
HAL Id: hal-04606160
https://hal.science/hal-04606160v1

Submitted on 9 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Hardware Backdooring is Practical
Jonathan Brossard

To cite this version:
Jonathan Brossard. Hardware Backdooring is Practical. Blackhat USA, Blackhat, Jul 2012, Las
Vegas, United States. �hal-04606160�

https://hal.science/hal-04606160v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Hardware bakdooring is pratial

Jonathan Brossard - jonathan.brossard�touan-system.om

Seurity Researh Engineer & CEO, Touan System, Frane and Australia

Blakhat Brie�ngs and Defon onferenes, Las Vegas, 2012

�To reate is to resist, to resist is to reate� � National Counil of the Resistane

Abstrat. This artile will demonstrate that permanent bakdooring of hardware is pratial. We have
built a generi proof of onept malware for the Intel arhiteture, Rakshasa1, apable of infeting more
than a hundred di�erent motherboards. The �rst net e�et of Rakshasa is to disable NX permanently
and remove SMM[1℄ related �xes from the BIOS, an Uni�ed Extensible Firmware Interfae (UEFI)[2℄[3℄
�rmware, or from a PCI[4℄ �rmware, resulting in permanent lowering of the seurity of the bakdoored
omputer, even after omplete erasing of hard disks and re-installation of a new operating system. We
shall also demonstrate that preexisting work on MBR subversions suh as bootkiting and preboot au-
thentiation software brute-fore or faking an be embedded in Rakshasa with little e�ort. More over,
Rakshasa is built on top of free software, inluding the Coreboot[5℄, Seabios[6℄, and iPXE[7℄ projets,
meaning that most of its soure ode is both already publi and non maliious, therefore extremely
hard to detet as suh. We shall �nally demonstrate that bakdooring of the BIOS or PCI �rmwares
to allow the silent booting a remote payload via an http(s) onnetion is equally pratial and ruins all
hope to detet the infetion using existing tools suh as antivirii or existing forensis tools. It is hoped
to raise awareness of the industry regarding the dangers assoiated with the PCI standard, espeially
question the use of non open soure �rmwares shipped with any omputer and question their integrity
or atual intend. This shall also result in upgrading the best praties in ompanies regarding forensis
and post intrusion analysis by inluding the afore mentioned �rmwares as part of their sope of work.

Keywords: Hardware bakdooring, PCI �rmware, BIOS, EFI, romkitting, remote boot, Botnet.

1 Rakshasa is the Hindi word for deamon.

Table of Contents

1 Introdution . 3

2 Related work . 3

3 Overview of the IBM PC and its legay problems . 5

4 Designing the perfet bakdoor : sope of work . 6

5 Implementation details : Rakshasa . 7

6 Inner working of Rakshasa . 8

7 Embedded features of Rakshasa . 10

8 How to properly build a botnet from the BIOS : BIOSBonets . 11

9 Why (possibly hardware assisted) enryption won't solve the problem . 12

10 Conlusion . 12

11 Aknowledgements . 12

1 Introdution

A reent[8℄ report from the US-China Eonomi and seurity review ommission by Northrop Grumman
Corp alled "Oupying the Information High Ground: Chinese Capabilities for Computer Network
Operations and Cyber Espionage" onluded that: "This lose relationship between some of China's
-and the world's- largest teleommuniations hardware manufaturers reates a potential vetor for
state sponsored or state direted penetrations of the supply hains for miroeletronis supporting U.S.
military, ivilian government, and high value ivilian industry suh as defense and teleommuniations,
though no evidene for suh a onnetion is publily available." In other words : sine China has beome
the de fato manufaturer of most IT equipment in the world, China an bakdoor any omputer at will.
Anybody part of the supply hain an. We believe this is an euphemism : we shall here demonstrate
the pratiality of suh a bakdooring using existing open soure software, lowering the bar of suh an
attak from state level or otherwise very large orporations to any 16bits assembly expert, as well as
demonstrate that installing suh a bakdoor remotely is equally pratial.

2 Related work

The �rst known virus, brain, was allegedly built in Pakistan in the early 80's. It was targeting the
Master Boot Reord (MBR) of the �rst bootable hard drive in order to gain early exeution and used
�oppy disks to propagate. This attak vetor has been repliated by literally thousands of viruses during
the 80s and 90s, until the appearane of the internet, when viruses swithed to userland in order to
bene�t from internet aess as a propagation vetor.

Gaining early exeution has long been believed the best way to gain maximum privileges on IBM PCs.
In 2009, at Cansewest, Anibal Sao and Alfredo Ortega[9℄ demonstrated how they managed to path
a Phoenix-Award BIOS to embed maliious features (modifying the shadow �le on Unix-like systems,
or path Mirosoft Windows binaries). In 2007, John Heasman[10℄ demonstrated that infeting The
Extensible Firmware Interfae (EFI) bootloader would lead to the same results. If the former targeted
one spei� BIOS, the latter would be mitigated by reinstalling a sane bootloader.

Operating modi�ations on the �le system isn't stealth and leaves lear forensis evidene : as a matter
of fat, a simple one way heksum of all the existing �les on the �lesystem performed before and after
infetion from a sane operating system would detet the modi�ation. Therefore, seurity researhers
have oneived ways to subvert a running kernel on the �y without even touhing the �lesystem. No-
table researh inlude BootRoot[11℄from Derek Soeder and Ryan Permeh, vbootkit from Kumar and
Kumar[12℄, apable of bootkitting a Windows 7 kernel, the Stoned bootkit[13℄, and the Kon-boot om-
merial bootkit from Piotr Bania[14℄, apable of subverting all the existing NT kernels, from Windows
XP to Windows 2008 R2 and Windows 7, in both 32 and 64 bits. Those attaks work by booting from
an alternate media suh as a �oppy or usb stik, or by replaing the existing MBR (and restore its
�rst setor in memory, emulating an interruption 0x19). Running a bootkit from an alternate medium
leaves no forensi evidene. It is also worth notiing that the Stoned Bootkit managed to bootkit the
Windows kernel in spite of possible enryption suh as Truerypt[15℄.

It is worth mentioning that the inner working of any bootkit is the same : hooking the interruption
0x13 (disk aess) by pathing the Interrupt Vetor Table (IVT), set a rogue interruption handler, and
emulate an interruption 0x19 by loading the �rst setor of the �rst bootable disk at 0x0000:0x700
before transferring exeution to this loation. This �rst setor will in turn load the operating system
normally, but the rogue 0x13 interrupt handler will hook any read of a setor from disk and one the
kernel of the main operating system is fully unpaked in memory, path a few arefully hosen loations
in order to modify it on the �y. Publi payloads inlude pathing the NT kernel to aept any pass-
word for any aount, or load an unsigned kernel module, whih an e�etively exeute any operation in
ring 0 one the operating system is fully loaded (eg: allow loal privilege esalation, remote ontrol, et).

3

Our main ontributions are:

- Romkit not a single, but hundreds of di�erent motherboards. this is better by two orders of magnitude
over existing researh.
- Embed any existing bootkits as part of a romkit without any modi�ation.
- Use of routable ip pakets to upgrade the romkit, exeute remote payloads and optionally attak the
LAN, either using an ethernet or Wi� stak.
- A mehanism to allow botnet resiliene against law enforement DNS take overs, over HTTPS using
asymmetri ryptography and a repliation mehanism making the rom-botnet lose to impossible to
shutdown.
- Permanent lowering of the seurity level of any future (unknown) operating system installed on the
omputer, when existing bootkits assume either a GNU/Linux or NT kernel.
- Persistene of the infetion even if the main BIOS rom is ever �ashed by infeting multiple PCI
�rmwares (suh as a drom �rmware) with maliious network �rmwares, apable of upgrading any
other PCI rom remotely (eg: infet the BIOS or main network PCI rom bak), while preserving fun-
tionality.
- Disabling Address Spae Layout Randomization (ASLR)[16℄ and NX2 from NT kernels, making any
future Windows operating systems vulnerability trivial to exploit on an infeted mahine.
- An infetion mehanism o�ering both plausible deniability and non attribution, hene ompatible
with state level global hardware bakdooring.

2 The NX bit is the 63th (leftmost) bit of the Page Table Entry on amd64 arhitetures.

4

3 Overview of the IBM PC and its legay problems

The IBM PC was originally designed around 1981. It has evolved sine, in partiular with the replae-
ment of older Industry Standard Arhiteture (ISA)[17℄ peripherals in favor of muh faster Peripheral
Component Interonnet (PCI)[4℄ devies in 1996, and even faster devies with PCI Express (pushed
by Intel in 2004, ommonly referred to as PCI-E or PCIe)[18℄. But the ore design remains the same,
the pu still booting in 8086 ompatibility mode (id est: 16b real mode) even on the most reent
motherboards. It is worth mentioning that when �rst launhed, Windows 95 had open network shares
(netbios), whih is a lear sign that around those dates, Mirosoft had not antiipated the raise of the
Internet and had therefore designed an operating system to be used primarily in LAN environments.
Needless to say IBM ouldn't have antiipated the internet either bak in 1981. The basi design of the
IBM PC is presented in �gure 1 : from the bottom to the top, we �nd the Super I/O, to whih are on-
neted legay ISA devies (hene slow devies) suh as keyboards, mouse, and �oppy drives. The Super
I/O is onneted to the South bridge, via an LPC bus. The Southbridge is responsible for handling
faster peripherals (up to 2133 Mb / seond for PCI-X 2.0), typially ompliant with the PCI standard.
Suh devies an be for instane network (ethernet), sound or older graphi ards. The South bridge
is himself onneted to the North bridge via the internal bus, whih is himself responsible for handling
muh faster peripherals typially ompliant with the PCIe standard, with a debit up to 16 Gb/s for the
version 3.0 of the standard. Suh devies an be for instane newer 3D graphi ards, gigabit ethernet
ards or enterprise storage (SAS). The North bridge an ontain the pu and has in any ase a high
speed onnetion with it through the Front Side Bus (FSB). Eah layer of the arhiteture ontains
Diret Memory Aess (DMA) hips, whih are ontrolled by input/output memory management unit
(IOMMU)[19℄ for performane and seurity reasons.

Fig. 1. Overview of the IBM PC arhiteture.

5

Beause peripherals sometimes need upgrading, they are ontrolled by via embedded �rmwares : ISA
peripherals had embedded ISA roms, and PCI have PCI expansion roms. Even though end users are
hardly aware of their very existene, those �rmwares an be upgraded (�ashed), usually using propri-
etary and vendor spei� tools. To avoid trivial bakdooring, some ards o�er a physial swith whih
needs to be manually ationed to allow the �ashing of the �rmware.

An other ritial �rmware is the BIOS �rmware, whih takes plae in the motherboard. It is responsible
for deteting hardware suh as RAM and peripherals at boot time, initialize an Interrupt Vetor Table
to allow interation with those peripherals from the RAM, and load the Master Boot Reord from
the �rst bootable hard drive using interruption 0x19. When booting in 8086 ompatibility mode, the
boot loader an only rely on the IVT to load a kernel in memory, who will typially quikly swith to
proteted mode and never use the IVT ever again, favoring muh faster devie drivers for hardware in-
terfae from proteted mode. The BIOS �rmware an also be upgraded, and it is in fat pretty ommon
to orret hardware bugs suh as pu bugs by pushing a signed miroode update to the pu from the
BIOS. Finally, the BIOS typially ativates a bit in ontrol registers to prevent the pu to be swithed
to System Management Mode (SSM) - whih is really the pu path mode - in order to prevent a lass
of attaks disovered by Loi Du�ot[1℄ and released publily by BSDaemon[20℄. Some vendors, notably
HP have started digitally signing their BIOSes to avoid rogue upgrading. In any ase, an attaker with
physial aess to the BIOS or peripherals an replae the �rmwares without relying on the operating
system by writing to the hip using for instane self su�ient hardware tools based on FPGA hips.

One of the problem with the design of this arhiteture is rooted in the trust peripherals of eah layer
have in eah others. For instane, the �rmware of a drom PCI devie an absolutely ontrol a PCI
network ard. And in the same way, an ISA �rmware an ontrol an other ISA devie. This behavior
annot be hanged : this is how IBM PCs work.

It is also worth noting that the Trusted Platform Module[21℄ (TPM) is typially onneted to the
south bridge, very far from the pu. Moreover, it is a passive omponent, meaning that software an
hose to use it or not, but that the pu annot enfore its use. This is a serious weakness of the whole
arhiteture as we will see later in this paper.

As one might expet, the �rmwares embedded in BIOSes or PCI devies (PCI expansion ROMs) are
vendor spei� and totally not standard. The whole purpose of this paper is to explain how to gener-
ially modify suh �rmwares to reate a bakdoor that an not be deteted from user land one a
kernel has been loaded in RAM and a swith to proteted mode has been performed. Beause the BIOS
�rmware is stritly speaking the �rst piee of software to be exeuted on the omputer, and beause
it gives early ontrol to eah PCI expansion ROM during early boot (before swithing to proteted
mode), any maliious ation routine exeuted at this stage enjoys full aess to hardware resoures. In
partiular, it is worth reminding that real mode is not apable of multitasking, and that suh routines
therefore have aess to 100 per ent of the resoures of the mahine.

4 Designing the perfet bakdoor : sope of work

The author of this white-paper doesn't usually spend time writing malwares. To the opposite, he spent
quite a signi�ant part of his life studying and reversing them. But to prove our point, let's pretend
we'd really like to design a proper bakdoor to be used in the wild. We'd also like to underline the
fat that we believe most of the ommuniation involving malware, if not all of it, oming from ma-
jor antivirus vendors and happily relayed by servile media is blatantly tainted with FUD3. Instead of
arguing on whether Flame and Stuxnet ould have been written by amateurs instead of nation states,
let's see how an attaker an write a nation state quality bakdoor on a budget. This shall also serve
as a good example of how a vendor manufaturer ould design a proper bakdoor with similar intend.
First of all, we'd like our bakdoor to be persistent. Not simply persistent between reboots, but also
in ase the user of the omputer was to replae the entire operating system, possibly even portions of

3 Fear, Unertainty, Doubt.

6

the hardware (replaing the hard drive or the network ard for instane), �ash the BIOS or any other
�rmware on the motherboard and peripherals. To ahieve this goal, we will avoid having a single point
of failure and will hene need some degree of redundany.

Of ourse, the bakdoor should be as stealth as possible. Needless to say it shall not be deteted by
any antivirus on the market. It shall also be portable : ideally, we'd like it to be totally operating
system independent. Beause a signi�ant portion of the IT budget of ompanies goes into expensive
(and quite ine�ient4) detetion gear suh as Intrusion Detetion Systems (IDS), Intrusion Prevention
systems (IPS) and �rewalls, we'll need our bakdoor to be apable to break the network perimeter of
large ompanies in some way or an other.

In terms of funtionality, we'd like the bakdoor to allow remote updates and provide remote aess.
This implies some degree of network awareness.

Finally, if we want to math nation state quality bakdoors, we need our reation to obey two golden
rules always employed by seret servies around the world : plausible deniability and non attribution.
the �rst one is a mean to o�er an alternative explanation in ase the bakdoor was to be disovered
in spite of our best e�orts to make it as stealth as possible. By having a seond redible alternative to
explain the presene of the bakdoor in the system, nation states an deny any wrong doing and qualify
their detrators of sheer believers of onspirationist theories. Non attribution is equally important and
is the feature of not allowing the bakdoor to be linked to any individual or state in partiular. It is
very muh in the air for nation states to laim "it wasn't me ! ... it was China".

Needless to say the bakdoor shall also be heap : it shall therefore be blatant that a skilled individual
an indeed reate bakdoors so far believed to be only possibly rafted by states in the story telling of
the media, and eventually put in perspetive the FUD that is served daily to both itizens and deision
makers in the orporate as well as politial worlds.

5 Implementation details : Rakshasa

The quadruple onstraint : heap development, vast features (suh as network stak), hard detetion
and non attribution ditate one diretion for our implementation : free and open soure software. As a
matter of fat, the diretion taken by virtually any malware so far to rely on ustom ode entirely is a
bad idea as it o�ers a large attak surfae to antivirii in terms of detetion, is often attributable if ode
is reused aross multiple malware, and is nowhere near heap. To the opposite, using non maliious
free and open soure software as the ore of the bakdoor provides little angle of detetion to antivirii,
is non attributable (the soure ode is available to anyone on the internet), is as heap as it gets. Plus
it o�ers free maintenane from the ommunity to the malware author.

In order to ahieve both persistene and stealthiness, it was hosen to target primarily the BIOS. But
to o�er redundany in ase the BIOS was ever �ashed, it has been deided to also provide an infetion
mehanism through PCI expansion ROMs, by targeting the �rmware embedded in ethernet network
ards5.

Rakshasa is omprised of a ustom version of Coreboot for the BIOS bakend, of a ustom SeaBIOS
BIOS-payload to reate and IVT, of a set of PCI expansion ROMS (SVGA driver and a ustom iPXE

4 From his humble experiene with vulnerabilities and 0days, the author strongly believes looking for bugs and getting
them �xed is the only reasonable protetion against 0days. Unlike the aforementioned network gadgets (inluding
antivirii/IDS/IPS), stati analysis and fuzzing have proved to work. Symboli exeution is also a promising �eld
of researh even though exponential path explosion seems unavoidable in the urrent state of the art. We strongly
reommend ompanies to invest in those tehniques instead of silver-bullet-anti-0day-detetion tools, whih work
neither in theory nor in pratie.

5 Like mentioned previously, the �rmware ontrolling a network ard ould atually be plaed in any other PCI devie.
Also �ashing, say, the drom �rmware with the very same infeted �rmware would o�er even greater redundany.

7

ROM), plus a ustom ative bootkit whih is retrieved from the network.

Coreboot by itself isn't a full BIOS : it is only responsible for deteting the hardware present on the ma-
hine, perform a BIOS POST and transfer ontrol to a "BIOS payload". This BIOS payload is in turn
responsible for setting up and Interrupt Vetor Table that will allow an operating system to interat
with the hardware previously deteted. In our setup, Coreboot and Seabios have been trivially pathed
not to display anything, even though Coreboot is in theory apable of displaying a ustom user de�ned
bootsplash at boot time, whih would allow faking the image normally displayed by the original BIOS
(typially ontaining the vendor logo et). SeaBIOS was hosen for its simpliity, but alternative open
soure BIOS payloads are available whih an also display menus and fool more advaned users that
ould want to modify their BIOS settings. Other BIOS payload an also ontain EFI/UEFI extensions,
whih makes our tehnique appliable entirely to UEFI environments6.

Coreboot having a very modular design, it is possible to embed about any PCI ROM along with it,
meaning that we an stu� arbitrary ode inside the BIOS hip itself. We have hosen to stik to the bare
minimum, adding a video driver and a rogue iPXE ethernet �rmware (equally pathed not to display
anything when operating). This later PCI �rmware implements a super set of the original PXE[22℄
standard : instead of relying only on DHCP to aquire an IP address and the address of a TFTP
server to download an operating system from, it an use a wide range of protools, based on a user
de�ned on�guration �le embedded in the �rmware itself. iPXE ontains working staks for ethernet,
wi� and even wimax data link layers protools, a full featured IPv(4/6)/imp stak, and implements
all a malware writer ould dream of in terms of upper layer network staks : from UDP and TCP to
DHCP, DNS, HTTP, HTTPS and (T)FTP among others.

Tehnially, Coreboot ould also embed a full featured bakdoor in the BIOS ROM itself. But sine
we'd like to o�er upgrading failities to Rakshasa and avoid leaving any trae of hostile ode on the
mahine (to deeive forensis analyst in ase of detetion or at least suspiion), we'll refrain from using
this tehnique : we'll boot our maliious payload from the network at eah boot.

Instead of booting a normal operating system from the wire, we'll use iPXE to boot a bootkit remotely,
whih will in turn transparently load the bootloader from the �rst bootable disk by emulating interrupt
0x19, path the kernel on the �y, and eventually load the operating system kernel as the user expets
it, silently.

6 Inner working of Rakshasa

Rakshasa an typially be installed in one of two ways. The �rst one is, given physial aess to the
hardware, to �ash the BIOS �rmware. This an be ahieved either by using a dediated physial �asher
(usually made of a FPGA)7 or by relying on a generi �rmware �asher (from usb or a drom for
instane. PXE ould also be used). This operation takes less than a minute in any ase.
The seond installation tehnique is a post intrusion one and doesn't require physial aess to the
hardware at all : one an attaker has ahieved remote root on a omputer, he an use the same generi
�asher to install Rakshasa in plae of the original BIOS. In ase the operating system is not a Linux,
one an simply pivot over the MBR upon next reboot. To ahieve redundany and avoid single points
of failure, the network ard �rmware is also �ashed with a rogue iPXE �rmware.

Optionally, a seond PCI �rmware an be replaed by a modi�ed version of iPXE (typially the drom).
It is unfortunately not possible to maintain the funtionality of this seond devie when doing so for
the time being (though this is an implementation issue and not a theoretial one). If the BIOS ever
attempted to boot from this seond devie, the net e�et would be the same : the omputer would

6 In other words ,the root ause of the problems, namely a writable BIOS and a passive TPM are not solved with
UEFI.

7 This method has the main advantage of bypassing anti-�ashing ounter measures suh as �rmware signing on
ertain motherboards.

8

really boot from iPXE, that is, from the network.

iPXE is apable of attempting ations, and perform other ones upon failure. To maximize our hanes of
working in any given environment, we have on�gured iPXE to �rst attempt to onnet to the internet
via wi�. A number of ommon SSIDs and even wi� yphers an be spei�ed at ompile time. Typially,
we'll try to boot from an attaker de�ned SSID/WEP aess point. In ase of failure, we'll try to onnet
to a (short) list of ommon publi SSIDs usually assoiated with open wireless aess points. The main
advantage of relying on wi� is to bypass any network �ltering or detetion mehanism in orporate
environments. As a matter of fat, even if Rakshasa was to be used in a large organization whose aess
to the internet is normally done through an authentiating proxy, even if I(D|P)S were to be found in
this network, even if proper DNS segregation was in plae, the simple fat of using enrypted wi� as a
link layer would totally breah the network perimeter and render all those ostly devies entirely useless.

If Rakshasa still didn't manage to get aess to the internet, it would attempt to aquire an IP address
from DHCP over ethernet, and default to a hosen reasonable stati LAN IP in ase everything else
failed. Speed is indeed ritial to remain unnotied, and some of those settings an be skipped by
modifying a simple on�guration �le at ompile time.

If at this stage Rakshasa still didn't get aess at least to the LAN, it would simply boot the default
operating system to avoid being deteted.

At this stage, Rakshasa an perform a number of things. Assuming it didn't managed to onnet to
the internet over wi� but simply ethernet aess, it ould attempt to attak hosts reahable on the
LAN using virtually any protool based on top of IPv4/IPv6 or imp. This an inlude, based on a
simple iPXE on�guration �le : imp host enumeration, tp/dns port sanning, router farming (over
http/https), exploiting network daemons or network staks (ping of death, ipv6 attaks, sending broad-
ast tra�, smurf/DDoS attaks, exploiting remote over�ows in anything routable, et.). One ould for
instane attempt to modify the settings of an ADSL router to open ports. This is not believed to be
speially smart or stealth, so this feature is only mentioned for the sake of ompleteness. As a matter
of fat, ating as suh would be ontrary to our agreed priniple of "plausible deniability" sine hostile
ode would be embedded on the bakdoored mahine...

Rakshasa will then typially try to onnet to a given host on the internet over https (say google.om
beause it is unlikely to trigger alarms, even if the onnetion is operated over an ethernet link). In ase
it sueeds, Rakshasa will assume it has full aess to the internet. In the opposite ase (whih ould
happen if the infeted omputer had no wi� ard and the network was segregated by an authentiating
�rewall), Rakshasa ould attempt to reah the internet via TCP over DNS (whih would su�e if the
network didn't had proper DNS segregation between the LAN and the outside world) or TCP over
imp (why not !).

As the astute reader shall have understood by now, the sky is the limit : enhaning the apabilities of
Rakshasa is really a matter of adding a few lines of text to its iPXE on�guration �le, and in the worst
ase senario to slightly path the existing network staks to attempt new exoti protools8. Even if
aess to the internet often fails, it isn't really a problem : sporadi aess to an open wi� network in
a airport or from a domesti network would be enough to upgrade Rakshasa from time to time.

One full aess to the internet is ahieved (even every so often), Rakshasa will normally download a
bootkit from a given loation on the internet, suh as a �le alled "foobar.pdf" on a given blog over
https, "data.dat" from a ftp one et. It is worth mentioning that there again, multiple tries are allowed,
whih o�er greater resiliene against a shutdown of the main ommand and ontrol (a simple blog
?) from law enforement. Having a number of hostnames or IP addresses and possibly servies (even
though https is really probably the safest option, and it will be the only one onsidered in the remaining

8 This is again not reommended : keeping iPXE as lose to the original ode as possible is desirable to prevent
antivirii from �nding any signature and stik to the golden rule of plausible deniability : "this ode is absolutely
legit, it is simply iPXE".

9

of this paper) to try to download from also inreases resiliene.

Last but not least : iPXE an hain on�guration �les by downloading them from the internet. Meaning
that no diret referene to the �nal hostile bootkit needs to be made from Rakshasa itself (the ode
plaed on the omputer therefore ontains 0 hostile ode per si : there is absolutely no reason for an
antivirus to �ag it as suh9.).

It is worth notiing that if the remote bootkit is ever replaed by a BIOS �asher, Rakshasa an be
updated remotely ! Flashing PCI �rmwares is a bit tougher : �rst of, PCI �ashing tools are (very)
vendor spei�. In order to �ash the orret PCI �rmware on a given network ard, the remote web site
ating as a ommand and ontrol would need to know who is the manufaturer of the ard. Fortunately,
iPXE allows through a set of funtions sending the MAC address of the ethernet ard as a parameter
in a url10. From the MAC address, a simple php sript plaed on the ommand and ontrol server
an extrat the OUI number (�rst 1024 bits) and therefore dedue the manufaturer. From there, the
ommand and ontrol website an return the �ashing tool and �rmware suitable for the spei� devie
to be �ashed under the form of a bootable GNU/Linux environment that will emulate an interruption
0x19 and boot the main OS when done. The seond problem omes from the fat that some PCI de-
vies feature a physial swith that must be manually moved before upgrading the �rmware. This is
in fat not an issue sine a PCI expansion ROM an be plaed diretly inside Coreboot and will have
preedene over the one physially present on the devie.

Finally, the same update mehanism an be used to disinfet the BIOS remotely by restoring the
original BIOS ROM instead of performing a regular Rakshasa upgrade.

7 Embedded features of Rakshasa

Beause of the design of Rakshasa, any bootkit an be used along with our bakdoor without any
modi�ation, by simply hanging the maliious payload downloaded from the ommand and ontrol
blog (without requiring any adjustment on the bakdoored omputer).

The ative payload of Rakshasa being �rst exeuted as a main operating system (from 16b real mode),
it an do anything an operating system an do. In partiular, it an perform any operation state of the
art bootkits an do, suh as pathing the authentiation routine of Windows to allow login loally with
any password. The same routine being used when authentiating via Remote Desktop on Windows,
this ould be enough to even take ontrol of the omputer remotely. Other tehniques suh as injeting
an unsigned kernel driver that will in turn exeute an arbitrary proess (injeted by the bootkit itself)
with SYSTEM privileges in userland without touhing the �le system has also been proved pratial
(this is indeed more than enough to take full ontrol of the omputer remotely : a reverse meterpreter
over HTTPS - possibly after injeting a dll into a web browser to bypass �rewalling restritions at OS
level, and pulling the eventual proxy redentials from the registry or using internal Windows API is
also pratial and publi ode exists to perform all those ations).

For our proof of onept, we got a bit of help from Piotr Bania, who kindly ustomized a version of his
great ommerial Kon-boot bootkit to boot silently (that is to say without the fany 16b demo-looking
graphis, whih are indeed impressive but quite detrimental to a bakdoor's stealthiness...). Kon-boot
is a very advaned bootkit apable of generially pathing the authentiation routine of any windows
from Windows XP to Windows 7 and 2008, both in 32b and 64b.

If the OS is a Windows �avor, we an disable ASLR by pathing the seed used for randomization with a
hosen value11. We an also remove the NX bit from the Page Table Entry diretly in RAM12. The om-
bined e�et of those two alterations is to leave the address spae of any appliation with exeutable data

9 If an antivirus ever did it, it would atually be... a false positive !!
10 This is even doumented on their website at: http://ipxe.org/fg/ma.
11 This exat loation has been doumented by Kumar and Kumar at HITB Malaysia in 2010.
12 As demonstrated by Dan Rosenberg in his remote kernel exploit presented at Defon 2011.

10

(that is: data/bss/heap/stak) and 100 per ent preditable mappings. In other words, any future vul-
nerability a�eting this operating system is going to be trivial to exploit (weaponized by default !). This
is equivalent to removing most of the seurity enhanements ahieved by Mirosoft in the past 10 years.

But this is not quite enough : we'd like to be able to attak other (possibly unknown at the time of
bakdooring) operating systems generially. Sine we in fat ontrol more than just the maliious pay-
load but the entire booting proess sine the �rst bit of BIOS ROM is exeuted, we an do a lot more.
In partiular, we an remove pu miroode updates from Coreboot. The BIOS is the plae of hoie
to push pu upgrades : if we remove those miroodes, then the pu bugs and potential vulnerabilities
normally �xed at this level will remain exploitable.

We an also remove anti SSM protetions, whih will have the net e�et of letting the Operating System
vulnerable to a generi publi loal exploit[20℄.

At this stage of the demonstration, it should be lear that one Rakshasa has been installed on a given
hardware, the seurity of the Operating System annot be ensured anymore.

8 How to properly build a botnet from the BIOS : BIOSBonets

.
Some may argue that the weakest point in the arhiteture presented so far lies in the blog used as a
ommand and ontrol. It is about time we demystify some belief in the inseurity of botnets : if vendors
an perform seure updates, and Mirosoft seems to have mostly done so for the past 10 years13, then
there is absolutely no reason why malware writers ould not do the same.

The weakest point of botnets arhitetures today is ertainly the availability of their ommand and
ontrol. Whenever a hostname is identi�ed by law enforement agenies as a C and C, they typially
perform a DNS take over, rediret the DNS to a publi IP they ontrol, and send a shutdown ommand
to any infeted host onneting to this IP.

Denying law enforement agenies (or whoever else) the apability to send a shutdown ommand to a
botnet is relatively easy : all it really takes is to digitally sign the ommands using strong asymmetri
ryptography. The updates of Rakshasa ould also be digitally signed, whih would prevent modi�a-
tion of the updates by the same agenies. This way, integrity is ensured.

The only remaining problem is the availability (at least partial and sporadi : after all, we probably
don't need to upgrade our bakdoor at every reboot stritly speaking) of the ommand and ontrol.
A trivial way to solve this issue is to have a rotative ommand and ontrol that is randomly piked
by Rakshasa every time from a random address aross all the internet IP range14. There again, the
bakdoor would be upgraded less often, but the ommand and ontrol ould simply not be shut down.

Finally, embedding lient side SSL erti�ates on the bakdoor would prevent trivial detetion of om-
mand and ontrol hosts by sanning all the internet for given �les. It is worth mentioning that Coreboot
is apable of using its own embedded CMOS image, hene leaving the real CMOS nvram available to
store volatile ryptographi keys. By using this feature as well as hardware �ngerprinting (typially
the MAC address) to regenerate deryption keys at eah reboot, it is possible to reate a bakdoor
extremely hard to extrat from the bakdoored hardware (eg: it an't be simply opied into a virtual
mahine for analysis). We believe a BIOSBotnet relaying on suh an arhiteture an literally not be
shut down.

13 Modulo the Flame worm, whih seems to have spread, among other vetors, thanks to a rogue ryptographi
erti�ate based on a rogue MD5 hash ollision -using an unknown tehnique at the time of writing- and by
hijaking DNS answers to the Mirosoft update server.

14 In pratie, a large subset inluding a su�ient number of non ontrolled IP would su�e : law enforement agenies
are unlikely to ever shut down the whole AT&T range or say google.om.

11

9 Why (possibly hardware assisted) enryption won't solve the

problem

At this stage of the demonstration, some may believe ryptography, and in partiular full disk ryp-
tography ombined with TPM shall prevent the bakdoor from doing any damage. We shall therefore
disuss those tehnologies in the present hapter.

First of, Full Disk Enryption (FDE) in itself has been proved vulnerable to multiple implementation
�aws[23℄[24℄, and an often be attaked via brutefore[25℄, but in all generality, it as simply been proved
not to prevent bootkitting at all when not assoiated with TPM[13℄. We brie�y propose a variant of the
evil maid[26℄ attak appliable to the senario of Rakshasa having to bypass suh a seurity feature.
First of, TPM being a passive hip, Rakshasa an still boot a remote OS silently, whether TPM is
present or not.

Let's �rst assume TPM is not present. Instead of fething a bootkit, Rakshasa an detet that the �rst
bootable hard drive is enrypted, and boot a small operating system mimiking the login prompt of the
FDE, wait for the user to enter their redentials, save the password to CMOS, optionally sending the
password bak to the ommand and ontrol server. One the password is known, Rakshasa an disable
interrupt 0x10 (video) emulate an interruption 0x19 to reload the real boot loader, simulate keyboard
typing[23℄ in 16b real mode by programming diretly the PIC miroontrolers embedded in both the
keyboard and the motherboard, and eventually let the system boot normally.

Let's now assume TPM is indeed present : if the mahine was bakdoored before the on�guration
was sealed with TPM (typially : the mahine was bakdoored by the manufaturer or by anyone in
the supply hain before delivery), the attak is absolutely unhanged. Atually, removing the bakdoor
after sealing TPM would then hange the ontent of the TPM register at boot time, resulting in the
hard drive not being derypted at all. So in fat, the bakdoor is itself proteted against tempering !

10 Conlusion

In this short white-paper, we have outlined some issues with modern ps due to legay and weak
seurity arhiteture. Beause ps were designed in the early 80's, they weren't initially designed with
the usage we have of omputers today in mind, and foused more on the interoperability of their ore
peripherals rather than segregation and seurity. Unfortunately, there is no simple �x for this : making
omputers immune to hardware bakdooring would require radial modi�ations of their arhiteture,
whih would result in breaking bakward ompatibility. It is worth notiing that even the most up to
date tehnologies suh as TPM and full disk enryption annot prevent bakdooring by someone in the
supply hain. We hope this white-paper will help raise awareness among the seurity ommunity, and
help deision makers spend more on verifying the integrity of their hardware as well as software rather
than investing in silver bullets that have proved to fail in the past 30 years. In partiular, inluding
PCI ROMs and BIOS �rmwares as part of seurity audits both before usage and in ase of forensis
investigations would be a good idea, while ertainly not su�ient.

11 Aknowledgements

We would like to thank: Florentin Demetresu, member of the Coreboot projet, without whom this
researh would have never started in �rst plae. Piotr Bania, for kindly ontributing a ustom version of
kon-boot to failitate this proof of onept. The Touan System team both in Frane and Australia : I
wouldn't be doing researh without your ontinuous moral and tehnial bakup. The Hakito Ergo Sum
team, Programming ommittee, Speakers and attendees for their onstant passion. Matthieu Suihe,
Mark Dowd, Tarjei Mandt, Snare, Twiz, Sid, Meder Kyderaliev, Cesar Cerrudo, Fyodor Yaroshkin
Rodrigo "BSDaemon" Brano, Silvio Cesare, Tim shelton, Andrewg, Nemo, Mery, Caddis, TGO, Dan
Rosenberg, Morla, mxn, Xort, the Grugq, Nergal, Pipax, Spender, FX and the entire Phenoelite rew,
for their friendship, inspiration, humility, passion and support. All those I haven't mentioned here but
help me hallenge myself (you know who you are), the HITB, Reon, H2HC, CBACert, Ruxon teams,
as well as the SVC. #soial, #blakse, #bustiati. Thanks heaps : you made me write this ;)

12

Referenes

1. Du�ot, L.: Seurity issues related to pentium system management mode, CanSeWest (2006)
2. Intel: Extensible �rmware interfae spei�ations v1.10 (2003)
3. Intel: Uni�ed extensible �rmware interfae spei�ations (2005)
4. PCI-SIG: Peripheral omponent interonnet spei�ations lb3 v0.2.6 (2004)
5. Coreboot: (Coreboot - formerly linuxbios)
6. Coreboot: (Seabios - open soure implementation of a 16bit x86 bios)
7. iPXE: (ipxe - open soure boot �rmware)
8. Northrop-Grumman-Corp: Oupying the information high ground: Chinese apabilities for om-

puter network operations and yber espionage (2012)
9. Sao, A., Ortega, A.: Persistant bios infetion, CanSeWest (2009)
10. Heasman, J.: Firmware rootkits and the threat to the enterprise, Blakhat USA (2007)
11. Soeder, D., Permeh, R.: Bootroot, Blakhat USA (2005)
12. Kumar, Kumar: Bootkit 2.0 : Attaking windows 7 via boot setors, HakinTheBox (2010)
13. Kleissner, P.: Stoned bootkit, Blakhat USA (2009)
14. Bania, P.: Kon-boot (2008)
15. Roux, P.L.: (Truerypt - free open-soure on-the-�y disk enryption software)
16. PaX: (Address spae layout randomization)
17. IBM: (Connetor bus isa (industry standard arhiteture))
18. PCI-SIG: Pi exptress base r3.0 v1.0 (2010)
19. AMD: (I/o virtualization tehnology (iommu) spei�ation revision 1.26)
20. BSDaemon-Coideloko-D0nAnd0n: System management mode hak using smm for "other purposes".

(Phrak magazine)
21. Trusted-Computing-Group: (Trusted platform module spei�ations)
22. Intel: (The preboot exeution environment spei�ation v2.1)
23. Brossard, J.: Bypassing preboot authentiation passwords by instrumenting the bios keyboard

bu�er, Defon (2008)
24. Brossard, J.: Bios information leakage. (2005)
25. Brossard, J.: Bruteforing preboot authentiation passwords, h2h onferene (2009)
26. Rutkowska, J.: Evil maid goes after truerypt! (2009)

13

	Hardware backdooring is practical
	Jonathan Brossard - jonathan.brossard@toucan-system.com
	Introduction
	Related work
	Overview of the IBM PC and its legacy problems
	Designing the perfect backdoor : scope of work
	Implementation details : Rakshasa
	Inner working of Rakshasa
	Embedded features of Rakshasa
	How to properly build a botnet from the BIOS : BIOSBonets
	Why (possibly hardware assisted) encryption won't solve the problem
	Conclusion
	Acknowledgements

