
HAL Id: hal-04606163
https://hal.science/hal-04606163

Submitted on 9 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

XXE defence(les)s in JDK XML parsers
Jonathan Brossard

To cite this version:
Jonathan Brossard. XXE defence(les)s in JDK XML parsers. Blackhat USA, Blackhat, Jul 2015, Las
Vegas, United States. �hal-04606163�

https://hal.science/hal-04606163
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

XXE defence(les)s in JDK XML parsers

Sergey Gorbaty sergey.gorbaty@salesforce.com

Xiaoran Wang xiaoran.wang@salesforce.com

Hormazd Billimoria hbillimoria@salesforce.com

Jonathan Brossard jbrossard@salesforce.com

Product Security, Salesforce.com, San Francisco, CA, USA

Abstract. This article will demonstrate that many Oracle JDK XML
parsers are vulnerable to Xml eXternal Entity (XXE) attack. We shall
also demonstrate that existing Java defenses against XXE attacks fall
short and fail to protect against malicious malformed XML, which re-
sults in a parsing error with external entities successfully expanded. Our
exploit has the capability of exfiltrating files and launching directory
traversals. We present a proof of concept dumping filenames under /tmp
directory from a remote server running JDK 7 via untrusted XML files.
It is our hope to raise awareness of the industry regarding the dangers
of XXE-type of attacks. This should also result in upgrading the best
practices for disabling external entity resolution for several XML parsers.

Keywords: Java, XXE, XML, parser.

1 Introduction

In the present article we will provide an overview of the standard attack
using XML external entities. In the following subsection we will describe
the effects of specific malformed XML attack scenario for JDK7-based
XML parsers, which was first introduced in [1]. In the later subsection we
will introduce defences that are recommended by authoritative sources
and demonstrate where they fall short.

1.1 Background

XML DTD can be constructed from internal, external and parameter
entities. External entities are references to other entities that can be
found outside of the current document. When XML parser encounters
an external entity URI, it expands the reference to include the content
from the external link in the current document. An external entity may
reference a file or a URL.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE test [

<!ENTITY xxe SYSTEM "file:///etc/passwd">
]>

<test>&xxe;</test>

Fig. 1. Simple XXE payload

1.2 Introducing the Attack

As it was alluded to in the previous section, the exception thrown by the
XML parser may happen during various stages of parsing. JDK XML
entity expander always assumes the external entity URL is well formed
and will attempt to resolve it. Our first goal is to confirm that external
entities are being resolved; therefore, we include an external URL in one
entity. Our second goal is to create an entity pointing to an invalid URL,
which is containing data resulted from expansion of another external en-
tity. Such entity structure would force the XML parser to resolve some
sensitive external entities first and then leak the resolved data using spe-
cially crafted URL and finally throw an IOException. The IOException
in this case is most often shadowed and thrown only after an attempt to
resolve the entity URL at which point the attacker had already received
the data via an attacker-controlled DNS resolver.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE foo [

<!ENTITY % payload SYSTEM "file:///etc">
<!ENTITY % dtd SYSTEM "http://externallyhostedentity.com/a.dtdâĂİ>
%dtd;
%release;

]><foo>business as usual</foo>

Fig. 2. XXE with entity cross-references

<!ENTITY % nested "<!ENTITY % release SYSTEM ’jar:%payload;.externallyhostedentity.com!/’>">
%nested;

Fig. 3. Externally hosted a.dtd

The main reason for having a separate a.dtd is that expanded references
cannot be referenced in the same document.

Figures 2 and 3 demonstrate how an attacker may learn if the parser is
vulnerable to XXE by monitoring DNS resolver and/or http://externallyhostedentity.
com HTTP logs. Furthermore, the XML parser may leak the directory
content of /etc to the authoritative DNS resolver that holds A-type
record for the attacker controlled http://externallyhostedentity.com.

2 Insufficient Recommendations

Oracle JDK7 documentation contains plethora of information about XML
parser configuration. One of the first options that come to developer’s
mind is to enable FEATURE_SECURE_PROCESSING in order to pre-
vent external connections. “When FEATURE_SECURE_PROCESSING
is enabled it is recommended that implementations restrict external con-
nections by default” [2], alas, despite Oracle’s recommendation XML
parsers do not actually restrict external connections when FEATURE
_SECURE_PROCESSING is enabled. When it comes to tackling XXE
Oracle does not have explicit recommendations but for certain parsers
it documents how to turn expansion of XML external entities off while
other parses do not have a way to turn it off. OWASP recommendations
[3] only cover major JDK parsers and respond to XXE threat by disabling
of fetching external DTD altogether on most of them. Long et. all in [4]
recommend creating a custom entity resolver for XMLReader but do not
cover any others. [5] recommendations provide generic recommendations
and only cover javax.xml.parsers.DocumentBuilderFactory specifics.

In the following sections we will examine each major JDK XML parser
provider and see what capabilities it provides for mitigating XXE.

2.1 javax.xml.stream.XMLInputFactory

Using setProperty method on this [6] Oracle XML factory, developer can
set javax.xml.stream.isSupportingExternalEntities property to false. Un-
fortunately, as we discovered [7] setting this property was not properly
functioning and resulted in a 0-day vulnerability, which was addressed
in JDK update 7u67.

OWASP recommendation [3] for this parser ignores useful needs for XML
DTD and recommends disabling external DTD altogether, which cer-
tainly fixes the problem but may not be in line with the business needs.

2.2 javax.xml.parsers.DocumentBuilderFactory

OWASP recommendations disabling the DTD but also mentions that if
one cannot completely block DTD, she should simply disable the follow-
ing propertes: http://xml.org/sax/features/external-general-entities,
http://xml.org/sax/features/external-parameter-entities.

Unfortunately, the documentation does not explicitly tell that disabling
both of the above properties is required. Disabling http://xml.org/sax/
features/external-general-entities on its own would have no effect
against the attack mentioned earler.

Morgan et. all [5] and OWASP recommendations appear to be very sim-
ilar.

Oracle documents [8] that setAttribute method in this factory can be used
to set XMLConstants.ACCESS_EXTERNAL_DTD and XMLConstants.
ACCESS_EXTERNAL_SCHEMA properties, which would allow a de-
veloper to restrict protocols that can be used to fetch DTD or schema.
The developer should be aware that jar:// protocol is quite dangerous
and should be excluded as it can resolve files and externally hosted web-
sites.

2.3 javax.xml.parsers.SAXParserFactory

Oracle documentation [9] for this factory does not include any features
that would help us disable external entities processing. OWASP includes
recommendations that range from disabling DTD to disabling external
entities only. The defenses listed by OWASP are similar to the ones out-
lined in 2.2.

2.4 javax.xml.transform.sax.SAXTransformerFactory

and javax.xml.transform.TransformerFactory

Oracle provides in [10] information on how to disable protocols that can
be used to fetch external DTD and external entities. Unfortunately, it
is not possible to turn off external entities without disabling DTD using
XMLConstants.ACCESS_EXTERNAL_DTD attribute.

2.5 javax.xml.validation.SchemaFactory and

javax.xml.validation.Validator

These particular parsers allow a developer to provide a custom external
resource resolver using setResourceResolver method [11][12]. Unfortu-
nately, the default parameter value of null does not result in a safe be-
havior and is, essentially, a no-op. The developer must supply a proper
resolver else the attack will succeed.

An alternative and safe way to mitigate the attack is to utilize setProp-
erty method [13][14] with XMLConstants.
ACCESS_EXTERNAL_DTD as the first parameter and whitelisted
protocols as the second.

2.6 javax.xml.bind.Unmarshaller and

javax.xml.xpath.XPathExpression

As Oracle documentation suggests there isn’t a way to modify behavior
of Unmarshaller in terms of resolving external entities: “There currently
are not any properties required to be supported by all JAXB Providers on
Unmarshaller ” [15]. XPathExpression simply does not expose any public
method to set properties.

The only option to make these two parsers safe available is to parse
the XML first, using a different safe parser, and then pass the result
in. E.g. for Unmarshaller a developer would need to produce a safe
java.xml.transform.Source and pass it to the unmarshal method. And
for XPathExpression a safely parsed org.xml.sax.InputSource needs to
be passed to the evaluate(...) method [16].

3 Conclusion

Each JDK parser has a specific configuration when it comes to prevent-
ing XXE attacks. It is important to configure the parser for handling
incorrect input as well as the one that is correct but knowingly produces
errors.

References

1. Timur Yunusov, A.O.: Xml out-of-band data retrieval, BlackHat
USA. https://media.blackhat.com/eu-13/briefings/Osipov/
bh-eu-13-XML-data-osipov-slides.pdf (2013)

2. Oracle: Property XMLConstants.ACCESS_EXTERNAL_DTD.
(http://docs.oracle.com/javase/7/docs/api/javax/xml/
XMLConstants.html#ACCESS_EXTERNAL_DTD)

3. OWASP: Xml external entity (xxe) processing. (https:
//www.owasp.org/index.php/XML_External_Entity_%28XXE%
29_Processing)

4. Fred Long, Dhruv Mohindra, R.C.D.F.D.S.: The CERT Oracle Se-
cure Coding Standard for Java. Addison-Wesley (2012)

5. Timothy D. Morgan, O.A.I.: Xml schema, dtd, and entity attacks.
http://vsecurity.com/download/papers/XMLDTDEntityAttacks.
pdf (2014)

6. Oracle: Class xmlinputfactory. (http://docs.oracle.com/javase/
7/docs/api/javax/xml/stream/XMLInputFactory.html)

7. Oracle: Oracle critical patch update advisory - october
2014. http://www.oracle.com/technetwork/topics/security/
cpuoct2014-1972960.html (2014)

8. Oracle: Function DocumentBuilderFactory.setAttribute(..).
(http://docs.oracle.com/javase/7/docs/api/javax/xml/
parsers/DocumentBuilderFactory.html#setAttribute(java.
lang.String,%20java.lang.Object))

9. Oracle: Function SAXParserFactory.setFeature(..). (http:
//docs.oracle.com/javase/7/docs/api/javax/xml/parsers/
SAXParserFactory.html#setFeature(java.lang.String,
%20boolean))

10. Oracle: Function TransformerFactory.setAttribute(..).
(http://docs.oracle.com/javase/7/docs/api/javax/xml/
transform/TransformerFactory.html#setAttribute(java.lang.
String,%20java.lang.Object))

11. Oracle: Function SchemaFactory.setResourceResolver(..).
(http://docs.oracle.com/javase/7/docs/api/javax/xml/
validation/SchemaFactory.html#setResourceResolver(org.
w3c.dom.ls.LSResourceResolver))

12. Oracle: Function Validator.setResourceResolver(..). (http:
//docs.oracle.com/javase/7/docs/api/javax/xml/validation/
Validator.html#setResourceResolver(org.w3c.dom.ls.
LSResourceResolver))

13. Oracle: Function SchemaFactory.setProperty(..). (http:
//docs.oracle.com/javase/7/docs/api/javax/xml/validation/
SchemaFactory.html#setProperty(java.lang.String,%20java.
lang.Object))

14. Oracle: Function Validator.setProperty(..). (http://docs.oracle.
com/javase/7/docs/api/javax/xml/validation/Validator.
html#setProperty(java.lang.String,%20java.lang.Object))

15. Oracle: Class Unmarshaller. (http://docs.oracle.com/javaee/7/
api/javax/xml/bind/Unmarshaller.html#supportedProps)

16. Oracle: Function XPathExpression.evaluate(..). (http:
//docs.oracle.com/javase/7/docs/api/javax/xml/xpath/
XPathExpression.html#evaluate(org.xml.sax.InputSource))

