) and Perl (lower panel).
The figure shows violin plots of 1,000 replicates of a task that involves simulating one million random
numbers from the log-normal distribution with mean parameter log(125), scale parameter 1, truncated to
the interval [0, 250]. The performance of the Xoshiro RNG (DQRNG in R, PDLUNIF in Perl) was evaluated
vis-a-vis the builtin RNGs (UNIF in R, PERLRNG in Perl) and a the uniform RNG from GSL in Perl).
Other scenarios evaluated included: a) the impact of object construction (WO OC used a single object for
all 1,000 replications v.s. WITH OC that created a new object for each replicate), b) using non-vectorized
base Perl for RNG (PERLRNG) instead of PDL (PDLUNIF) c) using non-vectorized, base Perl, for the
inverse CDF method (MATHGSL) and d) alternatives in R to provide dependencies such as the RNG and
the (inverse)CDF functions of the target distribution Appendix B
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4.2.1 Trimming the polyA tail from RNA sequences

After all the trouble we went to attach polyA tails to sequences, why should we even want to remove them?
As noted in Section 3.1, such tails are features introduced via nature (messenger RNA) or protocol (e.g. our
PALS-NS) to the ”text” that comes out of the genome. The basic analysis task for any RNAseq experiment
is the mapping of the sequence generated by the experiment back to the genome that does not have polyA
tails tucked at the end of each sequence. Hence, while adding polyA tails is a pre-requisite for a realistic
sequence simulation, removing the polyA tail is very important for accurate sequence mapping; as the latter
is always done via an approximate text matching approach, having extra text in the query may, and in fact
will, lead to inaccurate mappings.
The current state-of-the-art method for removing polyA tails is the cutadapt Python program[18] that was
introduced for 2nd generation, short RNA sequencing more than 10 years ago. That program has numerous
other functionalities (e.g. removing adapters found as decorator features in sequences), but for our purposes
the relevant one is its ability to trim polyA tails. The most recent version of the polyA trimming algorithm11

in cutadapt is intrinsically a sequence alignment. This intrinsic alignment is based on an scoring scheme
that awards a +1 for an A letter and -2 for a non-A letter at a given position. The algorithm considers all
possible suffixes in the sequence of interest, and after filtering those that have more than 20% non-A letters,
returns the position of the suffix with the largest score as the beginning of the tail. Note that the alignment
between the sequence of interest and the is never explicitly formed, thus the algorithm avoids the O(N2)
scaling of a bona fide alignment method. The Python code for the polyA implemented by cutadapt for an
arbitrary string s is shown in Listing 8. Due to the linear relationship between the number of errors and the
best score, it is sufficient to test for the proportion of errors after the best index has been found. This leads
to a modified cutadapt whose Perl code is shown in Listing 9.

n = len ( s )
be s t i ndex = n
b e s t s c o r e = sco r e = e r r o r s = 0
for i , nuc in reversed ( l i s t (enumerate(range (n ) ) ) ) :

i f nuc == ”A” :
s co r e += 1

else :
s c o r e == 2
e r r o r s += 1

i f s c o r e > b e s t s c o r e and e r r o r s <= 0.2 * (n = i ) :
b e s t i ndex = i
b e s t s c o r e = sco r e

s = s [ : b e s t i ndex ]

Listing 8: Python code for cutadapt.

my $n = length $s ;
my $bes t index = $n ;
my $b e s t s c o r e = my $ s co r e = 0 ;
foreach my $ i ( reverse ( 0 . . $n = 1 ) ) {

my $nuc = substr $s , $ i , 1 ;
$ s co r e += $nuc eq ’A ’ ? +1 : =2;
i f ( $ s co r e > $b e s t s c o r e ) {

$bes t index = $ i ;
$b e s t s c o r e = $ s co r e ;

}
}
$bes t index = $n = $bes t index ;
i f ( $b e s t s c o r e < 0 .4 * ( $bes t index + 1 ) ) {

$bes t index = $n ;
}
substr ( $s , =$bes t index ) = ’ ’ ;

Listing 9: Perl code for a modified cutadapt.

11https://cutadapt.readthedocs.io/en/stable/algorithms.html#poly-a-algorithm
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However, this is not the only possible Perl implementation for a trimming method. A few other
possibilities do arise at this point:

1. use a cutadaptMAP rather than a loop to calculate the best scoring tail as in Listing 10

2. code the loop that searches for the position with the highest score in a vectorized PDL operation
(cutPDL) in Listing 11

3. use the package Inline::C to wrap around a pure C implementation of the (modified) cutadapt

method (cutC)

4. use a regular expression to match for a suffix that is guaranteed to have a percentage of A letter that
is over 25% as in Listing 12

5. use Inline::C to wrap around a changepoint detection method. In the latter we compute a statistical
test that the tail begins at a given position against the null hypothesis that no tail exists in the
sequence of interest. To do so, we form simple composition models for the letters in the header and
the tail of the sequence that are based on flipping biased ”coins”, with heads being a non-A letter and
tails being an A letter. We then compute the maximum of the likelihood of having a tail sequence over
all possible positions. If the maximum likelihood of having a polyA tail is greater than the likelihood
of a ”tail-less” sequence by a given, user defined threshold, e.g. a 1:1000 odds, then we use report the
position that the maximum likelihood was observed as the beginning of the polyA tail.

my $s = ”ACTGCAAAAAAAA” ; ## t e s t s t r i n g
my $n = length $s ;
my $sum = 0 ;
my $b e s t s c o r e = my $ s co r e = 0 ;
my @s =

map { $sum += ( $ eq ’A ’ ? +1 : =2 ) }
s p l i t // , r e v e r s e $s ;

my $bes t index = reduce { $s [ $a ] > $s [ $b ] ? $a : $b } 0 . . $#s ;
$bes t index =

( $s [ $bes t index ] < 0 .4 * ( $bes t index + 1 ) )
? $n
: $n = $bes t index = 1 ;

$s = subs t r $s , 0 , $bes t index ;

Listing 10: A map for cutadapt.

use PDL;
use PDL : : Pr imi t ive qw ( where both ) ;
use PDL : : Ufunc qw ( cumusumover ) ;
use constant a s c i i A => ord ( ’A ’ ) ;

my $s = ”ACTGCAAAAAAAA” ; ## t e s t s t r i n g
my $pd l s = PDL=>new( [ unpack( ”C*” , reverse $s ) ] ) ;
my ( $pdl index , $pd l c i ndex ) = where both ( $pdl s , $pd l s == a s c i i A ) ;
$pd l index .= 1 ;
$pd l c i ndex .= =2;
my $ s co r e = cumusumover ( $pd l s ) ;
my $max index = $score=>maximum ind ;
my $bes t index = $n = $max index = 1 ;
i f ( $score=>at ( $score=>maximum ind ) < 0 .4 * ( $max index + 1 ) ) {

$bes t index = $n ;
}
$s = substr $s , 0 , $bes t index ;

Listing 11: Perl code for a modified cutadapt that uses PDL.

17



my $polyA min 25 pct A = qr /
( ## match a poly A t a i l which i s

## de l im i t ed at i t s 5 ’ by * at l e a s t * one A
A{1 ,}

## fo l l owed by the t a i l proper which has a
( ? : ## minimum compos it ion o f 25% A, i . e .

## we are l ook ing f o r sn ippe t s with
( ? :

## up to 3 CTGs fo l l owed by at
## l e a s t one A
[CTG]{0 ,3}A{1 ,}

)
| ## OR
( ? :

## at l e a s t one A fo l l owed by
## up to 3 CTGs
A{1 ,} [CTG]{0 ,3}

)
)+ ## extend as much as p o s s i b l e

)\ z/xp ;

my $s = ”ACTGCAAAAAAAA” ; ## t e s t s t r i n g
my $n = length $s ;
$s =˜ m/ $$polyA min 25 pct A / ;
my $bes t index = length $1 ;
subs t r ( $s , =$bes t index ) = ’ ’ ;

Listing 12: A regex for cutadapt.

Benchmarking of these potential alternatives (table 2) shows that there is always a Perl solution that
delivers a performance similar to that of the gold standard cutadapt; in fact there are multi-language
solutions that are orders of magnitude faster than that Python application. This brings us to the next
question: how can we serve components for data intensive work flows to the user in a ”black-box” manner?
And more importantly, what are some potential advantages that Perl brings to this table?

Table 2: Time to trim a polyA tail that is 20% of the length of a target sequence

Algorithm Language Target Sequence Length

100 1000 2000 10000

cutadapt Python 10.3± 3.0 103.0± 10.0 213.0± 12.9 1330.0± 64.2
cutadapt(mod) Python 8.1± 1.8 79.6± 5.4 163± 9.5 1130.0± 86.8
cutadapt(mod) Perl 16.0± 2.5 150.0± 11.1 310.0± 21.0 1500.0± 88.0
catadaptMAP Perl 19.0± 4.4 180.0± 17 380.0± 25 1900.0± 18.0

cutPDL Perl 100.0± 18.0 190.0± 13.0 270.0± 16.0 1000.0± 45.0
regex Perl 26.0± 10.0 310.0± 26.0 620.0± 42.0 3200.0± 140.0
cutC Perl/C 0.6± 1.0 3.1± 1.1 6.0± 1.4 28.0± 4.3

changepoint Perl/C 3.6± 2.0 33.0± 5.2 65.0± 8.2 320.0± 24.0

Performance is reported as mean ± standard deviation (in microsceconds) over 2000 repetitions
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4.3 Enhancing Edlib with Meta-Object Programming (MOP) techniques

4.3.1 Data flows for sequence mapping applications

Identifying (”mapping”) a query sequence with a reference one, is a task that follows a limited number of
potential data flows, with two patterns (shown in Figure 3) accounting for most cases. In the first data
flow, query sequences move independently through the component ”aligner” that conducts the similarity
search against the reference database via an exact alignment method (with or without heuristic speedups) or
an approximate pseudo-alignment approach[4]. The aligner yields a potentially filtered vector of similarity
metrics (e.g. edit distance, similarity scores or p-values) for each sequence that the data flow controller
directs to the second component, the ”mapper”. The latter carries out a reduction operation of the
similarity vector into a single value, which is the considered the best match of the query to the universe
of the reference sequences. In the second, data flow, the mapper and the aligner functionalities are carried
out by the same component. The aligner and/or mapper components operate on the sequences in a linear,
parallel fashion, i.e. there is no cross talk between alignment and mapping for any query sequences. The
two data flows are thus designated as LinearLinear and Linear respectively and either provides unique
opportunities for parallelization, irrespective of the similarity metric or the reduction operation used in a
given application.

Aligner Mapper

Query Sequence 1

Query Sequence 2

Query Sequence n

Best Match Sequence 1

Best Match Sequence 2

Best Match Sequence n

(a) LinearLinear Data Flow

Aligner/Mapper

Query Sequence 1

Query Sequence 2

Query Sequence n

Best Match Sequence 1

Best Match Sequence 2

Best Match Sequence n

(b) Linear Data Flow

Figure 3: Data flows for sequence mapping
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4.3.2 Writing generic mappers with Moose and roles

When developing a mapper for a given bioinformatic application, there are several potential alternatives to
consider: in the LinearLinear case, one will typically have a choice among various aligners, similarity metrics
and reduction methods, while in the Linear case this cornucopia of choices will be present, but hidden in the
single aligner/mapper component. For a given application one may also want to compare implementation
that follow either a LinearLinear or Linear further expanding the set of potential alternatives that one
may wish to explore. One could create (and manage) a potentially very large collection of modules, one
for each data flow and combination of components for each data flow, but one would most certainly would
like to avoid this path, even if these modules are only created for internal use. A cultural feature should
also be considered here: in the era of the ”Jupyterization” of scientific and data intensive programming,
attracting new users to a language requires that most experimental development takes place in a single
file. One potential solution to managing the complexity of the number of modules and offering a single-file
experience is by leveraging Moose MOP capabilities to create a generic sequence mapping module, while
using roles to assign a particular data flow to a given generic mapper. Such a decomposition is handled
by the Bio::SeqAlignment::Components::SeqMapping module that we created for this particular line of
work (Table 3). The module also provides data flow roles for composition by fully fledged sequence mapping
modules, that do not use the generic mapper interface. These data flow modules are nearly identical to their
generic counterparts, with the only difference being the calling sequence of functions provided by the mapper
that composes them into a role. The non-generic modules hopefully come out as a result of using the generic
mapper module to develop the code for the alignment/mapping steps before releasing a mature application
to the world. This provides a somewhat elegant solution to the problem of exploration of sequence mapping
component alternatives without having to create separate modules for each particular combination that
failed some form of internal control.

Table 3: Modules supporting sequence mapping

Package Name Functionality Implementation Details

x ::Mapper::Generic Provides a generic sequence mapping interface. Inherits from the CPAN
module Moose.

x ::Dataflow::LinearLinearGeneric A role for Mapper::Generic that supports the
LinearLinear dataflow.

Inherits from the CPAN
module Moose::Role.

x ::Dataflow::LinearGeneric A role for Mapper::Generic that supports the
Linear dataflow.

Inherits from the CPAN
module Moose::Role.

x ::Dataflow::LinearLinear A role that supports the LinearLinear
dataflow. It is intended to be composed into
fully fledged sequence mapping modules, i.e.
non-generic ones.

Inherits from the CPAN
module Moose::Role.

x ::Dataflow::Linear A role that supports the Linear dataflow. It
is intended to be composed into fully fledged
sequence mapping modules, i.e. non-generic
ones.

Inherits from the CPAN
module Moose::Role.

x stands for Bio::SeqAlignment::Components

The LinearLinearGeneric role module requires that the module that consumes their role provide the
following methods:

seq align : this is the method that carries out the (pseudo)sequence alignment task for each work element.

extract sim metric : a method that extracts the similarity metric for each work element.

reduce sim metric : a method that reduces the similarity metric to a single value for each work element.

cleanup : a method that handles cleanup operations, either in memory or in the disk depending on the
space one is working in.

The LinearGeneric module require that the module consuming them provides the following methods:
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seq align : this is the method that carries out the method that carries out the (pseudo)alignment mapping
and reduction tasks for each work element.

cleanup : a method that handles cleanup operations, either in memory or in the disk depending on the
space one is working in.

These modules assume that the work to be handled by the mapping module that consumes them will be
provided as a reference to an array of distinct work elements. The latter can be individual sequences, e.g.
Bio:Seq, or FASTA files with many such sequences, or anything that the user feels appropriate for the space
(in-memory or in-disk) they want their mapping application to work in. The consuming modules themselves
don’t care as long as the work elements are grouped together in an array, and the relevant reference is
provided through the role API. The role modules provide a single method sim seq search , which is the
role that is consumed by the (generic) mapper module.
The generic mapper is a Moose module with pure data (hash reference) attributes, as well as attributes that
are code references. The data attributes provide convenient storage and book keeping (e.g. which attributes
have been set to non-default values) for the code reference arguments. The names of the attributes of the
generic mapper module are summarised in Table 4. An around modifier is applied to these arguments by the
module as in Listing 13 with the explicit purpose of providing the object reference as the first argument to
each method. This not only allows each method direct access to the other attributes of the object, but allows
one to write the code corresponding to each attribute as if one were writing an instance method, rather than
a code reference attribute for an object (or a hook in an non-OO setting). In the first case $self would have
been the first parameter passed, but in the second case, the function would have no $self awareness.

Table 4: Attributes of the Bio::SeqAlignment::Components::Mapper::Generic generic mapper module.

Searching/Mapping Methods Reference Database Methods Parameters

init sim search create refDB refDB access params

seq align use refDB sim search params

extract sim metric extract sim metric params

reduce sim metric seqmap params

cleanup has nondefault value

code for

around qw(
c reate re fDB use refDB cleanup reduce s im metr i c
s e q a l i g n i n i t s i m s e a r c h e x t r a c t s i m m e t r i c ) => sub {
my $o r i g = sh i f t ;
my $ s e l f = sh i f t ;
return sub {

return $ s e l f =>$or ig=>( $ s e l f , @ ) ;
} ;

Listing 13: Around modification of the methods of the generic mapper module.

The code for the LinearLinearGeneric in Listing 14 implements process level parallelism through the MCE
(Many Cores Engine) module. The final argument to the role method is a hash that provides key-value
arguments that control this parallelism: the number of workers (if only one, the MCE will not be used) and
the chunk size of the workload that each worker will be processing. The code for LinearGeneric is derived
entirely analogously, with the only difference being the assumption that the seq align function will not only
carry out the alignment, but also extract the vector of similarity metrics for each sequence and carry out any
necessary reductions. If any of the functions seq align, extract sim metric and reduce sim metric

provide thread level parallelism, then the module consuming these roles will be endowed with
both process and thread parallelism. Both roles should deliver to the module that consumes them the
final mapping between a query sequence and the reference sequence that is most similar to it, along with
the value of the metric that was used to make this determination.
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package Bio : : SeqAlignment : : Components : : SeqMapping : : Dataflow : : L inearL inearGener i c ;
use s t r i c t ;
use warnings ;

use Moose : : Role ;
use Carp ;
use MCE;
use MCE: : Candy ;
use namespace : : autoc l ean ;

r e q u i r e s ’ s e q a l i g n ’ ; ## the method that does ( pseudo ) al ignment
r e q u i r e s ’ e x t r a c t s i m m e t r i c ’ ; ## e x t r a c t the s i m i l a r i t y metr ic from the search
r e q u i r e s ’ r educe s im metr i c ’ ; ## reduce the s i m i l a r i t y metr ic to a s i n g l e va lue
r e q u i r e s ’ c leanup ’ ;

sub s i m se q s e a r ch {

my ( $ s e l f , $workload , %args ) = @ ;

croak ’ expect  an  array ( r e f )  as  workload ’ unless ref $workload eq ’ARRAY’ ;

my $max workers = $args {max workers}
// 1 ; # s e t d e f a u l t va lue i f not de f ined

my $chunk s i z e = $args { chunk s i z e } // 1 ; # s e t d e f a u l t va lue i f not de f ined
my $cleanup = $args { cleanup } // 1 ; # s e t d e f a u l t va lue i f not de f ined
my @resu l t s ;

i f ( $max workers == 1 ) {
foreach my $chunk ( @{$workload} ) {

my $ s e q a l i g n = $ s e l f =>s e q a l i g n =>($chunk ) ;
my $ s im metr i c = $ s e l f =>ex t ra c t s im met r i c =>($ s e q a l i g n ) ;
my $ reduced metr i c = $ s e l f =>reduce s im metr i c =>($ s im metr i c ) ;
push @resu l ts , $reduced metr ic=>@* ; ## append to the r e s u l t s
$ s e l f =>cleanup ( $ s eq a l i gn , $s im metr ic , $ reduced metr i c )

i f $cleanup ;
}
return \@resu l t s ;

}
else {

my $mce = MCE=>new(
max workers => $max workers ,
chunk s i z e => $chunk s ize ,
gather => MCE: : Candy : : o u t i t e r a r r a y ( \@resu l t s ) ,
u s e r f u n c => sub {

my ( $mce , $chunk ref , $chunk id ) = @ ;
my @chunk resu l t s ;
foreach my $chunk ( @{ $chunk re f } ) {

my $ s e q a l i g n = $ s e l f =>s e q a l i g n =>($chunk ) ;
my $ s im metr i c = $ s e l f =>ex t ra c t s im met r i c =>($ s e q a l i g n ) ;
my $ reduced metr i c =

$ s e l f =>reduce s im metr i c =>($ s im metr i c ) ;
push @chunk results , $reduced metr ic=>@* ;
$ s e l f =>cleanup ( $ s eq a l i gn , $s im metr ic , $ reduced metr i c )

i f $cleanup ;
}
$mce=>gather ( $chunk id , @chunk resu l t s ) ;

}
) ;
$mce=>proce s s ( $workload ) ;

}
return \@resu l t s ;

}

1 ;

Listing 14: Perl code for the sim seq search of the LinearLinearGeneric role.
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A skeleton code that shows the use of the generic mapper and LinearLinearGeneric data flow is shown
in Listing 15. The simple around modifier, allows the user to develop the code for methods of a non-generic
module without having to create a distribution, by providing access to $self. Once the code has been
fully fleshed out, then one simply copies the methods into the pm file of a distribution, and consumes the
non-generic version of the data flow that is appropriate. At that stage, one can ”downgrade” the object
oriented module, i.e. from Moose to Moo if the full power of Moose would be a non-essential overkill for the
task at hand.

use MCE;
use Module : : Find ;
use Moose : : U t i l qw( a p p l y a l l r o l e s ) ;
use PDL : : L i t e ;
use Bio : : SeqAlignment : : Components : : SeqMapping : : Dataflow : : L inearL inearGener i c ;
use Bio : : SeqAlignment : : Components : : SeqMapping : : Mapper : : Generic ;

my $mapper = Bio : : SeqAlignment : : Components : : SeqMapping : : Mapper : : Generic=>new(
create re fDB => \&create db ,
use refDB => \&use refDB ,
i n i t s i m s e a r c h => \&i n i t s i m s e a r c h ,
s e q a l i g n => \&s e q a l i g n ,
e x t r a c t s i m m e t r i c => \&ext rac t s im met r i c ,
r educe s im metr i c => \&reduce s im metr i c

) ;

$mapper=>create re fDB=>( $db locat ion , ’ Hsapiens . cds . sample ’ , \@dbf i l e s ) ;
my $ref DB = $mapper=>use refDB=>( $db locat ion , ’ Hsapiens . cds . sample ’ ) ;
$mapper=>s im search params ( { ’=m’ => ’NW’ , ’=n ’ => ’ 0 ’ , ’= l ’ => ’ ’ } ) ;

a p p l y a l l r o l e s ( $mapper ,
’ Bio : : SeqAlignment : : Components : : SeqMapping : : Dataflow : : L inearL inearGener i c ’

) ;

my @workload = . . . ;
$ r e s u l t s = $mapper=>s i m se q s e a r ch ( \@workload , max workers => 4 ) ;

sub i n i t s i m s e a r c h {
my ( $ s e l f , %params ) = @ ;
. . .

}

sub r educe s im metr i c {
my ( $ s e l f , $s im metr ic , %params ) = @ ;
. . .

}

sub s e q a l i g n {
my ( $ s e l f , $query fname ) = @ ;
. . .

}

sub e x t r a c t s i m m e t r i c {
my ( $ s e l f , $ s e q a l i g n ) = @ ;
. . .

}

sub c r ea t e db {
my ( $ s e l f , $dbloc , $dbname , $ f i l e s a r e f ) = @ ;
. . .

}

sub use refDB {
my $ s e l f = sh i f t ;
. . .

}

Listing 15: Perl code for the sim seq search of the SkeletonGenericMapper role.
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4.3.3 Enhancing Edlib’s performance with MCE, FFI::Platypus, Inline::C and openMP

Having build a system that will allow us to ”Jupyterize” code development for modules, we now use the
mapper and data flow modules to enhance the performance of Edlib. The scripts for this session are
found in the CPAN distribution Bio::SeqAlignment::Examples::EnhancingEdlib and in the author’s
main Github page12. To build these examples one needs to install an Alienized version of Edlib,i.e.
Alien::SeqAlignment::edlib that provides the command-line application, the static and the dynamic
libraries of the aligner. For all the benchmarking experiments reported here, we used a sample of 1,648
sequences from the human transcriptome that were downloaded from Ensembl13, the genome database
project at the European Bioinformatics Institute. These sequences were used for as both queries and
reference databases. When used as queries, these 1,648 sequences were split into two files of 1,000 and
648 sequences that had approximately the same size, i.e. about 800 kilobytes. In all examples, the similarity
metric used was the edit distance and the reduction operation was simply to find the reference sequence
with the minimum distance to the query. As the set of the query sequences was the same as the reference
sequences, and we applied no noise to the queries, the minimum edit distance is zero.

A parallel command-line Edlib The command-line version of this aligner can only map multiple query
sequences against a single reference sequence. To enhance this version, our database creation method
create refDB had to split the reference sequences to multiple FASTA files (one for each reference sequence)
and use the command line tool to map each of the two FASTA query files against these 1,648 files. In this
case, the work elements that one may parallelize over is the either the query files or the reference sequence
files. As we intended this example to be used as a test bed for wrapping other command-line wrappers
that allow simultaneous mapping against multiple reference sequences, we parallelized over the query files.
The LinearLinearGeneric data flow is applicable in the case of command-line mappers: the similarity
metrics are computed separately for each sequence in the query files, which then have to be extracted from
the output stream of the mapper and reduced. The reduction operation for the command line use case can
be implemented in PDL as shown in Listing 16 from the script testMap.pl found in the Github and CPAN
repositories for this section. the Mapping these 1,648 files against themselves with a single process in our
machine took 254 seconds and with two processes 136 seconds.

sub r educe s im metr i c {
my ( $ s e l f , $s im metr ic , %params ) = @ ;
my $db in use = $ s e l f =>{re fDB access params}=>{DB} ;
my $ reduced metr i c ;
while ( my ( $seq , $metr ic ) = each %{$ s im metr i c } ) {

my $ s c o r e s = pdl ( $metr ic ) ;
my $b e s t s c o r e i d x = $ s core s=>minimum ind ;
my $best match = basename $db in use=>{FILES}=>[ $b e s t s c o r e i d x ] ;
my $bes t match seq id =

$db in use=>{INDEX}{FNAME SEQ INDEX}{ $best match } ;
push $reduced metr ic=>@* ,

[ $seq , $best match seq id , $ s core s=>at ( $b e s t s c o r e i d x ) ] ;
}
return $ reduced metr i c ;

}

Listing 16: Parallel reduction of similarity metrics from the command-line Edlib using PDL.

Edlib MCE: a parallel Edlib that uses MCE For this enhancement we used the FFI::Platypus to interface
with the dynamically linked library of Edlib. To do so, we wrote a module14 to access the API of Edlib.
Our Perl API itself is rather simple, consisting of:

� three FFI records mapping to the C++ structures that Edlib utilizes to initialize a specific alignment

12https://github.com/chrisarg

13https://www.ensembl.org

14Bio::SeqAlignment::Components::Libraries::edlib
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task, provide character sets that should be considered equivalent for matching purposes and to return
alignment, i.e. sequence similarity results.

� five methods that create alignment configurations that instruct edlib which task to perform, manage
the memory of alignment results (through Edlib) and execute the alignments.

The data flow that is applicable in this case is the LinearGeneric one. The work elements in this
case are the individual query sequences in a single FASTA file, and we parallelize by asking MCE through
the Bio::SeqAlignment::Components::SeqMapping::Dataflow::LinearGeneric role to use one process
per query sequence to map against the database of reference sequences. The logic of the seq align

aligner/mapper method15 is to map the query sequence by iterating over the reference ones in order to
compute the alignments, collect the similarity metrics and finally reduce them using PDL. The component
is written entirely in Perl, and interfaces with Edlib through the FFI::Platypus module. The code in
Listing 17 does not allocate an intermediate Perl list to initialize a PDL object; rather it progressively extends
a string that contains the similarity metrics separated by spaces, and utilizes PDL’s ability to initialize its
container objects (”ndarrays”) through space separated strings. Searching through the database of reference
sequences is done through a hash that is created during the creation of the database of reference sequences16

and loaded when the method use refDB is called during the generic calling sequence shown in Listing 15.

sub s e q a l i g n {
my ( $ s e l f , $query ) = @ ;
my $db in use = $ s e l f =>refDB access params=>{DB} ;
my $ r e f s e q s = $db in use=>{DATA} ;
my $ r e f s e q l e n g t h s = $db in use=>{SEQLEN} ;
my $query l ength = length $query=>seq ;
my $query seq = $query=>seq ;
my $ e d l i b c o n f i g = $ s e l f =>refDB access params=>{e d l i b c o n f i g } ;
my $metr ic = ’ ’ ;

my $ r e f s e q i n d e x = 0 ;
for my $ r e f s e q ( @$ r e f s eq s ) {

my $a l i g n =
e d l i bA l i gn ( $query seq , $query length ,

$ r e f s e q , $ r e f s e q l e n g t h s =>[$ r e f s e q i n d e x ] ,
$ e d l i b c o n f i g ) ;

$metr ic .= $a l ign=>ed i tD i s t ance . ’  ’ ;
ed l i bFreeA l i gnResu l t ( $a l i g n ) ;
$ r e f s e q i n d e x ++;

}

my $ s c o r e s = pdl ( $metr ic ) ;
my $b e s t s c o r e i d x = $ s core s=>minimum ind ;
my $bes t match seq id =

$db in use=>{INDEX}{INDEX SEQ INDEX}{ $b e s t s c o r e i d x } ;

[ [ $query=>id , $best match seq id , $ s core s=>at ( $b e s t s c o r e i d x ) ] ] ;
}

Listing 17: Aligner/mapper component for Edlib.

Edlib MCE OpenMP: a parallel Edlib that uses MCE and OpenMP While the command line version
parallelized over FASTA files, and the library version accessed over FFI::Platypus parallelized over query
sequences in files, the last parallel version of Edlib, parallelizes over both query and reference sequences
using Inline::C. To do so, the MCE enabled LinearGeneric data flow is combined with (thread) level
parallelism when aligning each query sequence against the reference sequences using OpenMP. To leverage
the capabilities of OpenMP for thread level parallelism a significant amount of the logic of the seq align,
i.e. the loop over the reference sequences and the reduction operation had to be coded in C and interfaced

15This method does not handle yet the case of multiple ”hits” of the reference in the query; this functionality will be
implemented in a subsequent release.

16The hash itself is serialized by Data::MessagePack, and the resultant file is compressed by Compress::LZF.
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with the seq align using Inline::C. This parallel version of Edlib 17, is only possible because the OpenMP
specification 5.0 and above allows one to use threads inside forked processes18. This additional enhancement
comes at a substantial price, paid in lines of C code:

� While the the database of reference sequences is constructed in Perl using a hash structure as in the
previous case, the actual addresses in DRAM of the sequence strings must be made available to
the C code to parallelize the search of a given query against the reference databases. To do so, we
allocate an array to hold the addresses of the reference strings and their length in C and hand over its
life cycle management to Perl using a macro Listing 18.

� One needs ways to control the OpenMP environment, e.g. the assignment of workload to threads, i.e.
the schedule and the number of threads, from within Perl. The module OpenMP::Environment allows
many changes to be made to the OpenMP environment from within Perl, however the C code must
also be able to read any changes made after the Perl application has been launched. If any of the
variables of the environment are not read from the C code, then they will not be set to the updated
values. To make this point concrete, the function ENV set num threads in Listing 19 only updates
the threads and not e.g. the scheduling of tasks by OpenMP.

� Any data structures that were rather conveniently passed as FFI records, now must be passed using
typemaps, or as Scalar Values that hold an appropriately sized non-null terminated string. The latter
is effectively a linear space in DRAM that holds the contents of the relevant C structure.

� One has to allocate the memory to hold the mapping results in C, but hand over responsibility for
management of this memory to Perl to avoid memory leaks and their security implications.

17The relevant module is Bio::SeqAlignment::Components::Libraries::edlib::OpenMP

18The author found about this the very hard way, and named the relevant C function that allows the combination in the Perl
application fork around find out(), i.e. FAFO.
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// macro f o r the c r e a t i o n o f a new SV b u f f e r o f a g iven s i z e w/o r e s i z i n g
#define NEW SV BUFFER( sv , buf , b u f f e r s i z e ) \

SV * sv = newSV ( 0 ) ; \
char *buf ; \
Newxz( buf , b u f f e r s i z e , char ) ; \
s v u s e p v n f l a g s ( sv , buf , b u f f e r s i z e , SV HAS TRAILING NUL |SV SMAGIC)

// Def ine a s t r u c t to hold sequence data
typedef struct {

u i n t p t r t s eq addr e s s ;
int s e q l e n ;

} Seq ;
SV* make C index (AV* sequences ) {

int i ;
int n = av l en ( sequences ) + 1 ;
ENV set num threads ( ) ;

s i z e t b u f f e r s i z e = n * s izeof ( Seq ) ; // how much space do we need ?
NEW SV BUFFER( re tva l , buf , b u f f e r s i z e ) ;
Seq* RefDB = ( Seq *) buf ;
#pragma omp p a r a l l e l
{

int nthreads = omp get num threads ( ) ;
s i z e t th r ead id = omp get thread num ( ) ;
s i z e t tbeg in = thr ead id * n / nthreads ;
s i z e t tend = ( th r ead id + 1) * n / nthreads ;
for ( s i z e t i = tbeg in ; i < tend ; i++) {

SV** elem = a v f e t c h s i m p l e ( sequences , i , 0 ) ; // p e r l 5 .36 and above
STRLEN len = SvCUR(* elem ) ;
RefDB [ i ] . s eq addr e s s = ( u i n t p t r t ) SvPVbyte nolen (* elem ) ;
RefDB [ i ] . s e q l e n = len ;

}
}
return r e t v a l ;

}

Listing 18: Pre-work to access Perl strings in C.
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// s e t t i n g the openMP environment
void ENV set num threads ( ) {

char *num;
num = getenv ( ”OMP NUM THREADS” ) ;
omp set num threads ( a t o i (num ) ) ;

}

// func t i on that p a r a l l e l i z e s the mapping o f a s i n g l e query seq over
// the database o f r e f e r e n c e sequences
AV * e d l i b a l i g n (char * query seq , int query len , SV * ref DB , SV * c o n f i g ) {

// i n i t i a l i z a t i o n f o r the mapping
int min val = INT MAX;
int min idx = =1;

// get s t u f f from p e r l
Seq *RefDB = ( Seq *) SvPVbyte nolen ( ref DB ) ;
int n o f s e q s = SvCUR( ref DB ) / s izeof ( Seq ) ; // s i z e o f database
Edl ibAl ignConf ig a l i g n c o n f i g = *( Edl ibAl ignConf ig *) SvPVbyte nolen ( c o n f i g ) ;

// prepare to send s t u f f back to p e r l
AV *mapping = newAV ( ) ;
sv 2morta l ( (SV *) mapping ) ;

ENV set num threads ( ) ;
#pragma omp p a r a l l e l

{
int nthreads = omp get num threads ( ) ;
s i z e t th r ead id = omp get thread num ( ) ;
s i z e t tbeg in = thr ead id * n o f s e q s / nthreads ;
s i z e t tend = ( th r ead id + 1) * n o f s e q s / nthreads ;

int thread min va l = INT MAX;
int thread min idx = =1;
for ( s i z e t i = tbeg in ; i < tend ; i++) {

Edl ibAl ignResu l t a l i g n =
e d l i bA l i gn ( query seq , query len , (char *)RefDB [ i ] . s eq addres s ,

RefDB [ i ] . s eq l en , a l i g n c o n f i g ) ;
i f ( a l i g n . ed i tD i s t ance < thread min va l ) {

thread min va l = a l i g n . ed i tD i s t ance ;
thread min idx = i ;

}
ed l i bFreeA l i gnResu l t ( a l i g n ) ;

}
#pragma omp c r i t i c a l

{
unsigned int absthread min va l = abs ( thread min va l ) ;
i f ( absthread min va l < min val ) {

min val = absthread min va l ;
min idx = thread min idx ;

}
}

}
// p e r l 5 .36 and above
av push s imple ( mapping , newSViv ( min idx ) ) ; // best match index
av push s imple ( mapping , newSViv ( min val ) ) ; // match s co r e ( min e d i t d i s t anc e )
return mapping ;

}

Listing 19: Query alignment, mapping and OpenMP environment reading in C

The C function edlib align carries out the parallel sequence mapping by defining a parallel region through
the compiler pragma #pragma omp parallel. The code after the beginning of this block and until the critical
region demarcated by the block #pragma omp critical will be executed in parallel by the number of threads
that were specified in the OpenMP environment variable OMP NUM THREADS. The critical region handles the
reduction operation of finding the best scoring (smallest edit distance) reference sequence against the query

28



processed by the function. While OpenMP offers explicit reduction clauses for simple functions (such as the
minimum or the maximum), more complex ones have to follow fork-critical region synchronization design
pattern shown here.

4.3.4 Performance benchmarking of the parallel versions of Edlib

Having constructed Edlib MCE and Edlib MCE OpenMP that support process level and combined process and
thread level parallelism, we now turn to the question : which one runs faster? In the first benchmark we varied
the number of workers in Edlib MCE and compared them to the same number of OpenMP threads controlled
by a single worker under Edlib MCE OpenMP, using the example dataset of 1,648 sequences discussed at the
beginning of this section. The benchmarks are shown in Figure 4, which shows that process level parallelism
scales much better than thread level parallelism for this application : there is a proportional decline in
execution time until all the cores of the first node had been engaged, followed by a less steep, but still
proportional decline as the threads in the second node of the Xeon processor are tasked. When the MCE

starts assigning more processes than the physical cores, performance slows down and effectively stops by the
time the hyperthreads of the second node are engaged. If the initial linear decline in execution time had held
until all 72 cores had been engaged, regression analysis indicates that the task would have been completed
in 2 seconds (rather than 8). The OpenMP version demonstrates the same general pattern, i.e. a steep
decline initially, that flattens later on, but tops out at a much higher execution time, likely because of poor
memory locality.

Figure 4: Benchmarking a pure MCE and a pure OpenMP for an equal number of workers (processed under
MCE or threads under OpenMP). The figure shows experimental data (OpenMP : triangles, MCE: filled
circles), regression curve fits and 95% confidence intervals (gray bands)

As the Edlib MCE OpenMP design allows us to profile variable combinations of processes and threads, we
went on to examine all possible 72×72 = 5, 184 possible combinations of processes and threads. These results
are shown in Figure 5 as a contour plot of execution times. The best scoring combination used 25 processes
and 4 threads per process to achieve a predicted (via regression analysis) timing of 2.7 sec. These numbers
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(as expected by the initial decline in execution time in Figure 4), effectively utilizing the full potential of the
NUMA machine used for these experiments.

Figure 5: Contour plot of the performance of Edlib MCE OpenMP over combinations of different number of
threads and processes. The points highlighted via the ’+’ are the top 5% performers(smallest execution
time).
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5 Conclusions

In this paper we examined the potential future role of Perl in the development of software components for data
and compute intensive bioinformatic applications. In particular we used Perl to enhance the functionality of
applications in R (Polyester) and C (Edlib). Both examples made heavy use of object oriented and meta-
class programming techniques to abstract data flows in the enhanced applications, and in the latter case to
”Jupyterize” the authoring of code for modules through the meta class capabilities in Moose. While seasoned
Perl programmers have no issue in putting together modules at the blink of an eye, the current environment
has a very strong preference for coding in a single file as much as possible. To provide such a ”Jupyter
notebook” like coding experience for module codes in Perl, one has to provide some form of abstraction for
the data flow and logic as a scaffold for the code of the application. In the particular cases we considered,
the data flows were simple enough for a single person to deliver, but in the general case the abstraction
would require collaboration between software architects, engineers and end users for the abstraction to be
created, before actual coding begins. Irrespective of the setting (solo coder v.s. a team), authoring the
code for the abstraction is heavily aided by Perl’s considerable ecosystem for MOP in the present and the
ongoing work to bring OO inside the language through the class feature19. We feel that Perl’s OO and
MOP capabilities endow the language with a considerable potential for application development in data and
compute intensive fields such as Scientific Computing, Data Science and even Artificial Intelligence. In such
fields, the compute intensive parts already exist as components in lower level language, yet the composition
of these parts into fully fledged applications will require one to write the higher level components in some
other language that the consumers will interact with. This is precisely the niche that was filled by R and
increasingly by Python in these fields. The Edlib enhancement shows that Perl can perform equally well
in such tasks, while providing opportunities to combine process (at the data flow level) and thread (at the
compute task level) parallelism to applications that will benefit from them. We illustrate that this is made
possible by putting OpenMP aware code in C under the control of the higher level abstractions in Perl
and used the MCE and OpenMP::Environment to experiment with the combination of thread and process
parallelism that gave optimal performance. The particular example we considered, i.e. Edlib was rather
extreme in that the library itself did not have multi-threaded capabilities to begin with. Hence a considerable
amount of C code had to be written to provide this capability to it. More commonly, one will be dealing
with multithreaded libraries, and thus the task will be considerably simpler, i.e. one would only have to
interface with the external library through the FFI::Platypus interface, obviating the need to code in a
foreign language.
At a more technical level, we found that all of our examples benefited from a judicious use of PDL for
vectorized, performant data intense operations. Vectorization is felt to be an important feature in scientific
and data intense computing as it allows the programmer to transform and reduce large chunks of data with
a single statement. While Perl built-in map and grep allow such operations to take place, users in data
and science fields are accustomed to more direct ways to code them. Furthermore, they often expect such
operations to occur in-place, i.e. without copying and moving large chunks of data in memory, something
that is not easily obtained through map. In our examples we used PDL to vectorize random number generation
in-place, achieving performance similar to that obtained in R, a language that comes out-of-the-box with
vectorization capabilities. While this may seem as a niche application, it provides a self-contained case study
for more complex use cases. Hence, we feel that the performance gains are generalizable; the performance
implications are simply too large for Perl programmers to not consider PDL for data intense applications.
Reduction operations are also aided greatly by using PDL in Perl code; while the specific reduction needs of
our examples were rather simple by design, the large ecosystem of PDL statistical and numerical modules
implies a considerably higher potential. For some applications PDL when combined with data flow and logic
abstractions may allow one to avoid coding parts of the application in a foreign language.
In summary, we think that Perl should receive greater attention for the development of the high-level logic
and the data flows in scientific and data intense applications. In the narrow field of bioinformatics in which
the computations often map to discrete steps in experimental workflows, Perl can aid authors by providing
high level abstractions that allow them to work out the optimal combination of software components that can
filter and process their voluminous data in a performant manner. The enhancements of Edlib we discussed

19https://perldoc.perl.org/perlclass
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in this paper highlight the path we are currently following in the Bio::SeqAlignment module that will
deliver a set of components for novel applications for the analysis of third generation sequencing data.
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Appendix A Hardware platform specifications

All benchmarking took place with a Dual Xeon E2697v4 in an HP Z840 workstation. The NUMA architecture
and the roofline diagram for the system are shown in the following figures.

(a) Topological map of the machine used for benchmarking

(b) Roofline diagram of the system used for benchmarking
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Appendix B R code for truncated random number simulation

R code for the inverse CDF method for sampling from truncated distributions. The listing below provides
code for sampling using eval strings, dereferencing of symbolic references and searching in the symbol table
(”environment” in R) and finally fixing/hard-wiring the name of the dependencies e.g. the name of the RNG
into the code. The R package dqrng was used to provide an interface to the Xoshiro RNG. The function
runif is R’s builtin RNG and is analogous to to Perl’s rand.

simtrunceval <-function(n,distr=NULL ,uniformRNG=NULL ,lower=NULL ,

upper=NULL ,...){

cdf <-function(x ,...) eval(parse(text=paste("p",distr ,sep="")))(x ,...)

invcdf <-function(x,...) eval(parse(text=paste("q",distr ,sep="")))(x ,...)

uniform = function(x ,...) eval(parse(text=uniformRNG ))(x)

lowercdf <-ifelse(is.null(lower),0,cdf(lower ,...))

uppercdf <-ifelse(is.null(upper),1,cdf(upper ,...))

domain <-uppercdf - lowercdf

simvals <-uniform(n)

simvals <-lowercdf + simvals*domain

invcdf(simvals ,...)

}

simtruncget <-function(n,distr=NULL ,uniformRNG=NULL ,lower=NULL ,

upper=NULL ,...){

cdf <-get(paste("p", distr , sep = ""))

invcdf <-get(paste("q", distr , sep = ""))

uniform = get(uniformRNG)

lowercdf <-ifelse(is.null(lower),0,cdf(lower ,...))

uppercdf <-ifelse(is.null(upper),1,cdf(upper ,...))

domain <-uppercdf - lowercdf

simvals <-uniform(n)

simvals <-lowercdf + simvals*domain

invcdf(simvals ,...)

}

simtruncfixedrunif <-function(n,lower=NULL ,upper=NULL ,...){

lowercdf <-ifelse(is.null(lower),0,plnorm(lower ,...))

uppercdf <-ifelse(is.null(upper),1,plnorm(upper ,...))

domain <-uppercdf - lowercdf

simvals <-runif(n)

simvals <-lowercdf + simvals*domain

qlnorm(simvals ,...)

}

simtruncfixedqrng <-function(n,lower=NULL ,upper=NULL ,...){

lowercdf <-ifelse(is.null(lower),0,plnorm(lower ,...))

uppercdf <-ifelse(is.null(upper),1,plnorm(upper ,...))

domain <-uppercdf - lowercdf

simvals <-dqrunif(n)

simvals <-lowercdf + simvals*domain

qlnorm(simvals ,...)

}

36


	Introduction
	Perl in Bioinformatics
	Problem Description and Requirements
	Of DNA and RNA Sequencing
	Third Generation Sequencing Methods

	Perl for SCBSE in Bioinformatics for the 21st century
	Case Study 1: Polyester
	Case Study 2: Edlib

	Results and Discussion
	Enhancing Polyester
	A Tiny Role for Randomness
	Trimming the polyA tail from RNA sequences 

	Enhancing Edlib with Meta-Object Programming (MOP) techniques
	Data flows for sequence mapping applications
	Writing generic mappers with Moose and roles
	Enhancing Edlib's performance with MCE, FFI::Platypus, Inline::C and openMP
	Performance benchmarking of the parallel versions of Edlib 


	Conclusions
	Hardware platform specifications
	R code for truncated random number simulation

