
HAL Id: hal-04606160
https://hal.science/hal-04606160

Submitted on 9 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Hardware Backdooring is Practical
Jonathan Brossard

To cite this version:
Jonathan Brossard. Hardware Backdooring is Practical. Blackhat USA, Blackhat, Jul 2012, Las
Vegas, United States. �hal-04606160�

https://hal.science/hal-04606160
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Hardware ba
kdooring is pra
ti
al

Jonathan Brossard - jonathan.brossard�tou
an-system.
om

Se
urity Resear
h Engineer & CEO, Tou
an System, Fran
e and Australia

Bla
khat Brie�ngs and Def
on
onferen
es, Las Vegas, 2012

�To
reate is to resist, to resist is to
reate� � National Coun
il of the Resistan
e

Abstra
t. This arti
le will demonstrate that permanent ba
kdooring of hardware is pra
ti
al. We have
built a generi
 proof of
on
ept malware for the Intel ar
hite
ture, Rakshasa1,
apable of infe
ting more
than a hundred di�erent motherboards. The �rst net e�e
t of Rakshasa is to disable NX permanently
and remove SMM[1℄ related �xes from the BIOS, an Uni�ed Extensible Firmware Interfa
e (UEFI)[2℄[3℄
�rmware, or from a PCI[4℄ �rmware, resulting in permanent lowering of the se
urity of the ba
kdoored

omputer, even after
omplete erasing of hard disks and re-installation of a new operating system. We
shall also demonstrate that preexisting work on MBR subversions su
h as bootkiting and preboot au-
thenti
ation software brute-for
e or faking
an be embedded in Rakshasa with little e�ort. More over,
Rakshasa is built on top of free software, in
luding the Coreboot[5℄, Seabios[6℄, and iPXE[7℄ proje
ts,
meaning that most of its sour
e
ode is both already publi
 and non mali
ious, therefore extremely
hard to dete
t as su
h. We shall �nally demonstrate that ba
kdooring of the BIOS or PCI �rmwares
to allow the silent booting a remote payload via an http(s)
onne
tion is equally pra
ti
al and ruins all
hope to dete
t the infe
tion using existing tools su
h as antivirii or existing forensi
s tools. It is hoped
to raise awareness of the industry regarding the dangers asso
iated with the PCI standard, espe
ially
question the use of non open sour
e �rmwares shipped with any
omputer and question their integrity
or a
tual intend. This shall also result in upgrading the best pra
ti
es in
ompanies regarding forensi
s
and post intrusion analysis by in
luding the afore mentioned �rmwares as part of their s
ope of work.

Keywords: Hardware ba
kdooring, PCI �rmware, BIOS, EFI, romkitting, remote boot, Botnet.

1 Rakshasa is the Hindi word for deamon.

Table of Contents

1 Introdu
tion . 3

2 Related work . 3

3 Overview of the IBM PC and its lega
y problems . 5

4 Designing the perfe
t ba
kdoor : s
ope of work . 6

5 Implementation details : Rakshasa . 7

6 Inner working of Rakshasa . 8

7 Embedded features of Rakshasa . 10

8 How to properly build a botnet from the BIOS : BIOSBonets . 11

9 Why (possibly hardware assisted) en
ryption won't solve the problem . 12

10 Con
lusion . 12

11 A
knowledgements . 12

1 Introdu
tion

A re
ent[8℄ report from the US-China E
onomi
 and se
urity review
ommission by Northrop Grumman
Corp
alled "O

upying the Information High Ground: Chinese Capabilities for Computer Network
Operations and Cyber Espionage"
on
luded that: "This
lose relationship between some of China's
-and the world's- largest tele
ommuni
ations hardware manufa
turers
reates a potential ve
tor for
state sponsored or state dire
ted penetrations of the supply
hains for mi
roele
troni
s supporting U.S.
military,
ivilian government, and high value
ivilian industry su
h as defense and tele
ommuni
ations,
though no eviden
e for su
h a
onne
tion is publi
ly available." In other words : sin
e China has be
ome
the de fa
to manufa
turer of most IT equipment in the world, China
an ba
kdoor any
omputer at will.
Anybody part of the supply
hain
an. We believe this is an euphemism : we shall here demonstrate
the pra
ti
ality of su
h a ba
kdooring using existing open sour
e software, lowering the bar of su
h an
atta
k from state level or otherwise very large
orporations to any 16bits assembly expert, as well as
demonstrate that installing su
h a ba
kdoor remotely is equally pra
ti
al.

2 Related work

The �rst known virus, brain, was allegedly built in Pakistan in the early 80's. It was targeting the
Master Boot Re
ord (MBR) of the �rst bootable hard drive in order to gain early exe
ution and used
�oppy disks to propagate. This atta
k ve
tor has been repli
ated by literally thousands of viruses during
the 80s and 90s, until the appearan
e of the internet, when viruses swit
hed to userland in order to
bene�t from internet a

ess as a propagation ve
tor.

Gaining early exe
ution has long been believed the best way to gain maximum privileges on IBM PCs.
In 2009, at Canse
west, Anibal Sa
o and Alfredo Ortega[9℄ demonstrated how they managed to pat
h
a Phoenix-Award BIOS to embed mali
ious features (modifying the shadow �le on Unix-like systems,
or pat
h Mi
rosoft Windows binaries). In 2007, John Heasman[10℄ demonstrated that infe
ting The
Extensible Firmware Interfa
e (EFI) bootloader would lead to the same results. If the former targeted
one spe
i�
 BIOS, the latter would be mitigated by reinstalling a sane bootloader.

Operating modi�
ations on the �le system isn't stealth and leaves
lear forensi
s eviden
e : as a matter
of fa
t, a simple one way
he
ksum of all the existing �les on the �lesystem performed before and after
infe
tion from a sane operating system would dete
t the modi�
ation. Therefore, se
urity resear
hers
have
on
eived ways to subvert a running kernel on the �y without even tou
hing the �lesystem. No-
table resear
h in
lude BootRoot[11℄from Derek Soeder and Ryan Permeh, vbootkit from Kumar and
Kumar[12℄,
apable of bootkitting a Windows 7 kernel, the Stoned bootkit[13℄, and the Kon-boot
om-
mer
ial bootkit from Piotr Bania[14℄,
apable of subverting all the existing NT kernels, from Windows
XP to Windows 2008 R2 and Windows 7, in both 32 and 64 bits. Those atta
ks work by booting from
an alternate media su
h as a �oppy or usb sti
k, or by repla
ing the existing MBR (and restore its
�rst se
tor in memory, emulating an interruption 0x19). Running a bootkit from an alternate medium
leaves no forensi
 eviden
e. It is also worth noti
ing that the Stoned Bootkit managed to bootkit the
Windows kernel in spite of possible en
ryption su
h as True
rypt[15℄.

It is worth mentioning that the inner working of any bootkit is the same : hooking the interruption
0x13 (disk a

ess) by pat
hing the Interrupt Ve
tor Table (IVT), set a rogue interruption handler, and
emulate an interruption 0x19 by loading the �rst se
tor of the �rst bootable disk at 0x0000:0x7
00
before transferring exe
ution to this lo
ation. This �rst se
tor will in turn load the operating system
normally, but the rogue 0x13 interrupt handler will hook any read of a se
tor from disk and on
e the
kernel of the main operating system is fully unpa
ked in memory, pat
h a few
arefully
hosen lo
ations
in order to modify it on the �y. Publi
 payloads in
lude pat
hing the NT kernel to a

ept any pass-
word for any a

ount, or load an unsigned kernel module, whi
h
an e�e
tively exe
ute any operation in
ring 0 on
e the operating system is fully loaded (eg: allow lo
al privilege es
alation, remote
ontrol, et
).

3

Our main
ontributions are:

- Romkit not a single, but hundreds of di�erent motherboards. this is better by two orders of magnitude
over existing resear
h.
- Embed any existing bootkits as part of a romkit without any modi�
ation.
- Use of routable ip pa
kets to upgrade the romkit, exe
ute remote payloads and optionally atta
k the
LAN, either using an ethernet or Wi� sta
k.
- A me
hanism to allow botnet resilien
e against law enfor
ement DNS take overs, over HTTPS using
asymmetri

ryptography and a repli
ation me
hanism making the rom-botnet
lose to impossible to
shutdown.
- Permanent lowering of the se
urity level of any future (unknown) operating system installed on the

omputer, when existing bootkits assume either a GNU/Linux or NT kernel.
- Persisten
e of the infe
tion even if the main BIOS rom is ever �ashed by infe
ting multiple PCI
�rmwares (su
h as a
drom �rmware) with mali
ious network �rmwares,
apable of upgrading any
other PCI rom remotely (eg: infe
t the BIOS or main network PCI rom ba
k), while preserving fun
-
tionality.
- Disabling Address Spa
e Layout Randomization (ASLR)[16℄ and NX2 from NT kernels, making any
future Windows operating systems vulnerability trivial to exploit on an infe
ted ma
hine.
- An infe
tion me
hanism o�ering both plausible deniability and non attribution, hen
e
ompatible
with state level global hardware ba
kdooring.

2 The NX bit is the 63th (leftmost) bit of the Page Table Entry on amd64 ar
hite
tures.

4

3 Overview of the IBM PC and its lega
y problems

The IBM PC was originally designed around 1981. It has evolved sin
e, in parti
ular with the repla
e-
ment of older Industry Standard Ar
hite
ture (ISA)[17℄ peripherals in favor of mu
h faster Peripheral
Component Inter
onne
t (PCI)[4℄ devi
es in 1996, and even faster devi
es with PCI Express (pushed
by Intel in 2004,
ommonly referred to as PCI-E or PCIe)[18℄. But the
ore design remains the same,
the
pu still booting in 8086
ompatibility mode (id est: 16b real mode) even on the most re
ent
motherboards. It is worth mentioning that when �rst laun
hed, Windows 95 had open network shares
(netbios), whi
h is a
lear sign that around those dates, Mi
rosoft had not anti
ipated the raise of the
Internet and had therefore designed an operating system to be used primarily in LAN environments.
Needless to say IBM
ouldn't have anti
ipated the internet either ba
k in 1981. The basi
 design of the
IBM PC is presented in �gure 1 : from the bottom to the top, we �nd the Super I/O, to whi
h are
on-
ne
ted lega
y ISA devi
es (hen
e slow devi
es) su
h as keyboards, mouse, and �oppy drives. The Super
I/O is
onne
ted to the South bridge, via an LPC bus. The Southbridge is responsible for handling
faster peripherals (up to 2133 Mb / se
ond for PCI-X 2.0), typi
ally
ompliant with the PCI standard.
Su
h devi
es
an be for instan
e network (ethernet), sound or older graphi

ards. The South bridge
is himself
onne
ted to the North bridge via the internal bus, whi
h is himself responsible for handling
mu
h faster peripherals typi
ally
ompliant with the PCIe standard, with a debit up to 16 Gb/s for the
version 3.0 of the standard. Su
h devi
es
an be for instan
e newer 3D graphi

ards, gigabit ethernet

ards or enterprise storage (SAS). The North bridge
an
ontain the
pu and has in any
ase a high
speed
onne
tion with it through the Front Side Bus (FSB). Ea
h layer of the ar
hite
ture
ontains
Dire
t Memory A

ess (DMA)
hips, whi
h are
ontrolled by input/output memory management unit
(IOMMU)[19℄ for performan
e and se
urity reasons.

Fig. 1. Overview of the IBM PC ar
hite
ture.

5

Be
ause peripherals sometimes need upgrading, they are
ontrolled by via embedded �rmwares : ISA
peripherals had embedded ISA roms, and PCI have PCI expansion roms. Even though end users are
hardly aware of their very existen
e, those �rmwares
an be upgraded (�ashed), usually using propri-
etary and vendor spe
i�
 tools. To avoid trivial ba
kdooring, some
ards o�er a physi
al swit
h whi
h
needs to be manually a
tioned to allow the �ashing of the �rmware.

An other
riti
al �rmware is the BIOS �rmware, whi
h takes pla
e in the motherboard. It is responsible
for dete
ting hardware su
h as RAM and peripherals at boot time, initialize an Interrupt Ve
tor Table
to allow intera
tion with those peripherals from the RAM, and load the Master Boot Re
ord from
the �rst bootable hard drive using interruption 0x19. When booting in 8086
ompatibility mode, the
boot loader
an only rely on the IVT to load a kernel in memory, who will typi
ally qui
kly swit
h to
prote
ted mode and never use the IVT ever again, favoring mu
h faster devi
e drivers for hardware in-
terfa
e from prote
ted mode. The BIOS �rmware
an also be upgraded, and it is in fa
t pretty
ommon
to
orre
t hardware bugs su
h as
pu bugs by pushing a signed mi
ro
ode update to the
pu from the
BIOS. Finally, the BIOS typi
ally a
tivates a bit in
ontrol registers to prevent the
pu to be swit
hed
to System Management Mode (SSM) - whi
h is really the
pu pat
h mode - in order to prevent a
lass
of atta
ks dis
overed by Loi
 Du�ot[1℄ and released publi
ly by BSDaemon[20℄. Some vendors, notably
HP have started digitally signing their BIOSes to avoid rogue upgrading. In any
ase, an atta
ker with
physi
al a

ess to the BIOS or peripherals
an repla
e the �rmwares without relying on the operating
system by writing to the
hip using for instan
e self su�
ient hardware tools based on FPGA
hips.

One of the problem with the design of this ar
hite
ture is rooted in the trust peripherals of ea
h layer
have in ea
h others. For instan
e, the �rmware of a
drom PCI devi
e
an absolutely
ontrol a PCI
network
ard. And in the same way, an ISA �rmware
an
ontrol an other ISA devi
e. This behavior

annot be
hanged : this is how IBM PCs work.

It is also worth noting that the Trusted Platform Module[21℄ (TPM) is typi
ally
onne
ted to the
south bridge, very far from the
pu. Moreover, it is a passive
omponent, meaning that software
an

hose to use it or not, but that the
pu
annot enfor
e its use. This is a serious weakness of the whole
ar
hite
ture as we will see later in this paper.

As one might expe
t, the �rmwares embedded in BIOSes or PCI devi
es (PCI expansion ROMs) are
vendor spe
i�
 and totally not standard. The whole purpose of this paper is to explain how to gener-
i
ally modify su
h �rmwares to
reate a ba
kdoor that
an not be dete
ted from user land on
e a
kernel has been loaded in RAM and a swit
h to prote
ted mode has been performed. Be
ause the BIOS
�rmware is stri
tly speaking the �rst pie
e of software to be exe
uted on the
omputer, and be
ause
it gives early
ontrol to ea
h PCI expansion ROM during early boot (before swit
hing to prote
ted
mode), any mali
ious a
tion routine exe
uted at this stage enjoys full a

ess to hardware resour
es. In
parti
ular, it is worth reminding that real mode is not
apable of multitasking, and that su
h routines
therefore have a

ess to 100 per
ent of the resour
es of the ma
hine.

4 Designing the perfe
t ba
kdoor : s
ope of work

The author of this white-paper doesn't usually spend time writing malwares. To the opposite, he spent
quite a signi�
ant part of his life studying and reversing them. But to prove our point, let's pretend
we'd really like to design a proper ba
kdoor to be used in the wild. We'd also like to underline the
fa
t that we believe most of the
ommuni
ation involving malware, if not all of it,
oming from ma-
jor antivirus vendors and happily relayed by servile media is blatantly tainted with FUD3. Instead of
arguing on whether Flame and Stuxnet
ould have been written by amateurs instead of nation states,
let's see how an atta
ker
an write a nation state quality ba
kdoor on a budget. This shall also serve
as a good example of how a vendor manufa
turer
ould design a proper ba
kdoor with similar intend.
First of all, we'd like our ba
kdoor to be persistent. Not simply persistent between reboots, but also
in
ase the user of the
omputer was to repla
e the entire operating system, possibly even portions of

3 Fear, Un
ertainty, Doubt.

6

the hardware (repla
ing the hard drive or the network
ard for instan
e), �ash the BIOS or any other
�rmware on the motherboard and peripherals. To a
hieve this goal, we will avoid having a single point
of failure and will hen
e need some degree of redundan
y.

Of
ourse, the ba
kdoor should be as stealth as possible. Needless to say it shall not be dete
ted by
any antivirus on the market. It shall also be portable : ideally, we'd like it to be totally operating
system independent. Be
ause a signi�
ant portion of the IT budget of
ompanies goes into expensive
(and quite ine�
ient4) dete
tion gear su
h as Intrusion Dete
tion Systems (IDS), Intrusion Prevention
systems (IPS) and �rewalls, we'll need our ba
kdoor to be
apable to break the network perimeter of
large
ompanies in some way or an other.

In terms of fun
tionality, we'd like the ba
kdoor to allow remote updates and provide remote a

ess.
This implies some degree of network awareness.

Finally, if we want to mat
h nation state quality ba
kdoors, we need our
reation to obey two golden
rules always employed by se
ret servi
es around the world : plausible deniability and non attribution.
the �rst one is a mean to o�er an alternative explanation in
ase the ba
kdoor was to be dis
overed
in spite of our best e�orts to make it as stealth as possible. By having a se
ond
redible alternative to
explain the presen
e of the ba
kdoor in the system, nation states
an deny any wrong doing and qualify
their detra
tors of sheer believers of
onspirationist theories. Non attribution is equally important and
is the feature of not allowing the ba
kdoor to be linked to any individual or state in parti
ular. It is
very mu
h in the air for nation states to
laim "it wasn't me ! ... it was China".

Needless to say the ba
kdoor shall also be
heap : it shall therefore be blatant that a skilled individual

an indeed
reate ba
kdoors so far believed to be only possibly
rafted by states in the story telling of
the media, and eventually put in perspe
tive the FUD that is served daily to both
itizens and de
ision
makers in the
orporate as well as politi
al worlds.

5 Implementation details : Rakshasa

The quadruple
onstraint :
heap development, vast features (su
h as network sta
k), hard dete
tion
and non attribution di
tate one dire
tion for our implementation : free and open sour
e software. As a
matter of fa
t, the dire
tion taken by virtually any malware so far to rely on
ustom
ode entirely is a
bad idea as it o�ers a large atta
k surfa
e to antivirii in terms of dete
tion, is often attributable if
ode
is reused a

ross multiple malware, and is nowhere near
heap. To the opposite, using non mali
ious
free and open sour
e software as the
ore of the ba
kdoor provides little angle of dete
tion to antivirii,
is non attributable (the sour
e
ode is available to anyone on the internet), is as
heap as it gets. Plus
it o�ers free maintenan
e from the
ommunity to the malware author.

In order to a
hieve both persisten
e and stealthiness, it was
hosen to target primarily the BIOS. But
to o�er redundan
y in
ase the BIOS was ever �ashed, it has been de
ided to also provide an infe
tion
me
hanism through PCI expansion ROMs, by targeting the �rmware embedded in ethernet network

ards5.

Rakshasa is
omprised of a
ustom version of Coreboot for the BIOS ba
kend, of a
ustom SeaBIOS
BIOS-payload to
reate and IVT, of a set of PCI expansion ROMS (SVGA driver and a
ustom iPXE

4 From his humble experien
e with vulnerabilities and 0days, the author strongly believes looking for bugs and getting
them �xed is the only reasonable prote
tion against 0days. Unlike the aforementioned network gadgets (in
luding
antivirii/IDS/IPS), stati
 analysis and fuzzing have proved to work. Symboli
 exe
ution is also a promising �eld
of resear
h even though exponential path explosion seems unavoidable in the
urrent state of the art. We strongly
re
ommend
ompanies to invest in those te
hniques instead of silver-bullet-anti-0day-dete
tion tools, whi
h work
neither in theory nor in pra
ti
e.

5 Like mentioned previously, the �rmware
ontrolling a network
ard
ould a
tually be pla
ed in any other PCI devi
e.
Also �ashing, say, the
drom �rmware with the very same infe
ted �rmware would o�er even greater redundan
y.

7

ROM), plus a
ustom a
tive bootkit whi
h is retrieved from the network.

Coreboot by itself isn't a full BIOS : it is only responsible for dete
ting the hardware present on the ma-

hine, perform a BIOS POST and transfer
ontrol to a "BIOS payload". This BIOS payload is in turn
responsible for setting up and Interrupt Ve
tor Table that will allow an operating system to intera
t
with the hardware previously dete
ted. In our setup, Coreboot and Seabios have been trivially pat
hed
not to display anything, even though Coreboot is in theory
apable of displaying a
ustom user de�ned
bootsplash at boot time, whi
h would allow faking the image normally displayed by the original BIOS
(typi
ally
ontaining the vendor logo et
). SeaBIOS was
hosen for its simpli
ity, but alternative open
sour
e BIOS payloads are available whi
h
an also display menus and fool more advan
ed users that

ould want to modify their BIOS settings. Other BIOS payload
an also
ontain EFI/UEFI extensions,
whi
h makes our te
hnique appli
able entirely to UEFI environments6.

Coreboot having a very modular design, it is possible to embed about any PCI ROM along with it,
meaning that we
an stu� arbitrary
ode inside the BIOS
hip itself. We have
hosen to sti
k to the bare
minimum, adding a video driver and a rogue iPXE ethernet �rmware (equally pat
hed not to display
anything when operating). This later PCI �rmware implements a super set of the original PXE[22℄
standard : instead of relying only on DHCP to a
quire an IP address and the address of a TFTP
server to download an operating system from, it
an use a wide range of proto
ols, based on a user
de�ned
on�guration �le embedded in the �rmware itself. iPXE
ontains working sta
ks for ethernet,
wi� and even wimax data link layers proto
ols, a full featured IPv(4/6)/i
mp sta
k, and implements
all a malware writer
ould dream of in terms of upper layer network sta
ks : from UDP and TCP to
DHCP, DNS, HTTP, HTTPS and (T)FTP among others.

Te
hni
ally, Coreboot
ould also embed a full featured ba
kdoor in the BIOS ROM itself. But sin
e
we'd like to o�er upgrading fa
ilities to Rakshasa and avoid leaving any tra
e of hostile
ode on the
ma
hine (to de
eive forensi
s analyst in
ase of dete
tion or at least suspi
ion), we'll refrain from using
this te
hnique : we'll boot our mali
ious payload from the network at ea
h boot.

Instead of booting a normal operating system from the wire, we'll use iPXE to boot a bootkit remotely,
whi
h will in turn transparently load the bootloader from the �rst bootable disk by emulating interrupt
0x19, pat
h the kernel on the �y, and eventually load the operating system kernel as the user expe
ts
it, silently.

6 Inner working of Rakshasa

Rakshasa
an typi
ally be installed in one of two ways. The �rst one is, given physi
al a

ess to the
hardware, to �ash the BIOS �rmware. This
an be a
hieved either by using a dedi
ated physi
al �asher
(usually made of a FPGA)7 or by relying on a generi
 �rmware �asher (from usb or a
drom for
instan
e. PXE
ould also be used). This operation takes less than a minute in any
ase.
The se
ond installation te
hnique is a post intrusion one and doesn't require physi
al a

ess to the
hardware at all : on
e an atta
ker has a
hieved remote root on a
omputer, he
an use the same generi

�asher to install Rakshasa in pla
e of the original BIOS. In
ase the operating system is not a Linux,
one
an simply pivot over the MBR upon next reboot. To a
hieve redundan
y and avoid single points
of failure, the network
ard �rmware is also �ashed with a rogue iPXE �rmware.

Optionally, a se
ond PCI �rmware
an be repla
ed by a modi�ed version of iPXE (typi
ally the
drom).
It is unfortunately not possible to maintain the fun
tionality of this se
ond devi
e when doing so for
the time being (though this is an implementation issue and not a theoreti
al one). If the BIOS ever
attempted to boot from this se
ond devi
e, the net e�e
t would be the same : the
omputer would

6 In other words ,the root
ause of the problems, namely a writable BIOS and a passive TPM are not solved with
UEFI.

7 This method has the main advantage of bypassing anti-�ashing
ounter measures su
h as �rmware signing on

ertain motherboards.

8

really boot from iPXE, that is, from the network.

iPXE is
apable of attempting a
tions, and perform other ones upon failure. To maximize our
han
es of
working in any given environment, we have
on�gured iPXE to �rst attempt to
onne
t to the internet
via wi�. A number of
ommon SSIDs and even wi�
yphers
an be spe
i�ed at
ompile time. Typi
ally,
we'll try to boot from an atta
ker de�ned SSID/WEP a

ess point. In
ase of failure, we'll try to
onne
t
to a (short) list of
ommon publi
 SSIDs usually asso
iated with open wireless a

ess points. The main
advantage of relying on wi� is to bypass any network �ltering or dete
tion me
hanism in
orporate
environments. As a matter of fa
t, even if Rakshasa was to be used in a large organization whose a

ess
to the internet is normally done through an authenti
ating proxy, even if I(D|P)S were to be found in
this network, even if proper DNS segregation was in pla
e, the simple fa
t of using en
rypted wi� as a
link layer would totally brea
h the network perimeter and render all those
ostly devi
es entirely useless.

If Rakshasa still didn't manage to get a

ess to the internet, it would attempt to a
quire an IP address
from DHCP over ethernet, and default to a
hosen reasonable stati
 LAN IP in
ase everything else
failed. Speed is indeed
riti
al to remain unnoti
ed, and some of those settings
an be skipped by
modifying a simple
on�guration �le at
ompile time.

If at this stage Rakshasa still didn't get a

ess at least to the LAN, it would simply boot the default
operating system to avoid being dete
ted.

At this stage, Rakshasa
an perform a number of things. Assuming it didn't managed to
onne
t to
the internet over wi� but simply ethernet a

ess, it
ould attempt to atta
k hosts rea
hable on the
LAN using virtually any proto
ol based on top of IPv4/IPv6 or i
mp. This
an in
lude, based on a
simple iPXE
on�guration �le : i
mp host enumeration, t
p/dns port s
anning, router farming (over
http/https), exploiting network daemons or network sta
ks (ping of death, ipv6 atta
ks, sending broad-

ast tra�
, smurf/DDoS atta
ks, exploiting remote over�ows in anything routable, et
.). One
ould for
instan
e attempt to modify the settings of an ADSL router to open ports. This is not believed to be
spe
ially smart or stealth, so this feature is only mentioned for the sake of
ompleteness. As a matter
of fa
t, a
ting as su
h would be
ontrary to our agreed prin
iple of "plausible deniability" sin
e hostile

ode would be embedded on the ba
kdoored ma
hine...

Rakshasa will then typi
ally try to
onne
t to a given host on the internet over https (say google.
om
be
ause it is unlikely to trigger alarms, even if the
onne
tion is operated over an ethernet link). In
ase
it su

eeds, Rakshasa will assume it has full a

ess to the internet. In the opposite
ase (whi
h
ould
happen if the infe
ted
omputer had no wi�
ard and the network was segregated by an authenti
ating
�rewall), Rakshasa
ould attempt to rea
h the internet via TCP over DNS (whi
h would su�
e if the
network didn't had proper DNS segregation between the LAN and the outside world) or TCP over
i
mp (why not !).

As the astute reader shall have understood by now, the sky is the limit : enhan
ing the
apabilities of
Rakshasa is really a matter of adding a few lines of text to its iPXE
on�guration �le, and in the worst

ase s
enario to slightly pat
h the existing network sta
ks to attempt new exoti
 proto
ols8. Even if
a

ess to the internet often fails, it isn't really a problem : sporadi
 a

ess to an open wi� network in
a airport or from a domesti
 network would be enough to upgrade Rakshasa from time to time.

On
e full a

ess to the internet is a
hieved (even every so often), Rakshasa will normally download a
bootkit from a given lo
ation on the internet, su
h as a �le
alled "foobar.pdf" on a given blog over
https, "data.dat" from a ftp one et
. It is worth mentioning that there again, multiple tries are allowed,
whi
h o�er greater resilien
e against a shutdown of the main
ommand and
ontrol (a simple blog
?) from law enfor
ement. Having a number of hostnames or IP addresses and possibly servi
es (even
though https is really probably the safest option, and it will be the only one
onsidered in the remaining

8 This is again not re
ommended : keeping iPXE as
lose to the original
ode as possible is desirable to prevent
antivirii from �nding any signature and sti
k to the golden rule of plausible deniability : "this
ode is absolutely
legit, it is simply iPXE".

9

of this paper) to try to download from also in
reases resilien
e.

Last but not least : iPXE
an
hain
on�guration �les by downloading them from the internet. Meaning
that no dire
t referen
e to the �nal hostile bootkit needs to be made from Rakshasa itself (the
ode
pla
ed on the
omputer therefore
ontains 0 hostile
ode per si : there is absolutely no reason for an
antivirus to �ag it as su
h9.).

It is worth noti
ing that if the remote bootkit is ever repla
ed by a BIOS �asher, Rakshasa
an be
updated remotely ! Flashing PCI �rmwares is a bit tougher : �rst of, PCI �ashing tools are (very)
vendor spe
i�
. In order to �ash the
orre
t PCI �rmware on a given network
ard, the remote web site
a
ting as a
ommand and
ontrol would need to know who is the manufa
turer of the
ard. Fortunately,
iPXE allows through a set of fun
tions sending the MAC address of the ethernet
ard as a parameter
in a url10. From the MAC address, a simple php s
ript pla
ed on the
ommand and
ontrol server

an extra
t the OUI number (�rst 1024 bits) and therefore dedu
e the manufa
turer. From there, the

ommand and
ontrol website
an return the �ashing tool and �rmware suitable for the spe
i�
 devi
e
to be �ashed under the form of a bootable GNU/Linux environment that will emulate an interruption
0x19 and boot the main OS when done. The se
ond problem
omes from the fa
t that some PCI de-
vi
es feature a physi
al swit
h that must be manually moved before upgrading the �rmware. This is
in fa
t not an issue sin
e a PCI expansion ROM
an be pla
ed dire
tly inside Coreboot and will have
pre
eden
e over the one physi
ally present on the devi
e.

Finally, the same update me
hanism
an be used to disinfe
t the BIOS remotely by restoring the
original BIOS ROM instead of performing a regular Rakshasa upgrade.

7 Embedded features of Rakshasa

Be
ause of the design of Rakshasa, any bootkit
an be used along with our ba
kdoor without any
modi�
ation, by simply
hanging the mali
ious payload downloaded from the
ommand and
ontrol
blog (without requiring any adjustment on the ba
kdoored
omputer).

The a
tive payload of Rakshasa being �rst exe
uted as a main operating system (from 16b real mode),
it
an do anything an operating system
an do. In parti
ular, it
an perform any operation state of the
art bootkits
an do, su
h as pat
hing the authenti
ation routine of Windows to allow login lo
ally with
any password. The same routine being used when authenti
ating via Remote Desktop on Windows,
this
ould be enough to even take
ontrol of the
omputer remotely. Other te
hniques su
h as inje
ting
an unsigned kernel driver that will in turn exe
ute an arbitrary pro
ess (inje
ted by the bootkit itself)
with SYSTEM privileges in userland without tou
hing the �le system has also been proved pra
ti
al
(this is indeed more than enough to take full
ontrol of the
omputer remotely : a reverse meterpreter
over HTTPS - possibly after inje
ting a dll into a web browser to bypass �rewalling restri
tions at OS
level, and pulling the eventual proxy
redentials from the registry or using internal Windows API is
also pra
ti
al and publi

ode exists to perform all those a
tions).

For our proof of
on
ept, we got a bit of help from Piotr Bania, who kindly
ustomized a version of his
great
ommer
ial Kon-boot bootkit to boot silently (that is to say without the fan
y 16b demo-looking
graphi
s, whi
h are indeed impressive but quite detrimental to a ba
kdoor's stealthiness...). Kon-boot
is a very advan
ed bootkit
apable of generi
ally pat
hing the authenti
ation routine of any windows
from Windows XP to Windows 7 and 2008, both in 32b and 64b.

If the OS is a Windows �avor, we
an disable ASLR by pat
hing the seed used for randomization with a

hosen value11. We
an also remove the NX bit from the Page Table Entry dire
tly in RAM12. The
om-
bined e�e
t of those two alterations is to leave the address spa
e of any appli
ation with exe
utable data

9 If an antivirus ever did it, it would a
tually be... a false positive !!
10 This is even do
umented on their website at: http://ipxe.org/
fg/ma
.
11 This exa
t lo
ation has been do
umented by Kumar and Kumar at HITB Malaysia in 2010.
12 As demonstrated by Dan Rosenberg in his remote kernel exploit presented at Def
on 2011.

10

(that is: data/bss/heap/sta
k) and 100 per
ent predi
table mappings. In other words, any future vul-
nerability a�e
ting this operating system is going to be trivial to exploit (weaponized by default !). This
is equivalent to removing most of the se
urity enhan
ements a
hieved by Mi
rosoft in the past 10 years.

But this is not quite enough : we'd like to be able to atta
k other (possibly unknown at the time of
ba
kdooring) operating systems generi
ally. Sin
e we in fa
t
ontrol more than just the mali
ious pay-
load but the entire booting pro
ess sin
e the �rst bit of BIOS ROM is exe
uted, we
an do a lot more.
In parti
ular, we
an remove
pu mi
ro
ode updates from Coreboot. The BIOS is the pla
e of
hoi
e
to push
pu upgrades : if we remove those mi
ro
odes, then the
pu bugs and potential vulnerabilities
normally �xed at this level will remain exploitable.

We
an also remove anti SSM prote
tions, whi
h will have the net e�e
t of letting the Operating System
vulnerable to a generi
 publi
 lo
al exploit[20℄.

At this stage of the demonstration, it should be
lear that on
e Rakshasa has been installed on a given
hardware, the se
urity of the Operating System
annot be ensured anymore.

8 How to properly build a botnet from the BIOS : BIOSBonets

.
Some may argue that the weakest point in the ar
hite
ture presented so far lies in the blog used as a

ommand and
ontrol. It is about time we demystify some belief in the inse
urity of botnets : if vendors

an perform se
ure updates, and Mi
rosoft seems to have mostly done so for the past 10 years13, then
there is absolutely no reason why malware writers
ould not do the same.

The weakest point of botnets ar
hite
tures today is
ertainly the availability of their
ommand and

ontrol. Whenever a hostname is identi�ed by law enfor
ement agen
ies as a C and C, they typi
ally
perform a DNS take over, redire
t the DNS to a publi
 IP they
ontrol, and send a shutdown
ommand
to any infe
ted host
onne
ting to this IP.

Denying law enfor
ement agen
ies (or whoever else) the
apability to send a shutdown
ommand to a
botnet is relatively easy : all it really takes is to digitally sign the
ommands using strong asymmetri

ryptography. The updates of Rakshasa
ould also be digitally signed, whi
h would prevent modi�
a-
tion of the updates by the same agen
ies. This way, integrity is ensured.

The only remaining problem is the availability (at least partial and sporadi
 : after all, we probably
don't need to upgrade our ba
kdoor at every reboot stri
tly speaking) of the
ommand and
ontrol.
A trivial way to solve this issue is to have a rotative
ommand and
ontrol that is randomly pi
ked
by Rakshasa every time from a random address a
ross all the internet IP range14. There again, the
ba
kdoor would be upgraded less often, but the
ommand and
ontrol
ould simply not be shut down.

Finally, embedding
lient side SSL
erti�
ates on the ba
kdoor would prevent trivial dete
tion of
om-
mand and
ontrol hosts by s
anning all the internet for given �les. It is worth mentioning that Coreboot
is
apable of using its own embedded CMOS image, hen
e leaving the real CMOS nvram available to
store volatile
ryptographi
 keys. By using this feature as well as hardware �ngerprinting (typi
ally
the MAC address) to regenerate de
ryption keys at ea
h reboot, it is possible to
reate a ba
kdoor
extremely hard to extra
t from the ba
kdoored hardware (eg: it
an't be simply
opied into a virtual
ma
hine for analysis). We believe a BIOSBotnet relaying on su
h an ar
hite
ture
an literally not be
shut down.

13 Modulo the Flame worm, whi
h seems to have spread, among other ve
tors, thanks to a rogue
ryptographi

erti�
ate based on a rogue MD5 hash
ollision -using an unknown te
hnique at the time of writing- and by
hija
king DNS answers to the Mi
rosoft update server.

14 In pra
ti
e, a large subset in
luding a su�
ient number of non
ontrolled IP would su�
e : law enfor
ement agen
ies
are unlikely to ever shut down the whole AT&T range or say google.
om.

11

9 Why (possibly hardware assisted) en
ryption won't solve the

problem

At this stage of the demonstration, some may believe
ryptography, and in parti
ular full disk
ryp-
tography
ombined with TPM shall prevent the ba
kdoor from doing any damage. We shall therefore
dis
uss those te
hnologies in the present
hapter.

First of, Full Disk En
ryption (FDE) in itself has been proved vulnerable to multiple implementation
�aws[23℄[24℄, and
an often be atta
ked via brutefor
e[25℄, but in all generality, it as simply been proved
not to prevent bootkitting at all when not asso
iated with TPM[13℄. We brie�y propose a variant of the
evil maid[26℄ atta
k appli
able to the s
enario of Rakshasa having to bypass su
h a se
urity feature.
First of, TPM being a passive
hip, Rakshasa
an still boot a remote OS silently, whether TPM is
present or not.

Let's �rst assume TPM is not present. Instead of fet
hing a bootkit, Rakshasa
an dete
t that the �rst
bootable hard drive is en
rypted, and boot a small operating system mimi
king the login prompt of the
FDE, wait for the user to enter their
redentials, save the password to CMOS, optionally sending the
password ba
k to the
ommand and
ontrol server. On
e the password is known, Rakshasa
an disable
interrupt 0x10 (video) emulate an interruption 0x19 to reload the real boot loader, simulate keyboard
typing[23℄ in 16b real mode by programming dire
tly the PIC mi
ro
ontrolers embedded in both the
keyboard and the motherboard, and eventually let the system boot normally.

Let's now assume TPM is indeed present : if the ma
hine was ba
kdoored before the
on�guration
was sealed with TPM (typi
ally : the ma
hine was ba
kdoored by the manufa
turer or by anyone in
the supply
hain before delivery), the atta
k is absolutely un
hanged. A
tually, removing the ba
kdoor
after sealing TPM would then
hange the
ontent of the TPM register at boot time, resulting in the
hard drive not being de
rypted at all. So in fa
t, the ba
kdoor is itself prote
ted against tempering !

10 Con
lusion

In this short white-paper, we have outlined some issues with modern p
s due to lega
y and weak
se
urity ar
hite
ture. Be
ause p
s were designed in the early 80's, they weren't initially designed with
the usage we have of
omputers today in mind, and fo
used more on the interoperability of their
ore
peripherals rather than segregation and se
urity. Unfortunately, there is no simple �x for this : making

omputers immune to hardware ba
kdooring would require radi
al modi�
ations of their ar
hite
ture,
whi
h would result in breaking ba
kward
ompatibility. It is worth noti
ing that even the most up to
date te
hnologies su
h as TPM and full disk en
ryption
annot prevent ba
kdooring by someone in the
supply
hain. We hope this white-paper will help raise awareness among the se
urity
ommunity, and
help de
ision makers spend more on verifying the integrity of their hardware as well as software rather
than investing in silver bullets that have proved to fail in the past 30 years. In parti
ular, in
luding
PCI ROMs and BIOS �rmwares as part of se
urity audits both before usage and in
ase of forensi
s
investigations would be a good idea, while
ertainly not su�
ient.

11 A
knowledgements

We would like to thank: Florentin Demetres
u, member of the Coreboot proje
t, without whom this
resear
h would have never started in �rst pla
e. Piotr Bania, for kindly
ontributing a
ustom version of
kon-boot to fa
ilitate this proof of
on
ept. The Tou
an System team both in Fran
e and Australia : I
wouldn't be doing resear
h without your
ontinuous moral and te
hni
al ba
kup. The Ha
kito Ergo Sum
team, Programming
ommittee, Speakers and attendees for their
onstant passion. Matthieu Sui
he,
Mark Dowd, Tarjei Mandt, Snare, Twiz, Sid, Meder Kyderaliev, Cesar Cerrudo, Fyodor Yaroshkin
Rodrigo "BSDaemon" Bran
o, Silvio Cesare, Tim shelton, Andrewg, Nemo, Mer
y, Caddis, TGO, Dan
Rosenberg, Morla, mxn, Xort, the Grugq, Nergal, Pipax, Spender, FX and the entire Phenoelite
rew,
for their friendship, inspiration, humility, passion and support. All those I haven't mentioned here but
help me
hallenge myself (you know who you are), the HITB, Re
on, H2HC, CBACert, Rux
on teams,
as well as the SVC. #so
ial, #bla
kse
, #busti
ati. Thanks heaps : you made me write this ;)

12

Referen
es

1. Du�ot, L.: Se
urity issues related to pentium system management mode, CanSe
West (2006)
2. Intel: Extensible �rmware interfa
e spe
i�
ations v1.10 (2003)
3. Intel: Uni�ed extensible �rmware interfa
e spe
i�
ations (2005)
4. PCI-SIG: Peripheral
omponent inter
onne
t spe
i�
ations lb3 v0.2.6 (2004)
5. Coreboot: (Coreboot - formerly linuxbios)
6. Coreboot: (Seabios - open sour
e implementation of a 16bit x86 bios)
7. iPXE: (ipxe - open sour
e boot �rmware)
8. Northrop-Grumman-Corp: O

upying the information high ground: Chinese
apabilities for
om-

puter network operations and
yber espionage (2012)
9. Sa
o, A., Ortega, A.: Persistant bios infe
tion, CanSe
West (2009)
10. Heasman, J.: Firmware rootkits and the threat to the enterprise, Bla
khat USA (2007)
11. Soeder, D., Permeh, R.: Bootroot, Bla
khat USA (2005)
12. Kumar, Kumar: Bootkit 2.0 : Atta
king windows 7 via boot se
tors, Ha
kinTheBox (2010)
13. Kleissner, P.: Stoned bootkit, Bla
khat USA (2009)
14. Bania, P.: Kon-boot (2008)
15. Roux, P.L.: (True
rypt - free open-sour
e on-the-�y disk en
ryption software)
16. PaX: (Address spa
e layout randomization)
17. IBM: (Conne
tor bus isa (industry standard ar
hite
ture))
18. PCI-SIG: P
i exptress base r3.0 v1.0 (2010)
19. AMD: (I/o virtualization te
hnology (iommu) spe
i�
ation revision 1.26)
20. BSDaemon-Coideloko-D0nAnd0n: System management mode ha
k using smm for "other purposes".

(Phra
k magazine)
21. Trusted-Computing-Group: (Trusted platform module spe
i�
ations)
22. Intel: (The preboot exe
ution environment spe
i�
ation v2.1)
23. Brossard, J.: Bypassing preboot authenti
ation passwords by instrumenting the bios keyboard

bu�er, Def
on (2008)
24. Brossard, J.: Bios information leakage. (2005)
25. Brossard, J.: Brutefor
ing preboot authenti
ation passwords, h2h

onferen
e (2009)
26. Rutkowska, J.: Evil maid goes after true
rypt! (2009)

13

	Hardware backdooring is practical
	Jonathan Brossard - jonathan.brossard@toucan-system.com
	Introduction
	Related work
	Overview of the IBM PC and its legacy problems
	Designing the perfect backdoor : scope of work
	Implementation details : Rakshasa
	Inner working of Rakshasa
	Embedded features of Rakshasa
	How to properly build a botnet from the BIOS : BIOSBonets
	Why (possibly hardware assisted) encryption won't solve the problem
	Conclusion
	Acknowledgements

